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ABSTRACT 

Crack densities of Low-Cracking High-Performance Concrete (LC-HPC) bridge decks 

are compared to crack densities of control decks to investigate the benefits of the LC-HPC 

specifications developed at the University of Kansas. Specifications for construction of LC-HPC 

bridge decks are addressed.  Bridge deck crack survey procedures are also summarized. Thirteen 

LC-HPC decks and thirteen control decks are compared by calculating crack densities and noting 

trends in cracking patterns over time. The results for eight additional decks are also presented. 

These include three LC-HPC decks, one control deck, and three decks which are considered 

neither LC-HPC nor control decks. The LC-HPC bridge decks have, with very few exceptions, 

lower crack densities than the control decks. Cracks are typically transverse above and parallel to 

the bars in the top layer of reinforcing steel, except at abutments, where cracks propagate 

longitudinally or perpendicular to the abutment. 
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INTRODUCTION 

Cracks in reinforced concrete bridge decks are a significant problem because they 

provide access to the reinforcing steel for water and deicing chemicals, which increases the 

potential for corrosion (Lindquist, Darwin, and Browning 2005, 2006). Concrete cracking also 

increases the effects of freeze-thaw damage in bridge decks. The location, type, and severity of 

cracks are based on factors such as deck age, concrete properties, weather conditions, and 

construction methods.  

Current research at the University of Kansas is focused on identifying, analyzing, and 

working toward eliminating different causes of bridge deck cracking. Specifications have been 

developed for aggregates, concrete, and construction for the purpose of minimizing cracking in 

bridge decks. These specifications for Low-Cracking High-Performance Concrete (LC-HPC) 

bridge decks have been updated since the beginning of the study in 2002. 

To determine the performance of the LC-HPC bridge decks, annual crack surveys are 

performed. The LC-HPC bridge decks are paired with control decks with comparable type, age, 

and environmental exposure, which are also surveyed. To gain consistency and accurately 

compare results from crack surveys performed over time, a standard crack survey method has 

been developed. Sixteen bridge decks have been constructed in Kansas in accordance with the 

LC-HPC specifications. These decks are designated as LC-HPC 1 through 13, 15, 16, and 17. 

The bridge initially designated as LC-HPC-14 was not constructed following the LC-HPC 

specifications, so it is now designated as OP (Overland Park) Bridge. This report summarizes 

crack survey data obtained as part of this program in 2011, 2012, and 2013. Crack survey data 

for 2006-2008 are summarized by Gruman, Darwin, and Browning (2009). Crack survey data for 

2009 and 2010 are summarized by Pendergrass, Darwin, and Browning (2011). LC-HPC bridge 

 
 



deck construction experience and the influence of bridge design parameters and environmental 

conditions on bridge deck cracking are covered by McLeod, Darwin, and Browning (2009).  LC-

HPC construction experiences and the impact of deck age on bridge deck cracking are 

summarized by Lindquist, Darwin, and Browning (2008).   The work is also summarized by 

Darwin et al. (2010). 

SPECIFICATIONS 

Special provisions to the KDOT standard specifications have been developed for LC-

HPC decks. These 3 provisions cover requirements for aggregate, concrete, and construction 

practices, and are summarized below (Kansas Department of Transportation 2007a,b,c). 

Aggregate 

 Requirements for both coarse and fine aggregate are addressed in the provisions (Kansas 

Department of Transportation 2007a). The coarse aggregate must consist of gravel, chat, or 

crushed stone with a minimum soundness of 0.90 and a maximum absorption of 0.7. Maximum 

deleterious substance requirements are summarized in Table 1.   

Table 1 – Deleterious Substance Requirements for Coarse Aggregate 

Substance Maximum % Allowable by Weight 

Material passing No. 200 sieve 2.5% 
Shale or shale-like material 0.5% 
Clay lumps and friable particles 1.0% 
Sticks (including absorbed water) 0.1% 
Coal 0.5% 

 

Fine aggregate must consist of natural sand (Type FA-A) or chat (Type FA-B). The 

mortar strength requirements per KDOT specifications and impurities per AASHTO 
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specifications must also be met. Provisions for deleterious substance for both types of fine 

aggregate are shown in Table 2 (sand) and Table 3 (chat). 

Table 2 – Deleterious Substance Requirements for Type FA-A (Natural Sand) 

Substance Maximum % Allowable by Weight 

Material passing No. 200 sieve 2.0% 
Shale or shale-like material 0.5% 
Clay lumps and friable particles 1.0% 
Sticks (including absorbed water) 0.1% 

 

Table 3 – Deleterious Substance Requirements for Type FA-B (Chat) 

Substance Maximum % Allowable by Weight 

Material passing No. 200 sieve 2.0% 
Clay lumps and friable particles 0.25% 

 

Proportioning of coarse and fine aggregates should be done using an optimization method 

such as Shilstone or KU Mix Method. 

Concrete 

 The LC-HPC specification (Kansas Department of Transportation 2007b) states that 

concrete meeting the requirements must contain between 500 and 540 lb (297 and 320 kg/m3) of 

cement per cubic yard of concrete and have a water/cement ratio (by weight) ranging between 

0.44 and 0.45. With approval of the engineer, the water/cement ratio can be reduced at the 

construction site to 0.43. LC-HPC bridge decks 1 through 7 were constructed under an LC-HPC 

specification allowing between 522 and 563 lb (310 and 334 kg/m3) of cement per cubic yard of 

concrete with a maximum water/cement ratio (by weight) of 0.45. LC-HPC bridge decks 8 

through 13 were constructed under an LC-HPC specification allowing between 500 and 535 lb 

(297 and 317 kg/m3) of cement per cubic yard of concrete with a maximum water/cement ratio 
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(by weight) of 0.42. LC-HPC decks 15, 16, and 17 were constructed under a specification 

allowing between 500 and 540 lb of cement per cubic yard with an allowable range of 

water/cement ratio of 0.44 - 0.45. All LC-HPC decks in this project contain either 535 or 540 lb 

(317 or 320 kg/m3) of cement per cubic yard of concrete, with the exception of LC-HPC-15 and 

LC-HPC-16. LC-HPC-15 had a cement content of 500 lb/yd3 (297 kg/m3), and LC-HPC-16 was 

placed using cement contents ranging from 520 to 540 lb/yd3 (308 to 320 kg/m3). 

 The specified air content (by volume) is between 7.0% and 9.0% with an allowable range 

of 6.5% to 9.5%. Concrete slump at placement should be between 1½ and 3 in. (38 and 76 mm), 

and any concrete with a slump at discharge over 3½ in. (89 mm) must be rejected. For LC-HPC 

1-13, the specification stated that concrete with a slump greater than 4 in. (100 mm) must be 

rejected. Concrete samples used for the slump and air content tests must be collected at the 

discharge of the conveyor, bucket, or pump piping. Concrete temperature at placement must be 

between 55°F and 70°F. This range may be adjusted 5°F higher or lower with the engineer’s 

approval. The specification in place during the construction of LC-HPC decks 1 and 2 specifies 

the temperature range as 50°F to 75°F with no adjustment. Current specifications state that the 

concrete compressive strength must be 3500 to 5500 psi (24.1 to 37.9 MPa). At the time of 

construction of LC-HPC 1-13, there was no limit on compressive strength. 

 Vinsol resin or tall oil based air-entraining admixtures were allowed for LC-HPC decks 

in this report. The specification for LC-HPC 12 and 13 and the current specification prohibit the 

use of mineral, set-retarding, or set accelerating admixtures in LC-HP concrete. The 

specifications for LC-HPC 1 through 11 allowed the use of water-reducing admixtures and set-

retarding admixtures, as well as a Type C or E accelerating admixture, if approved by the 

engineer. However, no set accelerating or retarding admixtures were used in any LC-HPC bridge 
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decks. The current specification states that a Type A water reducer or a dual-rated Type A water 

reducer – Type F high-range water reducer may be used to comply with specifications for plastic 

and hardened concrete properties. On-site slump adjustment may only be performed by redosing 

with a water-reducing admixture. 

 Before construction, a qualification batch must be prepared to show the concrete 

supplier’s ability to meet all specifications. The actual jobsite haul time must be simulated before 

the qualification batch is tested. The LC-HPC bridge deck mix proportions must be used, 

including any admixtures. The qualification batch must satisfy the requirements for air content, 

slump, plastic concrete temperature, and compressive strength to be qualified for use in the LC-

HPC bridge deck.  

Construction 

 The LC-HPC specification for construction (Kansas Department of Transportation 

2007c) states that once the qualification batch is completed, the contractor must construct a 

qualification slab to show the ability to handle and place the LC-HP concrete on the bridge deck. 

All equipment and personnel used for construction of the qualification slab must be the same as 

those used on the actual bridge deck. The concrete used in the qualification slab must also meet 

the required LC-HPC specifications.  

 During construction of the deck, KDOT personnel must record the wind speed, air 

temperature, relative humidity 12 in. (355 mm) above the deck, and concrete temperature at least 

once per hour, and use these quantities to determine the evaporation rate using Figure 1. The 

evaporation rate must remain below 0.2 lb/ft2/hr (1 kg/m2/hr) at all times. If the evaporation rate 

exceeds this value, concrete cooling, wind break installation, or other methods (but not fogging) 

must be applied to lower the rate below the limit. 
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Figure 1: Evaporation Rate Chart 
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 It is acceptable to place concrete using a bucket or conveyor. Concrete must not be 

dropped more than 5 ft (1.5 m) to avoid loss of air. Concrete may be pumped if, prior to 

construction, the contractor demonstrates the ability to pump the LC-HPC mixture using the 

same equipment and procedures as will be used on the deck. All pumps must have an air cuff or 

bleeder valve to limit the loss of air. 

 Consolidation of the concrete should be done by vertically mounted internal gang 

vibrators, with handheld vibrators used in regions not accessible by the gang vibrators. Vibrators 

must have head diameters between 1.75 and 2.5 in. (44 and 64 mm), loaded vibration frequencies 

between 8,000 and 12,000 vibrations per minute, and an average vibration amplitude between 

0.025 and 0.05 in. (0.635 and 1.27 mm). When operating vibrators, they must be inserted into the 

concrete vertically and held in the concrete between 3 and 15 seconds. Vibrators must be spaced 

12 in. (305 mm) apart and removed slowly so that no voids are left in the plastic concrete. 

 Strikeoff of the surface is to be completed with a vibrating or single-drum roller screed. 

This specification was followed on all LC-HPC decks with the exception of LC-HPC-17 and LC-

HPC-14 (now designated as OP Bridge), which used double-drum roller screeds. Finishing is to 

be completed using a burlap drag, metal pan, or both. No tamping devices are permitted to be 

attached to roller screeds. Bullfloats or hand floats may be used to remove surface imperfections 

where necessary. Finishing aids and tining are prohibited. 

 A layer of soaked burlap must be placed on the concrete within 10 minutes of strikeoff. 

Another layer of burlap must then be placed within 5 minutes of the first layer. The burlap must 

be soaked at least 12 hours before placement on the concrete surface, and should remain wet 

throughout the curing period of 14 days. The time between strikeoff and burlap placement 

exceeded 10 minutes for many of the LC-HPC decks, and there were also some instances of 
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placement of partially-dry burlap. Before the concrete has set, misters or fogging equipment may 

be used to keep the burlap wet. However, after the concrete has set, soaker hoses must be used 

on the burlap. A layer of white plastic must be placed on top of the burlap to maintain the wet 

state throughout the curing period.  

CRACK SURVEYS 

 Crack surveys are performed each year on both the LC-HPC and the control bridges. The 

procedure for conducting the surveys follows. 

Procedure 

 Surveys are completed using a standard procedure to provide accurate and comparable 

results. All surveys must be conducted on days that are mostly clear. Surveys cannot be 

performed if it is raining or the sky is overcast, and the deck must be completely dry before 

surveying begins. The air temperature must be greater than 60°F (16°C). 

 Before arriving at the bridge, a plan drawing of the deck, which will serve as the crack 

map, is prepared at a scale of 1 in. = 10 ft (25.4 mm = 3.048 m) that includes the compass 

directions. A scaled grid, 5 x 5 ft (1.524 x 1.524 m), is placed behind the plan drawing to 

facilitate recording of cracks. Curved bridges are represented by straight plan drawings, with the 

centerline length used for the bridge length. When drawing the scaled grid and transposing 

cracks on these bridges, approximate locations are used. This introduces little error due to the 

long lengths and large radii of curvature of the bridges. 

 Once traffic has been closed on the bridge, sidewalk chalk is used to mark a 5 x 5 ft grid 

onto the deck to correspond with the grid on the drawing. When the grid is in place, surveyors 

walk across the bridge deck and mark visible cracks with the sidewalk chalk. Surveyors may 

bend at the waist while inspecting for cracks and can only mark cracks which are visible from 
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that height. Once a crack is located from waist height, the surveyor may then bend closer and 

trace the crack to its end. All portions of the deck must be inspected by at least 2 surveyors. This 

procedure provides consistent measurement of bridge deck cracking (Lindquist et al. 2005, 

2008). Once the deck has been marked, another surveyor will transpose the cracks onto the plan 

drawing with the aid of the 5 x 5 ft grid. 

 The crack map is scanned into a computer, where it is prepared for analysis. All lines that 

do not represent cracks are erased so that only pixels representing cracks are analyzed. Non-

linear cracks are broken up into smaller linear segments by removing single pixels. This allows 

the analysis program, which measures between crack endpoints, to calculate an accurate total 

crack length. Crack densities are reported for the entire deck and for various portions of the deck. 

Complete specifications for the surveying process are included in Appendix A. 

Results 

 All bridge decks included in this report are supported by steel girders, with the exception 

of LC-HPC-8, LC-HPC-10, Control-8/10, and OP-Extra, which are supported by precast, 

prestressed concrete girders. Decks are numbered in the order in which they were bid, not 

constructed.  

 Table B.1 in Appendix B shows crack densities from each survey year for each bridge 

deck. This report contains crack maps corresponding to survey years 2011, 2012, and 2013. 

Survey years 2006-2008 are covered by Gruman et al. (2009), and survey years 2009 and 2010 

are covered by Pendergrass et al. (2011). Effects of bridge design parameters and environmental 

conditions on deck cracking are covered by McLeod et al. (2009). The effect of bridge deck age 

on deck cracking is covered by Lindquist et al. (2008). The overall cracking trends of all bridge 
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decks in the project are shown in Figure 2. In-depth comparisons of LC-HPC and control decks 

follow. 

 

Figure 2: Crack Densities of LC-HPC and Control Decks 

LC-HPC-1 

 LC-HPC-1 was cast in two separate placements, which were placed 19 days apart. The 

results of Survey 6 at 70.6 and 69.9 months, Survey 7 at 79.0 and 78.4 months, and Survey 8 at 

91.3 and 90.6 months are included in this report. At 70.6 months, LC-HPC-1 had a crack density 

of 0.061 m/m2 for Placement 1 and 0.103 m/m2 for Placement 2. These values are both 

significantly larger than the densities from the previous survey (0.032 m/m2 for Placement 1 and 

0.023 m/m2 for Placement 2) reported by Pendergrass et al. (2011). The crack densities at 79.0 

and 78.4 months increased to 0.096 m/m2 for Placement 1 and decreased to 0.081 m/m2 for 

Placement 2. In Survey 8 at 91.3 and 90.6 months, the crack densities decreased markedly to 

0.059 m/m2 for Placement 1, and Placement 2 fell to 0.023 m/m2. During Survey 8, it was noted 
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that many surfaces on the bridge had experienced scaling, which exposed the aggregate at the 

surface of the deck. It is believed that the outlines of these aggregates were mistaken as cracks in 

previous surveys. Figures 3, 4, and 5 show the crack maps for Surveys 6, 7, and 8. It is evident 

that many of the small cracks, which are likely misidentified as such, shown in Surveys 6 and 7, 

are not present in Survey 8. Cracking on LC-HPC-1 consists mainly of small cracks parallel to 

and directly above the top layer of deck reinforcement, except near the abutments, where cracks 

propagate longitudinally. Survey 6 has more distinct cracking near the midspan than is present in 

either of the two later surveys. 

Control-1/2 

Control-1/2 is adjacent to LC-HPC-1 and serves as the control deck for both LC-HPC-1 

and LC-HPC-2. Like LC-HPC-1, Control-1/2 was cast in two separate placements. The results of 

Survey 6 at 70.7 and 70.1 months, Survey 7 at 79.2 and 78.6 months, and Survey 8 at 91.4 and 

90.8 months are included in this report. The crack densities for Placement 1 and 2 measured in 

Survey 6, shown in Figure 6, were 0.139 and 0.176 m/m2, which are both higher than measured 

in Survey 5 (Pendergrass et al. 2011). In Survey 7, the crack density of Placement 1 increased to 

0.240 m/m2 at 79.2 months, while the crack density of Placement 2 decreased to 0.161 m/m2 at 

78.6 months (see Figure 7). Crack densities for both placements decreased in Survey 8, to 0.141 

m/m2 and 0.149 m/m2, respectively. The crack map for Survey 8 is shown in Figure 8.  Cracking 

on Control-1/2 is very prominent around the pier at midspan. Cracks in this area run directly 

parallel to and above the reinforcing bars. There is also significant cracking at the ends of the 

bridge. Particularly, there are two large cracks running longitudinally down the middle of the 

bridge originating at either abutment. There is also map cracking in the northeast and northwest 
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corners of the bridge. Figure 9 compares cracking on Control-1/2 to LC-HPC-1 over time. Crack 

densities on both placements of Control-1/2 have been consistently higher than densities on both 

placements of LC-HPC-1 over time. 

 

Figure 9: LC-HPC-1 and Control-1/2 Crack Densities 
LC-HPC-2 

 The results of Survey 5 at 59.3 months, Survey 6 at 68.1 months, and Survey 7 at 80.3 

months are included in this report. Crack densities of 0.143 m/m2 and 0.197 m/m2 were measured 

at 59.3 months and 68.1 months, respectively. These densities are, respectively, more than two 

and three times the previous density of 0.059 m/m2 at 44.5 months reported by Pendergrass et al. 

(2011). Crack maps for Surveys 5 and 6 are shown in Figures 10 and 11. At 80.3 months, LC-

HPC-2 had a crack density of 0.141 m/m2, more than 25% lower than the density at 68.1 months. 

Figure 12 shows the crack map for Survey 7. Cracking in all three of these surveys is
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prominent in the negative moment region above the pier, with small cracks extending from the 

northern edge of the deck and distributed throughout the entire deck. The crack map for Survey 6 

shows many small cracks throughout the deck that were not captured in any previous surveys, 

likely the result of mistaking aggregate boundaries for cracks. Figure 13 compares cracking on 

LC-HPC-2 to Control-1/2 over time. It is evident that cracking on LC-HPC-2 has increased over 

time, experiencing a sharp rise after 42 months, and has moved closer in value to the crack 

densities for Control-1/2 in recent years. 

 

Figure 13: LC-HPC-2 and Control-1/2 Crack Densities 
LC-HPC-3 

 The results of Survey 4 at 42.6 months, Survey 5 at 54.0 months, and Survey 6 at 66.2 

months for LC-HPC-3 are included in this report. Crack densities measured in Surveys 4, 5, and 

6 were 0.315 m/m2, 0.173 m/m2, and 0.174 m/m2, respectively. These densities represent an 

increase from Survey 3, which measured a crack density of 0.108 m/m2, as presented by 
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Pendergrass et al. (2011). In relation to the crack densities calculated for LC-HPC-3 in previous 

years, the large increase in crack density corresponding to Survey 4 (0.315 m/m2) appears to be 

an outlier. Crack maps for Surveys 4, 5, and 6 are shown in Figures 14, 15, and 16, respectively. 

Cracking is significant above the outside piers, but not at center span. Smaller cracks are within 

the spans and at the east end of the bridge. The larger cracks located above the piers appear to lie 

directly above and parallel to the reinforcement. 

Control-3 

 The results of Survey 4 at 46.6 months, Survey 5 at 57.9 months, and Survey 6 at 70.1 

months are included in this report. Crack densities of 0.323 m/m2 and 0.314 m/m2 were observed 

in Surveys 4 and 5, respectively. These values represent a significant increase from crack 

densities of 0.216 m/m2 and 0.232 m/m2 corresponding, respectively, to Surveys 2 and 3 

(Pendergrass et al. 2011). The crack density of Control-3 at 57.9 months, 0.314 m/m2, is nearly 

double the crack density of LC-HPC 3 at 54 months, 0.173 m/m2. At 70.1 months, a crack 

density of 0.288 m/m2 was recorded in Survey 6, which is slightly lower than the densities 

measured in Surveys 4 and 5, but is still larger than the crack density of LC-HPC-3 at 66.2 

months, 0.174 m/m2. Figures 17, 18, and 19 show the crack maps for Surveys 4, 5, and 6, 

respectively. Cracking on Control-3 is largely located parallel to the reinforcement and is 

relatively evenly distributed throughout the deck. Figure 20 compares cracking on Control-3 to 

LC-HPC-3 over time. Cracking on LC-HPC-3 has, for the most part, remained lower than 

cracking on Control-3 over the life of the decks, with the exception of the density of LC-HPC-3 

at 42.6 months, which, as discussed earlier in this section, appears to be an outlier. 
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Figure 20: LC-HPC-3 and Control-3 Crack Densities 
LC-HPC-4 

 LC-HPC-4 was constructed in two placements three days apart. The results of Survey 4 at 

45.0 and 44.9 months, Survey 5 at 56.0 and 55.9 months, and Survey 6 at 68.5 and 68.4 months 

are included in this report. Crack maps for Surveys 4, 5, and 6 are shown in Figures 21, 22, and 

23. At ages of 45 months for Placement 1 and 44.9 months for Placement 2, the overall crack 

density was 0.107 m/m2, with Placement 1 having a density twice that of Placement 2 (0.167 

m/m2 and 0.080 m/m2). This represents a decrease from the crack densities measured in Survey 3 

at 32.8 months for Placement 1 and 32.7 months for Placement 2: 0.146 m/m2 overall, 0.261 

m/m2 for Placement 1, and 0.094 m/m2 for Placement 2 (Pendergrass et al. 2011). At ages of 56 

months for Placement 1 and 55.9 months for Placement 2 (Survey 5), the overall crack density 

was 0.120 m/m2, an increase from Survey 4, but still lower than the crack density measured in 

Survey 3. Furthermore, the crack density of Placement 1 is still twice as large as the density of
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Placement 2 measured during Survey 5 (0.184 m/m2 versus 0.092 m/m2). For Survey 6 at 68.5 

months, the overall crack density was 0.097 m/m2, a decrease from Survey 5. The crack density 

of Placement 1 decreased slightly to 0.179 m/m2 and the crack density of Placement 2 at 68.4 

months decreased about 35 percent to 0.060 m/m2. Cracking of LC-HPC-4 Placement 1 occurs 

around the easternmost pier, along with transverse cracks located in the midspan. Cracking of 

Placement 2 is most prominent around the westernmost pier. Placement 2 also contains 

transverse cracks in the midspans.   

Control-4 

 The results of Surveys 4, 5, and 6, at 42.7, 54.9, and 67.1 months, are included in this 

report. The crack densities of Control-4 measured in Surveys 4 and 5, shown in Figures 24 and 

25, were 0.618 m/m2 and 0.669 m/m2, respectively. These densities represent a significant 

increase from the value measured in Survey 3 at 31.6 months of 0.473 m/m2 (Pendergrass et al. 

2011). These densities are also much larger than the crack densities of LC-HPC-4 at 45.0 and 

56.0 months. The crack density at 67.1 months was 0.561 m/m2 (see Figure 26), a decrease from 

the crack densities measured in Surveys 4 and 5. However, this density is still much greater than 

the overall crack density of LC-HPC-4 at 68.5 months of 0.105 m/m2. Control-4 has significant 

transverse cracking near the piers of the bridge. Above the second pier from the west, there is 

longitudinal and transverse cracking. There is also significant longitudinal cracking along the 

northern edge of the deck, which is likely due to a small portion of the bridge deck that is 

cantilevered out over the exterior girder. Figure 27 compares crack densities on Control-4 to 

crack densities on LC-HPC-4 over time. Clearly, cracking on Control-4 has been significantly 

greater than on either placement of LC-HPC-4 over time. While LC-HPC-4 seems to have had 

relatively stable cracking over its life, Control-4 has had a general trend of increased cracking.
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Figure 27: LC-HPC-4 and Control-4 Crack Densities 
LC-HPC-5 

 The results of Surveys 4, 5, and 6 of LC-HPC-5, at 43.0, 54.2, and 67.0 months, are 

included in this report. The crack density of LC-HPC-5 at 43.0 months was 0.190 m/m2, shown 

in Figure 28, represents an increase from the Survey 3 result at 31.1 months, 0.128 m/m2 

(Pendergrass et al. 2011). The crack densities from Surveys 5 and 6 show decreases from Survey 

4. The crack density for LC-HPC-5 at 54.2 months was 0.158 m/m2, as shown in Figure 29. The 

crack density for LC-HPC-5 at 67.0 months was 0.131 m/m2, as shown in Figure 30. Due to the 

small amount of cracking in the deck, overlooking just a few cracks can make an impact in the 

crack density, and is likely the cause of this decrease. Most of the cracks are transverse, 

propagating from the south side of the deck. The south side is superelevated, which 
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may have caused plastic concrete to flow away from it, leaving the hardened concrete more 

susceptible to cracking. Furthermore, the soaker hoses were placed at the center of the deck, thus 

not providing curing water to the more elevated side of the deck. The effects of the 

superelevation can be seen in the crack maps, which show that the cracks occur only near the 

southern edge of the deck. 

Control-5 

 The results of Survey 3 for Control-5 at 30.6 months are included in this report. Because 

of the high crack density, an overlay was applied to the bridge in 2012, after which crack surveys 

ceased being conducted. As shown in Figure 31, the crack density of Control-5 at 30.6 months 

was 0.738 m/m2, a decrease from the crack density at 18.9 months of 0.857 m/m2 (Pendergrass et 

al. 2011). Control-5 has an extremely high crack density with long transverse cracks every few 

feet for the length of the bridge. The crack density increases near the piers and some longitudinal 

cracks are present near the piers and propagate from the abutments. Figure 32 compares crack 

densities on Control-5 to crack densities on LC-HPC-5 over time. Even with only three survey 

data points for Control-5, it is clear that LC-HPC-5 has performed much better than Control-5. 

Overall, crack densities appear to be more than four times larger on Control-5 than on LC-HPC-

5. 
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Figure 32: LC-HPC-5 and Control-5 Crack Densities 

LC-HPC-6 

 The results of Surveys 4, 5, and 6 of LC-HPC-6, at 43.3, 54.6, and 67.3 months, are 

included in this report. The crack density of LC-HPC-6 at 43.3 months was 0.336 m/m2, as 

shown in Figure 33. This is an increase from the crack density at 31.4 months of 0.231 m/m2 

(Pendergrass et al. 2011). The crack density at 54.6 months was 0.362 m/m2, as shown in Figure 

34. The crack density at 67.3 months was 0.303 m/m2, as shown in Figure 35. Like LC-HPC-5, 

the cracking is mainly transverse, propagating from the superelevated southern edge. Similar to 

LC-HPC-5, the superelevation caused concrete and water to flow away from the southern edge 

of the deck. Most of the cracks are above the piers and spread throughout the second span. 

Control-6 

 The results of Surveys 3, 4, and 5, at 31.8, 43.0, and 56.0 months, are included in this 

report and shown in Figures 36, 37, and 38. The crack densities in Surveys 3 and 4, 0.456 m/m2 
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and 0.539 m/m2, respectively, are over 60% higher than the crack density at 20.0 months of 

0.282 m/m2 (Pendergrass et al. 2011). These densities are also larger than crack densities of LC-

HPC-6 at 31.4 and 43.3 months. Survey 5, as shown in Figure 38, indicated a decrease in crack 

density to 0.460 m/m2. This density, however, is still greater than the overall crack density of 

LC-HPC-6 at 54.6 months, 0.362 m/m2. Most cracks on Control-6 are transverse, many of which 

are concentrated near the piers. A portion of span 4 has a single longitudinal crack through the 

center of the deck, and there are small longitudinal cracks propagating from both abutments. 

Figure 39 compares cracking on Control 6 to cracking on LC-HPC-6 over time. It can be seen 

that Control 6 consistently has more than LC-HPC-6. Both Control 6 and LC-HPC-6 experienced 

a similar rate of increase in crack density at early ages. 

 

Figure 39: LC-HPC-6 and Control-6 Surveyed Crack Densities 
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LC-HPC-7 

 The results of Surveys 5, 6, and 7 of LC-HPC-7, at 58.9, 71.3, and 83.4 months, are 

included in this report. The crack density of LC-HPC-7 at 58.9 months is 0.048 m/m2, as shown 

in Figure 40. This represents an increase from Survey 4 at 46.8 months, when the deck had a 

crack density of just 0.005 m/m2 (Pendergrass et al. 2011). The crack density of LC-HPC-7 at 

71.3 months was 0.065 m/m2, as shown in Figure 41. The crack density of LC-HPC-7 at 83.4 

months was 0.072 m/m2, as shown in Figure 42. LC-HPC-7 has some of the lowest crack 

densities of all of the bridges in the project. There are some small-to-medium length longitudinal 

cracks near and propagating from the west abutment and the remainder of the cracks are very 

short and distributed along the entire length of the bridge. 

Control-7 

 Control-7 was constructed in two placements, six months apart. The results of Survey 5 at 

62.3 and 56.7 months and Survey 6 at 74.5 and 68.9 months are included in this report. The 

crack density of Placement 1 measured in Survey 5 was 0.957 m/m2 (see Figure 43), while 

Placement 2 had a crack density of 0.663 m/m2, nearly double the crack density of Placement 2 

from Survey 4. The overall crack density was 0.856 m/m2. Although the crack density of 

Placement 1 decreased from Survey 4, there was an overall increase in cracking  from Survey 4, 

for which the crack densities were 1.037 m/m2, 0.359 m/m2, and 0.819 m/m2 for Placement 1, 

Placement 2, and overall, respectively (Pendergrass et al. 2011). The crack densities measured 

during Survey 6 were 1.022 m/m2 at 74.5 months for Placement 1 and 0.638 m/m2 at 68.9 months 

for Placement 2 (see Figure 44). The overall crack density resulting from Survey 6 was 0.899 

m/m2. These values are slightly smaller than the corresponding crack densities from Survey 5. 

All of the surveys have shown much higher cracking for Control-7 than for LC-HPC-7. 
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Placement 1 has transverse cracks throughout, but the cracks are more concentrated near the pier. 

There are also longitudinal cracks propagating from both abutments and small longitudinal 

cracks running the length of the deck. Placement 2 has a continuous longitudinal crack parallel 

and adjacent to the joint, as well as some transverse cracking and small longitudinal cracks 

propagating from both abutments. Figure 45 compares cracking on Control 7 to cracking on LC-

HPC-7 over time. Throughout both bridge lives, LC-HPC-7 has had significantly less cracking 

than either placement of Control 7. While Control 7 experienced sharp increases in cracking 

between 12 months and 60 months of age, cracking on LC-HPC-7 has been relatively stable, 

experiencing relatively small increases after 48 months. 

 

Figure 45: LC-HPC-7 and Control-7 Crack Densities 
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LC-HPC-8 

 The results of Surveys 3, 4, and 5 of LC-HPC-8 at 45.0, 55.4, and 67.7 months, 

respectively, are included in this report. LC-HPC-8 is one of two LC-HPC bridges in this study 

with precast, prestressed concrete girders. The crack density of LC-HPC-8 at 45.0 months was 

0.380 m/m2, shown in Figure 46, represents an increase from Survey 2 at 31.8 months, when the 

crack density was 0.348 m/m2 (Pendergrass et al. 2011). Cracking has been stable since, with 

values of 0.383 m/m2 at 55.4 months (Figure 47) and 0.373 m2 at 67.7 months (Figure 48). Most 

of the cracks are long transverse cracks, evenly spaced along the deck. There is less cracking 

near the center pier, which could be a result of camber and increased girder shrinkage. There is 

also a small amount of longitudinal cracking at each abutment.  

Control-8/10 

 Like LC-HPC-8 and LC-HPC-10, Control-8/10 is a monolithic deck cast on precast, 

prestressed girders. The results of Surveys 4, 5 and 6 at 50.6, 61.6, and 75.5 months, 

respectively, are included in this report. The crack density of Control-8/10 at 50.6 months was 

0.326 m/m2, as shown in Figure 49. This crack density is more than double the value from 

Survey 3 at 37.2 months, 0.137 m/m2 (Pendergrass et al. 2011). The crack density has continued 

to increase with values of 0.425 m/m2 and 0.581 m/m2, respectively, measured during Surveys 5 

and 6. The crack maps from Surveys 5 and 6 are shown in Figures 50 and 51. The cracking on 

Control-8/10 consists of a small number of medium-length transverse cracks, as well as a large 

number of smaller cracks. Map cracking is prevalent on Control-8/10, particularly near the west 

abutment, where map cracking has increased drastically over the past three surveys. Control 8/10 

had less cracking at 50.6 months than LC-HPC-8 at 45.0 months, but has had more cracking in 

the two most recent surveys. Figure 52 compares cracking on Control 8/10 to cracking on LC-
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over time. LC-HPC-8 is one of the only decks in the project which has experienced significantly 

higher cracking than its control deck. However, Control 8/10 has experienced a marked rise in 

crack density after 36 months of age and is now experiencing more cracking than LC-HPC-8.  

 

Figure 52: LC-HPC-8 and Control-8/10 Crack Densities 

LC-HPC-9 

The results of Surveys 2, 3, and 4 of LC-HPC-9, at 26.5, 38.3, and 49.3 months, are 

included in this report. The crack density of LC-HPC-9 at 26.5 months was 0.237 m/m2, shown 

in Figure 53, represents an increase from the previous survey at 13.3 months, for which the crack 

density was 0.130 m/m2 (Pendergrass et al. 2011). The crack density at 38.3 months increased to 

0.362 m/m2 (Figure 54) and dropped back to 0.299 m/m2 at 49.3 months (Figure 55). The 

cracking is mainly transverse. There is very little cracking near the abutments.  
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Control-9 

 Control-9 was constructed in two placements eight days apart. The results of Survey 2 at 

37.0 and 37.2 months, Survey 3 at 48.9 and 49.1 months, and Survey 4 at 59.8 and 60.1 months 

are included in this report. At 37.2 months, Placement 1 had a crack density of 0.553 m/m2 (see 

Figure 56). Placement 2 had a crack density of 0.577 m/m2 at 37.0 months, and the overall crack 

density resulting from Survey 2 was 0.568 m/m2. This represents an increase from Survey 1 for 

which the crack densities were, respectively, 0.395 m/m2, 0.368 m/m2, and 0.390 m/m2 for 

Placement 1, Placement 2, and the overall crack density (Pendergrass et al. 2011). Placement 1 

had a crack density of 0.637 m/m2 at 49.1 months and Placement 2 had a crack density of 0.501 

m/m2 at 48.9 months (see Figure 57). The overall crack density was 0.577 m/m2. The crack 

densities measured during Survey 4 were 0.645 m/m2 at 60.1 months for Placement 1 (see Figure 

58) and 0.564 m/m2 at 59.8 months for Placement 2, resulting in an overall crack density of 

0.609 m/m2. Both placements have long transverse cracks throughout, with fewer near the 

abutments. Both placements have continuous longitudinal cracks running nearly the entire length 

of the bridge, as well as some longitudinal cracking propagating from the abutments. Crack 

densities have been consistently higher for Control-9 than for LC-HPC-9 over the past three 

surveys. Figure 59 compares cracking on Control 9 to cracking on LC-HPC-9 over time. LC-

HPC-9 has maintained a crack density lower than either placement of Control 9 over time.  LC-

HPC-9 and Control 9 experienced similar increases in crack density early on, but LC-HPC-9 has 

less overall cracking because of its significantly lower initial density. 
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Figure 59: LC-HPC-9 and Control-9 Crack Densities 
LC-HPC-10 

The results for Surveys 3, 4, and 5 of LC-HPC-10, at 49.6, 60.0, and 72.2 months, are 

included in this report. LC-HPC-10 is the second of two LC-HPC bridges with precast, 

prestressed concrete girders. At 49.6 months, the crack density of LC-HPC-10 was 0.088 m/m2, 

as shown in Figure 60. This represents an increase from Survey 2 at 36.2 months, when the crack 

density was 0.029 m/m2 (Pendergrass et al. 2011). The crack density of LC-HPC-10 was 0.125 

m/m2 at 60.0 months (Figure 61), but only 0.069 m/m2 at 72.2 months (Figure 62). Most of the 

cracks are long transverse cracks near the outer two piers, with a small amount of cracking near 

the center pier and abutments. Figure 63 compares cracking on LC-HPC-10 to cracking on 

Control 8/10 over time. For most of its life, LC-HPC-10 has experienced less cracking than 

Control 8/10. LC-HPC-10 started out with a larger density than Control 8/10 because it was
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first surveyed when the deck was not grooved. Following grooving, the cracking was not as 

significant and fell below values on Control 8/10. 

 

Figure 63: LC-HPC-10 and Control-8/10 Crack Densities 

LC-HPC-11 

 The results of Surveys 3, 4, and 5 of LC-HPC-11, at 48.4, 61.0, and 72.1 months, are 

included in this report. The crack density of LC-HPC-11 at 48.4 months, 0.370 m/m2, as shown 

in Figure 64, represents an increase from the previous survey at 36.2 months, 0.241 m/m2 

(Pendergrass et al. 2011). The crack density of LC-HPC-11 at 61.0 months dropped to 0.260 

m/m2 (Figure 65). The crack density increased at 72.1 months to 0.420 m/m2 (Figure 66). LC-

HPC-11 is one of the shortest bridges in the project, so the decrease in crack density at 61.0 

months may have been due to the oversight of a small number of cracks. The bridge exhibits 

long transverse cracks near the midspans, as well as several long longitudinal cracks near the 

abutments and first pier. Small longitudinal cracks propagate from both abutments.  
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Control-11 

 The results of Surveys 5, 6, and 7 of Control-11, at 62.9, 74.2, and 86.3 months, are 

included in this report. The crack density of Control-11 at 62.9 months, 0.923 m/m2 (Figure 67), 

was 45% higher than the value at 50.2 months, 0.636 m/m2 (Pendergrass et al. 2011). The crack 

density of Control-11 decreased to 0.849 m/m2 at 75.2 months (Figure 68), and decreased even 

further to 0.657 m/m2 at 86.3 months (Figure 69). Cracking is higher on Control-11 than on LC-

HPC-11 at similar ages. Specifically, Control-11 had a crack density of 0.923 m/m2 at 62.9 

months, which is three times the density of LC-HPC-11 at 61.0 months, 0.260 m/m2. Similarly, 

Control-11 had a crack density of 0.849 m/m2 at 75.2 months, which is more than twice the 

density on LC-HPC-11 at 72.1 months, 0.420 m/m2. There are many small, narrow cracks on the 

deck that may have been overlooked in Surveys 6 and 7, leading to smaller crack densities. Most 

of the cracks are transverse, spread across the deck parallel to and above the reinforcement. 

There is a single longitudinal crack in the middle of the deck stretching across the entire length 

of the bridge, as well as smaller longitudinal cracks propagating from the abutments. Figure 70 

compares cracking on Control 11 to cracking on LC-HPC-11 over time. While LC-HPC-11 has 

had less cracking than Control 11 over time, both decks have experienced significant swings in 

crack density.  
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Figure 70: LC-HPC-11 and Control-11 Crack Densities 

LC-HPC-12 

 LC-HPC-12 was constructed in two placements, 11.4 months apart. The results of Survey 

3 at 27.4 and 38.8 months, Survey 4 at 38.1 and 49.5 months, and Survey 5 at 53.1 and 64.5 

months are included in this report. At 38.8 months, Placement 1 had a crack density of 0.315 

m/m2 (see Figure 71). Placement 2 had a crack density of 0.268 m/m2 at 27.4 months, resulting 

in an overall crack density of 0.289 m/m2. This represents an increase from Survey 2 of LC-

HPC-12, which recorded crack densities of 0.256 m/m2, 0.244 m/m2, and 0.250 m/m2, 

respectively, for Placement 1, Placement 2, and overall (Pendergrass et al. 2011). In Survey 4, 

Placement 1 had a crack density of 0.450 m/m2 at 49.5 months and Placement 2 had a crack 

density of 0.375 m/m2 at 38.1 months (see Figure 72), producing an overall crack density of 

0.410 m/m2. These values are all larger than the corresponding crack densities from Survey 3. 

For Survey 5, Placement 1 had a crack density of 0.478 m/m2 at 64.5 months (see Figure 73), and 
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Placement 2 had a crack density of 0.381 m/m2 at 53.1 months, resulting in an overall crack 

density of 0.431 m/m2. These values are again higher than the densities measured in Survey 4. 

Both placements have transverse cracks extending from the longitudinal construction joint, with 

less cracking near the abutments and a greater crack density in the middle of the center span 

(Span 2). The crack density of Placement 1 has been higher, likely because of the torsional 

loading caused by equipment that was placed on this portion of the deck during the construction 

of Placement 2.  

Control-12 

 Control-12, the southern half of the same bridge as LC-HPC-12, was also constructed in 

two placements, 12.4 months apart. The results of Survey 3 at 26.5 and 38.9 months, Survey 4 at 

37.2 and 49.6 months, and Survey 5 at 52.2 and 64.6 months are included in this report. At 38.9 

months, Placement 1 had a crack density of 0.767 m/m2 (see Figure 74) and at 26.5 months, 

Placement 2 had a crack density of 0.799 m/m2, resulting in an overall crack density of 0.788 

m/m2. This represents an increase from Survey 2, for which the crack densities were 0.669 m/m2, 

0.442 m/m2, and 0.548 m/m2 for Placement 1, Placement 2, and overall, respectively 

(Pendergrass et al. 2011). For Survey 4, Placement 1 had a crack density of 0.857 m/m2 at 49.6 

months and Placement 2 had a crack density of 0.831 m/m2 at 37.2 months, resulting in an 

overall crack density of 0.843 m/m2 (see Figure 75). These values are all larger than the 

corresponding crack densities from Survey 3. For Survey 5 at 64.6 months, Placement 1 had a 

crack density of 0.838 m/m2, and at 52.2 months, Placement 2 had a crack density of 0.880 

m/m2, resulting in an overall crack density of 0.858 m/m2 for Survey 5 (See Figure 76). This 

represents an increase from Survey 4 for Placement 2, but not for Placement 1, which had a 

crack density that remained unchanged from Survey 4. Control-12 consistently has had crack 
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densities about twice those of LC-HPC-12. Long transverse cracks span the length of both 

placements, and there are small longitudinal cracks propagating from both abutments. Similar to 

LC-HPC-12, construction equipment was placed on Placement 1 during the construction of 

Placement 2. Figure 77 compares cracking on Control-12 to cracking on LC-HPC-12 over time. 

LC-HPC-12 has performed significantly better throughout the life of the decks. It appears that 

crack growth has begun to stabilize on both decks. 

 

Figure 77: LC-HPC-12 and Control-12 Crack Densities 

LC-HPC-13 

 The results of Surveys 3, 4, and 5 of LC-HPC-13, at 37.1, 49.0, and 62.9 months, are 

included in this report. The crack density of LC-HPC-13 was 0.364 m/m2 at 37.1 months (Figure 

78), which represents an increase from 0.129 m/m2 at 24.8 months (Pendergrass et al. 2011). The 

crack density of LC-HPC-13 at 49.0 months was 0.342 m/m2 (Figure 79), and increased to 0.576 
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m/m2 at 62.9 months (Figure 80). Most of the cracks are transverse, parallel to and directly above 

the top reinforcement and, therefore, likely due to settlement and shrinkage. Map cracking is 

present above the second pier along with cracks that propagate perpendicular to the abutments 

and cracking parallel to the skew of the bridge in the center of the first span.  

Control-13 

 The results of Surveys 3, 4, and 5 of Control-13, at 34.4, 46.1, and 60.0 months, are 

included in this report. The crack density of 0.524 m/m2 at 34.4 months (Figure 81) represents an 

increase from the crack density of 0.154 m/m2 measured in Survey 2 (Pendergrass et al. 2011) 

and is 44% higher than the density of LC-HPC-13 at 37.1 months, 0.364 m/m2. The crack density 

of Control-13 at 46.1 months was 0.543 m/m2 (Figure 82) and increased to 0.807 m/m2 at 60.0 

months (Figure 83), 59% and 40% higher, respectively, than densities on LC-HPC-13 at 49.0 and 

62.9 months, 0.342 m/m2 and 0.576 m/m2. Significant map cracking is present at the east 

abutment, as well as in the middle of the first span. Transverse cracks have developed throughout 

the deck, with somewhat higher densities near the piers. Small cracks propagate perpendicular to 

the abutments. Figure 84 compares cracking on Control-13 to cracking on LC-HPC-13 over 

time. It is clear that LC-HPC-13 has experienced less cracking than Control-13 over the entire 

life of both bridges. Both decks have remarkably similar crack growth trends, with both decks 

experiencing an increase from 12 to 36 months, a plateau from 36 to 48 months, and another 

increase after 48 months. Cracking does not seem to have stabilized on either deck.  
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Figure 84: LC-HPC-13 and Control-13 Crack Densities 

 LC-HPC-15 

 The results of Surveys 1 and 2 of LC-HPC-15, at 18.9 and 30.8 months, are included in 

this report. The crack density was 0.211 m/m2 at 18.9 months (Figure 85) and decreased to 0.161 

m/m2 at 30.8 months (Figure 86). The decrease in crack density is most likely due to several long 

transverse cracks in the first span that may have been overlooked. The cracks are transverse, 

mainly clustered near the pier and centers of the spans. Figure 87 shows cracking on LC-HPC-15 

over time.  
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Figure 87: LC-HPC-15 Surveyed Crack Densities 

LC-HPC-16 

 The results of Surveys 1, 2 and 3 of LC-HPC-16, at 7.70, 19.4 and 31.2 months, are 

included in this report. The crack density was only 0.092 m/m2 at 7.70 months (Figure 88), and 

grew to 0.249 m/m2 at 19.4 months (Figure 89).  The crack density then decreased to 0.211 m/m2 

at 31.2 months (Figure 90). The cracks are transverse, mainly clustered near the pier and centers 

of the spans, similar to LC-HPC-15. Figure 91 shows cracking on LC-HPC-16 over time. 
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Figure 91: LC-HPC-16 Crack Densities 

LC-HPC-17 

 The results of Surveys 1 and 2 of LC-HPC-17, at 8.94 and 20.5 months, are included in 

this report. The crack density was 0.226 m/m2 at 8.94 months (Figure 92), and increased to 0.240 

m/m2 at 20.5 months (Figure 93). The sidewalks on LC-HPC-17 were not surveyed because the 

concrete was stamped and colored, making it difficult to discern cracks. Similar to LC-HPC-15 

and LC-HPC-16, there are transverse cracks near the pier and centers of the spans. There is also 

a small amount of longitudinal cracking at the west abutment. Figure 94 shows cracking on LC-

HPC-17 over time. 
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Figure 94: LC-HPC-17 Crack Densities 

OP Bridge – Placement 1 

The results of Surveys 3 and 4 of OP Bridge – Placement 1, at 42.2 and 66.6 months, are 

included in this report. The contractor did not follow and the owner did not enforce many of the 

key LC-HPC specifications (McLeod et al. 2009), causing the OP Bridge deck to have a much 

higher crack density than any of other decks bid under an LC-HPC specification. Placement 1 

was constructed on two separate dates due to a concrete pumping problem. Thirty feet of 

concrete was placed before construction was halted because concrete was clogging the pump. 

This portion of the deck was removed and the entire deck, with the exception of the abutment, 

was placed on the second attempt. Some of the concrete used in the second attempt had a slump 

greater than 5 in. Consolidation of the concrete was inadequate, with coarse aggregate visible at 

the surface after removal of the vibrators. The vibrators were also removed too quickly, leaving 

holes in the concrete at the locations where the vibrators had been inserted. The contractor spent 
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a considerable amount of time bullfloating, bringing excess cement paste to the surface and 

leaving the concrete overfinished in many locations (Lindquist et al. 2008 and McLeod et al. 

2009). The elapsed time between deck finishing and burlap placement exceeded the ten-minute 

limit throughout construction, mainly due to the overfinishing. The contractor used water from 

the fogging equipment as a finishing agent (McLeod et al. 2009). The crack density of OP Bridge 

– Placement 1 was 0.585 m/m2 at 42.2 months (Figure 95), a slight increase from 0.502 m/m2 at 

30.0 months (Pendergrass et al. 2011). The crack density of OP Bridge – Placement 1 at 66.6 

months more than doubled to 1.083 m/m2 (Figure 96). 

OP Bridge – Placement 2 

 The results of Surveys 3 and 4 of OP Bridge – Placement 2, at 37.7 and 62.2 months, are 

included in this report. Placement 2 for the OP deck faced many of the same problems during 

construction as Placement 1, again leading to much higher crack densities than the LC-HPC 

decks. The slump and air contents specified in the LC-HP concrete specifications were exceeded, 

and the high slump led to problems with settlement cracking over the reinforcement. There was 

heavy rain the night before placement, making it difficult for the concrete supplier to accurately 

determine the aggregate moisture contents (McLeod et al. 2009). A double-drum roller was used 

for finishing, possibly causing the concrete to be overworked and bringing excess cement paste 

to the surface. The specified ten-minute maximum elapsed time between finishing and burlap 

placement was consistently exceeded. Additionally, concrete was removed from a wingwall 

during a delay in concrete delivery and placed into the deck. The crack density was 1.303 m/m2 

at 37.6 months (Figure 97), almost double the crack density of 0.727 m/m2 at 25.5 months 

(Pendergrass et al. 2011), and then increased to 1.331 m/m2 at 62.2 months (Figure 98). 

Extensive map cracking has occured throughout the deck, but mainly above the first pier and the 
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of south abutment. There are long transverse cracks along the length of the bridge and short 

cracks extending from the eastern edge the placement. Longitudinal cracks have also formed at 

both abutments. While the sidewalk on Placement 2 has also experienced longitudinal cracking, 

but significantly less than on the remainder of the placement. 

OP Bridge – Placement 3 

 The results of Surveys 3 and 4 of OP Bridge – Placement 3, at 37.1 and 61.6 months, are 

included in this report. Placement 3 had similar problems during construction as Placements 1 

and 2, causing higher crack densities than the LC-HPC decks. The concrete used had very high 

slumps and high air contents. Additionally, it was observed that the reinforcement was not 

strongly supported, causing it to spring up and possibly increase the amount of settlement 

cracking. As with Placement 2, a double-drum roller was used for finishing. The time between 

finishing and burlap placement exceeded 10 minutes over most of the deck (Gruman et al. 2009). 

For Survey 3, the crack density was 0.678 m/m2 at 37.1 months (Figure 99), less than the crack 

density at 24.9 months of 0.871 m/m2 (Pendergrass et al. 2011). Many of the cracks in Placement 

3 are small and may have been overlooked in Survey 3, leading to the lower crack density. The 

crack density more than doubled to 1.387 m/m2 at 61.6 months (Figure 100). Transverse cracks 

have formed along the length of the deck, but the majority of cracks are very small. There are 

also short cracks extending from the eastern edge of the placement, and longitudinal cracks have 

formed at both abutments. Similar to Placement 2, the sidewalk of Placement 3 has experienced 

less cracking than the remainder of the placement. Figure 101 compares cracking for the three 

OP Bridge placements over time. It is evident that all three placements have experienced high 

crack growth, which can be attributed to the lack of adherence to the LC-HPC specifications  
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during construction. While Placement 3 experienced an apparent decline in crack density 

between ages 24 and 38 months, it now has the highest crack density of the three placements. 

 

Figure 101: OP Bridge Crack Densities 

Control-Alt 

 Control-Alt, located in Emporia, KS, was chosen as an additional control deck because it 

is a monolithic deck. All LC-HPC decks in the project are also monolithic, and all of the other 

control decks except for Control-8/10 have a silica fume overlay. The results of Surveys 6, 7, and 

8 of Control-Alt at 72.6, 85.0, and 96.0 months, are included in this report. The crack density of 

Control-Alt at 72.6 months was 0.358 m/m2 (Figure 102), representing an increase from the 

value of 0.316 m/m2 measured in Survey 5 (Pendergrass et al. 2011). The density increased to 

0.395 m/m2 at 85.0 months (Figure 103), then decreased to 0.304 m/m2 at 96.0 months (Figure 

104). The cracks are mainly transverse and are evenly distributed along the length of the bridge 
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deck, likely caused by shrinkage and settlement over the reinforcement. There are also some 

small cracks propagating perpendicular to the abutments. Figure 105 shows cracking on Control-

Alt over time. The deck has experienced a relatively steady increase in crack density over time. 

 

Figure 105: Control-Alt Crack Densities 

OP-Extra 

 OP-Extra is a precast, prestressed concrete girder control bridge in Overland Park, KS 

constructed by the same contractor as the OP Bridge. The deck is monolithic. The results of 

Surveys 3, 4, and 5 of OP-Extra at 35.0, 46.7, and 59.2 months, are included in this report. The 

crack density was 0.344 m/m2 at 35.0 months (Figure 106), representing an increase from the 

crack density measured in Survey 2, 0.302 m/m2 (Pendergrass et al. 2011). At 35.0 months, the 

crack density of OP-Extra was slightly less than that of LC-HPC-8, another precast, prestressed 

concrete girder bridge, at a similar age. It was much greater than the density of LC-HPC-10 and 

Control-8/10, 
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also precast, prestressed concrete girder bridges. The crack density was again 0.344 m/m2 at 46.7 

months (Figure 107), slightly higher than the crack density of Control-8/10 at a similar age 

(0.326 m/m2), and remained lower than the density of LC-HPC-8 and higher than the density of 

LC-HPC-10 at similar ages (0.380 and 0.088 m/m2). The crack density decreased to 0.300 m/m2 

at 59.2 months (Figure 108), less than the crack densities of Control-8/10 and LC-HPC-8 (0.425 

and 0.383 m/m2), but still greater than the crack density of LC-HPC-10 (0.125 m/m2) at similar 

ages. OP-Extra has transverse cracking over nearly the entire deck, as well as longitudinal 

cracking above the piers and the west abutment. Figure 109 compares cracking on OP-Extra with 

cracking on LC-HPC-8, LC-HPC-10, and Control-8/10 over time. The deck has experienced 

relatively stable cracking, falling between 0.20 and 0.40 m/m2 throughout its life. At about 60 

months, cracking on LC-HPC-8 and Control-8/10 is very similar to that on OP-Extra, although 

the crack density on Control-8/10 is increasing rapidly. Cracking on LC-HPC-10 is consistently 

lower than that on OP-Extra. 
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Figure 109: OP-Extra, LC-HPC-8, LC-HPC-10, and Control-8/10 Crack Densities 

 

Summary of Results 

 As shown in the individual comparisons of the LC-HPC and control decks, at the same 

age, with few exceptions, the LC-HPC decks exhibit less cracking than the control decks. Crack 

densities for surveys completed in 2011, 2012, and 2013 are shown in Tables 4, 5, and 6, 

respectively. These tables also indicate for each LC-HPC/Control pair, which bridge had the 

lower crack density in that survey year. Because of differences in the dates of placement, 

comparisons based on the year of the survey do not match the age of the decks in all cases. In 

2011, of the thirteen LC-HPC bridge decks with a corresponding control deck, eleven had lower 

crack densities than their control counterpart. In 2012, of the twelve LC-HPC bridge decks with 

a corresponding control deck (due to the overlay of Control-5), eleven had lower crack densities 

than their control counterpart. It is apparent that the LC-HPC bridge decks are performing 

significantly better than their respective control decks. This is also demonstrated in Figure 2, 
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which provides a plot of crack densities versus age for the bridge decks in the study. The OP 

Bridge was not constructed in accordance with several provisions of the LC-HPC specifications, 

and therefore does not represent either an LC-HPC or a control deck. To date, the highest crack 

density on an LC-HPC bridge deck is 0.576 m/m2 (LC-HPC-13 at 62.9 months; see Figure 80). 

The highest crack density on a control deck is 1.037 m/m2 (Control-7 Placement 1 at 51.1 

months). Overall, in the three survey years included in this report, there are only 3 instances in 

which an LC-HPC bridge had a higher crack density than its control counterpart: LC-HPC-2 and 

LC-HPC-8 in 2011, and LC-HPC-2 in 2012. Finally, although LC-HPC-2 appears to have a 

higher crack density than Control-1/2 by examination of Tables 4 through 6, Figure 13 shows 

that, on the whole, LC-HPC-2 performs just as well as, if not better than, Control-1/2. 

 

 

 

 

 

 

 

 

 

 

 

Table 4 – 2011 Crack Density Comparison of LC-HPC vs. Control Decks 

  
Deck Age 
(months) 

2011 Crack Density 
(m/m2) 

Lower Crack 
Density Bridge Girder Type 

LC-HPC-1 70.6/69.6 0.039 LC-HPC Steel 
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Control-1/2 70.7/70.1 0.114 
LC-HPC-2 59.3 0.144 

Control Steel 
Control-1/2 70.7/70.1 0.114 

LC-HPC-3 42.6 0.315 
LC-HPC Steel 

Control-3 46.6 0.323 
LC-HPC-4 45.0/44.9 0.107 

LC-HPC Steel 
Control-4 42.7 0.618 
LC-HPC-5 43.0 0.19 

LC-HPC Steel 
Control-5 30.6 0.738 
LC-HPC-6 43.3 0.336 

LC-HPC Steel 
Control-6 31.8 0.456 
LC-HPC-7 58.9 0.048 

LC-HPC Steel 
Control-7 62.3/56.7 0.856 
LC-HPC-8 45.0 0.38 

Control Prestressed 
Concrete Control-8/10 50.6 0.326 

LC-HPC-9 37.2 0.237 
LC-HPC Steel 

Control-9 37.0 0.568 
LC-HPC-10 49.6 0.088 

LC-HPC Prestressed 
Concrete Control-8/10 50.6 0.326 

LC-HPC-11 48.4 0.37 
LC-HPC Steel 

Control-11 62.9 0.923 
LC-HPC-12 38.8/27.4 0.289 

LC-HPC Steel 
Control-12 38.9/26.5 0.788 
LC-HPC-13 37.1 0.364 

LC-HPC Steel 
Control-13 34.4 0.524 
LC-HPC-15 - Did not survey N/A Steel 

LC-HPC-16 7.7 0.092 N/A Steel 

LC-HPC-17 - Did not survey N/A Steel 
OP Bridge Placement 1 42.2 0.585 

N/A Steel OP Bridge Placement 2 37.7 1.303 
OP Bridge Placement 3 37.1 0.678 

Control-Alt 72.6 0.358 N/A Steel 

OP-Extra 35.0 0.344 N/A Steel 
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Table 5 – 2012 Crack Density Comparison of LC-HPC vs. Control Decks 

  
Deck Age 
(months) 

2012 Crack Density 
(m/m2) 

Lower Crack 
Density 

Bridge Girder 
Type 

LC-HPC-1 79.0/78.4 0.085 
LC-HPC Steel 

Control-1/2 79.2/78.6 0.196 
LC-HPC-2 68.1 0.197 

Control Steel 
Control-1/2 79.2/78.6 0.196 

LC-HPC-3 54.0 0.173 
LC-HPC Steel 

Control-3 57.9 0.314 
LC-HPC-4 56.0/55.9 0.12 

LC-HPC Steel 
Control-4 54.9 0.669 
LC-HPC-5 54.3 0.158 

N/A Steel 
Control-5 - Did not survey 

(overlay) 
LC-HPC-6 54.6 0.362 

LC-HPC Steel 
Control-6 43.0 0.539 
LC-HPC-7 71.3 0.065 

LC-HPC Steel 
Control-7 74.5/68.9 0.899 
LC-HPC-8 55.4 0.383 

LC-HPC Prestressed 
Concrete Control-8/10 61.6 0.425 

LC-HPC-9 38.3 0.362 
LC-HPC Steel 

Control-9 49.1/48.9 0.577 
LC-HPC-10 60.0 0.125 

LC-HPC Prestressed 
Concrete Control-8/10 61.6 0.425 

LC-HPC-11 61.0 0.260 
LC-HPC Steel 

Control-11 75.2 0.849 
LC-HPC-12 49.5/38.1 0.410 

LC-HPC Steel 
Control-12 49.6/37.2 0.843 
LC-HPC-13 49.0 0.342 

LC-HPC Steel 
Control-13 46.1 0.543 
LC-HPC-15 18.9 0.211 N/A Steel 
LC-HPC-16 19.4 0.249 N/A Steel 
LC-HPC-17 8.9 0.226 N/A Steel 

OP Bridge Placement 1 - Did not survey 
N/A Steel OP Bridge Placement 2 - Did not survey 

OP Bridge Placement 3 - Did not survey 
Control-Alt 85.0 0.395 N/A Steel 

OP-Extra 46.7 0.344 N/A Steel 
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Table 6 – 2013 Crack Density Comparison of LC-HPC vs. Control Decks 

  
Deck Age 
(months) 

2013 Crack Density 
(m/m2) 

Lower Crack 
Density 

Bridge Girder 
Type 

LC-HPC-1 91.3/90.6 0.040 
LC-HPC Steel 

Control-1/2 91.4/90.8 0.144 
LC-HPC-2 80.3 0.141 

LC-HPC Steel 
Control-1/2 91.4/90.8 0.144 

LC-HPC-3 66.2 0.174 
LC-HPC Steel 

Control-3 70.1 0.288 
LC-HPC-4 68.5/68.4 0.097 

LC-HPC Steel 
Control-4 67.1 0.561 
LC-HPC-5 67.0 0.131 

N/A Steel 
Control-5 

- Did not survey 
(overlay) 

LC-HPC-6 67.3 0.303 
LC-HPC Steel 

Control-6 56.0 0.460 
LC-HPC-7 83.4 0.072 

N/A Steel 
Control-7 - Did not survey 
LC-HPC-8 67.7 0.373 

LC-HPC Prestressed 
Concrete Control-8/10 75.5 0.581 

LC-HPC-9 49.3 0.299 
LC-HPC Steel 

Control-9 60.1/59.8 0.609 
LC-HPC-10 72.2 0.069 

LC-HPC Prestressed 
Concrete Control-8/10 75.5  0.581 

LC-HPC-11 72.1 0.420 
LC-HPC Steel 

Control-11 86.3 0.657 
LC-HPC-12 64.5/53.1 0.431  

LC-HPC Steel 
Control-12 64.6/52.5 0.858  
LC-HPC-13 62.9 0.576 

LC-HPC Steel 
Control-13 60.0 0.807 
LC-HPC-15 30.8 0.161 N/A Steel 

LC-HPC-16 31.2 0.211 N/A Steel 

LC-HPC-17 20.5 0.240 N/A Steel 
OP Bridge Placement 1 66.6  1.083 

N/A Steel OP Bridge Placement 2 62.2 1.331 
OP Bridge Placement 3 61.6 1.387 

Control-Alt 96.0 0.304 N/A Steel 

OP-Extra 59.2 0.300 N/A Steel 
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SUMMARY AND CONCLUSIONS 

Crack densities of Low-Cracking High-Performance Concrete (LC-HPC) bridge decks 

are compared to crack densities of control decks to investigate the benefits of the LC-HPC 

specifications developed at the University of Kansas. Specifications for construction of LC-HPC 

bridge decks are addressed.  Bridge deck crack survey procedures are also summarized. Thirteen 

LC-HPC decks and thirteen control decks are compared by calculating crack densities and noting 

trends in cracking patterns over time. Results for eight additional decks are also presented. These 

include three LC-HPC decks, one control deck, and three decks that are considered neither LC-

HPC or control decks. 

The following conclusions are drawn from this report: 

1. Crack densities of control decks are, in general, greater than those of LC-HPC decks. 

2. Cracking on bridge decks is typically parallel to the reinforcing steel, except at the 

abutments, where cracking propagates longitudinally or perpendicular to the abutment. 

3. For the three survey years included in the report, there are only 3 instances in which an LC-

HPC deck has more cracking than its control deck. 

4. Superelevated bridge decks have increased potential for transverse cracks to propagate from 

the elevated edge of the deck due to higher-slump plastic concrete flowing toward the lower 

elevation, as described for LC-HPC-5 and LC-HPC-6. This potential will be increased if 

curing water is not provided near the elevated edge. 

5. Torsional loads from construction equipment appear to have increased the crack density of 

one deck. 
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6. Lack of adherence to the LC-HPC specifications can lead to high crack densities. 

Specifically, using high-slump concrete, inadequate consolidation, over-finishing and 

delayed curing will increase the propensity for a deck to crack.  
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APPENDIX A 

BRIDGE DECK SURVEY SPECIFICATION* 

  

*From Lindquist et al. (2005) 137 
 



BRIDGE DECK SURVEY SPECIFICATION 
 
 
1.0 DESCRIPTION. 
 This specification covers the procedures and requirements to perform bridge deck 
surveys of reinforced concrete bridge decks. 
 
2.0 SURVEY REQUIREMENTS. 
  

a.  Pre-Survey Preparation. 
 (1) Prior to performing the crack survey, related construction documents need to be 
gathered to produce a scaled drawing of the bridge deck.  The scale must be exactly 1 in. = 10 ft 
(for use with the scanning software), and the drawing only needs to include the boundaries of the 
deck surface.   
  NOTE 1 – In the event that it is not possible to produce a scaled drawing prior to arriving at the bridge deck, a 
hand-drawn crack map (1 in.= 10 ft) created on engineering paper using measurements taken in the field is 
acceptable. 
 (2)  The scaled drawing should also include compass and traffic directions in addition to 
deck stationing.  A scaled 5 ft by 5 ft grid is also required to aid in transferring the cracks 
observed on the bridge deck to the scaled drawing.  The grid shall be drawn separately and 
attached to the underside of the crack map such that the grid can easily be seen through the crack 
map. 
  NOTE 2 – Maps created in the field on engineering paper need not include an additional grid. 
 (3) For curved bridges, the scaled drawing need not be curved, i.e., the curve may be 
approximated using straight lines.  
 (4) Coordinate with traffic control so that at least one side (or one lane) of the bridge can 
be closed during the time that the crack survey is being performed.  
  

b. Preparation of Surface. 
 (1) After traffic has been closed, station the bridge in the longitudinal direction at ten feet 
intervals.  The stationing shall be done as close to the centerline as possible.  For curved bridges, 
the stationing shall follow the curve.      

(2) Prior to beginning the crack survey, mark a 5 ft by 5 ft grid using lumber crayons or 
chalk on the portion of the bridge closed to traffic corresponding to the grid on the scaled 
drawing.  Measure and document any drains, repaired areas, unusual cracking, or any other items 
of interest. 
 (3) Starting with one end of the closed portion of the deck, using a lumber crayon or 
chalk, begin tracing cracks that can be seen while bending at the waist.  After beginning to trace 
cracks, continue to the end of the crack, even if this includes portions of the crack that were not 
initially seen while bending at the waist.  Areas covered by sand or other debris need not be 

138 
 



surveyed.  Trace the cracks using a different color crayon than was used to mark the grid and 
stationing. 
 (4) At least one person shall recheck the marked portion of the deck for any additional 
cracks.  The goal is not to mark every crack on the deck, only those cracks that can initially be 
seen while bending at the waist. 
  NOTE 3 – An adequate supply of lumber crayons or chalk should be on hand for the survey.  Crayon or chalk 
colors should be selected to be readily visible when used to mark the concrete. 
  

c. Weather Limitations. 
 (1) Surveys are limited to days when the expected temperature during the survey will not 
be below 60 °F. 
 (2) Surveys are further limited to days that are forecasted to be at least mostly sunny for a 
majority of the day. 
 (3) Regardless of the weather conditions, the bridge deck must be completely dry before 
the survey can begin. 
 
3.0 BRIDGE SURVEY. 
  

a.  Crack Surveys. 
 Using the grid as a guide, transfer the cracks from the deck to the scaled drawing.  Areas 
that are not surveyed should be marked on the scaled drawing. Spalls, regions of scaling, and 
other areas of special interest need not be included on the scale drawings but should be noted. 
  

b.  Delamination Survey. 
 At any time during or after the crack survey, bridge decks shall be checked for 
delamination.  Any areas of delamination shall be noted and drawn on a separate drawing of the 
bridge.  This second drawing need not be to scale. 
  

c.  Under Deck Survey. 
 Following the crack and delamination survey, the underside of the deck shall be 
examined and any unusual or excessive cracking noted.       
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APPENDIX B 

BRIDGE DECK DATA 
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