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Abstract

Motivation: Phylogenetic estimates from published studies can be archived using general plat-

forms like Dryad (Vision, 2010) or TreeBASE (Sanderson et al., 1994). Such services fulfill a crucial

role in ensuring transparency and reproducibility in phylogenetic research. However, digital tree

data files often require some editing (e.g. rerooting) to improve the accuracy and reusability of the

phylogenetic statements. Furthermore, establishing the mapping between tip labels used in a tree

and taxa in a single common taxonomy dramatically improves the ability of other researchers to re-

use phylogenetic estimates. As the process of curating a published phylogenetic estimate is not

error-free, retaining a full record of the provenance of edits to a tree is crucial for openness, allow-

ing editors to receive credit for their work and making errors introduced during curation easier to

correct.

Results: Here, we report the development of software infrastructure to support the open curation

of phylogenetic data by the community of biologists. The backend of the system provides an inter-

face for the standard database operations of creating, reading, updating and deleting records by

making commits to a git repository. The record of the history of edits to a tree is preserved by git’s

version control features. Hosting this data store on GitHub (http://github.com/) provides open ac-

cess to the data store using tools familiar to many developers. We have deployed a server running

the ‘phylesystem-api’, which wraps the interactions with git and GitHub. The Open Tree of Life pro-

ject has also developed and deployed a JavaScript application that uses the phylesystem-api and

other web services to enable input and curation of published phylogenetic statements.

Availability and implementation: Source code for the web service layer is available at https://

github.com/OpenTreeOfLife/phylesystem-api. The data store can be cloned from: https://github.

com/OpenTreeOfLife/phylesystem. A web application that uses the phylesystem web services is

deployed at http://tree.opentreeoflife.org/curator. Code for that tool is available from https://github.

com/OpenTreeOfLife/opentree.
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1 Introduction

Characterizing and systematizing relationships among species has

been a goal of biologists since Linnaeus (1758). The phylogenetic

systematics ‘revolution’ of the 1960s focused most of the effort to-

ward this goal on the task of estimating phylogenetic relationships.

The rapid growth in availability of molecular data, the development

of models and software implementations for inferring phylogenies,

and the appreciation of the explanatory power of phylogenetically

aware comparative methods (Felsenstein, 1985) have led to dra-

matic increases in the number of published phylogenetic hypotheses.

Unfortunately, capturing the inputs and outputs of a phylogen-

etic analysis in a rich, standardized form is difficult and error prone.

There is no single standard for phylogenetic data, and developers of

phylogenetic software often create new formats or extend existing

formats in ways that make them incompatible with other programs.

Some archiving services, such as Dryad (Vision, 2010), have reacted

to this challenge by accepting a wide range of inputs and making

few or no guarantees to users of the database that the records will be

in any particular form. This encourages sharing of data by making

the submission process fast and easy. However, if the authors sub-

mitting the data are not conscientious in their explanations of the

data, it can be difficult for users of the data to reliably extract all the

necessary information from the archive, or the data may not contain

sufficient metadata for reuse.

On the opposite end of the spectrum, some databases require

data providers to conform to strict standards with respect to input

format and content. Examples of this approach are TreeBASE

(Sanderson et al., 1994) and its successor TreeBASE version 2 (Piel

et al., 2009). Since 1994, TreeBASE has served as the primary arch-

ival data store for phylogenetic estimates and the data that these

trees are based on. As of 2014, TreeBASE contains 4076 studies and

over 12 800 trees (http://treebase.org/treebase-web/home.html).

Many journals encourage or require that each publication that esti-

mates phylogenetic trees cite a TreeBASE deposit containing the

associated trees. TreeBASE produces a much more feature-rich inter-

face for phylogenetic queries than Dryad, because each TreeBASE

submission is parsed thoroughly and converted to a set of records in

a relational database. The downside of this approach is that it re-

quires that submissions correspond to a uniform format. Without

constant updating, that format may not reflect new types of phylo-

genetic data being generated.

Unfortunately, tree estimation tools read and write file formats

which are idiosyncratic and often so terse that they omit useful in-

formation about the analysis. See Stoltzfus et al. (2012) and

Cranston et al. (2014) for discussions of this topic and other chal-

lenges relating to the archiving of phylogenetic estimates. As a re-

sult, the TreeBASE submission process usually requires the authors

of a data package to reformat their data, correct the rooting of the

tree, alter the labels of the tips of the tree, etc. Because these steps

are often taken after the analyses for a publication are complete, it is

likely that errors introduced in the process of preparing a submission

will not be corrected until an observant user tries to reuse the data.

If there were a rich, universally used file format for phylogenetics

analyses, then import constraints such as those used by TreeBASE

would be less of a hurdle, because the critical metadata regarding

rooting, labels, etc. would be stored alongside the tree itself. The

XML-based NeXML specification (Vos et al., 2012) defines such a

format, but it is not currently used widely by tree estimation tools.

Thus, the current state of phyloinformatic archival infrastructure

is ripe for improvement in numerous ways. One such opportunity is

the development of a data store that allows the community of

biologists to improve the accuracy and reusability of phylogenetic

statements associated with publications. We describe here an imple-

mentation of one such system, which we call ‘phylesystem’ because

it uses a set of versioned text files on the filesystem. The phylesystem

component of the Open Tree of Life web infrastructure was built to

fulfill a critical need for that project: in the process of producing a

synthetic estimate of what we know about the phylogeny of life on

Earth (Smith et al., 2014), information from published studies had

to be curated. The goal of phylesystem is not to replace systems like

Dryad or TreeBASE, but to complement them by storing phylogen-

etic statements and associated metadata in a consistent format while

retaining the history of edits that were made to the data themselves.

We anticipate that most of the trees stored in phylesystem will be

associated with permanent, static archives elsewhere (usually either

TreeBASE or Dryad).

1.1 Approach
One of the motivations of the design of phylesystem was to support

the Open Tree of Life’s need for a curated set of rooted trees that

have been aligned to a common taxonomy. The Open Tree of Life

project strives to support infrastructure for phylogenetic research in

an open way that encourages the community of biologists to partici-

pate in the collection and curation of our knowledge of the phylo-

genetic relationships of life on Earth. Thus, our goals when

designing phylesystem were to build:

1. A data store capable of:

a. Storing trees from thousands of published studies.

b. Storing a few exemplar trees from each study.

c. Handling rich annotation of the trees, the taxa to which they

refer to and metadata describing the analysis that produced

the trees.

d. Storing the full history of changes made to a study and its

trees, including an identifier to indicate who made the

changes.

e. Limiting scope to storage and curation of phylogenetic esti-

mates. We do not intend to store the data upon which the

phylogenetic estimates were based on thousands of trees

from an individual study (such as each sampled tree from a

bootstrap or MCMC analysis).

2. Web services around the data store to support a user-friendly

curation application run in the user’s browser. These include ser-

vices for validation of the files against a published schema.

3. A loosely coupled system that would allow the community of

biologists to interact with the data in a wide variety of ways.

From these requirements, we chose to implement phylesystem as a

set of software wrappers around a data store which consists of a git

(http://git-scm.com/) repository of phylogenetic statements serialized

as a JavaScript Object Notation (JSON) (Crockford, 2006). The

data model used for the JSON is a close derivative of the NeXML

standard for data interoperability (Vos et al., 2012), and can be con-

verted back and forth using the peyotl library (https://github.com/

OpenTreeOfLife/peyotl; manuscript in preparation).

Our expectations that the system will need to store limited

amounts of data for each study (point #1e above), and that most

studies will require relatively few edits, imply that raw performance

of the basic database operations is unlikely to be a bottleneck for

most uses of phylesystem. This made it feasible to use text files as

the format of the data store. Thus far, in the 6 months since deploy-

ment of the study curation interface, the mean number of edits per

study is only 2.7. The total size of the stored data (in JSON format
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with a line ending after every field) is only �150 MB (not counting

the git database that stores the edit history). While line endings after

each field are not required in JSON, they make tracking changes in

files using git easier.

The requirement (#1d, above) of maintaining a history of changes

(including an identifier for the editor) fits naturally with software ver-

sion control systems (VCS). We note that wiki engines such as Gollum

use git version control as a backend database, and the idea of using git

as general database has been discussed by others (e.g. Keepers [http://

vimeo.com/44458223]). Ram (2013) recommends git as tool for man-

aging datasets to facilitate greater reproducibility. Taxonomy in par-

ticular has been suggested as good candidate for tracking using git or

another version control system, due to the continual updating of

named groups and the necessity of maintaining history (Page, 2013;

Shorthouse, 2007). The git repository of TreeBASE studies (by R. Vos

at https://github.com/TreeBASE/supertreebase) is another example of

using git to manage phylogenetic data.

The requirement (#1c above) to support rich annotations is met

by the NeXML data standard. This standard was designed to allow

arbitrarily complex annotations of the entities that are crucial to

phylogenetic statements. Because phylesystem does not store charac-

ter data, the entities included are the top-level metadata, operational

taxonomic units (OTUs), trees, nodes and edges.

We opted to represent NeXML as JSON due to the widespread

use of JSON and to make it efficient for the server to provide data

for a client-side curation application that is written in JavaScript (re-

quirement #2 above). We developed some syntactic conventions for

converting XML to a terse JSON representation to meet the needs

of this project. This JSON is described below as otNexSON. The

adoption of these conventions reduced the web service data payload

size by �50% relative to naive representation of NeXML in JSON.

This change reduced the amount of memory required for the cur-

ation application running in the client’s browser. Despite the depart-

ure from the NeXML syntax, phylesystem maintains the ability to

export and ingest NeXML files. Fundamentally, the data model of

the system is the data model of NeXML.

The final requirement (#3) of producing a maximally open,

loosely coupled system is consistent with the use of a distributed

VCS. Distributed VCSs do not require a single, ‘primary’ repository.

Rather, each copy of the repository maintains a copy of the entire

history, and sharing documents between repositories is a peer-to-

peer interaction.

The copy of the phylesystem repository that is listed under the

Open Tree of Life organization on the GitHub website can be

considered the canonical version of the data store. Indeed, this is

likely to be the most easily accessible and highest profile clone of

the phylesystem repository. Nevertheless, other users of git are

free to make a personal copy of the repository (‘fork’ in GitHub’s

terminology) and maintain their own variants of the data store.

Any such copy of the phylesystem repository maintains the ability

to pull in changes from biologists who contribute edits to the

Open Tree of Life organization clone (e.g. via Open Tree of Life

web applications).

The Open Tree of Life project makes available all of the code for

phylesystem under permissive, BSD-style licenses and the project

makes no claim of ownership to any of the data in the repository.

For new files deposited through the web application, the interface

strongly encourages application of a CC0 copyright waiver, allow-

ing for later deposit in Dryad. Other data, including those files that

originate from TreeBASE, do not have an explicit data license (al-

though we believe that copyright does not apply to any of the data;

see Patterson et al., 2014).

In most database-driven web services, the group of core main-

tainers who have shell access and database permissions are the only

people who have full access to the data in a data store. Posting fre-

quent dumps of a database can allow other users to obtain local cop-

ies of the data for expensive, ad hoc calculations. However, a local

version of the data is clearly a second-class instance and the main-

tainers of the canonical version of the database have de facto owner-

ship of the project. We hope that adopting a truly distributed

backend for the data store will reinforce the goals of the Open Tree

of Life project to build tools that can be used and controlled by the

entire community of biologists (rather than a few claiming owner-

ship on the data store in perpetuity).

Currently the phylesystem web services use GitHub authentica-

tion for ‘curators’ who edit studies. The requirement that editors au-

thenticate allows the provenance of each edit to include a user name

for the curator. The use of GitHub credentials allows the Open Tree

of Life project to circumvent the need to maintain a database of

users and passwords (or hashes). Thus, there is no private database

that would be required for someone to fork and maintain their own

version of the corpus (on GitHub or elsewhere). The only private in-

formation relevant to phylesystem that is kept by the Open Tree of

Life project are the ssh-private keys that allow the project’s web ser-

vers to push updated data to the GitHub-hosted clone of the reposi-

tory. In the future, pull requests from forks of the phylesystem repo

will be able to contribute data to the main repository. In order to

maintain data quality, the phylesystem API (typically via the cur-

ation webapp) is currently the only method to add studies to the

database.

2 Methods

The basic workflow of a typical curation session is depicted in

Figure 1. The steps involved are:

1. The user loads the curation webpage in a browser. This fetches

the JavaScript curator application into the web browser.

2. A list of studies from phylesystem is loaded from information

in a study indexing service (called ‘OTI’, see Indexing).

3. The user selects the study he or she would like to view.

4. The curator application requests the study in otNexSON form

from the phylesystem server. The curator application also re-

ceives the git commit SHA (a checksum of the content) of the

repository at this point.

5. The user may browse the study and download representations

of the data in NeXML, otNexSON, NEXUS (Maddison et al.,

1997) or Newick formats without logging in.

6. A user who wishes to edit a study must have a GitHub account

(which are available free of charge) and must authenticate at

this point.

7. The user may correct tip labels and map OTUs to a taxonomy

with the help of taxonomic name resolution services (the

‘taxomachine’ web services, described at https://github.com/

OpenTreeOfLife/taxomachine). Tip labels are mapped to the

comprehensive Open Tree Taxonomy, OTT (https://github.

com/OpenTreeOfLife/opentree/wiki/Open-Tree-Taxonomy;

manuscript in preparation), so that all trees in the data store

can be directly compared. Users can also fix the rooting infor-

mation about the tree or edit the metadata. The study data is

modified in the memory space of the browser and maintained

there until the curator chooses to save the study.
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8. To save, the curator application uses an HTTP request to the

API and includes the data (in otNexSON format), the starting

SHA, and a commit message to support sensible history.

9. The phylesystem-api code validates the otNexSON (rejecting the re-

quest if the data do not conform to a legal otNexSON document).

10. If the edited study is a legal otNexSON document, then a new

git commit is created with the SHA provided in the API request

as the parent commit. The commit is placed on a ‘work-in-pro-

gress’ branch in the git history to assure that the data are stored

with no chance of conflict. Commits are generated by the user

saving the study (step 8) in the curation webapp. How much the

user edits between saves determines the granularity of commits.

11. If the study in question has not changed in the master branch

since the parent SHA, then the edit can safely be merged to the

master branch. If this is the case, the merge is done and the

work-in-progress branch is deleted. If the version of the study

on the master branch has changed (e.g. if two users are simul-

taneously editing the same study), then the merge is not done.

The data will be saved on the server, but not merged into the

master branch. If the commit is not automatically merged, then

the merge must be completed manually by a curator at a later

time, as there is the potential for conflicts between changes

made by different simultaneous edits.

12. If the new edit was successfully merged to the master branch,

then an event is triggered to tell the server to push the new mas-

ter branch changes to the GitHub version of the repository.

13. A response is returned to the curation application indicating

whether or not the edited study was merged to the master branch.

This response includes the new SHA that will serve as the parent

for a future commit.

14. If the push event was triggered in step #12, the updated master

branch will be pushed to GitHub.

15. Using GitHub webhooks as a callback mechanism, the push

generates a POST that triggers reindexing of the affected study

by the OTI tool.

3 Implementation

Currently, phylesystem is implemented in a python application using

web2py for the web framework. Most of the functionality for vali-

dating the data and creating the git commits is accomplished using

parts of the peyotl library. An alternative implementation of the web

services has also been written in the Pyramid web framework.

3.1 Thread safety
In the current implementation, the creation of a new commit and

merge are done with git’s ‘checkout’, ‘add’ and ‘commit’ commands.

This means that the repository must use a mutual exclusion (mutex)

lock for the duration of these events to ensure that a single thread

completes this series of operations. Failing to lock the repository

would make it possible for the HEAD reference (which will define

the parent of a commit) to be moved as the result of a separate trans-

action. This would result in the git history not correctly reflecting

which version of the study was displayed to the user by the curator

application. Because of the mutex lock, the system can assure that

the user’s edits appear as direct descendants of the repository version

Fig. 1. Workflow diagram for the steps listed in Section 2 depicts the tools required to complete each step. This also demonstrates the modularity of the current

system. Work-in-progress (WIP) branches from the parent SHA (a checksum of the content) are created on save. If no other commits have edited this study since

the parent SHA, WIP branches are merged to master and commits are pushed to the mirror, then to GitHub. If the study has been edited since the parent commit,

commits will be held on a WIP branch and merge conflict resolution is required
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that provided the data to the curator application when the editing

session began (step 4 above).

If the system encounters heavier use, then the wrappers around

git may need to be modified to use lower level git commands. There

are available commands that allow one to construct a commit with-

out checking out the parent commit’s version of all files. These en-

hancements would limit or eliminate the need to lock the repository.

3.2 Sharding
The phylesystem software supports having the data spread across

multiple git repositories, which we refer to as ‘shards.’ Currently, all

of the studies fit within one git repository, so one shard suffices.

Sharding can help avoid hitting limits on git repository size (for

GitHub hosting) and can reduce contention for the mutex lock men-

tioned above.

The shard repositories contain the otNexSON files and a few

files that are used to create a unique study ID for any new study.

Thus, inspection of the shards by the server’s code allows unique

IDs to be generated as long as each ID-minting web service is using a

distinct prefix for its IDs. The Open Tree of Life project is minting

ID’s using the ‘ot_’ prefix; files that entered the system from a differ-

ent curation tool, phylografter (Beaulieu et al., 2012), have IDs that

start with the ‘pg_’ prefix. Note that most of the studies currently in

the phylesystem data store were imported from phylografter.

Phylografter maintains a list of curators for each study, but the phy-

lesystem data store does not have a detailed record of each edit that

was made to each study as a part of curation (because phylografter

did not record this information).

The directory structure of each shard is simple: a ‘study’ subdir-

ectory holds a series of subdirectories. Each ID has a numeric suffix.

The ID prefix and the last two digits of this numeric suffix are used

to create the name for a subdirectory inside the study directory.

Inside this directory, each study is in subdirectory with a name that

corresponds to the study ID, with a file name that corresponds to

the study ID. So, e.g. the phylesystem-api code knows to look for

study ot_211 at the path study/ot_11/ot_211/ot_211.json inside the

git working directory.

There is a file size limit of 20 MB for commiting to the phylesys-

tem repository.

3.3 Mirroring on the server
The server running the phylesystem-api maintains two clones of

data repositories. The ‘working’ clone is used to save the updated

data (steps 10 and 11 in the workflow). The phylesystem-api re-

sponds to the curator client (in step 13) immediately after the com-

mit, and if possible merge, operations complete. To push the data to

the GitHub clone of the repository, the server first pulls the master

branch from the working repository onto a separate ‘mirror’ clone

of the repository. This mirror repository is then locked during the

push-to-GitHub operation (step 14). This architecture keeps the

working clone free to save other studies while the high-latency push

operation completes using the mirror. The update of the mirror

from the working repository is very fast because both are on the

same server. Therefore, links to the objects in the git database can be

used instead of copy operations.

3.4 otNexSON
The Open Tree of Life project uses three different versions of the

otNexSON syntax. Determining which version of otNexSON a par-

ticular document is using can be accomplished quickly and reliably

by checking a ‘nexml2json’ property in the document. All three ver-

sions can be easily interconverted using the peyotl library.

The phylesystem and curator JavaScript applications use versions

1.2 and 1.0 of otNexSON, respectively. Tools that do not require

low latency transmission and parsing of the data (e.g. the OTI

indexing tool and tools that use the trees in phylesystem for super-

tree operations) read a direct badgerfish (http://badgerfish.ning.com/

badgerfish) conversion of NeXML which we refer to as otNexSON

0.0 in our documentation. otNexSON version 1 formats are slight

tweaks to the badgerfish convention for mapping an XML docu-

ment to JSON. As with badgerfish, key value pairs that are attri-

butes in XML are recognized by adding an @ (ASCII 64) symbol

before the key name. NeXML allows for unlimited addition of

‘meta’ elements inside a first-class entity to associate annotations

with that entity. The Open Tree of Life project uses a set of ad hoc

literal key value pairs in these meta annotation fields to introduce in-

formation from curators into the study records. The tags used are

described at https://github.com/OpenTreeOfLife/phylesystem-api/

wiki/NexSON. In the badgerfish convention, these meta elements

would be placed as JavaScript objects inside an array associated

with the ‘meta’ property name. Adhering to this convention would

require any code operating on a JSON version of NeXML to search

through (potentially long) lists of meta objects for each piece of an-

notation. The otNexSON 1.0 and 1.2 syntaxes simply augment the

badgerfish convention by using the (ASCII 94) character at the front

of a property name to indicate that the key-value property corres-

ponds to a ‘meta’ element in NeXML. This ensures smaller file sizes

and faster property lookup.

The otNexSON 1.2 syntax reorganizes some of the elements of a

NeXML document. In this version of the syntax, the OTUs, trees,

nodes and edges are contained in objects with the IDs of these enti-

ties as keys. In a direct badgerfish version of NeXML, these entities

would be objects in an array, but the order of the objects in these

arrays is not useful. For example, reordering the node or edge list

has no effect on the conformation of a tree. Use of object IDs as keys

make object lookup faster, and allows the JSON to be sorted quickly

when being stored in the git repository so that trivial changes (such

as changing the order of nodes in a node list) will not result in a dif-

ference in the stored version of the study. These formats are docu-

mented more fully on the phylesystem-api wiki mentioned above.

The nexson_validation subpackage of the peyotl library is used

to ensure that a otNexSON file sent to the phylesystem server is

valid. The serialization routines in peyotl also perform reordering of

the elements within otNexSON files to prevent large commits that

would result from, e.g. reordering the list of OTUs in a file or rotat-

ing the left and right children of internal nodes. The peyotl library

also provides a variety of convenience functions for operating on

otNexSON files (including support for exporting the phylogenetic

data to widely used formats such as NeXML, NEXUS and Newick).

3.5 Indexing
A downside of using git as a database is that it does not provide a

way to perform fast lookups of arbitrary information in the data

store. Performing a text-based search across all studies (i.e. reading

through all otNexSON text files) in the phylesystem data store to

find all nodes in trees that match a specific set of criteria, for in-

stance, is a prohibitively costly operation to perform on demand.

Because the capability to search the phylesystem repository is

required for various use cases (e.g. various aspects of study cur-

ation), we implemented an additional tool called OTI (which stands

for ‘open tree indexer’) which parses otNexSON documents and
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indexes their contents to enable fast searches across studies and their

included elements (e.g. trees). OTI is implemented in a Neo4j graph

database, and its search features are exposed via publicly available

web services. Other Open Tree of Life tools such as phylesystem and

the curator application interact with OTI through these web ser-

vices. Currently available search methods are simplistic, allowing

queries based on single properties (e.g. searching for studies by a

particular author, or from a particular year) or taxonomic scope

(e.g. searching for all trees mapped to any taxon included in some

specified higher taxon).

3.6 Webhooks
To create an initial index, OTI reads the entire corpus of studies in

the phylesystem data store, but this expensive operation is only

required once per deployment of the server. If a study has been

added, deleted or edited by a user and the update was merged to the

master branch of the server data store, then an event is triggered

(step 12 above) to push the updated data to the GitHub clone of the

repository. This assures that the publicly visible version of the data

is updated with low latency. In particular, once the push to GitHub

has succeeded, a webhook from GitHub posts data about what stud-

ies have changed on the GitHub clone to a phylesystem service. This

hook triggers the reindexing of the studies that have changed by the

OTI tool so that the searchable cache is kept up to date.

More web services can easily be added to the list of webhooks on

GitHub. For example, if someone were to write a service to calculate

a statistic on each study in the phylesystem corpus, that programmer

could keep the statistics up to date by registering another webhook.

The payload of the webhook identifies the files that were changed in

a git event. Because the file name portion of each file path corres-

ponds to the study ID, it is trivial for a service receiving the webhook

to determine the IDs of the studies that require recalculation.

For services that can tolerate high latency, it is easy to use a

scheduled job (e.g. a cron job) to frequently pull the data from the

GitHub clone of the repository. Because only the altered studies will

have their files touched in the git pull operation, tools such as ‘make’

can be used to update cached calculations for only the studies that

have changed.

4 Discussion

Phylogenetic hypotheses are simultaneously the products of analyses

and the raw material for future analyses. A phylogenetic data store

has the advantage of collapsing potentially enormous raw sequence

datasets into compact files capturing the inferred evolutionary his-

tory of studied taxa (Ané and Sanderson, 2005). However, the raw

output of phylogenetic analyses is rarely sufficient for immediate

reuse by other researchers. This curation primarily consists of cor-

recting the rooting of the tree (so that it reflects the finding of the

published study), adding metadata about the data or analyses that

produced the tree, and mapping the OTU labels to taxa in a

taxonomy. Therefore, having a specialty data store to capture the

appropriate metadata is essential.

The phylesystem tool was designed to fill this role in a way that

would make the curated data as widely available as possible. By

using git as a primary data store, the system allows other interested

parties to easily maintain local clones of all the data.

Data archives in bioinformatics have a wide range of goals and

requirements. Using git in place of a typical database is feasible for

only a small set of uses which do not require fast processing of a

large number of requests. When it is feasible to use distributed

version control as a data store, there are several benefits that make

this approach appealing. Provenance information in the form of a

commit message associated with an identification of the user creat-

ing the edit is stored ‘for free’ in such an architecture. Each modifi-

cation to the data store is backed up efficiently using the VCS’s

‘push’ functionality. The corpus of the data store can be made

openly available in a form that is very convenient to other bioinfor-

maticians. Rather than having to unpack a new snapshot and write

a script to identify what information has changed since the last snap-

shot was retrieved, a user can easily pull down the latest changes

(with a ‘git pull origin master’ command in the case of a git-based

store). Not only will this update be fast, the user knows that he or

she can back up to a previous version of the data store if needed

using the standard version control features. This git-based curated

database model could be applied to other data stores requiring com-

munity curation.

The file format of the data to be versioned also has an impact on

whether or not it is feasible to use a VCS as a data store. The native

tools for comparing versions of a file are line-based. Ideally, such a

system would version file formats in which: (i) each datum in a col-

lection is described on a different line, (ii) each line is relatively inde-

pendent, and (iii) the order of elements in the serialized file can be

made consistent. The otNexSON format that we are currently using

is not ideal in these respects. Some operations, such as rerooting a

tree, affect many lines in a file (i.e. many branches change source to

target orientation). Thus far, the rate of curation has been low enough

that most merges have been unambiguous because only one branch of

the git history has changed a particular study. The phylesystem cur-

rently avoids potentially incompatible merges, and warns the user

who committed later that his or her changes have been saved but not

merged onto the primary branch. A diff and merge tool that operates

on the object model has been written and is currently under testing.

Git does not handle very large files well, and GitHub limits the

size of individual files to 100 MB and repositories to around 1 GB.

Sharding precludes problems with overall repository size. We have

specifically limited the data types to be included in the phylesystem.

Alignments and bootstrapping or MCMC chain replicates of trees

should not be included in uploads, and there is currently a 20 MB

filesize cap on files committed to the repository. The choice to ex-

clude alignments and tree replicates has the advantages of limiting

the file sizes in the repository and maintaining the focus of the data-

base. Phylesystem is for the storage and curation of phylogenetic es-

timates. Other resources, such as data dryad (Vision, 2010), are

more appropriate for other static data associated with analyses. If it

becomes necessary due to increases in the size of trees, it is straight-

forward to alter the 20 MB limit. While there are general approaches

to expand the scale of versioned data tools (see, e.g. git-annex and

dat [http://dat-data.com/]), we anticipate that phylesystem will con-

tinue to rely on links outs to the full archives of data to accommo-

date large studies.

While phylesystem currently uses GitHub for user authentication

and to host a readily accessible copy of the repository, the database

does not inherently rely on GitHub and could be migrated should the

need arise. This would require only altering the authentication proced-

ure in the curation webapp and implementing an alternate trigger for

updates to OTI. Because the push of data to GitHub triggers the web-

hooks, the code which performs the push could be extended to call

the web-hooks if the project migrates away from GitHub.

As discussed by others (Drew et al., 2013; Magee et al., 2014),

the rate of deposit of phylogenetic estimates into public archives is

currently low. It is also clear that the trees available in digital arch-

ives often need some curation. The two most common curation
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needs are rooting of phylogenies, and the mapping of idiosyncratic

tip labels to a uniform naming system or taxonomy. Rooting is ne-

cessary because many phylogenetics software return unrooted trees

as product of analyses. These trees are correctly rooted using an out-

group and displayed in figures in publications, but often this rooting

information is not included in the tree file deposited in repositories.

This is a large task because the number of phylogenies published

each year is large. Furthermore, some aspects of the curation (most

notably verifying that the tip labels are correctly aligned to a tax-

onomy) require a significant amount of expertize and time invest-

ment. It is unclear whether there is a way to motivate the broader

community of systematic biologists to invest their time in helping

curate a collection of phylogenetic knowledge like phylesystem.

Many of the design decisions behind phylesystem reflect a desire to

alleviate some potential concerns of data curators. By making the

data store publicly accessible as flat files which can be synchronized

using robust version control operations, we have tried to lessen con-

cerns that the curation effort is being donated to a resource which

might disappear after the end of the Open Tree of Life project. By

preserving the history of each commit, we hope to make the data

transformation process more transparent, but also make it easier for

curators to obtain proper credit for their work.

While the curated trees in phylesystem could in theory be ex-

ported back to static repositories such as dryad or TreeBASE, this is

not necessary. The aim of these resources differs and complement

one another. Curation edits to data in phylesystem make the data

more interoperable and reusable, while the archival storage is crucial

for replicating the results of a published study exactly. The original

labels on tips and rooting position are maintained in the otNexSON

files (as well as in the git history). Thus, it is straightforward to asso-

ciate the edits made during curation back to the original data.

The design of the data store was also intended to motivate other bio-

informaticians to build tools to work with these data. In a traditional

database-driven resource, the code used to pull information from the pri-

vate database is quite distinct from the code written by users of the data.

However, in phylesystem the server code and client code both deal with

the same JSON file format. Thus, developers can easily reuse the code-

base of the phylesystem-api as they write new functionalities that use

data from phylesystem or even host their own web services using the

data. Almost all of the git operations and otNexSON handling oper-

ations are implemented in the standalone library, peyotl. This is intended

to make it easier for other programmers to clone the data store and work

with it locally. To improve the transparency of the software development

process, we use issue trackers to report problematic behavior and request

new features. This also improves the sustainability of the software devel-

opment efforts because the motivations behind the implementation deci-

sions are documented. Unit-tests in the peyotl library verify that the

otNexSON validation and git interactions are behaving as expected. The

phylesystem-api repository contains a set of integration tests that auto-

mate testing of the series of API calls that are expected during curation.

Automated testing also improves the software sustainability by helping to

identify regressions in behavior as new features are implemented.

5 Conclusion

We have developed a git-based data store for archiving and curating

phylogenetic estimates of species relationships. By incorporating

curation into the data storage, we have lowered the activation cost

of entering data into an archive while also allowing continued cur-

ation, whether by the original authors or researchers interested in

re-using these data, to improve the associated metadata. Using the

git VCS allows us to track data curation and maintain provenance,

while simultaneously making it straightforward for researchers to

maintain their own updatable copies of the database.
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