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Abstract

Umbilical cord mesenchymal stromal cells (UCMSCs) are isolated from Wharton's jelly in the 

umbilical cord at birth, and offer advantages over adult mesenchymal stromal cells (MSCs) such 

as highly efficient isolation, faster proliferation in vitro, a broader differentiation potential, and 

non-invasive harvesting procedure. Their expansion and differentiation potential renders them a 

promising cell source for tissue engineering and clinical applications. This review discusses recent 

updates on the differentiation strategies for musculoskeletal tissue engineering including cartilage, 

bone, and muscle. In addition to tissue engineering applications, UCMSCs can be utilized to 

support hematopoiesis and modulate immune response. We review the patents relevant to the 

application of MSCs including UCMSCs in hematopoiesis and immune modulation. Finally, the 

current hurdles in the clinical translation of UCMSCs are discussed. During clinical translation, it 

is critical to develop large-scale manufacturing of UCMSCs as well as the composition of 

expansion and differentiation media. Four clinical trials to date have examined the safety and 

efficacy of UCMSCs. Once public banking of UCMSCs is available to supply matched allogeneic 

units and once UCMSC manufacturing is standardized, we anticipate that UCMSCs will be more 

widely used in clinical trials.
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1. INTRODUCTION

Mesenchymal stromal cells (MSCs) are a heterogeneous population of multipotent cells that 

have been isolated from various tissues such as bone marrow, skeletal muscle, perivascular 

tissue, dental pulp, bone, placenta, amnion, umbilical cord blood, Wharton's jelly, and 

adipose tissue [1]. The focus of this review is on the Wharton's jelly in the umbilical cord 

which harbors umbilical cord mesenchymal stromal cells (UCMSCs). UCMSCs offer 

advantages over adult-derived MSCs such as highly efficient isolation, faster proliferation in 

vitro, a broader differentiation potential, and non-invasive harvesting procedure [2]. 

Compared to undifferentiated embryonic stem cells (ESCs), undifferentiated UCMSCs do 

not appear to develop teratomas after transplantation [3]. The investigation of UCMSCs for 

use in regenerative medicine began in the last decade and is undergoing a rapid expansion. 

Two patents reported the chondrogenic differentiation of UCMSCs [4, 5] for tissue 

engineering products at the end of the 1990s. The enthusiasm for UCMSCs increased after 

Mitchell et al. [6] published their article regarding the neuronal differentiation of UCMSCs 

in Stem Cells. UCMSCs may differentiate along several cell lineages in all three germ layers 

including chondrogenic, osteogenic, adipogenic, cardiomyogenic, pancreatic, neurogenic, 

and hepatogenic [2]. The expansion potential and multipotency of UCMSCs renders them an 

attractive MSC source for tissue engineering applications.

In addition to the application of MSCs in tissue engineering, MSCs have been shown to 

provide stromal support for hematopoiesis and have immunomodulatory capability [7]. 

MSCs have low immunogenicity, which can be partially attributed to the low expression of 

major histocompatibility complex (MHC) molecules [8]. MSCs have the capacity to treat 

immune disorders such as graft-versus-host diseases (GVHD) and autoimmune diseases [9]. 

In the cell therapy industry, there are many patents and clinical studies that use MSCs as 

immunomodulatory agents. The vast majority of them utilize bone marrow MSCs (BM-

MSCs), while UCMSCs may be an alternative due to their similar immune properties with 

BM-MSCs. For example, of the 274 clinical trials worldwide found on the Clinicaltrials.gov 

website (search Nov. 2012), 34% use MSCs for treating immune disorders.

There are several reviews regarding UCMSCs including their biological properties [10, 11], 

musculoskeletal regeneration [2], skin regeneration [12], immune properties [13, 14], future 

clinical applications [15], and a patent review on cell isolation and their application on cell 

therapy [16]. In this review, we first discuss recent updates on differentiating UCMSCs 

along musculoskeletal lineages including chondrogenic, osteogenic, and myogenic lineages 

as well as relevant patents. Subsequently, we review the application of MSCs, including 

UCMSCs, in hematopoiesis and immune modulation. Given that the number of patents 

related to UCMSCs is much smaller than MSCs in general, the context is provided for the 

intellectual property (IP) and clinical trial landscape for MSCs for the purpose of looking 

down the road at where UCMSCs may continue to expand in their own IP landscape.

2. MUSCULOSKELETAL REGENERATION WITH UCMSCS

The differentiation ability of MSCs has a significant impact on the quality of tissue 

engineering products and their therapeutic performance in vivo. The majority of UCMSC 
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patents describe isolation techniques of MSC-like cells from various anatomical 

compartments within the umbilical cord, and subsequently demonstrate the differentiation 

ability and other MSC-like characteristics such as morphology and expansion using 

established protocols. These differentiation protocols commonly result in slower and less 

complete chondrogenic and osteogenic differentiation of UCMSCs relative to BM-MSCs as 

indicated by decreased deposition of chondrogenic or osteogenic signature molecules (2). In 

this section, we first focus on the methods to improve chondrogenic, osteogenic, and 

myogenic differentiation of UCMSCs in the literature, and then review recent patents that 

use UCMSCs as a cell source for tissue engineering.

2.1. Musculoskeletal Differentiation of UCMSCs

UCMSCs differentiate along a chondrogenic lineage upon the stimulation of transforming 

growth factors (TGF-βs); although TGF-βs alone lead to the formation of fibrocartilage with 

the coexistence of types I and II collagen [17]. Two different two-stage differentiation 

strategies have been described that led to enhanced chondrogenesis of UCMSCs when they 

were embedded in three-dimensional (3D) scaffolds. In one of the differentiation protocols 

[18], UCMSCs were first exposed to a medium containing insulin-transferrin-selenium (ITS) 

and basic fibroblast growth factor (bFGF), and then differentiated in chondrogenic media 

containing TGF-β3 in polycaprolactone/collagen nanoscaffolds. The pre-treatment of 

UCMSCs using bFGF increased glycosaminoglycan production and upregulated 

chondrogenic gene expression including type II collagen and SRY (sex determining region 

Y)-box 9. In the second protocol, the sequential application of TGF-β3 and insulin growth 

factor-1 to UCMSCs improved chondrogenesis by upregulation of type II collagen gene and 

protein expression [19].

Traditional osteogenic induction of MSCs including dexamethasone, dihydroxyvitamin D3, 

and bone morphogenetic protein 2 (BMP-2) induces osteogenic differentiation of UCMSCs 

[20, 21]. There are many protocols to isolate different populations of UCMSCs from 

umbilical cord tissues [16], and the isolated populations may have various osteogenic 

abilities. The population obtained from Wharton's jelly by enzyme digestion or explant 

culture showed matrix mineralization that was inferior to adult MSCs [22, 23]. A population 

of umbilical cord perivascular cells (UCPVCs) may be isolated by enzymatically digesting 

the perivascular area of umbilical cord vessels, and appeared to possess a striking osteogenic 

ability as evidenced by more bone nodules in vitro than BM-MSCs following osteogenic 

differentiation [24]. One patent [25] described the isolation of UCPVCs. This population 

was obtained by two-stage adhesion of UCPVCs to plastic surfaces, whereby the cell 

solution after collagenase digestion was first transferred to cell culture flasks for plastic 

adhesion, and the supernatant after cell adhesion was then transferred to a new cell culture 

flask for prolonged adhesion. The cells obtained from the second adhesion were able to 

rapidly form bone nodules and fat cells, although the timeline for each adhesion was not 

provided in the patent.

Myogenic differentiation and fusion of UCMSCs may be induced by various techniques 

including 5-azacytidine [26], gene transfection with MyoD transcription factor [27], or 

coculture with C2C12 myoblasts [28]. In a dystrophic murine model, human UCMSCs were 
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able to engraft into damaged muscle. These engrafted cells exhibited a low level of 

myogenic genes in vivo, including the lower expression of dysferlin and human-dystrophin 

genes than adipose MSCs (ADMSCs) [29]. Grabowska et al. [28] reported enhanced muscle 

regeneration by pre-treatment of UCMSCs with stromal cell-derived factor-1 before cell 

transplantation. Further examination revealed that the improved regeneration was not due to 

increased incorporation of UCMSCs into new muscle fibers, but possibly instead to trophic 

effects of UCMSCs that could help host stem cell homing to damaged muscle sites. Recent 

reports have indicated a cardiomyogenic potential with fetal MSCs [30, 31], and suggested 

that UCMSCs may have enhanced cardiomyogenic potential compared to fetal and adult 

BM-MSCs [32].

2.2. Patents on Tissue Engineering Compositions for Musculoskeletal Regeneration

UCMSCs could be cultured in 3D scaffolds to form specific tissue analogs for implantation 

in a tissue engineering approach. The formed tissue analogs could also be decellularized to 

produce therapeutic extracellular matrices. Five patents describe tissue engineering 

compositions using UCMSCs for cartilage and bone regeneration [4, 5, 25, 33, 34].

Cartilage regeneration is the first application of UCMSCs in the field of tissue engineering 

and regenerative medicine [4]. In the patent by Purchio et al. UCMSCs were named as “pre-

chondrocytes”, which were induced toward the chondrocyte phenotype by traditional 

chondrogenic stimulation. The “pre-chondrocytes” were seeded into a 3D framework and 

cultured to form cartilage-like tissues containing type II collagen [4, 5]. In another patent 

[33], an interesting subcutaneous model was used to evaluate in vivo chondrogenesis of 

UCMSCs. UCMSCs were seeded into poly(epsilon-caprolactone)/poly(glycolic acid) 

scaffolds loaded with TGF-β3 and/or growth differentiation factor 5 (GDF-5). This 

composition was an excellent example of the integration of cells, scaffolds, and growth 

factors in a single construct to promote tissue regeneration. The scaffolds were then inserted 

into cartilage defects that were created in bovine cartilage explants. The explants were 

finally implanted subcutaneously in mice. It was shown that cartilage regeneration was less 

pronounced for UCMSCs than for bone marrow and placenta-derived cells, which is 

consistent with the findings in the literature [17].

Two patents described the fabrication of bone-like tissues in vitro by differentiating 

UCPVCs using osteoconductive scaffolds and co-culture of UCPVCs with hematopoietic 

stem cell (HSC) expansion [25, 34]. Davies et al. [25] cultured UCPVCs in calcium 

phosphate/poly(lactic-co-glycolic acid) scaffolds for 14 days. At the end of the culture 

period, the scaffolds were fully covered by cells and bone matrix indicating the potential of 

UCPVCs for bone regeneration. In another application, Vitelli et al. [34] described a process 

to co-culture UCPVCs and HSCs for growing human tissues in vitro, including bone. 

UCPVCs and HSCs were co-cultured for 12 days at a ratio of 9:1 in a bioreactor containing 

microcarriers, though the inventors did not report the results regarding tissue formation. The 

presence of HSCs accelerated osteogenic differentiation of BM-MSCs [35], though the 

trophic effect of HSCs on UCMSCs differentiation awaits examination.
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3. IMMUNE MODULATION OF MSCS

3.1. MSCs have Stromal Support and Immune Modulation Properties

MSCs have utility in tissue engineering and regenerative medicine because they can 

differentiate into bone, fat, or cartilage [36]; they can also differentiate to cardiomyocytes 

[37-40] and/or fuse with skeletal muscle [41]. MSCs have additional functions that can be 

used for regenerative medicine or cellular therapy purposes called stromal support and 

immune modulation. MSCs reside in the hematopoietic niche and aid in hematopoietic stem/

progenitor cell expansion [42, 43]. This function can be demonstrated both ex vivo by using 

MSCs as a feeder layer for expansion of HSCs, or in vivo when MSCs are co-grafted with 

HSCs [44-50]. Hematopoietic expansion by MSCs is caused by indirect and direct 

interactions, e.g., via the release of cytokines or growth factors by MSCs into the niche 

(indirect effect) and by their extracellular matrix impinging upon hematopoietic stem/

progenitor cell surface receptors (direct effect).

Similar to the effect of MSCs on HSCs, MSCs have both direct and indirect effects upon the 

immune system [9, 51-65]. MSCs have low immunogenicity, perhaps due to the low 

expression of MHC molecules, and MSCs suppress the proliferation of activated T cells. 

Direct and indirect effects most likely mediate these two effects, respectively. The low 

immunogenicity of MSCs means that they are not attacked by the immune system following 

allogeneic transplantation into naïve hosts [66]. In contrast, multiple injections of allogeneic 

MSCs can and do induce an immune response (antibody titer) and MSCs are subsequently 

scavenged by the immune system (rejected) [66]. In addition, MSCs injected into an existing 

inflammatory environment may rapidly induce a host immune response and are cleared by 

the immune system [66]. These cells are cleared because they respond to IFN-γ and 

probably other inflammatory cytokines found in this environment by upregulation of MHC 

class I as well as induction of MHC class II on the surface of MSCs [66]. Activation of 

MSCs by cytokines such as IFN-γ is a double-edged sword. On one hand, IFN-γ activation 

increases the possibility of immune surveillance via upregulation/induction of MHC 

molecules (as indicated from PS Cho et al.'s work cited above); on the other hand, IFN-γ 

activation enhances MSCs’ immune modulatory effects for treating graft versus host disease 

(GVHD) [67].

One aspect of immune modulation by MSCs is the suppression of T cell proliferation. This 

immunomodulation can be observed using a mixed lymphocyte reaction in vitro, or 

observed by MSCs’ impact on immune disorders such as GVHD in vivo [9, 52, 58-61, 

68-73]. Similar to the effect MSCs have on hematopoietic expansion, the suppressive effect 

of MSCs on the expansion of activated T cells is mediated by both indirect means, such as 

by chemokines/cytokines like indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO) or 

prostaglandin E2 (PGE2), and by direct means via MSC - T cell interaction via Toll-like 

receptors [74-76]. As mentioned above, MSCs’ immune modulation/suppression has been 

useful in treating diseases in which the immune system plays an important role. MSCs are 

being tested in clinical trials as a cellular therapy for immune-related disorders such as 

multiple sclerosis, arthritis, myocardial infarction, stroke, neurodegenerative disease, acute 

spinal cord injury, as well as for iatrogenic immune diseases such as graft versus host 
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disease (42 clinical trials found on CLINICALTRIALS.GOV using the search term 

“mesenchymal stromal cells” 25 Sept. 2012; indications include arthritis, Crohn's, 

myocardial ischemia, graft versus host disease, osteogenesis imperfect, emphysema, 

multiple sclerosis, diabetic foot ulcers, ex vivo expansion of cord blood, spinal cord injury, 

Parkinson's disease, stroke, liver regeneration, critical limb ischemia, recto-vaginal fistula, 

and graft augmentation). As discussed below, many of the patents have leveraged the utility 

of MSCs for stromal support function to enable engraftment and hematopoietic recovery and 

to treat various inflammatory or immunological disorders.

3.2. Identification of Relevant Patents

Relevant patents (and patent applications) were found using a two round strategy. In the first 

round, patents were identified by searching the US Patent office website using Quick Search 

or the International patents using LexisNexis. The search terms were as follows: 

“mesenchymal stromal cells” AND (“immune” OR “graft”). The search results were stored 

in a Microsoft Word file. In the second round, the patent abstracts were scanned for 

relevance. Due to the number of patents (> 268 patents), volume (> 1000 pages scanned), 

and the writing style (patents use broad statements), relevant patents may have been missed 

in the search. The results of the search are shown in Tables 1-3. We found issued US patents 

and did not find issued International patents. We found a number of pending applications in 

both the US and International patent office. We also found what appear to be repetitive 

patent applications (patents with the same inventors and title, and a different application 

number). All relevant patents were included in Tables 1-3 and stratified by stromal support 

function or immune modulation.

3.3. Patents Related to MSCs Providing Stromal Support

The breadth, subtlety, and nuance of patent language make it difficult to provide a fine grain 

review of the IP landscape, so we provide a 10,000 meter overview below. Twelve issued 

US patents described the use of MSCs for providing stromal support or enabling 

hematopoietic engraftment (see Table 1). Eleven of these patents described the use of bone 

marrow-derived MSCs and one patent utilized placenta-derived MSCs (7700090 [77]). 

Several patents described leveraging indirect means of MSC stromal support via diffusible 

factors/cytokines, and others leveraged indirect and direct effects by permitting direct 

contact of MSCs with hematopoietic stem/progenitor cells. Thus, the patents described 

methods of using MSCs ex vivo as an MSC feeder layer during ex vivo hematopoietic cell 

expansion (such as US5437994 [78], US5605822 [79], US5879940 [80], US7534609 [81]) 

or in a device that permits MSCs to condition the medium prior to delivery to the 

hematopoietic cell culture (US7678573 [82], US7700090 [77]). Some patents described the 

use of bioreactors for expansion of hematopoietic cells prior to grafting. Other patents 

described the co-infusion of MSCs with the hematopoietic cells (US5733542 [83], 

US6010696 [84]) to enable or enhance engraftment. In addition, patents described the use of 

MSCs for remediation of radiation injury, which would injure the hematopoietic niche 

including the stroma compartment.
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3.4. Patents Related to MSCs Providing Immune Modulation

Seventeen issued US patents described the use of MSCs for immune modulation, including 

inflammatory disease or immune suppression, treatment of immune disorders, or enabling 

engraftment (see Table 1-3). Thirteen of these patents involved the use of bone marrow-

derived MSCs; the other patents described the use of MSCs obtained from placental 

(US7682803 [85], US8216566 [86]) and adipose tissue (US8241621 [87]). One patent 

(US7799324 [88]) described the use of ESCs for immune modulation. In addition to issued 

patents, twelve US patent applications described the use of MSCs for immune modulation.

4. COMMERCIALIZATION AND CLINICAL TRIALS

Osiris, a Baltimore, Maryland-based biotechnology company, has the largest number of 

issued patents in this space (US6010696 [84], US6281012 [89], US6328960 [90], 

US6355239 [91], US6368636 [92], US6685936 [93], US6797269 [94], US6875430 [90], 

US7029666 [95]). Osiris used its scientific expertise and IP position to make an MSC 

product called Prochymal. Prochymal is in clinical testing (14 clinical trials listed at 

CLINICALTRIAL.GOV using the search term “Prochymal” on 23 Sept 2012). A second 

bio-technology firm, Pluristem, has developed an MSC product they call PLX. PLX is in 

clinical trials (4 clinical trials listed at CLINICALTRIAL.GOV using the search term 

“Pluristem” on 24 Sept 2012). A third biotechnology company, Celgene, has developed an 

MSC product using placenta- derived MSCs called PDA001. PDA001 is in clinical testing 

(5 clinical trials listed at CLINICALTRIAL.GOV using the search term “Celgene” AND 

“placenta” on 24 Sept. 2012). A fourth biotechnology company, Athersys, has developed an 

MSC derivative product using the multipotent adult progenitor cells (MAPC) called 

MultiStem. MultiStem is in clinical testing (5 clinical trials listed at 

CLINICALTRIAL.GOV using the search term “Athersys” on 25 Sept 2012).

5. CURRENT & FUTURE DEVELOPMENTS

MSCs show great promise in the field of tissue engineering, hematopoietic stem/progenitor 

cell support and immune modulation as shown in Fig. (1). In the field, there are a 

considerable number of patents, and many of them are being translated to clinical trials, 

product development and commercialization as shown in Fig. (2). In contrast, UCMSCs 

have not been employed in clinical studies in the USA. While presenting many merits over 

adult MSCs, such as the abundant supply of umbilical cords, faster proliferation, and non-

invasive harvesting procedure, etc., as listed in the Introduction, the lack of public UCMSC 

banking is a factor that is limiting their clinical translation in the USA. Umbilical cords are 

also an important source for endothelial cells, hyaluronic acid and umbilical cord blood, thus 

offering the possibility to cryopreserve these cells at birth. UCMSCs are able to differentiate 

along bone, cartilage and fat lineages, though UCMSCs may show slower differentiation 

with decreased deposition of osteogenic or chondrogenic signature molecules relative to 

BM-MSCs upon the stimulation of traditional differentiation factors (as discussed above). 

As we reviewed above, effective in vitro differentiation of UCMSCs may require multiple 

steps and multiple signals. It is of paramount importance to identify the suitable 

differentiation factors to UCMSCs and optimize their concentration and the timeline of 

applying multiple factors. Moreover, there is an urgent need for standard operation 
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procedures to manufacture undifferentiated UCMSCs and their differentiated progeny under 

Good Manufacturing Practice (GMP) conditions for clinical translation.

Toward early phase clinical application of MSCs, two major concerns are safety (Phase I 

testing) and efficacy (Phase II testing). Although MSCs have low immunogenicity, some 

studies show that MSCs are not intrinsically immunoprivileged, indicative of a risk of 

rejection of allogeneic MSCs following transplantation. For example, when allogeneic BM-

MSCs were subcutaneously implanted in an in vivo rat osteogenic model, none of the grafts 

survived unless the FK506 immunosuppressant was given [96]. Multiple injections of 

undifferentiated allogeneic UCMSCs elicited an immune response, illustrating the potential 

importance of tissue matching in allogeneic application of MSCs [97]. Moreover, the 

immune properties of differentiated cells from MSCs have been scarcely explored in the 

literature. In vitro chondrogenic differentiation of UCMSCs resulted in a slight increase in 

MHC-II and costimulator molecule expression [98], while the implantation of in vitro 

chondrogenically differentiated human UCMSCs did not lead to immune rejection in both 

rabbit and rat models. In addition, in vitro osteogenic differentiation of BM-MSCs and 

ADMSCs did not affect the expression of MHC-II [99]. Finally, the usage of a xenogeneic 

component (e.g., fetal bovine serum) during in vitro expansion of MSCs has also posed 

safety risks for transmitting diseases across species and for eliciting immune rejection. 

Recent efforts have focused on developing serum-free media, or using human serum and 

platelet lysate or platelet-rich plasma as substitutes for fetal bovine serum. Finally, the 

efficacy of MSCs has been shown in many pre-clinical studies, while an urgent need is to 

demonstrate clinical efficacy of MSCs using well-designed clinical.

In conclusion, UCMSCs hold extraordinary potential for musculoskeletal regeneration, to 

provide for stromal support and immune modulation. While many hurdles exist in the 

clinical translation of UCMSCs, an immediate priority is to develop scalable processes for 

manufacturing UCMSCs as well as the composition of expansion and differentiation media. 

Moreover, the safety and efficacy of UCMSCs remains to be examined in clinical trials, 

relative to other MSCs, which have an established precedent that we have outlined above 

that can be built upon with UCMSCs.
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Fig. (1). Mapping the patent landscape
The clinical application and the patent landscape are based upon the physiology of 

mesenchymal stromal cells (MSCs). Here, MSC physiology is parsed into stromal support, 

tissue engineering, immune modulation or hematological support. Within each region, 

potential applications or uses of MSCs are identified. For example, as shown in the tissue 

engineering zone, based upon MSC's ability to differentiate into tissues of mesenchymal 

lineages, they have been used to construct artificial heart valves, trachea or assist with 

wound healing. As shown in the immune modulation zone, the immune modulation 

properties of MSCs have been leveraged in the clinic for treatment of graft versus host 

disease (GVHD) and other immune diseases. In the hematological support zone, MSCs in 

the bone marrow have the ability to support hematopoietic stem cells within the niche. This 

physiological function has been leveraged to co-graft MSCs during hematological stem cell 

transplantation, or to assist with ex vivo expansion of blood forming stem cells prior to 

transplantation. Additionally, MSCs given following radiation injury can assist with 

hematological recovery. In the stromal support zone, the role of MSCs to provide stromal 

support has been leveraged via regenerative medicine applications such as support of 

ischemic limb, diabetes, radiation injury, wound healing, etc. Note that the physiological of 

MSCs does not cleanly partition and they have areas of overlap.
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Fig. (2). Taking mesenchymal stromal cells (MSCs) from the laboratory into clinical trial
Once clinical applications have been identified based upon cell physiology, a three stage 

process is needed to move from laboratory bench into clinical trial. As shown in the blue 

core, the first step is to produce a reliable standardized process that can produce a large 

number of cells suitable for clinical use. This requires generating cells using good 

manufacturing process (GMP). This GMP process should be scaled up to produce a large 

batch of cells which will be tested for their value as an allogeneic product (as to leverage 

both economies of scale and a simplified validation process). In some applications, MHC 

tissue matching may be needed or an allogeneic product may be unsuitable due to 

scavenging by the host immune system. This may result in loss of persistence, or prevent 

true engraftment. If this is the case, MSCs will need to be prepared as one-offs (single, 

patient specific batches) and the costs of manufacture and validation are higher. Once the 

standard operating procedures are established and the GMP cells are prepared, they are 

tested for clinical use through using pre-clinical animal testing of the disease. An attempt is 

made to model as closely as possible the way that the MSCs will be used in human patients. 

Pre-clinical testing is used to validate the efficacy of the GMP cells, to evaluate 

mechanism(s) of MSC action, their biodistribution and toxicity and their persistence 

following transplantation. Pre-clinical testing is the final step leading to testing in humans. 

The Federal Drug Administration (FDA) can provide guidance, and a meeting with the FDA 

during the early phases of translation may clarify the GMP requirements and the pre-clinical 

testing requirements. In this figure, the arrows indicate clinical indications that have moved 

from the laboratory bench into clinical trial for MSCs.
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Table 1

Summary of Issued US Patents Relevant to the Application of MSCs Including UCMSCs in Hematopoiesis, 

Immune Modulation, and Musculoskeletal Regeneration.

Table 1 US Patent ISSUED

Physiology MSC source US Patent Granted date Title Assignee

Stromal Support

Bone marrow 5437994 1-Aug-95 Method for the ex vivo 
replication of stem cells, for the 
optimization of hematopoietic 
progenitor cell cultures, and for 
increasing the metabolism, 
GM-CSF secretion and/or IL-6 
secretion of human stromal 
cells

Regents of the University of 
Michigan

Bone marrow 5605822 25-Feb-97 Methods, compositions and 
devices for growing human 
hematopoietic cells

Regents of the University of 
Michigan

Bone marrow 5733542 31-Mar-98 Enhancing bone marrow 
engraftment using MSCS

Bone marrow 5804446 8-Sep-98 Blood-borne mesenchymal cells Cytokine Pharmasciences, Inc.

Bone marrow 5879940 9-Mar-99 Human marrow stromal cell 
lines which sustain 
hematopoieses

Fred Hutchinson Cancer 
Research Center

Bone marrow 6010696 4-Jan-00 Enhancing hematopoietic 
progenitor cell engraftment 
using mesenchymal stem cells

Osiris

Bone marrow 6054121 25-Apr-00 Modulation of immune 
responses in blood-borne 
mesenchymal cells

Cytokine Pharmasciences, Inc.

Bone marrow 6103522 15-Aug-00 Human marrow stromal cell 
lines which sustain 
hematopoiesis

Fred Hutchinson Cancer 
Research Center

Bone marrow 7129086 31-Oct-06 Human marrow stromal cell 
lines which sustain 
hematopoiesis

Fred Hutchinson Cancer 
Research Center

Bone marrow 7534609 19-May-09 Method of expanding 
undifferentiated hemopoietic 
stem cells

Pluristem Life Systems Inc.

Bone marrow 7678573 16-Mar-10 Method of preparing a 
conditioned medium from a 
confluent stromal cell culture

Pluristem Life Systems Inc.

Placenta 7700090 20-Apr-10 Co-culture of placental stem 
cells and stem cells from a 
second source

Anthrogenesis Corporation

Immune Modulation

Bone marrow 6281012 28-Aug-01 Method of preparing suppressor 
T cells with allogeneic 
mesenchymal stem cells

Osiris

Bone marrow 6328960 11-Dec-01 Mesenchymal stem cells for 
prevention and treatment of 
immune responses in 
transplantation

Osiris

Bone marrow 6355239 12-Mar-02 Uses for non-autologous 
mesenchymal stem cells

Osiris

Bone marrow 6368636 9-Apr-02 Mesenchymal stem cells for 
prevention and treatment of 
immune responses in 
transplantation

Osiris
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Table 1 US Patent ISSUED

Physiology MSC source US Patent Granted date Title Assignee

Bone marrow 6685936 3-Feb-04 Suppressor cells induced by 
culture with mesenchymal stem 
cells for treatment of immune 
responses in transplantation

Osiris

Bone marrow 6797269 28-Sep-04 Mesenchymal stem cells as 
immunosuppressants

Osiris

Bone marrow 6875430 5-Apr-05 Mesenchymal stem cells for 
prevention and treatment of 
immune responses in 
transplantation

Osiris

Bone marrow 7029666 18-Apr-06 Uses for non-autologous 
mesenchymal stem cells

Osiris

Bone marrow 7442390 28-Oct-08 Method for enhancing 
engraftment of cells using 
mesenchymal progenitor cells

University of South Florida

Placenta 7682803 23-Mar-10 Immunomodulation using 
placental stem cells

Anthrogenesis Corporation

Bone marrow 7691415 6-Apr-10 Method for preventing, or 
reducing the severity of, graft-
versus-host disease using pluri-
differentiated mesenchymal 
progenitor cells

University of South Florida

Bone marrow 7691415 6-Apr-10 Method for preventing, or 
reducing the severity of, graft-
versus-host disease using pluri-
differentiated mesenchymal 
progenitor cells

University of South Florida

ESC 7799324 21-Sep-10 Using undifferentiated 
embryonic stem cells to control 
the immune system

Geron

Bone marrow 8057826 15-Nov-11 Method for preventing, or 
reducing the severity of, graft-
versus-host disease using pluri-
differentiated mesenchymal 
progenitor cells

University of South Florida

MAPC/ bone marrow 8147824 3-Apr-12 Immunomodulatory properties 
of multipotent adult progenitor 
cells and uses thereof

Athersys, Inc., Oregon Health 
and Science University

Placenta 8216566 10-Jul-12 Treatment of multiple sclerosis 
using placental stem cells

Anthrogenesis Corporation

Bone marrow 8221741 17-Jul-12 Methods for modulating 
inflammatory and/or immune 
responses

Adipose 8241621 14-Aug-12 Stem cell mediated treg 
activation/expansion for 
therapeutic immune modulation

Medistem Laboratories

Musculoskeletal Regeneration

Umblical cord 5919702 6-Jul-99 Production of cartilage tissue 
using cells isolated from 
Wharton's jelly

Advanced Tissue Science, Inc.

Umblical cord 5962325 5-Oct-99 Three-dimensional stromal 
tissue cultures

Advanced Tissue Science, Inc.
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Table 2

Summary of Filed US Patents Relevant to the Application of MSCs Including Ucmscs in Hematopoiesis, 

Immune Modulation, and Musculoskeletal Regeneration.

Table 2 US Patent APPLICATIONS

Source US Patent Filed date Title Assignee

Bone marrow 2003/0203483 3-Oct-02 Human mesenchymal progenitor cell

Bone marrow 2003/0003084 2-Jan-03 Human mesenchymal progenitor cell

MAPC/ bone marrow 2004/0107453 5-Jan-04 Multipotent adult stem cells, sources thereof, 
methods of obtaining same, methods of 
differentiation thereof, methods of use thereof and 
cells derived thereof

ESC 2004/0208857 22-Jan-04 Use of cells derived from embryonic stem cells for 
increasing transplantation tolerance and for 
repairing damaged tissue

Bone marrow 2005/0059147 9-Jul-04 Human mesenchymal progenitor cell

Adipose 2007/0122393 14-Jul-06 Immunophenotype and immunogenicity of human 
adipose derived cells

MAPC/ bone marrow 2009/0104163 9-Nov-06 Immunomodulatory properties of multipotent adult 
progenitor cells and uses thereof

Athersys, Inc., Oregon 
Health and Science 

University

Umblical cord 2009/0285842 4-May-07 Immune privileged and modulatory progenitor cells

Bone marrow 2010/0111905 8-Nov-07 Methods for improved engraftment following stem 
cell transplantation

Aldagen, Inc.

Placenta 2008/0226595 12-Feb-08 Treatment of inflammatory diseases using placental 
stem cells

Bone marrow 2008/0254007 19-May-08 Human mesenchymal progenitor cell

Oral mucosa 2011/0110900 11-Jun-09 Novel adult progenitor cell

Multiple sources 2012/0121611 28-Jul-11 Method of treating autoimmune disease with 
mesenchymal stem cells

Tissue Regeneration 
Therapeutics, Inc.

Umblical cord 2009/0269318 11-Jun-09 Progenitor cells from Wharton's jelly of human 
umbilical cord

Ethicon, Incorporated

Umblical cord US2010/0210013 19-Feb-09 A. Postpartum cells derived from umbilical cord 
tissue, and methods of making and using the same

Umblical cord 2009/0068153 6-Sep-07 Cell composition for tissue regeneration
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Table 3

Summary of Filed International Patents Relevant to the Application of MSCs Including Ucmscs in 

Hematopoiesis, Immune Modulation, and Musculoskeletal Regeneration.

Table 3 International Patent APPLICATIONS

Source Patent Filed date Title Assignee

Umblical cord 7128115 PCT/CA07/000781 4-May-07 Immune privileged and modulatory 
progenitor cells

Adipose 8036374 PCT/US07/020415 20-Sep-07 Allogeneic stem cell transplants in non-
conditioned recipients

Medistem Laboratories, Inc

Bone marrow 2089042 PCT#US2007#084037 8-Nov-07 Methods for improved engraftment 
following stem cell transplantation

Aldagen, Inc.

Bone marrow 08097828 PCT/US08/052759 1-Feb-08 Method for isolating mesenchymal 
stromal cells

Adipose 10063743 PCT/EP09/066198 3-Dec-08 Methods for the preparation of adipose 
derived stem cells and utilizing said cells 
in the treatment of diseases

Cellerix, S.A.

Bone marrow 2296674 PCT#GB2009#001443 11-Jun-09 Novel adult progenitor cell

Gingiva 10090843 PCT/US10/021531 20-Jan-10 Gingiva derived stem cell and its 
application in immunomodulation and 
reconstruction

University of Southern 
California

Omentum 201108 PCT/US10/028577 25-Mar-10 Omentum as a source of stromal/stem 
cells and medical treatments using 
omentum stromal/stem cells

Adipose 11047345 PCT/US10/052953 15-Oct-10 Methods of treating diseases of 
conditions using mesenchymal stem cells

Bone marrow 2496711 PCT#SG2010#000422 2-Nov-10 Methods for monitoring cellular states 
and for immortalizing mesenchymal stem 
cells

ESCs 11054100 PCT/CA10/001771 5-Nov-10 Stem cell extracts and uses thereof for 
immune modulation

Amnion 12083021 PCT/US11/065158 15-Dec-11 Treatment of immune-related diseases 
and disorders using amnion derived 
adherent cells

Anthrogenesis Corporation

Bone marrow 201227 PCT/EP11/074232 29-Dec-11 Protection from lethal irradiation with 
mesenchymal stromal cells
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