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i 

 

A high-resolution model of a bridge column was developed using the computer 

program ABAQUS and the accuracy of the model was evaluated for the displacement 

field and the rotations of a bridge system subjected to biaxial shake-table loading. The 

effect of simulation parameters (reinforcing bar slip within the joint and stiffness 

degradation of the concrete) was studied to determine the goodness-of-fit of the 

displacement and rotation fields recorded during the dynamic response. A Fourier 

Domain Error Index analyses showed that yield stress of the reinforcement and the 

boundary conditions of the column submodel were important parameters, and the damage 

and stiffness degradation parameters were not as important for the goodness-of-fit of the 

finite element model. The computed rotations at the plastic hinge regions near the beam 

caps had the best correlation. 

 

Keywords: reinforced concrete bridge column; finite element modeling; 

photogrammetry; earthquake loading; frequency domain error. 
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1 INTRODUCTION 

 

Reinforced concrete bridge systems are designed with the objective of keeping 

inelastic deformations within the columns and away from the superstructure. For this 

reason accurate representation of the behavior of bridge columns in the inelastic range of 

response is important for the development of computer models that evaluate the 

performance of bridge systems under earthquake events. Understanding the spread of 

inelastic deformations at various stages of loading is also important to quantify the 

expected progression of damage and to estimate the deformation at which loss of lateral 

load capacity takes place. This is a particularly difficult problem when the structure is 

subjected to multiaxial loading, or when the structural components have a complex 

geometric shape. 

 

1.1 FINITE ELEMENT SIMULATIONS OF REINFORCED CONCRETE COLUMNS 

SUBJECTED TO LOAD REVERSALS 

A number of studies have explored the use of the finite element method to 

simulate the nonlinear response of reinforced concrete columns subjected to repeated 

load reversals. Early studies [1] focused on the development of computing platforms, 

material models, and solution algorithms that could be used to overcome the convergence 

problems posed by the nonlinear behavior of concrete. As CPU performance has 

improved, models have increased in size and complexity. More recent studies [2, 3] have 

focused on the validation of more complex finite element models, investigating the 

implementation of more sophisticated material models and element meshes. 



2 

 

 

1.2 OBJECTIVE AND SCOPE 

The primary objective of this study was to develop a high-resolution model of a 

bridge column and to evaluate the accuracy of the model for estimating the displacement 

field that was recorded during the dynamic test of a bridge system under biaxial loading. 

A parametric study was conducted focusing on the effect of simulation parameters 

(reinforcing bar slip within the joint and stiffness degradation of the concrete) on the 

goodness-of-fit of the displacement and rotation fields recorded during the dynamic 

response. 

 

1.3 RESEARCH SIGNIFICANCE 

Engineers need guidance on finite element modeling parameters and analysis 

techniques that lead to accurate simulations of member behavior. This problem is of 

greater significance when modeling reinforced concrete under cyclic loading due to the 

highly nonlinear nature of the material response and the difficulties faced in achieving 

convergence. Computer models that yield accurate estimates of deformation throughout 

the member can be used to track the spread of inelastic deformations, rotations, and 

damage indicators throughout the entire loading history of a bridge system. Furthermore, 

the type of model developed in this study can account for complex axial load-flexure-

shear-torsion interactions, and is applicable to columns with complex geometries that are 

subjected to biaxial or triaxial displacement histories.  

The test column that was used to derive the model had complex boundary and 

loading conditions that uniquely supplement the current understanding of concrete 
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structural systems. The test column had a circular shape and was embedded in a cap beam 

and foundation block with rectangular cross-sections. Further complicating the analysis 

under biaxial loading, the superstructure support at the top of the pier frame allowed the 

column to rotate about the axis of the cap beam while the cap beam restrained it from 

rotating about the orthogonal axis. The change in geometric shape at the joints coupled 

with the biaxial nature of the loading and the boundary conditions make it very difficult 

to calculate the stress and displacement fields within the column and the joint. 

Another unique aspect of this study was that the surface deformation map of the 

test column was recorded [4] during a series of earthquake simulator trials and used to 

quantify the accuracy of the model. Video cameras were used to record the movement in 

space of two grid systems applied to the surface of one of the columns of the bridge 

during earthquake shaking. The displacements at discrete points were later reduced from 

the pictures recorded by the cameras.  

 

2 DESCRIPTION OF FOUR-SPAN LARGE SCALE REINFORCED 

BRIDGE TEST 

The reinforced concrete bridge system was tested at the UNR laboratory under a 

sequence of uniaxial and biaxial earthquake trials with increasing intensity [5]. The test 

specimen, shown in Fig. 1, consisted of a four-span reinforced concrete bridge with end 

abutments. The specimen was approximately a quarter-scale representation of a bridge 

with two interior and two exterior spans that were 29 ft (8840 mm) and 24.5 ft (7470 

mm) in length, respectively. The total length of the bridge system was approximately 110 

ft (33528 mm). The clear heights of the bents were 5, 6 and 7 ft (1524, 1830, and 2130 
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mm), with the tallest bent in the middle (Bent 2). The measured compressive strength of 

the concrete that was used in the bridge (excluding the post-tensioned slab) was 6.7 ksi 

(46.2 MPa) and the reinforcing cage was fabricated using Grade 60 ASTM A706 (414 

MPa) [6] deformed bars. The superstructure consisted of a post-tensioned solid slab both 

in the longitudinal and transverse directions. The bridge also had abutment seats at both 

ends that were driven in the longitudinal direction by dynamic hydraulic actuators to 

simulate the gap closure and impact at the abutments, and some of the test trials were 

conducted with SMA restrainers at the deck-abutment interface [7]. 

The displacement field was recorded at the top and bottom hinging regions of the 

east column of Bent 3 (Figs. 1 and 2). This column was 72 in. (1829 mm) long and 12 in. 

(305 mm) in diameter, with a 0.5 in. (13 mm) concrete cover. The column reinforcement 

consisted of 16 No. 3 (16-10M) longitudinal bars equally spaced around the perimeter of 

the column. The cap beam had a cross section of 15 by 15 in. (381 by 381 mm), with a 

total length of 98 in. (2.490 m). The ground motions used in the test trials were the scaled 

components of the Century City Country Club record from the 1994 Northridge, 

California earthquake. This earthquake record was used in a total of 13 trials, six of them 

with the bridge subjected to a single component in the longitudinal direction and seven 

trials subjected to both components. Trials were conducted with increasing amplitude 

with the goal of monitoring the progression of damage from pre-yield to failure. 

Two different grids were created to track the displacements of the columns during 

shaking (Fig. 2). The grid systems were created by first spray-painting the column black 

to obtain a solid dark background. The lines and squares were lightly traced with a pencil 

over the dark background, and then filled using a single stencil and white paint. The 
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bottom grid had vertical and horizontal lines spaced irregularly around the face of the 

circular column. The top grid used a different configuration composed of lines and 

squares arranged so the spacing of the lines in the bottom grid would be similar to those 

at the top. The intersections of the thick vertical and horizontal lines in both regions were 

numbered as shown in Fig. 2 [8] and used as reference points to extract the displacement 

measurements on the surface of the column from the digital images following a process 

described elsewhere [4]. 

An aluminum tower was erected to support the cameras used to track the motion of 

the column during the sequence of trials. DXB-9212EF model Starlight 600 TVL high 

resolution cameras with black-white recording properties were placed on each level of the 

tower, with two cameras aimed at each grid. Video zoom lenses with focal length ranging 

from 60 to 300mm and minimum and maximum apertures of f/5.6-f/4 were used in the 

cameras to capture the motion of the grid surfaces shown in Fig. 2. Two monitors (two 

channels for each monitor) were set up to show the field of view of the cameras during 

the tests. The distance between the east column of Bent 3 and the instrumentation tower 

was 288 in. (7315 mm). The angles from the left and right cameras to the column were 

73.58° and 44.97° on the horizontal plane as shown in Fig. 3, respectively. The 

displacements from photogrammetric measurements were obtained along the direction of 

the focal plane and compared with the combined displacements of transverse and 

longitudinal displacement transducers on the superstructure of the bridge.  
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3 FINITE ELEMENT MODEL OF THE BRIDGE COLUMN 

A three-dimensional finite element model of the east column of Bent 3 was 

developed using the finite element software ABAQUS [9]. The model consisted of one 

half of the two-column pier frame system, including the east column, a 23-in. (584-mm) 

segment of the cap beam, and the footing (Fig. 4). The model had a total of 11,750 

elements, and the response was analyzed using the implicit static general solution scheme 

with automatic stabilization. Simulations were performed on a Linux computational 

cluster with a total of 384 processors.  Runs were performed using a maximum of 12 

processors and took approximately four days to complete for a single test trial.  

 

3.1 MATERIAL MODELS 

In order to reduce the computational demand, concrete in the cap beam and the 

foundation block was modeled as a linear-elastic material. These two structural elements 

had much larger capacity than the column and experienced no observable damage during 

the test trials. Concrete in the column and in the connections was modeled using the 

damage plasticity model implemented in ABAQUS [9]. Two different sets of material 

properties were defined for the concrete in the core and the shell, to account of the effects 

of confinement provided by the spiral reinforcement. The stress-strain curve in 

compression for the concrete in the core was defined based on the Mander unified stress-

strain model under monotonic loading at slow strain rates [10], shown in Fig. 5. The 

maximum strain was assumed to be 0.1, similar to the value of 0.06 that was used by [11, 

12, and 13] in their research studies. The dynamic magnification factors used in the 

analysis followed the recommendations of Mander [10], who performed regression 
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analyses of the experimental results obtained by Watstein [14] with plain concrete 

specimens of different strengths. The compressive strength of concrete under dynamic 

loading (f’co)dyn was calculated using a dynamic amplification factor (Df) as follows: 

(f’co)dyn = Df  f
’
co     (1) 

where f’co is the quasi-static compressive strength of concrete in MPa (1 MPa=145 psi) 

and Df  = dynamic amplification factor defined by Eq. (2). 
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In Eq. (2) εc= rate of strain in s
-1

 and n = 2. 

Previous work investigating the numerical modeling [15, 16] and experimental 

testing of full-scale models [17] of reinforced concrete structures concluded that the 

maximum strain rate in reinforced concrete structures subjected to severe earthquake 

ground motion ranged between 0.001 and 0.25 strain per second. A maximum strain rate 

of 0.05 strain per second was adopted.  

The elastic modulus under dynamic loading (Ec)dyn was calculated as  

(Ec)dyn = Df Ec                                          (3) 

where   Df  = dynamic amplification factor defined by Eq. (2) with n = 3. 

The modulus of rupture of the concrete was taken as       (in units of psi). The 

softening effect of concrete in uniaxial tension, after cracking, was evaluated as a 

parameter using equations proposed by [18], [19], and [20] (Fig. 5). The Bhide tension 

model [18] with a cracking angle of 35° was chosen for this study because it provided the 

best performance. Tensile behavior was specified in terms of a stress-displacement 
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relationship calculated on the basis of the tension model and an average crack spacing 

[21]. This technique was adopted with the objective of reducing the sensitivity of the 

response to mesh size. The analyses were performed assuming linear elastic behavior of 

the cap beam and foundation block because the stiffness and yield moment of the cap 

beam (Ig = 4200 in
4
, Mn

+
 = 210 k ft, and Mn

-
 = 180 k ft) were significantly higher than 

that of the column (Ig = 1020 in
4 

and Mn = 45 k ft).this assumption is also supported by a 

much large load capacity in the cap beam and foundation with respect to the column, and 

an absence of damage in these large-capacity elements. The flexural stiffness of the cap 

beam was calculated assuming that there was an inflection point at the center of the cap 

beam. The moment of inertia of the cap beam was varied as a parameter approximately 

between the cracked (2000 in
4
, 8x10

8
 mm

4
)

 
and gross moments of inertia (4200 in

4
, 

1.75x10
9
 mm

4
)
 
of the cross section. Additional analyses were performed assuming that 

the cap beam was infinitely stiff.  

A uniaxial steel model with combined isotropic and kinematic hardening 

properties was used to simulate the behavior of the longitudinal steel. Isotropic 

parameters were defined on the basis of a typical stress-strain relationship for ASTM 

A706 Grade 60 steel [6]. The strength of the steel was adjusted to account for the effect 

of strain rate under dynamic loading through the use of a dynamic magnification factor. 

Experimental data from ASTM A615 steel [17] showed that for strain rates consistent 

with earthquake loading the dynamic yield stress was approximately 10 percent larger 

than the static yield stress. According to research by Manjoine [22], the increase in 

ultimate strength of mild structural steel associated with increased loading rate was 
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approximately 4%. Several studies [16, 23, and 24] indicate that increased strain rate had 

relatively little effect on the elastic modulus of steel.  

Kinematic hardening properties were defined to include cyclic strain softening on 

the basis of experimental results by Ma et al. [25]. The material model was calibrated by 

performing simulations of a reinforcing steel bar subjected to repeated load reversals in 

which material behavior was modeled with the combined hardening algorithm. The 

stress-strain curve of a single element near the center of the steel bar is compared with the 

experimental data reported by Ma et al. in Fig. 6, which shows that there was a close 

match between the results from the computational model and the experimental results.  

 

3.2 FINITE ELEMENT MESH 

The concrete mesh consisted of quadratic brick elements with twenty integration 

points. The cap beam was modeled in two different segments. The first segment, starting 

at the edge of the cap beam and having a length equal to twice the distance from the edge 

of the beam to the center of the column, was modeled using solid elements (Fig. 4). The 

second segment extended from the end of the first segment to the center of the pier frame, 

and was modeled using a single rotational spring element. The spring element was rigidly 

attached to a thin but infinitely stiff layer of transition elements at a point located at the 

center of the right face of the cap beam (Fig. 4).  

The circular column and the two joints with the cap beam and the footing were 

modeled using 3D continuum 8-node brick elements. The brick elements had twenty 

integration points and a reduced integration scheme was used to reduce the computation 

time for the analysis. A coarser mesh with 4-in. (102-mm) elements was used in the 
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remainder of the cap beam and the footing because these two components experienced no 

observed damage. The solid element mesh for the cap beam-column connection, the 

column-footing connection, and the circular column was generated taking into account 

the location of the longitudinal reinforcement (Fig. 4). Concrete in these solid elements 

was modeled using the damage plasticity model in ABAQUS [9]. Longitudinal 

reinforcement and transverse steel hoops were modeled using 1D 2-node ABAQUS wire 

elements and linked to the edge of the solid elements using embedded constraints. The 

longitudinal steel had a cross-sectional area of 0.11 in.
2 

(71 mm
2
) and transverse hoops 

had a cross sectional area of 0.029 in.
2
 (18.7 mm

2
) evenly distributed every 1.25 in. (32 

mm) along the height of the column.  

Models with different element sizes in the connections and the column were 

analyzed to study the sensitivity of the load-displacement relationship to mesh size. 

Computed load-displacement relationships under monotonically increasing lateral load 

for various mesh configurations were compared with load-displacement curves calculated 

using Response 2000 (MCFT) [26] and simple models based on moment-curvature 

relationships. The response of models with mesh sizes of 3 in. (76 mm), 1 in. (25 mm), 

and 0.5 in. (13 mm) along the top and bottom hinging regions of the column and 4 in. 

elsewhere are shown in Fig. 7. This study showed that the load-deformation curve of the 

column was sensitive to mesh size, with smaller mesh sizes resulting in lower column 

stiffness. The curve corresponding to moment-curvature includes only the flexural 

component of the displacement, while the curve computed based on the MCFT includes 

displacement components related to flexure and shear, but does not account for the 

displacement component related to slip of the reinforcement (which was shown to be 
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relatively small in this case given the large embedment of the bars and the highly 

confined nature of the joint). Figure 7 shows that the 1-in. (25-mm) mesh model provided 

the closest match to the force-displacement response prior to yielding computed using the 

MCFT [26], with slightly larger displacements near yield that account for the effect of 

slip of the reinforcement. 

Because the longitudinal reinforcement of the column was deeply embedded into 

the cap beam and into the foundation block, and both the cap beam and the foundation 

block provided significant confinement to the concrete in the joints, simulations 

presented in this paper were performed by modeling slip solely through the softening 

effect of the concrete in tension. This assumption is consistent with the damage pattern 

observed in the specimens, which experienced negligible damage in the cap beam-to-

column and foundation-to-column connections. Other techniques for modeling slip 

explicitly such as the use of zero-length slip elements in the bars, the use of short 

debonded regions at the edges of the column, and the use of cohesive layers surrounding 

the bars in the joint region were also evaluated [27] but were found to have a negligible 

effect on the goodness-of-fit of the model.  

 

3.3 LOAD AND BOUNDARY CONDITIONS 

The axial load on the column was computed based on the tributary area of the 

column and consisted of an imposed weight of 47.2 kips (210 kN) applied as a uniform 

pressure at the surface of the cap beam in the FE model (Fig.4). One half of the pier 

frame was analyzed by imposing the two lateral components of the earthquake simulator 

displacement at the bottom surface of the footing and the recorded displacement 



12 

 

components recorded with LVDTs at the top of the column, in the cap beam. The top of 

the footing was restrained from vertical motion also (Fig. 4) to simulate the effect of 

postensioned rods and steel plate washers used to tie the footing to the table.  

As previously mentioned, the bridge was subjected to a sequence of test trials 

with increasing ground motion amplitude. A simulation of the sequence of thirteen major 

trials in the computer platform available would take approximately 50 days to run, which 

would make a parametric study impractical to perform. The comparisons presented in this 

paper correspond to single runs of test trial 4D, which was selected for discussion 

because it imposed a biaxial motion on the bridge and represented the first trial in which 

significant inelastic deformations were observed in both directions of the bridge response. 

Recorded values of the transverse displacement of Bent 3 (measured with displacement 

sensor DT7) are shown in Fig. 8.  Also, because both grids were relatively intact at the 

end of trial 4D it was simple to reduce a complete data set. This was not the case for 

subsequent trials. A simulation with all trials was performed and results show that 

computed rotations and displacements were similar to those computed on the basis of 

trial 4D alone.  

The two components of the ground motion imposed on the bridge during test trial 

4D had peak ground accelerations of 0.5g in transverse direction and 0.6g in the 

longitudinal direction, and induced a maximum drift ratio on the column of 

approximately 4% in the longitudinal direction and 3% in the transverse direction.   
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3.4 SOLUTION ALGORITHM 

One of the most challenging aspects of the type of simulations performed in this 

study is that the descending branch of the stress-strain relationships for concrete in 

compression and tension can lead to great difficulties achieving numerical convergence 

when implicit solution algorithms are employed. When inelastic behavior occurs the 

descending branch of the stress-strain curve for concrete can lead to unstable behavior, 

that is, instances in which strain energy must be released from the system as deformation 

increases due to loss of strength in the material. This problem is more pronounced when 

concrete is unconfined or poorly confined causing the slope of the descending branch to 

become steeper, as in the case of the concrete in the shell of the column. 

ABAQUS offers several solution algorithms for problems with unstable nonlinear 

behavior, based on both implicit and explicit algorithms.  Implicit algorithms offer 

greater accuracy at a much greater computational cost and greater difficulty achieving 

convergence. Depending on the severity of the instability, a model such as the one 

evaluated in this study may be approached as a pseudostatic problem in which a small 

amount of damping is introduced to facilitate convergence when unstable behavior arises. 

If the instability is too severe, this technique requires relatively large damping forces to 

achieve convergence, which cause the computed solution to deviate significantly from the 

true solution. In such instances, an implicit solution requires a dynamic analysis instead. 

An implicit static solution algorithm was chosen because it provided greater accuracy in 

estimating the displacement field of the column and required significantly less CPU time 

than an implicit dynamic solution algorithm. 
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Although the concrete in the core of the column is well confined, and 

consequently less prone to cause convergence problems, the concrete in the shell 

presented a significant challenge. Because the most severe convergence problems are 

posed by the concrete in the shell, which has a relatively small effect on the overall 

response of the column, convergence was achieved without meaningful loss in precision 

by setting the dissipated energy fraction of the automatic damping algorithm to 0.002 and 

relaxing the convergence criteria for the ratio of largest residual to average flux norm and 

the ratio of largest solution correction to the largest incremental solution value.  

 

3.5 PARAMETERS OF THE FINITE ELEMENT STUDY 

Several researchers [28, 29, 30, and 31] have developed expressions for the 

spread of plasticity in columns by adopting as a limit state the deformation corresponding 

to the loss of lateral load capacity. In those studies, loss of lateral load capacity is defined 

as the point in the load-deflection or moment-deflection relationship corresponding to a 

reduction of 20% from the maximum moment or shear force recorded in an experiment. 

Studies have concluded that factors such as strain penetration [29, 31, and 32], axial load 

demand [30, 33], and shear span-to-depth ratio [30, 34, 35, and 36] have a significant 

effect on the spread of plasticity. Many of these parameters were fixed in the 

experimental sets that are available, which limited the ability to evaluate their effect on 

the accuracy of the model. For this reason, parameters of the study focused on material 

models for the steel and concrete and the boundary conditions. Model parameters 

included the yield stress of the reinforcement, the use of various techniques to simulate 
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the effects of slip of the reinforcement, the damage function coefficients for concrete 

under cyclic loading, and the stiffness of the cap beam.  

 

4 EVALUATION OF RESULTS FROM THE FINITE ELEMENT 

MODELS 

Figure 9 shows a comparison between displacement values inferred from video 

images and the optimum finite element model at the point of peak displacement demand 

on the column. Lateral displacement signals used for comparison with digital imaging 

results in this paper were calculated along the direction of an axis perpendicular to the 

axis between the column and the left camera with the positive direction having an 

orientation of N15.25°W with respect to the longitudinal axis of the bridge.  

Direct comparisons of the displacement field at peak response, such as the one 

depicted in Fig. 9, are a useful measure of the accuracy of the FE model at a single point 

in time. A systematic evaluation of the accuracy of the various models over the duration 

of the entire trial was performed by comparing computed displacement and rotation 

signals at several locations throughout the column with signals that were recorded with 

displacement sensors and video images. In comparing FEA and digital imaging results, 

column rotations were computed about a horizontal axis spanning between the column 

and the left camera with an orientation of N74.75°E with respect to the longitudinal axis 

of the bridge. As shown in Fig. 2, LVDT sensors were anchored to the column to 

measure rotations relative to the cap beam in directions perpendicular to and parallel to 

the axis of the cap beam. Comparisons of column rotations between FEA and LVDT 

results were performed based on values computed about an axis perpendicular to the axis 
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of the cap beam. These rotations were deemed to have more significance between the two 

direct measurements recorded with LVDTs due to the relatively large stiffness and 

strength of the cap beam relative to those of the column, and because the top of the 

column was essentially unrestrained from rotation about the axis of the cap beam.  

Vertical displacement signals from LVDTs were used to interpolate the vertical 

displacements at grid points and at the surface of the column. Vertical displacement 

comparisons between FEA and digital imaging signals were performed on the basis of 

absolute displacement signals, while comparisons between FEA and LVDT signals were 

performed on the basis of the relative displacements between the two column elevations 

monitored by the LVDTs. 

A quantitative technique based on the Frequency Domain Error index (FDE), 

developed by Dragovich and Lepage [37], was used to compare measured (or inferred) 

and computed response quantities. The FDE index uses the Fourier spectra to compare 

the composition of the two signals, with differences between the Fourier coefficients 

increasing the value of the error index. The FDE index quantifies the goodness-of-fit of 

the amplitude and phase of two signals and its value ranges between 0 and 1, where zero 

indicates a perfect correlation. The amplitude error is a measure of the difference between 

the norm amplitudes of the Fourier coefficients of the two response signals, while the 

phase angle error is a measure of the difference in the angle that the resultant vectors 

make with respect to the real axis in the real-complex plane. Dragovich and Lepage 

concluded that an FDE value of 0.75 or higher represented a poor correlation, and that an 

FDE value of 0.25 or lower represented a very good correlation.  
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The range of frequencies to be evaluated was selected to be between 0.5 Hz and 

the Nyquist frequency fn =1/(2Δt), where Δt was the sampling interval of the data series. In 

the case of the video images the sampling rate was 30 frames per second, while in the 

case of the FEA and the analog sensor data the time interval of the recorded data was 

0.007812 seconds. The difference in time increments was addressed by resampling the 

data signals from the FEA and analog sensors using linear interpolation so that all signals 

would have a same sampling rate of 30 points per second.  

The displacement field computed with the finite element model had input data 

recorded using analog sensors, while the measured displacement field on the surface of 

the column was inferred from digital video images. Because the two sensors systems 

acted independently of each other, a direct comparison of the signals obtained with each 

type of sensor during trial 4D showed the magnitude of the experimental error introduced 

by differences in the precision of the two sensor systems, which is independent of the 

modeling assumptions. The time signal from the two sensor systems was synchronized by 

comparing the lateral displacements inferred from digital imaging at point 3, located near 

the bottom of the column, with the lateral displacement signal from the earthquake 

simulator. The synchronization was carried out in a two stage process that involved a first 

approximation by visual inspection followed by a series of FDE analyses to determine the 

time offset that would result in the lowest phase error. The best match between the 

displacements inferred from digital imaging and the earthquake simulator signal yielded 

FDE error indices of 0.04 for amplitude error and 0.12 for phase error, for a total error of 

0.16. These error values show that there was an excellent correlation between the 
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displacements inferred from video images at the base of the column and the earthquake 

simulator signal.  

A similar comparison was performed on the basis of FDE indices comparing the 

lateral displacement signals at the top of the column. The lateral displacements 

corresponding to grid Point 58 (Fig. 2), located at near top of the column, were compared 

with the combined components of the displacement transducers mounted on the bridge 

deck and the north abutment (DT7, DS1 and DS5 in Fig. 2). As shown in Fig. 2, the 

displacement transducers were separated from point 58 of the grid by a distance of 23 in. 

(584 mm). The FDE amplitude index between the two signals was calculated to be 0.09, 

and the phase angle error was calculated to be 0.31, for a total error of 0.40. These 

computed error values show that the correlation between digital imaging and the LVDT 

data at the top of the column was not nearly as good as that observed at the bottom of the 

column between the digital imaging data and the earthquake simulator signal. While is 

not possible to conclude with certainty that the larger discrepancy between sensor 

readings at the top of the column can be attributed to either one of the two sensor 

systems, flexibilities from anchors and attachment accessories as well as rotation of the 

cap beam introduce sources of experimental error in the analog sensor readings that do 

not affect the signal from the earthquake simulator nor the digital imaging. Regardless of 

the source of the error, it is important to keep in mind that a larger amount of sensor error 

is present in comparisons between digital imaging readings and displacements computed 

from FEA models at the upper column grid due to the larger discrepancy between sensor 

systems at that location.  
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4.1 AS-BUILT SIMULATIONS 

A set of simulations was carried out with modeling assumptions intended to 

represent the as-built characteristics of the frame pier as closely as possible. Material 

properties were defined based on reported measured values (f’c = 6.7 ksi and fy = 64 ksi) 

[4] adjusted for rate effects as described previously in the paper.  

Table 1 shows the FDE indices for comparisons between the computed lateral 

displacements at discrete points on the surface of the column (with analog sensor data as 

input) and the displacements at the same points inferred from the video images. 

Amplitude error indices show a better correlation for the bottom grid than at the top grid. 

While amplitude errors remained nearly constant throughout, phase error indices 

increased in magnitude as the height along the column increased. This is consistent with 

the direct comparison of the digital and analog sensor readings. Computed and inferred 

signals for Point 3 (near the bottom of the column in Fig. 2, with an amplitude error of 

0.04 and a phase error of 0.12) and Point 58 (near the top of the column in Fig. 2, with an 

amplitude error of 0.09 and a phase error of 0.31), are plotted in Fig. 10 to illustrate the 

close similarity between the respective signals.   

The vertical displacement history at the top and bottom hinging regions of the FE 

model were also compared with digital imaging data. The results of the FE model at 

points located 5 in. (127 mm) and 10 in. (254 mm) above the footing and below the cap 

beam were obtained and compared with the vertical displacement data reduced from 

video images. Table 2 lists the FDE indices for these comparisons. The amplitude error is 

indicative of a very close match between the two signals everywhere in the column while 

the phase error is indicative of a fair match between the signals everywhere in the 
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column. The calculated FDE indices show that the difference between the two signals 

was smaller at the top of the column than at the bottom of the column, and that calculated 

vertical displacements near the top of the column did not match measured values nearly 

as well as the calculated lateral displacements did. This is attributable to the accuracy of 

the imaging equipment that was utilized and the fact that the vertical displacements being 

measured were on the order of a few hundreds of an inch. Direct measurements of 

relative vertical displacements obtained with LVDTs were also available at discrete 

locations. A comparison between the relative vertical displacements calculated with the 

FE model and those measured with LVDTs is presented in Table 3. The results also show 

far better correlation at the top of the column than at the bottom of the column. It is 

important to note that absolute vertical displacements at points in the bottom grid are very 

small, which makes comparison of FEA vs. digital imaging data signals at these locations 

particularly sensitive to experimental error. FDE indices from LVDT-FEA comparisons 

at the top of the column had total error magnitudes on the order of 0.3, indicative of a 

very good match. 

FDE error indices obtained by comparing rotation signals inferred from FEA and 

LVDT sensors are presented in Table 4. Computed rotation values show excellent 

correlation with the experimental data everywhere in the column, with the largest amount 

of error found in the top 5-in. (127-mm) segment of the column. 

 

4.2 EFFECT OF THE YIELD STRENGTH OF THE REINFORCEMENT      

Because there was no experimental data available to directly quantify the effect of 

strain rate on the yield stress of the reinforcement, the yield stress of the longitudinal 
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reinforcement was varied as a parameter in the FEA models. Simulations were performed 

using yield stress values of 64, 70, 75, and 80 ksi (441, 483, 517, and 552 MPa), 

corresponding to dynamic amplification factors of 0, 10%, 18% and 25%, respectively. 

The effect of yield stress on the goodness of fit of the model was evaluated by comparing 

lateral displacements, vertical displacements, and rotations at points located 5 in. (127 

mm) and 10 in. (254 mm) from the edge of the column, where data was available both 

from video images and LVDT sensors. Cross-section rotations about an axis 

perpendicular to the axis of the cap beam were calculated at the locations of LVDTs 

3ETR3 and 3ETR4 (5 in. or 127 mm below the cap beam), 3ETR5 and 3ETR6 (located at 

12 in. or 305 mm below the cap beam), 3EBR7 and 3EBR8 (located 5 in. or 127 mm 

above the footing), and 3EBR5 and 3EBR6 (located at 12 in. or 305 mm above the 

footing). Error indices showed that the quantity most sensitive to yield stress was the 

vertical displacement at the top of the column. Figure 11 shows a comparison of the 

relative vertical displacement signals near the location of LVDT 3ETR4, located 5 in. 

(127 mm) below the cap beam, for the different values of yield stress used in the FE 

models. As shown in Fig. 11 the main difference between the signals was the residual 

relative displacement, with LVDT 3ETR4 indicating a very small shortening of this 

segment of the column at the end of the test trial (approximately 0.01 in. or 0.25 mm) 

while the FE models indicated various degrees of residual lengthening (ranging between 

0.01 and 0.08 in., or 0.25 mm and 2.03 mm) due to the nonlinear deformations of the 

steel bars. These graphs show that a yield stress exceeding 80 ksi (552 MPa) would be 

needed to obtain the best match in terms of vertical displacement. 
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Figure 12 shows that FDE indices for the cross-sectional rotations perpendicular 

to the cap beam at elevations 5 in. (127 mm) and 12 in. (305 mm) below the cap beam 

and above the footing. FDE indices in general were insensitive to yield stress and were 

indicative of an excellent correlation. The two error indices most sensitive to yield stress 

were those corresponding to the vertical displacement signal at the top of the column and 

the rotation signal in the 5-in. (127-mm) segment of the column directly above the 

footing. For both of these signals the correlation had a tendency to improve with 

increasing yield stress.  

 

4.3 EFFECT OF THE FLEXURAL STIFFNESS OF THE CAP BEAM  

One of the limitations of the model is that in order to keep the computational 

demand to a reasonable level only one half of the pier-frame was modeled, and the cap 

beam was modeled with a very simple linear-elastic element. As discussed previously, 

the flexural stiffness of the cap beam was varied during the calibration of the model to 

investigate the effect of beam flexibility on the goodness of fit of the displacement field 

of the column. For the case of gross section properties the flexural stiffness of the spring 

Kg was calculated to be approximately 3x10
9
 lb-in. (3.4*10

8
 N-m) and for the fully 

cracked condition it was 10
9
 lb-in. (113*10

6
 N-m). The stiffness of the spring element 

was varied from 10
8
 lb-in. (113*10

5
 N-m) to 10

9
 lb-in. (113*10

6
 N-m) in order to allow 

for additional flexibility from slip of the reinforcement. To complement the data set, 

simulations were performed in which the cap beam was restrained from rotating as if it 

were infinitely stiff. The yield stress of the column reinforcement was varied also with 

values of 68 and 75 ksi (469 MPa and 517 MPa), corresponding to dynamic amplification 
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factors of 6.25% and 17%, respectively, in order to find the optimum combination of 

parameters.  

Comparisons of goodness-of-fit were performed in terms of computed rotations 

about an axis perpendicular to the axis of the cap beam, at points located 5 in. (127 mm) 

and 12 in. (305 mm) above the footing and below the cap beam. FDE error indices are 

presented in Table 5. In general, higher beam stiffness values led to better correlations at 

the top hinge region of the column. The opposite was true for the bottom hinge, where 

lower stiffness values led to better correlation between measured and computed values. 

The goodness-of-fit of the rotations at the bottom hinge was more sensitive to the flexural 

stiffness of the cap beam than that at the top hinge, and the largest error index was found 

for the total rotation in the bottom 12-in. (305-mm) segment of the column. Index errors 

(Table 6) were very similar for yield stresses of 68 ksi (469 MPa) (Table 6) and 75 ksi 

(517 MPa), with the average being slightly lower for the model with a yield stress of 75 

ksi (517 MPa). For this reason the model with a flexural stiffness of 10
8
 lb-in. (1.1*10

7
 

N-m), and a yield stress of 75 ksi (517 MPa) was selected as the optimum model.  

 

4.4 EFFECT OF STIFFNESS DEGRADATION PARAMETERS 

Reinforced concrete structures subjected to repeated load reversals into the 

nonlinear range of response experience progressive damage and a reduction in stiffness. 

When the post-peak compressive stress or tensile crack displacement increase, the 

material sustains non-recoverable damage, and the stiffness of the material is reduced 

after a load reversal occurs. The damage variables dc and dt are used in the concrete 

plasticity model in ABAQUS to simulate stiffness degradation by reducing the elastic 



24 

 

modulus after a load reversal by a factor of (1-d). These two stiffness degradation 

parameters are defined as a function of the inelastic compressive strain and the tensile 

crack displacement, respectively, so that the reduction in stiffness increases with inelastic 

deformation. In this study, the compression stiffness degradation parameters for core and 

cover concrete were defined as exponential functions dependent on the plastic component 

of the compressive strain. Equations 4 and 5 were used for core and cover concrete 

respectively: 

                                
pledc

30
1


                                                                                (4) 

                                
pledc

160
1


                                                                                (5) 

where εpl is the plastic component of the compressive strain. The tension stiffness 

degradation parameter dt was defined as a linear function in which a 50 percent reduction 

of the elastic stiffness was assumed to occur when the critical crack bandwidth value was 

reached, and 98 percent of the elastic stiffness when the critical crack bandwidth was 

doubled. These relationships were found to provide reasonable results in a previous study 

on column behavior [21]. 

For the case of cyclic loading, the damage variables dc and dt in the concrete 

damage plasticity model in ABAQUS are modified through the use of weight factors wc 

and wt to account for the stiffness recovery effect when the direction of loading changes. 

The modulus of elasticity is then reduced by a factor of [1 - (1-w) d], were a w value of 1 

corresponds to full recovery of the elastic modulus and a value of 0 signifies a reduction 

by a factor of (1-d). The compression stiffness recovery parameter (wc) was varied 

between 0.5 and 1.0, where a value of 1.0 implies that as cracks close during load 
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reversal the compression stiffness will be completely recovered. The tension stiffness 

recovery variable (wt) was varied between 0 and 1.0. 

FDE indices for rotations with several combinations of compression and tension 

stiffness recovery parameters evaluated are summarized in Table 7. Although the rotation 

FDE indices were not very sensitive to these parameters, the best correlations were found 

for a combination of recovery variables wc =0.8 and wt =1.0. A similar trend was observed 

for the case of vertical displacements. These values of stiffness recovery parameters were 

used on all other analyses. 

Computed damage patterns at the end of the test trial, quantified in terms of the 

damage variables dc and dt, are shown in Fig. 14 and were found to be consistent with 

observed damage in the column. 

 

5 COLUMN BEHAVIOR 

 

A finite element analysis with the optimum model parameters showed that 

inelastic deformations of the column during trial 4D were concentrated almost entirely at 

the bottom of the column. Displacement profiles for two points in time corresponding to 

the largest deformation demands on the column are presented in Fig. 15. The 

corresponding curvature profiles are presented in Fig. 16 and the strain demand in the 

various reinforcing bars is presented in Fig. 17. All quantities are shown about axis in the 

direction of the peak displacements. These figures show that in the column member 

analyzed, which is a typical bridge column with relatively low axial load demand, 

column response was driven primarily by the deformation of the longitudinal 
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reinforcement. Finite element analyses of the bridge column during trial 4D, with peak 

ground accelerations of 0.5g in transverse direction and 0.6g in the longitudinal direction, 

indicate that the strain demands in the longitudinal reinforcement exceeded the elastic 

range in the lowest 25-in. (635-mm) segment of the column, which corresponds to 

approximately 2 times the diameter of the column. The inelastic strains in the 

longitudinal bars extended approximately 12 in. (305 mm) or approximately 1 column 

diameter or 32 longitudinal bar diameters into the joint. Computed curvature demands 

exceeded the yield curvature over a shorter segment of approximately one half the 

diameter of the column (Fig 16). Computed strain demands on the reinforcement show 

that the highest strain demands on the reinforcement occurred over the same bottom 6-in. 

(152-mm) segment of the column where curvature exceeded the nominal yield curvature, 

although inelastic behavior extended over a distance 4 times larger. 

 

6 SUMMARY AND CONCLUSIONS 

 

An FE model of a bridge column was created using a widely available computer 

program and concrete plasticity model. The computational demand was maintained at a 

reasonable level by modeling nonlinear behavior only in areas of the bridge pier where 

inelastic deformations were expected and shown to take place. Simulations that resulted 

in a close representation of the experimentally measured displacement field of the column 

under dynamic biaxial loading were performed using an implicit static solution algorithm 

with stabilization, which was found to be significantly more efficient than an implicit 

dynamic algorithm for this type of model.  
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Results showed that in spite of using material modeling techniques intended to 

minimize the effect of mesh sensitivity, the computed load-deformation response of the 

column was indeed sensitive to mesh size, with column stiffness decreasing with element 

size. A model that correlated well with experimental results from a dynamic test under 

biaxial loading was developed by selecting the mesh configuration so that the load-

deformation response under monotonic loading would match the response calculated with 

much simpler models based on the modified compression field theory and simple 

moment-curvature relationships.  

The deformed shape of the bridge column under biaxial earthquake loading 

computed with the FE model closely followed the deformed shape of the column reduced 

from the video imaging data, for a test trial that induced a maximum drift ratio on the 

column of approximately 4%. The parametric study showed that the goodness-of-fit of 

the computer model, quantified by the Fourier Domain Error Index, was most sensitive to 

yield stress of the reinforcement and the boundary conditions of the column submodel, 

and was not very sensitive to the damage and stiffness degradation parameters. The best 

correlation was obtained for the computed rotations at the plastic hinge regions. Higher 

signal errors were obtained by comparing lateral displacements, and the highest signal 

errors were associated with the vertical displacement signals. Error indices increased as 

the magnitude of the displacements decreased, which was expected due to the 

experimental error inherent to the sensors and measuring techniques used to record the 

displacements. 

As computer CPUs become more powerful the use of models such as those 

developed in this paper becomes more accessible to engineers. The value of this type of 
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models lies in the ability to analyze very complex structural problems such as simulating 

the nonlinear behavior of members subjected to multiaxial dynamic loading. Given that a 

detailed deformation map of the column was recorded during the test, the study shows the 

value use of modeling techniques and analysis algorithms that accurately represent the 

displacement field within columns subjected to complex loading conditions. 
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TABLES 

Table 1- FDE index for lateral displacement signals  

(FE vs. Photogrammetry measurements) 

Point Amplitude error  Phase error  Total error  
L

o
w

er
 G

ri
d

 

2 0.07 0.14 0.21 

3 0.04 0.12 0.16 

4 0.04 0.12 0.16 

7 0.04 0.12 0.16 

8 0.07 0.09 0.16 

9 0.08 0.20 0.28 

12 0.04 0.12 0.16 

13 0.03 0.14 0.17 

14 0.07 0.14 0.21 

17 0.06 0.27 0.33 

18 0.06 0.26 0.32 

19 0.05 0.28 0.33 

U
p

p
er

 G
ri

d
 

37 0.09 0.25 0.34 

38 0.06 0.19 0.25 

39 0.09 0.28 0.37 

44 0.04 0.48 0.52 

45 0.04 0.38 0.42 

46 0.06 0.42 0.48 

51 0.07 0.36 0.43 

52 0.03 0.38 0.41 

53 0.08 0.35 0.43 

58 0.09 0.31 0.40 

59 0.08 0.40 0.48 

60 0.08 0.39 0.47 
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Table 2- FDE index for vertical displacement (fy= 75 ksi) 

(FE vs. Photogrammetry measurements) 

 

FEA Grid Point 
Amplitude 

error  

Phase 

error  

Total 

error  

5 in. above footing Left 3 0.13 0.64 0.77 

10 in. above footing Left 7 0.11 0.63 0.74 

10 in. above footing Right 9 0.12 0.64 0.76 

5 in. below cap beam Left 52 0.07 0.61 0.68 

10 in. below cap beam Left 44 0.08 0.62 0.70 

10 in. below cap beam Right 46 0.09 0.61 0.70 

 

 

Table 3- FDE index for vertical displacement (fy = 75 ksi) 

(FE vs. LVDT measurements) 

 

FEA LVDT 
Amplitude 

error 

Phase 

error 

Total 

error 

5 in. above footing Left LVDT 3EBR7 0.23 0.35 0.58 

5 in. above footing Right LVDT 3EBR8 0.17 0.53 0.70 

10 in. above footing Left LVDT 3EBR5 0.25 0.42 0.67 

10 in. above footing Right LVDT 3EBR6 0.17 0.52 0.69 

5 in. below cap beam Left LVDT 3ETR3 0.28 0.20 0.48 

5 in. below cap beam Right LVDT 3ETR4 0.15 0.19 0.34 

10 in. below cap beam Left LVDT 3ETR5 0.09 0.24 0.33 

10 in. below cap beam Right LVDT 3ETR6 0.09 0.19 0.28 
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Table 4- FDE indices for models with various yield strengths 

(FE vs. LVDT measurements) 

 

Signal 
Yield strength of the 

steel, ksi (MPa) 

Amplitude 

error 

Phase 

error 

Total 

error 

Vertical Displacement @ 5 in. 

below the cap beam 

64 (441) 0.33 0.20 0.53 

70 (483) 0.30 0.20 0.50 

75 (517) 0.28 0.20 0.48 

80 (552) 0.27 0.20 0.47 

Lateral Displacement @ 5 in. 

below the cap beam 

64 (441) 0.03 0.41 0.44 

70 (483) 0.03 0.41 0.44 

75 (517) 0.03 0.38 0.41 

80 (552) 0.03 0.40 0.43 

Lateral Displacement @ 12 in. 

below the cap beam 

64 (441) 0.06 0.57 0.63 

70 (483) 0.06 0.42 0.48 

75 (517) 0.06 0.42 0.48 

80 (552) 0.05 0.41 0.46 

Lateral Displacement @ 5 in. 

above the footing 

64 (441) 0.06 0.12 0.18 

70 (483) 0.06 0.12 0.18 

75 (517) 0.04 0.12 0.16 

80 (552) 0.04 0.11 0.15 

Lateral Displacement @ 12 in. 

above the footing 

64 (441) 0.07 0.14 0.21 

70 (483) 0.07 0.14 0.21 

75 (517) 0.04 0.12 0.16 

80 (552) 0.04 0.13 0.17 

Rotation @ 5 in. below the 

cap beam 

64 (441) 0.04 0.08 0.12 

70 (483) 0.04 0.08 0.12 

75 (517) 0.04 0.08 0.12 

80 (552) 0.03 0.08 0.11 

Rotation @ 12 in. below the 

cap beam 

64 (441) 0.06 0.08 0.14 

70 (483) 0.06 0.08 0.14 

75 (517) 0.06 0.07 0.13 

80 (552) 0.04 0.07 0.11 

Rotation @ 5 in. above the 

footing 

64 (441) 0.08 0.05 0.13 

70 (483) 0.07 0.05 0.12 

75 (517) 0.05 0.05 0.10 

80 (552) 0.07 0.05 0.12 

Rotation @ 12 in. above the 

footing 

64 (441) 0.03 0.04 0.07 

70 (483) 0.03 0.04 0.07 

75 (517) 0.03 0.04 0.07 

80 (552) 0.03 0.04 0.07 

All the results are for a flexural spring stiffness K=10
8
 lb-in.  
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Table 5- FDE index for various values of cap beam flexural spring stiffness  

(FE vs. LVDT rotation calculations) (fy= 75 ksi) 

Signal 

Flexural 

stiffness of cap 

beam 

lb-in. (N-m) 

Amplitude 

error 

Phase 

error 

Total 

error 

Rotation @ 5 in. 

below the cap beam 

1x10
8
 (11x10

6
) 0.03 0.08 0.11 

5x10
8
 (57x10

6
) 0.01 0.06 0.07 

Rotation @ 12 in. 

below the cap beam 

1x10
8
 (11x10

6
) 0.05 0.07 0.12 

5x10
8
 (57x10

6
) 0.05 0.05 0.10 

Rotation @ 5 in. 

above the footing 

1x10
8
 (11x10

6
) 0.08 0.05 0.13 

5x10
8
 (57x10

6
) 0.12 0.05 0.17 

Rotation @ 12 in. 

above the footing 

1x10
8
 (11x10

6
) 0.11 0.05 0.16 

5x10
8
 (57x10

6
) 0.15 0.06 0.21 

 

 

Table 6- FDE results for analyses with different stiffness of the cap beam analysis 

(FE vs. LVDT vertical displacement measurements) 

 

fy  

ksi (MPa) 

Flexural stiffness 

of cap beam  

lb-in. (N-m) 

Amplitude 

error 

Phase 

error  

Total 

error  

68 (469) 

1x10
8
 (11x10

6
) 0.41 0.20 0.61 

1.5x10
8
 (17x10

6
) 0.24 0.23 0.47 

5x10
8
 (57x10

6
) 0.11 0.33 0.44 

75 (517) 
1x10

8
 (11x10

6
) 0.28 0.20 0.48 

5x10
8
 (57x10

6
) 0.09 0.29 0.38 
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Table 7- FDE index for various combinations of stiffness recovery parameters 

Signal 

Stiffness 

recovery 

parameters  

Amplitude 

error 

Phase 

error 

Total 

error 

Rotation @ 5 

in. below the 

cap beam 

wc=0.5, wt=0 0.05 0.08 0.13 

wc=0.8, wt=0 0.05 0.08 0.13 

wc=1, wt=0.8 0.05 0.08 0.13 

wc=0.8, wt=1 0.04 0.08 0.12 

Rotation @ 12 

in. below the 

cap beam 

wc=0.5, wt=0 0.06 0.08 0.14 

wc=0.8, wt=0 0.06 0.08 0.14 

wc=1, wt=0.8 0.06 0.08 0.14 

wc=0.8, wt=1 0.06 0.07 0.13 

Rotation @ 5 

in. above the 

footing 

wc=0.5, wt=0 0.06 0.05 0.11 

wc=0.8, wt=0 0.06 0.05 0.11 

wc=1, wt=0.8 0.06 0.05 0.11 

wc=0.8, wt=1 0.05 0.05 0.10 

Rotation @ 12 

in. above the 

footing 

wc=0.5, wt=0 0.04 0.04 0.08 

wc=0.8, wt=0 0.04 0.04 0.08 

wc=1, wt=0.8 0.04 0.04 0.08 

wc=0.8, wt=1 0.07 0.04 0.07 

 

For all models fy= 75 ksi (517 MPa) and cap beam flexural spring stiffness 10
8
 lb-

in. (11x10
6
 N m) 
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FIGURES 

Bent 1 Bent 2 Bent 3

348 in. [8.84 m] 348 in. [8.84 m]

14 in. [0.36 m]

282 in. [7.16 m] 282 in. [7.16 m]

SHAKE TABLE

Abutment 1 Abutment 2

N

SHAKE TABLE SHAKE TABLE

72 in. [1.83 m]
84 in. [2.13 m]

60 in. [1.52 m]

Figure 1- Elevation view of the four-span bridge 
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Figure 2- Bottom and top grid systems 
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Figure 3- Location of the Bent 3 east column and the aluminum tower 
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Figure 4- FE model boundary conditions and cross-sectional view of the column. RP 

represents the location of the rotational spring. 
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Figure 5- Concrete compression (a) and tension (b) models 

 

 

Figure 6- Comparison between computed and measured stress-strain response of 

reinforcing steel subjected to reversed cyclic loading (Experimental data from Ma et al. 

(1976)) 
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Figure 7- Load-deflection curves for monotonic loading analysis of FE model of the 

bridge column with various mesh densities 

 

Figure 8- Displacement history recorded at the top of the bridge deck along the transverse 

direction for all test trials (using sensor DT7). 
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Figure 9- Deformed shape of the bridge column at the maximum drift during Test 4D 

with fy=75 ksi (517 MPa), Kg=10
8
 lb-in (113x10

5
 N-m), wc =0.8 and wt =1.0. 
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Figure 10- Comparison of lateral displacement signals between (a) Point 3 and (b) Point 

58 of photogrammetry grids and FE analysis. Test 4D with fy=75 ksi (517 MPa), Kg=10
8
 

lb-in (113x10
5
 N-m), wc =0.8 and wt =1.0. 
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Figure 11- Comparison of vertical displacement signals between various FE models and 

LVDT measurements at the location of LVDT 3ETR4 (top of the column). Test 4D with 

Kg=10
8
 lb-in (113x10

5
 N-m), wc =0.8 and wt =1.0. 
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Figure 12-The comparison of FDE index errors for vertical displacement and cross-

sectional rotations for different yield strength of steel. Test 4D with Kg=10
8
 lb-in 

(113x10
5
 N-m), wc =0.8 and wt =1.0. 
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Figure 13- Comparison of FDE index errors for cross-sectional rotations for different 

stiffness of the cap beam. Test 4D with fy=75 ksi (517 MPa), wc =0.8 and wt =1.0. 
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Figure 14- Computed damage indicators for concrete at the column surface: (a) 

compression damage, concrete shell, (b) compression damage, concrete core, (c) tension 

damage, concrete shell, (d) tension damage, concrete core. Test 4D with fy=75 ksi (517 

MPa), Kg=10
8
 lb-in (113x10

5
 N-m), wc =0.8 and wt =1.0. 
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Figure 15- Computed peak displacement profiles during trial 4D. Test 4D with fy=75 ksi 

(517 MPa), Kg=10
8
 lb-in (113x10

5
 N-m), wc =0.8 and wt =1.0. 
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Figure 16- Computed curvature profiles at peak displacement points during trial 4D. Test 

4D with fy=75 ksi (517 MPa), Kg=10
8
 lb-in (113x10

5
 N-m), wc =0.8 and wt =1.0. 

           

 

Figure 17- Computed steel strain demand along the longitudinal reinforcing bars 

(column, cap beam and footing) drift ratio at the peak displacement point, time=10.61 s 

(corresponds to Point 1 in Fig. 15). 
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