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Abstract 

Optimal designs are a class of experimental designs that are efficient with respect to some 

statistical criterion. Two types of optimal designs are considered in the study. D-optimal designs 

are designs that minimize the generalized variance of a model’s estimated parameters. Ds-

optimal designs are a class of D-optimal experimental designs that are useful when the researcher 

is interested in estimating a subset of parameters in a given model. For a specific parameter, Ds-

optimal designs would be more efficient than D-optimal designs. Although the loss in efficiency 

of D-optimal designs relative to Ds-optimal designs have been examined in the past literature, 

past research did not consider the cases where there are missing observations. 

Given that missing observations are ubiquitous in longitudinal studies due to dropout, the 

current study examines the loss in efficiency when D-optimal designs are used instead of Ds-

optimal designs for data with missing observations. Results indicate that in general, location of 

Ds-optimal design points with dropout will shift closer towards the location of the D-optimal 

designs with complete data, compared to D-optimal design points with dropout. The D-optimal 

design with complete data corresponds with the smallest variance covariance matrix. For the data 

with dropout, the variance covariance matrix of the Ds-optimal design is closer in size to that of 

D-optimal design with complete data compared to that of D-optimal design with dropout. For 

both designs with dropout, efficiency loss is moderate. 

 

Keywords Ds-optimal designs, missing observations, efficiency loss, linear mixed models. 
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Introduction 

Longitudinal studies in general tend to encounter high dropout rates besides being costly. 

There is evidence that missing observations reduce the efficiency of longitudinal experiments 

noticeably (Ortega-Azurduy et al., 2008).  Designing a study to take into account missingness is 

key in ensuring efficiency of target statistical tests. In fact, a proper design of a scientific study is 

more important than the specific techniques used in the analysis. A poorly designed study or a 

botched experiment may often not be salvaged, even with the most sophisticated analysis (Cox, 

1958). Increasing costs and limited funding necessitate the need to consider the use of optimal 

designs in research. 

Optimal designs have not been popular in psychological research (Holling, 2013). 

Several reasons have been used to explain why this has been the case. Inaccessible literature 

(requiring a strong statistical background), common software packages lacking capabilities to 

generate optimal designs, and low cost experiments in psychology (hence no motivation to 

thoroughly plan to cut cost), are some of the reasons. Another reason is that design issues have 

been treated lightly in the curriculum with data analysis being the main emphasis (Wong & 

Berger, 2009).  

However, there is a growing demand for optimal designs in psychological research in 

recent years. In educational testing, due to large-scale assessments, optimal designs are very 

valuable. An example is the study on “Trends in International Mathematics and Science” 

(TMISS; Mullis, Martin, Ruddock, O’Sullivan, & Preuschoff, 2009), where the large sample 

sizes needed may be kept at a minimum by using optimal designs. Recent years have seen 

neuroimaging methods like fMRI become standard procedure in psychological research. Due to 

their complexity and high cost, optimal designs may reduce the time and cost involved (Maus & 
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van Breukelen, 2013). As a result of developments in software and more applied literature, there 

is a growth body of research in optimal designs in  areas like survival analysis (Moerbeek, 

Jozwiak, 2013),  item response theory(Berger,1994), and clinical trials(Haines et. al., 2003). 

From a practical standpoint, each psychological study may benefit from optimal designs 

because the reduction of observations without losing precision is often considerable. Besides 

financial constraints, there are ethical and practical reasons that justify the need to use optimal 

designs (McClelland, 1997). For example, a smaller sample is highly appropriate from an ethical 

perspective as it means that fewer subjects may have to participate in a controversial treatment.  

Even with developments in software and availability of literature on the applications of 

optimal designs, optimal designs have not been used in observational studies as much as in 

experimental studies. It’s important to note that both observational and experimental studies are 

almost equally popular in psychological research. Observational studies are studies where the 

assignment of subjects to groups is observed rather than manipulated. In experimental studies, 

the researcher has control when assigning treatments to the experimental units through 

randomization, thus enhancing the generalizability of the study results and at the same time 

avoiding potential biases. Optimal designs are particularly common in experimental designs than 

observational studies, probably because the researcher has control of the assignment process 

through randomization.   

The question of potentially failing trials in longitudinal designs has been studied by 

several authors. Missing observations in optimal designs has been discussed by Peter Hackl 

(1994), Imhof, et al. (2004) and Ortega-Azurduy et al. (2008) in the context of redesigning 

experiments due to failing trials. In particular, Ortega-Azurduy et al. (2008) looks at the effect of 

missing observations on the efficiency of D-optimal designs. These studies have been focused on 
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the efficiency of all parameter estimates in linear mixed model (D-optimal designs). However, 

there is no study evaluating the loss in efficiency due to dropout if a Ds-optimal design is used in 

linear mixed models. The study is therefore designed to address this issue.  

The rest of the paper is divided into seven sections. Section 1 is a brief introduction to 

Linear mixed models. Section 2 introduces characteristics of missing data. Section 3 introduces 

optimal designs. Section 4 covers optimal designs and response probability functions. Section 5 

shows the research design of the study. Section 6 shows the results of the study and section 7 

concludes the study. 

 

SECTION 1: Linear Mixed Models 

A Linear mixed model (LMM) is a statistical model with both random and fixed effects. 

LMMs are popular in longitudinal studies because they capture individual changes in an outcome 

variable using fixed and random parameters along with serially correlated errors. They are 

flexible and can handle dropout in the data. In addition they can model unequal number of 

repeated measurements from participants (Cnaan et al., 1997).  

A LMM can be expressed in a matrix form as follows, 

�� = ��� + ��	� + 
�,       (1) 

 = 1, … � ,  with   	� ~ �(�, �)  and  �� ~ �(�, ����),  

where 

 �� is the q x 1 response vector for observations on the ith subject; 

 �� is the q x p design matrix for the fixed effects linking � to ��; 

 � denotes a p x 1 vector of fixed effects; 

 ��  is a known q x k design matrix for the random effects linking 	� to ��; 
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 	� is a k x 1vector of unknown subject-specific effects; 

 
� is the q x 1 vector of errors on the ith subject; 

 � is the k x k covariance matrix for the random effects; 

 ���� is the q x q positive-definite error covariance matrix for the ith subject. 

p represents the number of fixed parameters while the number of design points is represented by 

q. The vector of random effects 	� represents how the ith subject deviates from the average 

population (Ortega-Azurduy et al., 2008). The random variables, 
� and 	� are assumed to be i.i.d 

(independent, identical and normally distributed). 

 

SECTION 2:  Missing Data  

Causes and Mechanisms. 

In research, missing data is as certain as taxes. Missing data can have negative effects on 

statistical power, and cause biased estimates if handled inappropriately (Trikriktsis, 2005). 

Participants could drop out of studies for various reasons: relocation, fatigue, death, or refuse to 

continue due to treatment failure. Careful consideration when handling missing data is important 

to ensure that we preserve the distributions of and the relationships among target variables. This 

helps reduce bias and instability in parameter estimates and standard errors. This can also help 

maximize statistical power. 

It’s worth noting that missing data patterns and rates can affect the amount of information 

available to estimate parameters. A low covariance coverage is an indicator for high fraction of 

missing information for a particular parameter. Covariance coverage is the proportion of data 

that is available to estimate either a correlation or covariance between two variables. Fraction of 
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missing information refers to the proportion of information lost due to missing data (Enders, 

2010).  

In addition, there is a need to understand why data are missing (missing data 

mechanisms). Missing data mechanisms determine which missing data technique to use. There 

are three missing data mechanisms (Enders, 2010) including: 

i. Missing completely at random (MCAR),  

The reason for missingness is unrelated to observed variables in the model or the underlying 

value of the variable that is missing. 

ii. Missing at random(MAR), and  

The reason for missingness is related to observed variables in the dataset but not the underlying 

value of the variable that is missing. 

iii. Missing not at random (MNAR). 

The reason for missingness is dependent on the underlying values of the variable itself. 

 For the purpose of our analysis, the responses are assumed to be missing at random 

(MAR).The reason I choose MAR is because it can be handled by popular missing data 

techniques such as full information maximum likelihood and multiple imputation. 

 

SECTION 3: Introduction to Optimal Designs  

Optimal Designs  

Optimal designs are a class of experimental designs that are most efficient with respect to 

some statistical criterion. Efficiency in this case refers to accuracy of estimators for model 

parameters in terms of variances of the estimators (Wong & Berger, 2009). Optimal designs 
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minimize the variances to achieve precise parameter estimates and improve statistical power 

(Kutner, et al., 2005).  

Optimal designs are defined based on the optimal design theory which offers a systematic 

way of finding an optimal or a highly efficient design using all current information for the 

problem at hand (Atkinson & Donev, 1992). Smith (1918) did the original mathematical work on 

design experiments which is extended by Kiefer (1974) to the concept of optimal designs. 

Atkinson and Donev (1992) further stressed the statistical aspects of optimal designs. Optimal 

research designs imply that the objective of the investigation is determined before the experiment 

or survey is carried out and that the precision requirements for the type of data analysis are 

formulated, and that all possible things which could have a negative influence on the research 

work or could bias the results are considered (Rasch, et al, 2011). 

Optimal designs can be planned prior to data collection or designs can be planned such 

that data collection is done sequentially or adaptively. Either way, a carefully designed study can 

provide accurate statistical inference with minimum cost (Wong & Berger, 2005). Wong and 

Berger (2009) showed that use of optimal designs can reduce number of observations from 

between 20% to 40% when compared to commonly used designs. This can significantly reduce 

budget costs without comprising accuracy of results. This study is focused only on designs 

planned prior to data collection.   

In optimal design literature, it’s a common practice to design experiments assuming that 

all observations are realized at the end of the study. Attrition, however, is ubiquitous in 

longitudinal studies. When there are missing observations, designs that assume that all 

observations are available at the end of the study may perform poorly (Imhof et al., 2002).  

Designing studies with anticipated missing observations taken into account may improve the 
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performance. However, researchers are more concerned about the loss in efficiency as a result of 

using an optimal design that assumes complete data instead of using an optimal design based on 

an unknown dropout process. 

 D(determinant)-optimality Criterion   

An optimality criterion summarizes how efficient a design is and is maximized or 

minimized by an optimal design (Rady, et al., 2009). Optimal design studies tend to identify a 

design that minimizes variances of model parameter estimates, thus allowing the model to make 

most accurate predictions. This is achieved by use of the D criterion, which is the criterion 

considered in this paper due to its popularity in longitudinal design literature (Myung & Pitt, 

2009). The D-criterion is also preferred as it is invariant under linear transformation of the scale 

of independent variables. This means that a D-optimal design remains the same with different 

scaling. For example, the D-optimal design in the interval [0, 2] can be directly obtained by 

transforming the D-optimal design in the interval [-1, 1]. Other optimality criteria (for example A 

and E) are scale dependent and do not have this property (Berger & Wong, 2009). 

The D-optimality criterion was first developed by Wald (1943). This criterion minimizes 

the area of the ellipse (two parameters) or the volume of the ellipsoid (more than two parameters) 

(Atkinson et al., 2007). Note that the variance-covariance matrix not only determines the shape 

and form of the confidence ellipsoid but also the direction of the axes. 

Using a simple linear regression with one predictor variable x and an outcome variable y 

( �� =  �� + �� �  + !� ) as an example, all information about the uncertainty of intercept and 

slope (��  and ��) is contained in the confidence ellipses shown in Figure 1. The point of 

intersection of the dotted axes in the ellipses in Figure 1 represents the point estimates ( �"� and 

�"� ) (Wong and Berger, 2009). Both the length of the axes and the volume are a measure of 
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uncertainty. The shorter the length of the axes and the smaller the volume of the ellipsoid, the 

more accurate the estimators are. In Figure 1, (i) and (ii) show a case where �"� and �"� have no 

correlation while (iii) and (iv) indicate a situation where the estimates are positively correlated. 

 

D-optimality is defined as the determinant of the variance-covariance matrix of �, 

#$%&'()*�+,-.  That is,  

D − criterion = #$%&'()*�+,-.          (2) 

The main objective is to minimize #$%&'()*�+,-, which is proportional to the inverse of the Fisher 

information matrix.  The information matrix measures the amount of information that an 

observable random variable X carries about an unknown parameter θ upon which the probability 

of X depends. In this example, the Fisher Information Matrix is as follows:   

                                                   �8� =   9 : ∑  �∑  � ∑  �<=            (3)  

where X represents the data matrix of independent variables. '()*�+, is thus given by 

>() ?� + @ = 9 : ∑  ∑   ∑  2
=B�  = CDE

FGGH  9 ∑ xJ< − ∑ xJ− ∑ xJ N =  ,           (4)  

where N is the sample size, SSx is the variation of x (sum of squares of  x), LM< is the variance of 

error term. We can therefore express the D-criterion as follows:  

D − criterion = #$%&'()*�+,- =  CDN
FEGGEH  &: ∑  �< − (∑  �)<- =  CDN

FGGH           (5)    

Ds-optimality  

Different from D-optimal designs, Ds-optimal designs are a class of experimental designs 

that are efficient with respect to only a subset of parameters in a model. Ds-optimal designs are 

useful when the researcher is interested in a subset of parameters in a given model. When 
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designing for such a study it is prudent to utilize resources to estimate parameters of interest. 

Kiefer (1961) defined a design as Ds-optimal if it minimizes the determinant of the normalized 

covariance sub-matrix of estimators of the chosen model parameters while treating the other 

parameters as nuisance parameters.  

            Assuming a D-optimal model  OP( )� with p parameters, it is possible to decompose OP  

into O�P
 and O<P

 as follows: 

OP( )�  =  O�P��  +  O<P�< ,           (6) 

where  �� corresponds to the s parameters of interest. Thus p – s  parameters of  �< are treated as 

nuisance parameters. The decomposition can result in �< corresponding to parameters for the 

blocking variables while �� corresponding to the experimental factors (Atkinson et al., 2007).  

Accordingly, the information matrix is also decomposed into 

Q =  9Q�� Q�<Q<� Q<<=.            (7) 

The covariance matrix for the least squares estimates of  ��  is R��, the s by s left upper 

submatrix of  RB� is  
 [∑ (U)]W = R�� =  [Q��(U) − Q�<(U)Q<<B�(U)Q�<(U)]B�           (8) 

Design U∗ will maximize| ∑ (U)W |. This is the Ds-optimum design for �� and maximizes the 

determinant of the information matrix as follows: 

 | ∑ (U)W | = 
|Z([) |

| ZEE([)| .          (9) 

The use of Ds-optimality designs would result in increased power since the parameters of interest 

are estimated more precisely (Casey et al., 2004; Atkinson & Donev, 1992).  
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SECTION 4: Optimal designs and response probability functions 

Response probability functions. 

A response probability function denotes the probability of obtaining data at a particular 

support point (design point). Response probability functions are used to describe the dropout 

process. We begin by defining a design space over which we create response probability 

functions.  

Suppose \ is a design in the design space Δ containing all designs of interest: i.e. 

\ = ]  �   <   ^ …  _ …  WB�   W
`�  `< `^ … `_ … `WB� Ẁ

 a  .                 (10) 

There are m design points,  �- W  distinct values of the independent variable (IV), x.  `�- Ẁ are 

the associated weights, where `� =  bc
F . Instead of using weights, we can also use sample sizes 

d�- dW for discrete designs. An illustration using dosage example is provided. Suppose there are 

6 different dosage levels on the design interval Δ = [1, 6] and a sample size of N=60 patients. If 

we have equal proportion of patients assigned at each dosage level, all the weights are equal to 

Ẁ = �
e  and each dosage level is nJ x �

e� = ��
e�  . To facilitate interpretation and comparison of 

different designs, the design points are recoded between -1 and 1 by the transformation fg8 =
_hB _i 

eB_i , `ℎ$k$ fl = 1 + (6 − 1)/2.  The resulted design is  

Ue� =   ]  −1��
e�

     −.6��
e�

      −.2��
e�

      . 2��
e�

      . 6��
e�

      1��
e�

   a.              (11) 

Let’s assume that  o( _) is the response probability of measuring a subject at time points  _. For 

the design point  � the response probability is o( �) with a sample size d� ,  while for the dth 

design point ( _), the response probability is o( _) with a sample size  d_: ( d_= d�o( _)). 
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Several assumptions are made during this process of determining response probability functions. 

These include: 

1)   dW ≥ 1 i.e., at least one subject is observed at the last point. 

2)  o( _) is a monotonically decreasing function with  

         o( �) ≥ o( <) ≥  … ≥ o( WB�) … ≥ o( W), where  o( �) > o( W) . 

3)  Dropout occurs in a non-informative mechanism (MAR).  

 

Optimal designs with complete data 

The D-optimality (which is our optimality criterion) minimizes the generalized variance 

(or the determinant of the variance covariance matrix) of the parameter estimates �+ (Atkinson & 

Donev, 1996). We define a design ξ* as D-Optimal for model Q if:  

#$%&stku*�+vU∗,- ≤ #$% &stku*�+vU,-  ∀ U ∈  ∆ ,     (12) 

where Q is a specific model from a set of LMMs. Minimizing this determinant maximizes the 

power of the simultaneous test of the null hypotheses for the parameters in vector �.  
Optimal designs with incomplete data 

While with complete data, we have a total of s responses (complete responses from all 

 design points), with missing data, we will have d < s responses. The response probability 

p(xd),and the  matrices  for fixed effects  X[d] and random effects  Z[d] in a linear mixed model is 

P(xd) = nd / n1. 

The matrices X[d], Z[d] are of size d x p and d x k respectively, and their corresponding 

covariance matrix is: 

{[_] = �[_]��8[_] +  |���       (13) 

The covariance matrix of the best linear unbiased estimator �+ can be then written as  
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stk*�+, = ( ∑ }_ �8[_]{[_]~��[_] )B�W_��      (14) 

One of the challenges of finding an optimal design for a linear mixed model with dropout 

is that the response probability function is unknown at the design stage of study. However, prior 

knowledge on potential failing trials in the area (from past research or pilot studies) can be 

incorporated in the design. 

SECTION 5:  Method 

Motivation Example 

An example model would be a LMM investigating the effect of different interventions for 

treating children with attention-deficit/hyperactivity disorder (ADHD).This would be a popular 

model in clinical psychology. Some of the available interventions include medication (treatment 

A) and intensive behavioral treatment (treatment B). Studies have shown that in the long run, 

behavioral treatments are highly effective (Fabiano et.al. 2008) and that there was no long term 

side effects. Suppose that the outcome variable is academic performance. Since medication does 

not directly address problems related to children’s academic performance, only the effect of 

behavioral treatment on academic performance is considered and we will utilize a subset of 

variables in our model. This is a Ds-optimal model which provides a more precise estimate of the 

effect of the treatment B. The study is conducted in the context of the example. 

The LMM is expressed in equation (1) above. Using the example given above, we show 

the equations involved in determining the subset of variables of interest for the Ds-optimal 

model. There are three treatment groups (intensive behavioral-A, medication-B, and control-C) 

which were measured in zero, nine and fourteen months. The LMM can be written as follows: 

��� = ( �� + ���) + (��LJ + ��HJ +  ��CJ + �<�)%�g +  ���          (15) 

where  
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 YJ� is the response of ith  subject, jth occasion. 

�� is the average response  at start of treatment 

β�,β<,β^ represent average time effects for treatment A, B and Control groups 

LJ, HJ, CJ are indicator variables defined to be 1 if the child belongs to A, B and C groups 

respectively 

��� represents subject specific random effects 

%�g represents time since baseline 

* β� + ���, represents subject specific mean response at baseline. 

Models for each treatment group are as follows: 

��� = {   
�� + ���    + (�� +  �<�)%�g +  ��� , %k$t%}$d% � 
�� + ���    + (�� +  �<�)%�g +  ��� , %k$t%}$d% �

�� + ���    + (�� + �<�)%�g +  ��� , '(d%k(�
  }     (16) 

Since the medication intervention does not necessarily address problems related to a child’s 

academic performance, �< is excluded from the model which results in a Ds-optimal model as 

shown below: 

��� = ( �� + ���) + (��LJ +   ��CJ + b<J)%�g +  ���    (17) 

Design Evaluation 

Recall that the goal of this study is to examine the effect of drop out on the efficiency of 

D-optimal (denoted by U_∗   ) and Ds-optimal designs (denoted by U_W∗ ) for LMMs. A design ξ* is 

defined as Ds- optimal design for model Q if: 

#$%&stku*�+vU∗,- ≤ #$% &stku*�+vU,-  ∀ U ∈  ∆     (18) 

The probability of observing all subjects at all design points is less than one, i.e.,  o( _∗ ) <
1  O(k t�� f.  The response probability is given by ( _∗ ) = b�

b� , d� > d< > ⋯ > d_ … > dWB� >
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 dW. The aim here is to evaluate loss of efficiency, by comparing the efficiency of U_∗   to U_W∗ . Ds 

efficiency is the ratio of the variance of the subset of parameters of interest under the Ds-optimal 

design , U_W∗  , to the variance of the same subset of parameters under the D optimal design, U_∗ . 

��*U_∗ vU_W∗  , = � ����� ¡¢?�+£U_W∗ @¤
����� ¡¢?�+£U_∗ @¤  ¥

�
¦
      (19) 

The pth root enables us to determine the number of replicates of an optimal design U_∗  that 

will be as efficient as one replicate of the optimal design U_W∗ . In terms of sample size, RE enables 

us to determine the number of extra participants needed for U_∗  to have the same efficiency as U_W∗ . 

For instance, if ��*U_∗vU_W∗  , = 0.65, then  we need  (. 65B� − 1) ∗ 100% = 54%  more subjects 

for U_∗  to have same efficiency like U_W∗ . 

Generate Missing Data 

 We utilize both a quadratic and a linear response function to capture the dropout process. 

The amount of missingness increases from 0% at the first design point to 70% at the last design 

point. 

  «¬�b*g, = 0.65 − 0.35g  .  and  «̄ °±_*g, = 0.5 − 0.35g +  0.15g< (20) 

where g are the design(support)  points of longitudinal observations  Y for a sample of subjects. 

The software used in this study is R version 3.1.3. The study hypothesis is that when drop out is 

taken into account, D-optimal designs are less efficient relative to Ds-optimal designs. Ds-

optimal designs are more efficient because the models are simpler compared to D-optimal design 

which gives more degrees of freedom (information) to estimate the variance more precisely. 

Design Factors 

 Four classes of LMMs with different variance-covariance matrix T will be investigated as 

shown below:  
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T = �%�� %�<%<� %<<¤          (21) 

i) Fixed effects models with no random effects 

ii) random intercept  model 

iii) random slope and intercept model where there is no covariance between intercept 

and slope 

iv) a random intercept and slope with covariances between random intercept and 

slope equal to %�< =  ²∗√%��  %<<. Correlation between the random intercept and 

slope is 0.8. 

For these four classes, the elements of T are varied at two levels as follows: t11={0,1}, 

t22={0,3}, and  %�< = {0,0.8√3}. This choice is made because past research (Ortega-Azurduy et 

al., 2008) has shown that trends of the optimal allocation of the time points with drop out 

depended more on the form of the variance-covariance matrix T than on specific values of its 

individual elements t11, t22 and t12. In this study I consider p = 2, 3 and 4 fixed polynomial 

parameters with q=3 and 4 time points. From the four classes of LMMs investigated, we note 

that class 4 portrays the core characteristics of a longitudinal study. Class 4 has both fixed and 

random effects and a correlation between the random intercept and slope. 

For both D and Ds-optimal designs, I will examine the effect of missing observations using the 

response function and then evaluate the efficiency loss using relative efficiency plots. Plots will 

be used to show relative efficiency for the various models within the design space given the 

response functions.  
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SECTION 6: Results 

D and Ds-optimal designs for data with dropout 

D-optimal and Ds-optimal designs (D and Ds) are compared for number of fixed 

parameters 2 and 3, and number of design points 3 and 4. Figures 3 – 6 display D and Ds with 

complete and data with missing observations. Each figure has 3 columns and 4 rows. The three 

columns compare the D and Ds designs for data that is complete, data having a linear dropout 

and data having a quadratic dropout function, respectively. For each of the 12 plots in a figure, 

the x-axis represents the support points,  g , with range between -1 and 1. The correlation 

parameter is displayed on the-axis and ranges from 0.1 to 0.8. The four rows in each figure are 

relate to the four classes of the variance covariance matrix T of the random parameters. 

Figures 3 and 4 display a first degree polynomial (i.e., linear model). For both D and Ds-

optimal designs with dropout, in all classes, there is more displacement with the quadratic 

dropout function than the linear function when compared to complete data. Displacement varies 

with the level of the correlation parameter. The direction of displacement is not dependent of 

dropout function. Most of the design points with dropout shift to the left in comparison to the 

design points for complete data.  

Figures 5 and 6 display a second degree polynomial (i.e., quadratic model). The 

displacement significantly reduces for the quadratic model for all designs for data with dropout 

irrespective of the variance and covariance matrix of the random parameters. The difference in 

displacement between the D and Ds designs is decreased too. An example is figure 3 (class 3) 

and figure 5 (class 3). The rate of displacement of the design points (time points) decreased as 

the correlation parameter reduces from 0.8 towards 0.1. An example is Figure 6 classes 4.   
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Efficiency loss – comparison of the designs with dropout to their complete data counterparts 

 Figure 7 compares the relative efficiency of Ds-optimal designs to D-optimal designs for 

the linear and quadratic response functions. There are six plots with each plot showing a different 

combination of time point and number of fixed parameters. The x-axis represents the models Qµ 

where ω = 1 to 20. A list of the models’ elements of the variance and covariance matrix T is 

shown in table 1. Relative Efficiency (RE) is on the y axis. There is a threshold line drawn at RE 

= 0.85.  

For a linear mixed effect model with three and four design points (Figure 7, row 1), the 

efficiency is at least 0.87.  The linear and quadratic dropout functions indicate that the highest 

loss of efficiency is observed as ρ approaches zero (< 0.2). This can be observed in models 

1,2,16, and 17. Figure 7 row 2 shows the quadratic model with three and four design points in 

column 1 and 2, respectively.  

The quadratic model with three design points seems to have more loss in efficiency compared to 

the quadratic model with four time points. For the quadratic model with three time points, model 

6 has a RE of 0.85, while 1, 2, 3, and 7 have RE of 0.86. The quadratic models with four time 

points have most models having a RE of at least 0.98. Models 15, 19 and 20 seem to have RE of 

around 0.90. 

To investigate the change in efficiency as parameters and time points increase, I included a cubic 

models with four and five time points. For the cubic models with four time points, the lowest RE 

was around 0.87. For the cubic models with five time points, the lowest RE was around 0.97.The 

two columns of plots in Figure 7 look basically the same, showing that relative efficiency (RE) is 

not depended on the particular dropout function.  
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As the number of parameters increase past three, both designs perform almost the same. 

The autocorrelation parameter seems to play a significant role in determining RE. The models 

showing significant loss in efficiency have low values(< 0.3) of the autocorrelation parameter. 

Besides the autocorrelation parameter, other factors that are not statistical can affect the design 

of choice. These include (and not limited to) ethical and logistical complexities, trial safety, and 

budgetary constraints. Even though a linear and a quadratic response function is used in this 

analysis, past research shows that different drop out functions result to similar small efficiency 

losses. For all our models, the RE was at least 0.85. This implies that with a dropout of up to 

70%, the loss in efficiency did not exceed 15%. 

SECTION 7: Conclusions 

This paper evaluates the change in efficiency when D and Ds-optimal designs with 

dropout are compared with D-optimal designs with complete data. Past research has shown that 

with drop out, an optimal design that assumes complete data does not remain optimal. We note 

that from an efficiency stand point, both D and Ds-optimal designs are robust to dropout.  

Shifting of the time points (as a result of dropout) for the optimal designs is biggest for 

LMMs having two parameters (linear). This may be due to the amount of information lost due to 

missing data. For a linear model with two parameters, if the slope parameter was the parameter 

of interest, the Ds-optimal design would have one parameter, so drop out would imply significant 

loss of information leading to huge displacement of the time points.  For LMMs with more than 

two parameters, shifting/displacement of time points is reduced. For D and Ds-optimal designs 

with dropout, the shifting of the design points increases as the correlation parameter increases. 

This may be attributed to the fact that at high levels (> 0.6) of the correlation parameter, any 

dropout will result to a greater loss of information than at a lower level (towards zero). For the 
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two parameter model with 4 time points, the Ds-optimal design with complete data is closer to 

the Ds-optimal design with dropout (for both dropout functions) compared to the D-optimal with  

complete data and the D-optimal with dropout. This means that the determinant of the variance 

and covariance matrix for the Ds-optimal design with dropout is closer in size to that of Ds-

optimal design with complete data compared to the D-optimal design (with complete  data and 

with dropout ).  

From the efficiency plots, we observe that as the number of time points increase, both the D and 

Ds-optimal designs lose less efficiency. This is because additional measurements (time points) 

would provide more information which improves precision of the parameter estimates, and the 

model.  

Whenever there is a shift in the time points for any design, the researcher needs to 

respond appropriately to counter the effect of the dropout in successive time points. If for 

example the optimal design points are shifting to the left compared to those for the design with 

complete data, it will be prudent for the researcher to check where the variation of the 

displacement of the design points is largest within the study period.  More measurements need to 

be taken in the period of the study with the largest variation.  

Also, in cases where we have a high autocorrelation parameter (above 0.6), follow-up 

evaluations should be taken at the section with the highest response probability. This is 

beneficial as the higher the response probability, the more information we have. 

Although dropout is a reality in longitudinal studies, the use of a D-optimal design results 

in loss of efficiency not exceeding 15% when we experience dropout of up to 70%. Besides 

reducing the number of time points and participants (which brings down cost and may have 
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ethical benefits), longitudinal studies can benefit from the use of optimal designs as they are 

robust to dropout.  

When a researcher is interested in a subset of parameters in a model, a Ds-optimal design 

gives more precise results when compared to a D-optimal design. However, if the autocorrelation 

exceeds 0.4, the difference in precision in terms of efficiency seems to be negligible. Researchers 

have a choice to increase their sample size to compensate for the loss in efficiency. 

This study assumes a first order auto-regressive covariance structure. Future research 

may benefit from looking at other correlation structures. From a Hierarchical Linear Model 

(HLM) perspective, it may be useful to study how higher level predictors (for example, level-two 

units) affect efficiency when there is dropout. 
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Figures 
 
 

 
Figure 1. Confidence ellipses for two parameters β0 and β1 in the simple linear model. 
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Figure 2.  Drop out probability functions (px):  ¶·�¸*¹�º, − ·�¸�»¼ , ¶½¾»º*¹�º, −
½¾»º¼»¿�À , ¶*¹�À, − ÀÁÂ¶·�¿� º»¿»  
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Figure 3 - D and Ds-optimal design for a first degree polynomial, with 3 time points 
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Figure 4 - D and Ds-optimal design for a first degree polynomial, with 4 time points 
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Figure 5 - D and Ds-optimal design for a second degree polynomial, with 3 time points 
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Figure 6 - D and Ds-optimal design for a second degree polynomial, with 4 time points 
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Relative Efficiency (RE) 

 

Figure 7 - Relative efficiency - D and Ds-optimal designs 

Row1 - comparing D and Ds-optimal designs for the linear and quadratic response functions. For 

the Ds-optimal designs, the parameter of interest is beta2. 

Row2 - comparing D and Ds-optimal designs for the linear and quadratic response functions. For 

the Ds-optimal designs, the parameter of interest is beta1 and beta3. 

Row3 - comparing D and Ds-optimal designs for the linear and quadratic response functions. For 

the Ds-optimal designs, the parameter of interest is beta1, beta2, and beta3. 
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Table 1 

Models Evaluated under the Four Classes of LMMs 

Fixed Effects  Random slope & intercept 

model rho t11 t12 t21 t22 model rho t11 t12 t21 t22 

1 0.1 0 0 0 0 11 0.1 1 0 0 3 

2 0.2 0 0 0 0 12 0.2 1 0 0 3 

3 0.3 0 0 0 0 13 0.3 1 0 0 3 

4 0.6 0 0 0 0 14 0.6 1 0 0 3 

5 0.8 0 0 0 0 15 0.8 1 0 0 3 

Random intercept only Random intercept, slope with  covariance 

model rho t11 t12 t21 t22 model rho t11 t12 t21 t22 

6 0.1 1 0 0 0 16 0.1 1 1.39 1.39 3 

7 0.2 1 0 0 0 17 0.2 1 1.39 1.39 3 

8 0.3 1 0 0 0 18 0.3 1 1.39 1.39 3 

9 0.6 1 0 0 0 19 0.6 1 1.39 1.39 3 

10 0.8 1 0 0 0 20 0.8 1 1.39 1.39 3 

 

 

 

 


