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Abstract. Adaptive radiation is a common mode of speciation among plants endemic to oceanic islands. This pat-
tern is one of cladogenesis, or splitting of the founder population, into diverse lineages in divergent habitats. In con-
trast, endemic species have also evolved primarily by simple transformations from progenitors in source regions. This is
anagenesis, whereby the founding population changes genetically and morphologically over time primarily through
mutation and recombination. Gene flow among populations is maintained in a homogeneous environment with no
splitting events. Genetic consequences of these modes of speciation have been examined in the Juan Fernández Archi-
pelago, which contains two principal islands of differing geological ages. This article summarizes population genetic
results (nearly 4000 analyses) from examination of 15 endemic species, involving 1716 and 1870 individuals in 162
and 163 populations (with amplified fragment length polymorphisms and simple sequence repeats, respectively) in
the following genera: Drimys (Winteraceae), Myrceugenia (Myrtaceae), Rhaphithamnus (Verbenaceae), Robinsonia
(Asteraceae, Senecioneae) and Erigeron (Asteraceae, Astereae). The results indicate that species originating
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anagenetically show high levels of genetic variation within the island population and no geographic genetic partition-
ing. This contrasts with cladogenetic species that show less genetic diversity within and among populations. Species
that have been derived anagenetically on the younger island (1–2 Ma) contain less genetic variation than those that
have anagenetically speciated on the older island (4 Ma). Genetic distinctness among cladogenetically derived species
on the older island is greater than among similarly derived species on the younger island. An important point is that
the total genetic variation within each genus analysed is comparable, regardless of whether adaptive divergence
occurs.

Keywords: Adaptive radiation; anagenesis; cladogenesis; genetic diversity; phyletic speciation; Robinson Crusoe
Islands.

Introduction
Oceanic islands have long stimulated biologists to inves-
tigate patterns and processes of evolution (e.g. Darwin
1842; Wallace 1881; Whittaker and Fernández-Palacios
2007; Bramwell and Caujapé-Castells 2011). These iso-
lated land masses, far from continental source areas,
offer opportunities for determining origins of immigrants
and their evolutionary history after establishment. The
low probability of long-distance dispersal and successful
colonization, the reduction of genetic variation in found-
ing populations and the challenges of adaptation to new
environments are all features that combine to affect pro-
cesses of evolution in island archipelagos, particularly
speciation.

One dimension of speciation in island plants that has
received considerable attention is adaptive radiation
(Carlquist 1974; Whittaker and Fernández-Palacios 2007;
Rundell and Price 2009). This is a process that begins
with dispersal from the original immigrant population
into different habitats on the same or neighbouring island.
This isolation leads to divergence of the new segregate
populations, each becoming rapidly adapted to divergent
habitats (Schluter 2001), such that eventually new species
are recognized taxonomically. This general process of spe-
ciation is usually diagrammed (Fig. 1) as splitting events or
cladogenesis (Rensch 1959). A number of dramatic species
complexes have developed in oceanic islands through
adaptive radiation, such as illustrated by the lobelioids
(Givnish et al. 2009) and silverswords (Carlquist et al.
2003) in Hawaii, Aeonium (Liu 1989; Jorgensen and Olesen
2001) and Echium (Böhle et al. 1996) in the Canary Islands
and Scalesia (Eliasson 1974) in the Gálapagos archipelago.

In addition to speciation via adaptive radiation (involv-
ing cladogenesis), another process, anagenesis (Fig. 1),
has recently been emphasized (Stuessy et al. 1990, 2006;
Whittaker et al. 2008). Some immigrant populations, espe-
cially when arriving on an island with limited ecological
opportunity, proliferate in size and accumulate genetic
diversity mainly through mutation and recombination.
After many generations (perhaps over a million or more
years), genetic changes result in different morphology

that may be treated as a distinct species. This process
has been labelled anagenetic speciation (Stuessy et al.
2006), being one type of progenitor-derivative speciation
(Crawford 2010). It has been estimated that at least one-
quarter of all endemic plant species of oceanic islands
have originated via anagenesis (Stuessy et al. 2006).

Some studies have been published on the genetic con-
sequences of cladogenesis in endemic plants of different
archipelagos. Böhle et al. (1996) examined chloroplast
sequence variation among endemic species of Echium
(Boraginaceae) of the Canary Islands, showing very little
nucleotide divergence even though the morphological
variation is striking. Likewise, Baldwin (2003) examined
internal transcribed spacer regions of nuclear ribosomal
DNA (ITS) variation among species of the Hawaiian silver-
swords (Asteraceae) and again, limited sequence vari-
ation was seen. The general result from these, and
other studies, is that during cladogenesis, the immigrant
population becomes fragmented, with each segment
containing a limited range of genetic variation in com-
parison with the continental progenitor population (Bald-
win et al. 1998). Maximum morphological divergence
occurs but with low levels of observable genetic diversity
(Frankham 1997). There is some evidence (Perugganan
et al. 2003) that the genetic changes responsible for the
morphological adaptations involve alterations in regula-
tory rather than structural genes.

Results so far with anagenesis show a strikingly differ-
ent pattern. Most of the investigations have been done
on endemic species of Ullung Island, in which at least
88 % of the endemic species have originated anageneti-
cally (Stuessy et al. 2006). The island is young (1.8 Ma;
Kim 1985), of low elevation (,1000 m) and relatively
ecologically uniform (Yim et al. 1981). Pfosser et al.
(2005), using amplified fragment length polymorphisms
(AFLPs), examined island and Japanese populations of
Dystaenia takesimana and D. ibukiensis, respectively,
and the results showed high levels of genetic variation
within D. takesimana in comparison with D. ibukiensis.
Similar results have been obtained in assessing the origin
of Acer takesimensis and A. okomotoanum (Takayama
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et al. 2012, 2013a). Because there is no partitioning of the
immigrant population, it survives and proliferates, during
which time it accumulates genetic variation through
mutation and recombination. Eventually, the level of
genetic diversity may even equal (or surpass) that
observed in parental source populations (Stuessy 2007).

Because the above studies have been done on different
genera in different island archipelagos, it would be useful
to compare the genetic consequences of both types of
speciation within groups of the same island system, pref-
erably within the same island. In this fashion, more direct
comparisons can be made because the general environ-
ment is the same. Important, obviously, is to locate plant
groups that have originated via both anagenesis and
cladogenesis within the same archipelago. A good choice
for examining the genetic consequences of anagenesis
and cladogenesis in endemic plants of oceanic islands is
the Juan Fernández Archipelago, Chile. Approximately
64 % of the species have originated by cladogenesis and
36 % by anagenesis (Stuessy et al. 2006). From another
perspective, it is estimated that 70 % of the colonists to
the islands have diverged anagenetically, in contrast to
only 30 % that have diverged via adaptive radiation
(Stuessy et al. 1990).

The Juan Fernández Archipelago consists of two major
islands (Fig. 2): Robinson Crusoe (¼ Masatierra), located
667 km west of continental Chile at 338S latitude, and Ale-
jandro Selkirk (¼ Masafuera) situated 181 km further west-
ward into the Pacific Ocean. The former is known to be �4
million years old and the latter 1–2 million years old
(Stuessy et al. 1984). At present, these two islands are
approximately the same size of 50 km2 (Stuessy 1995).
The flora is small, containing 78 native and 135 endemic
vascular plant species (Danton et al. 2006). From a biogeo-
graphic standpoint, this setting is particularly favourable
for generating initial hypotheses, because the near island
(Robinson Crusoe) is also the older one, making it highly
probable as the initial site for colonization of most groups.
Furthermore, the older island is hypothesized to have been
much larger when formed (Stuessy et al. 1998), making it a
bigger target for dispersal from the mainland.

Numerous molecular markers now exist for assessing
genetic variation within and among populations (Lowe
et al. 2004). Amplified fragment length polymorphisms
(Vos et al. 1995) have been used effectively to provide
an overall evaluation of population genetic diversity
(Tremetsberger et al. 2003; López-Sepúlveda et al. 2013a).
These are treated as dominant markers and hence cannot
be employed to determine allelic frequencies. An appropri-
ate co-dominant and polymorphic marker that does allow
allelic calculations are nuclear microsatellites or simple
sequence repeats (SSRs). The challenge with this marker
is to develop primers for locating sequences within the
genome for comparison. Next-generation sequencing
(NGS) methods are now available that allow this to be
done much more easily and at reasonable cost (Takayama
et al. 2011, 2013b). Numerous successful applications of
SSRs have shown their efficacy to reveal genetic variation
at the population level (Gleiser et al. 2008; Kikuchi et al.
2009; López-Sepúlveda et al. 2013b).

Studies using AFLPs and SSRs have already been pub-
lished on a number of endemic taxa of the Juan Fernández
Archipelago, representing groups that have undergone spe-
ciation via cladogenesis and anagenesis. The largest (and
endemic) genus that has been investigated is Robinsonia

Figure 2. Location of the Juan Fernández Archipelago and its two
major islands, Alejandro Selkirk (¼ Masafuera) and Robinson Crusoe
(¼ Masatierra).

Figure 1. Diagram of the two principal modes of speciation in
oceanic islands.

AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2015 3

Takayama et al. — Genetic consequences of cladogenetic vs. anagenetic speciation



(Asteraceae; Takayama et al. 2015), which has seven spe-
cies on Robinson Crusoe Island that have originated cla-
dogenetically and one on Alejandro Selkirk Island that
has evolved anagenetically. The genus Erigeron (Astera-
ceae; López-Sepúlveda et al. 2015) has six species that
evolved cladogenetically on the younger island, Alejan-
dro Selkirk. These two genera were selected because
Robinsonia has speciated primarily via cladogenesis on
the older island, and Erigeron has done so on the
younger island. Regarding anagenesis, studies have been
completed on Drimys confertifolia (Winteraceae; López-
Sepúlveda et al. 2014) and Rhaphithamnus venustus (Verbe-
naceae; P. López-Sepúlveda, K. Takayama, D. J. Crawford,
J. Greimler, P. Peñailillo, M. Baeza, E. Ruiz, G. Kohl,
K. Tremetsberger, A. Gatica, L. Letelier, P. Novoa, J. Novak,
T. F. Stuessy, submitted for publication), which occur on
both islands of the archipelago. Investigations have also
been completed on Myrceugenia (Myrtaceae; López-
Sepúlveda et al. 2013b), which contains one endemic spe-
cies on each of the islands. The available genetic data to
date, therefore, come from 15 endemic species, plus 4
close continental relatives, summing to 1870 individuals
in 163 populations.

The purposes of this article are to (i) summarize pub-
lished data from AFLP and SSR investigations on endemic
species of the genera Drimys, Myrceugenia, Rhaphitham-
nus, Robinsonia and Erigeron; (ii) compare and contrast
differences in genetic diversity in groups that have under-
gone anagenetic or cladogenetic speciation and (iii) dis-
cuss the importance of considering modes of speciation
for understanding levels of genetic diversity within endemic
species of oceanic archipelagos.

Methods
The data summarized here (Table 1) provide the first com-
prehensive genetic comparisons (with AFLPs and SSRs) in
the Juan Fernández Archipelago of species that have
evolved by anagenesis and cladogenesis, based on con-
sistent samplings, laboratory methods and modes of
analysis. A number of earlier studies utilizing isozymes
and DNA sequences have examined genetic variation in
endemic species of these islands (e.g. Crawford et al.
1998, 2001a), but these investigations were not focussed
on comparing modes of speciation. Genera in the present
studies were selected for their representation of anagen-
esis and cladogenesis and for their occurrence on the two
islands of different geological ages. The samples were
collected during expeditions in February 2010 and 2011
from 1870 individuals in 163 populations in 15 endemic
species, hence representing 14 % of the endemic angios-
perms in the archipelago. The samples provide very good
geographic coverage of populations over the landscape in

both islands. The term population, as used here in the
sense of sampling, refers to groups of individuals that
were clearly delimited spatially in the field. The number
of individuals analysed per population ranged from 1 to
31. The voucher data for these samples and details of
data gathering and analysis are given in the respective
publications.

Briefly, the following approaches were used for AFLPs.
Four or six selective primer combinations were chosen.
Numerous (24–85) primer trials were run with each
genus to determine the best combination of primers for
good resolution of individuals and populations. Data were
obtained on an automated DNA sequencer (ABI 3130xl,
Applied Biosystems, Waltham, MA, USA). Scoring was
done using GeneMarker ver. 1.85 (SoftGenetics, State Col-
lege, PA, USA). For analysis of AFLP data, the programs Arle-
quin 3.5.1.2 (Excoffier et al. 2005), FAMD ver. 1.25 (Schlüter
and Harris 2006), R-Script AFLPdat (Ehrich 2006) and SPSS
ver. 15.0 (SPSS; IBM, Armonk, NY, USA) were employed to
determine total number of fragments (TNB), percentage
of polymorphic fragments (PPB), Shannon Diversity Index
(SDI), average gene diversity over loci (AGDOL) and rarity
index (RI).

For SSRs, NGS methods (Takayama et al. 2011) were used
to generate 6–12 loci, selected for their repeatability and
scoring convenience. Polymerase chain reaction-amplified
fragments were also run on the same automated sequen-
cer and scored with GeneMarker ver. 1.85. Data analysis
involved using GENEPOP 4.0 (Raymond and Rousset
1995), Micro-Checker 2.2.3 (van Oosterhout et al. 2004),
FSTAT 2.9.3.2 and GENALEX 6 (Peakall and Smouse 2006).
These allow analyses for observed proportion of heterozy-
gotes (HO), expected proportion of heterozygotes (HE), num-
ber of alleles per locus (NA), inbreeding coefficient (FIS) and
allelic richness standardized by five individuals (AR5).

The overall pattern of higher genetic diversities in ana-
genetically derived species in comparison with cladogen-
etically derived ones was examined by a Student’s t-test
(average TNB, PPB, SDI, AGDOL and RI in AFLPs, and HO,
HE, NA and AR5 in SSRs) and shown in Table 2. To improve
normality of HO and HE, a square-root transformation was
applied. The overall patterns of higher genetic diversities
in Robinson Crusoe Island (old) than Alejandro Selkirk
Island (new) were also examined in the same way. The
effects of two factors (speciation mode and island) and
their interaction were analysed in a two-way ANOVA in
R version 3.0.0 (R Core Team 2013) and shown in Table 3.

Data from both AFLPs and microsatellites were further
analysed by assessing genetic distance (Nei et al. 1983)
with the NeighborNet algorithm (Bryant and Moulton
2004) implemented by SplitsTree4 ver. 4.10 (Huson and
Bryant 2006) and Population 1.2.30 (Langella 1999),
respectively.
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Table 1. Summary of measures of genetic diversity in endemic species of the Juan Fernández Archipelago that have originated by anagenesis or cladogenesis. All average values. Data from
López-Sepúlveda et al. (2013a, b, 2014), Takayama et al. (2015) and P. López-Sepúlveda, K. Takayama, D. J. Crawford, J. Greimler, P. Peñailillo, M. Baeza, E. Ruiz, G. Kohl, K. Tremetsberger,
A. Gatica, L. Letelier, P. Novoa, J. Novak, T. F. Stuessy, submitted for publication. TNB, total number of bands (fragments); PPB, percentage of polymorphic bands; SDI, Shannon Diversity Index;
AGDOL, average gene diversity over loci; RI, rarity index; HO, observed proportion of heterozygotes; HE, expected proportion of heterozygotes; NA, number of alleles per locus; FIS, inbreeding
coefficient; AR5, allelic richness standardized by five individuals; RC, Robinson Crusoe Island; AS, Alejandro Selkirk Island.

Species AFLPs Microsatellites (SSRs)

No. of pops. No. of plants TNB PPB SDI AGDOL RI No. of pops. No. of plants HO HE NA FIS AR5

Anagenesis

D. confertifolia (RC) 16 183 557 96.5 125.3 0.26 1.96 16 181 0.48 0.68 9.00 0.29 4.12

D. confertifolia (AS) 15 96 538 96.5 114.3 0.23 2.26 15 80 0.35 0.51 6.38 0.26 3.24

D. confertifolia (combined RC and AS) 31 279 576 100 134.7 0.28 2.06 31 261 0.44 0.68 9.88 0.33 4.13

M. fernandeziana (RC) 18 211 371 100 74.6 0.23 1.76 18 231 0.38 0.49 10.08 0.19 3.38

M. schulzei (AS) 13 129 417 100 96.2 0.28 3.39 13 155 0.39 0.61 10.33 0.35 3.79

R. venustus (RC) 20 143 440 99.3 96.4 0.25 2.80 20 140 0.17 0.23 4.22 0.31 1.83

R. venustus (AS) 4 18 271 57.3 60.8 0.18 2.34 4 11 0.30 0.34 2.33 0.13 2.12

R. venustus (combined RC and AS) 24 161 443 100 98.7 0.26 2.75 24 151 0.18 0.28 4.56 0.40 2.04

R. masafuerae (AS) 5 9 344 41.4 84.1 0.15 2.90 5 7 0.36 0.43 3.50 0.17 3.08

Cladogenesis

Robinsonia gayana (RC) 10 123 592 77.2 111.0 0.16 2.39 10 134 0.34 0.42 6.30 0.28 3.04

R. gracilis (RC) 5 75 515 63.2 97.3 0.15 2.68 5 87 0.28 0.39 3.50 0.24 2.26

R. evenia (RC) 6 73 586 73.4 112.0 0.17 3.18 6 86 0.21 0.26 2.80 0.21 1.87

R. saxatilis (RC) 1 5 267 29.0 67.0 0.14 1.99 1 5 0.30 0.26 2.10 20.22 2.10

Robinsonia (combined all RC species) 22 276 765 100 183.7 0.26 2.77 22 312 0.28 0.66 8.40 0.61 3.97

Robinsonia (combined all species) 27 285 766 100 265.0 0.26 2.68 27 319 0.29 0.67 8.70 0.61 4.02

E. fernandezianus (RC) 13 240 403 90.3 70.7 0.20 0.58 13 271 0.21 0.29 4.20 0.31 2.17

E. fernandezianus (AS) 19 172 426 95.3 81.1 0.23 0.81 19 200 0.17 0.50 7.50 0.72 3.27

E. fernandezianus (combined RC and AS) 32 412 433 97.5 81.7 0.23 0.68 32 471 0.20 0.40 8.00 0.64 2.86

E. ingae (AS) 2 21 315 61.3 62.0 0.18 0.62 2 25 0.20 0.34 2.90 0.55 2.04

E. luteoviridis (AS) 2 25 334 61.5 60.2 0.18 0.99 2 25 0.05 0.31 3.10 0.72 2.19

E. rupicola (AS) 9 175 377 81.8 69.5 0.20 0.67 9 211 0.17 0.36 4.40 0.57 2.43

E. turricola (AS) 3 10 269 49.3 57.6 0.19 0.50 3 10 0.24 0.53 3.40 0.57 2.94

E. stuessyi (AS) 1 8 306 66.7 82.4 0.28 0.81 2 11 0.20 0.25 2.10 0.53 1.89
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For this article, to allow ease of visual comparisons of
results among the species, emphasis has been placed
on selected graphic presentations. SplitsTree Neighbor-
Net was employed with the AFLP data, and the results
are given in a series of graphs (Fig. 3). Neighbour-joining
based on genetic distance was used for analysis of the
SSRs, and simplified networks were used to show relation-
ships among the populations (Fig. 4). For summary com-
parisons of genetic diversity among species, AGDOL was
used with the AFLP data (Fig. 5). Not all calculated values
for all original populations are presented or discussed in
this review. The reader is referred to the original publica-
tions for additional methods and data.

Results
The results from the AFLP and SSR data analyses are given
in Tables 1–4 and shown graphically in Figs 3–5. In gen-
eral, the results from the two sources of genetic data are
similar, with some exceptions, reinforcing confidence in
the patterns seen. These data will be presented in context
of the two modes of speciation, anagenesis and clado-
genesis, but with attention also to the different ages of
the islands. Robinson Crusoe Island is �4 million years
old and Alejandro Selkirk 1–2 million (Stuessy et al. 1984).

Anagenesis

The results from analysis of species that have evolved
anagenetically include those from Myrceugenia fernan-
deziana, M. schulzei, Robinsonia masafuerae, D. confertifo-
lia and R. venustus. The first species occurs only on the
older island, the second and third species only on the
younger island and the last two on both islands. A num-
ber of points seem evident. First, all anagenetically
derived species show considerable levels of genetic diver-
sity (Table 1, and Figs 3 and 5), and none of them shows
geographic patterns over the island landscape (López-
Sepúlveda et al. 2013b, 2014, P. López-Sepúlveda,
K. Takayama, D. J. Crawford, J. Greimler, P. Peñailillo,
M. Baeza, E. Ruiz, G. Kohl, K. Tremetsberger, A. Gatica,
L. Letelier, P. Novoa, J. Novak, T. F. Stuessy, submitted
for publication). This is what might be expected from
the predictions regarding anagenesis based on previous
studies. Even more interesting, perhaps, is that the
amount of genetic diversity differs in species on the two
islands of different ages. In D. confertifolia, and R. venus-
tus, which occur on both islands, one sees in both cases
more genetic diversity (SDI) in populations on the older
island than on the younger island except for estimates
of SSRs in R. venustus (Table 1). The explanation of these
data may relate to the time available for a genetic change
to take place. Because Alejandro Selkirk Island is no more
than 1–2 million years old, this must be the maximum
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time available for population divergence to take place.
With anagenetically evolved species, all factors being
equal, genetic variation increases through time, and this
can be seen in the species investigated.

One case of anagenesis in the archipelago also merits
comment. Robinsonia masafuerae is a species that
appears to have speciated from R. evenia, with which it
has been closely associated in all studies so far (Crawford
et al. 1993a; Sang et al. 1995; Takayama et al. 2015). Pre-
vious investigations on ITS 1 and 2 in Robinsonia (Sang
et al. 1995) have shown sequence divergence between
R. evenia and R. masafuerae as only 0.0063 (two base sub-
stitutions). Although one cannot place an absolute time
on this divergence, it is the lowest level among any pair
of species in the genus, which correlates well with the
youthful geological age of Alejandro Selkirk Island. Gen-
etic variation in R. masafuerae is much lower from AFLP
data than in R. evenia from Robinson Crusoe (Table 1
and Fig. 5), but in SSRs, the pattern reverses with the ana-
genetically derived species, R. masafuerae, showing more
variation than any single one of the cladogenetically
originated species on Robinson Crusoe (Table 1).

It is also possible to make comparisons between popu-
lations of continental progenitors with endemic island
derivatives. In the case of Myrceugenia schulzei, the closest
continental congener is M. colchaguensis (Landrum
1981a, b; Ruiz et al. 2004). Although the sampling of
populations on the continent is limited to two populations,

the amount of genetic diversity is particularly low as
shown by AFLP data, although somewhat higher with
SSRs (López-Sepúlveda et al. 2013b). Although M. schulzei
is known only on the younger island, it did not diverge from
M. fernandeziana on the older island because the two are
unrelated (Murillo-Aldana et al. 2012), so much so that
the latter has now been transferred to another genus
(Nothomyrcia; Murillo-Aldana and Ruiz 2011). With D. con-
fertifolia, comparisons with D. winteri and D. andina
show less genetic variation in the two latter species as

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Summary of statistical tests based on Table 1. TNB, total
number of bands (fragments); PPB, percentage of polymorphic
bands; SDI, Shannon Diversity Index; AGDOL, average gene
diversity over loci; RI, rarity index; HO, observed proportion of
heterozygotes; HE, expected proportion of heterozygotes; NA,
number of alleles per locus; AR5, allelic richness standardized by
five individuals. Bold font indicates significant values (P , 0.05).

High genetic diversity in

anagenetically derived

species

High genetic diversity

in Robinson Crusoe

Island species

AFLPs

TNB 0.351 0.024

PPB 0.086 0.235

SDI 0.101 0.045

AGDOL 0.050 0.227

RI 0.004 0.085

SSRs

HO 0.006 0.132

HE 0.061 0.236

NA 0.040 0.308

AR5 0.038 0.388

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Summary of two-way ANOVA based on Table 1. TNB, total
number of bands (fragments); PPB, percentage of polymorphic
bands; SDI, Shannon Diversity Index; AGDOL, average gene
diversity over loci; RI, rarity index; HO, observed proportion of
heterozygotes; HE, expected proportion of heterozygotes; NA,
number of alleles per locus; AR5, allelic richness standardized by
five individuals. For all F-values, the degree of freedom was 1. Bold
font indicates significant values (P , 0.05).

Factor F-value P-value

AFLPs

TNB Island 4.78 0.046

Speciation mode 0.22 0.645

Island vs. speciation mode 0.51 0.489

PPB Island 0.67 0.427

Speciation mode 2.60 0.129

Island vs. speciation mode 2.05 0.174

SDI Island 3.61 0.078

Speciation mode 2.36 0.147

Island vs. speciation mode 0.47 0.504

AGDOL Island 0.85 0.372

Speciation mode 4.09 0.063

Island vs. speciation mode 4.67 0.048

RI Island 4.63 0.049

Speciation mode 13.71 0.002

Island vs. speciation mode 10.53 0.006

SSRs

HO Island 2.03 0.176

Speciation mode 11.65 0.004

Island vs. speciation mode 1.64 0.221

HE Island 0.47 0.502

Speciation mode 3.44 0.085

Island vs. speciation mode 0.19 0.671

NA Island 0.47 0.502

Speciation mode 3.44 0.085

Island vs. speciation mode 0.19 0.671

AR5 Island 0.10 0.752

Speciation mode 4.54 0.051

Island vs. speciation mode 0.11 0.744
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seen from AFLPs and SSRs (López-Sepúlveda et al. 2014). In
R. venustus, which is a congener of R. spinosus (the only
other known species in the genus; Moldenke 1937; Craw-
ford et al. 1993b), the amount of genetic diversity is
again greater in the population on Robinson Crusoe Island

than documented on the continent, although considerably
lower in the population on Alejandro Selkirk (P. López-
Sepúlveda, K. Takayama, D. J. Crawford, J. Greimler,
P. Peñailillo, M. Baeza, E. Ruiz, G. Kohl, K. Tremetsberger,
A. Gatica, L. Letelier, P. Novoa, J. Novak, T. F. Stuessy,

Figure 3. SplitsTree NeighborNet showing genetic relationships based on AFLPs among individuals in endemic species of Myrceugenia (A and B),
Drimys (C), Rhaphithamnus (D), Robinsonia (E) and Erigeron (F) in the Juan Fernández Archipelago. Closely related continental relatives are also
shown in A, C and D. Orange¼ species and populations on Robinson Crusoe Island; blue¼ on Alejandro Selkirk Island and black¼ on the or islands
continent.
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submitted for publication). These results support the
concept that over time, considerable genetic variation
can accumulate in anagenetically derived populations, so
much so that the degree of variation can approximate
and even surpass that in the progenitor source populations.

Cladogenesis

Two of the largest genera of the archipelago are Robinso-
nia with eight endemic species and Erigeron with six. Both
are in Asteraceae, although unrelated and placed in dif-
ferent tribes (Senecioneae vs. Astereae, respectively).

Robinsonia has adaptively radiated on Robinson Crusoe
Island during the past 4 million years (maximum value)
and Erigeron has done so on Alejandro Selkirk Island in
the past 1–2 million years.

Robinsonia is the second largest genus in the archipel-
ago. The largest is Dendroseris, also of Asteraceae but
from still another tribe (Cichorieae). This latter genus is of
interest as it has derived cladogenetically on the older
island with three independent dispersals to the younger
island and three anagenetic speciations there (Sanders
et al. 1987; Pacheco et al. 1991; Sang et al. 1994). Most of

Figure 4. Neighbour-joining tree showing genetic relationships based on SSRs among populations in endemic species of Myrceugenia (A and B),
Drimys (C), Rhaphithamnus (D), Robinsonia (E) and Erigeron (F) in the Juan Fernández Archipelago. Closely related continental relatives are also
shown in A, C and D. Orange ¼ species and populations on Robinson Crusoe Island; blue¼ on Alejandro Selkirk Island and black¼ on the continent.
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these species are quite rare now, however, which precluded
our being able to obtain sufficient population data for gen-
etic evaluation. Robinsonia has eight species, but two are
presumed extinct (R. berteroi and R. megacephala; Danton
et al. 2006). Our studies have focussed on five species
having originated cladogenetically on the older island.
Comments have already been made regarding the one
anagenetically derived species (R. masafuerae) on Alejan-
dro Selkirk Island. The results from AFLP data are shown
in Fig. 3 and from SSRs in Fig. 4. Most notable from the
SplitsTree graph in Fig. 3 is that the different species of
Robinsonia are very distinct genetically. Divergence has
obviously taken place during adaptive radiation and also
during a maximum time available of 4 million years. The
species R. gayana, R. thurifera and R. saxatilis form an
evolutionary complex, which taxonomically has been
regarded as sect. Robinsonia (Skottsberg 1922, as sect.
Symphyolepis; Takayama et al. 2015). Robinsonia gracilis
ties with R. evenia and its close anagenetic relative
R. masafuerae in sect. Eleutherolepis (Skottsberg 1922).
With SSR data (Fig. 4), the species are also very distinct
and genetically more cohesive, with the anagenetic species
R. masafuerae showing the greatest genetic diversity.

Another important point seen clearly in Figs 3 and 4 is
that the range of genetic diversity within each of these
cladogenetic species is limited in comparison with the ana-
genetically derived species discussed above.

Although Erigeron is not an endemic genus in the archi-
pelago, six endemic species occur there having evolved via
cladogenesis and adaptive radiation. The origin of this
complex is unusual in that the colonist(s) presumably
arrived directly to the younger island (Valdebenito et al.
1992). Amplified fragment length polymorphism and SSR
data (Figs 3 and 4) reveal considerable genetic diversity
within these endemic species, and each species is reason-
ably distinct. An exception is the Erigeron ingae complex
consisting of E. ingae, E. luteoviridis and E. turricola. These
species are sometimes difficult to distinguish morphologic-
ally. Solbrig (1962) and Marticorena et al. (1998), for
example, placed E. turricola into synonymy with E. ingae,
but Danton et al. (2006) kept them distinct. The molecular
data parallel this morphological inconsistency. This may be
a population complex in early stages of speciation, now
undergoing divergence from within a pool of morphological
and genetic variation. All of these species grow in the
‘alpine zone’ on the younger island (Skottsberg 1922),

Figure 5. Summary of genetic diversities, AGDOL, within the endemic species of Drimys, Myrceugenia and Rhaphithamnus having originated by
anagenesis, and Robinsonia and Erigeron having been derived through cladogenesis. Robinsonia masafuerae from the younger island is also an
anagenetic derivative from the cladogenetic complex of Robinsonia on the older island. AS, Alejandro Selkirk Island; RC, Robinson Crusoe Island.
White bar indicates an endemic species in RC, grey bar an endemic species in AS and black bar multiple species or islands combined.
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and we have not noticed any clear habitat differences
among them. The species E. rupicola is confined to coastal
rocks along the sea and also penetrates into the quebradas
(ravines); its close relative, E. stuessyi, is also found on rocky
ledges but residing inside the cool and deep ravines. Erig-
eron fernandezianus occurs in a broad altitudinal range
(100–1200 m), and it inhabits mainly rocky areas in middle
elevation plains, quebradas and ridges. This species also
occurs on the older island, but it is found there in many
plant communities and especially in disturbed sites. It
appears, therefore, to be an example of back migration
from the younger to the older island (Valdebenito et al.
1992; López-Sepúlveda et al. 2015).

Although most species of Erigeron on the younger island
are distinct genetically, the degree of distinctness is much
less than observed among species of Robinsonia on the
older island (Figs 3 and 4). It may be that these species
of Erigeron have had less time to diverge in comparison
with those of Robinsonia. With the passage of time, there-
fore, the genetic profiles of species undergoing adaptive
radiation may remain narrow due to strong directional
selection in each different habitat. In both Erigeron and
Robinsonia, however, the range of genetic variation seen
is less than that in the anagenetically derived species.

Discussion

Comparison of anagenesis and cladogenesis

Predictions from theory (Stuessy 2007) would suggest
that higher levels of genetic diversity should be found

within the anagenetically derived species. This is because
the founding population increases in size over time, accu-
mulating genetic diversity mainly through mutation and
recombination. One would expect no (or very little) geo-
graphic partitioning over the landscape. Likewise, due to
a lack of strong selection, one would not expect to find
high levels of private alleles or bands, nor a high RI.
With cladogenetic speciation, on the other hand, one
would expect less overall genetic diversity within each
species, but with more private alleles due to strong direc-
tional selection. As for impact from the age of the islands,
one would predict less total genetic diversity within ana-
genetically derived species on the younger island because
diversity increases through time. As for the cladogenetic
species, one would predict less genetic divergence (dis-
tinctness) on the younger island in comparison with spe-
cies on the older island, because directional selection
continues over time and refines the genetic profile of
each species as it adapts to the particular ecological zone.

Results from genetic analyses of 5 anagenetic species
and 10 cladogenetic species allow comparisons between
the two modes of speciation and the two islands of differ-
ing ages (Tables 1–3). A number of general points can be
observed (Table 4 and Fig. 5). First, in anagenetic species,
the level of genetic diversity tends to be higher per species
than in the cladogenetic species, especially on Robinson
Crusoe Island. This can be seen in percentage of poly-
morphic bands, SDI, AGDOL, observed proportion of hetero-
zygotes, expected proportion of heterozygotes, number
of alleles per locus and allelic richness. Second, in the

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Generalized comparison of the levels of genetic diversity obtained with AFLPs and SSRs from species that have originated via
anagenesis and cladogenesis on the two islands of the Juan Fernández Archipelago. See Table 1 for the actual data. RC, Robinson Crusoe
Island; AS, Alejandro Selkirk Island.

Anagenesis Cladogenesis

RC AS RC AS

AFLPs

Total number of bands (TNB) High Medium High Low

Percentage of polymorphic bands (PPB) High Low Low Low

Shannon Diversity Index (SDI) High Medium high Medium high Low

Average gene diversity over loci (AGDOL) High Medium high Low Medium high

Rarity index (RI) Medium High Medium Very low

Microsatellites (SSRs)

Observed proportion of heterozygotes (HO) High High Medium Low

Expected proportion of heterozygotes (HE) High High Medium Medium

Number of alleles per locus (NA) High Medium Low Low

Inbreeding coefficient (FIS) Low Low Low High

Allelic richness (AR5) High High Low Low
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anagenetic species, the individuals on each island behave
genetically as one large population, showing no genetic
pattern over the landscape (López-Sepúlveda et al.
2013b, 2014; Takayama et al. 2015; P. López-Sepúlveda,
K. Takayama, D. J. Crawford, J. Greimler, P. Peñailillo,
M. Baeza, E. Ruiz, G. Kohl, K. Tremetsberger, A. Gatica,
L. Letelier, P. Novoa, J. Novak, T. F. Stuessy, submitted for
publication). This is true on both islands of differing ages.
This suggests that this pattern can develop easily within
1–2 million years and that it can persist for up to 4 million.
This is consistent with the results reported for Ullung Island,
Korea, which is known to be 1.8 million years old (Pfosser
et al. 2005; Takayama et al. 2012, 2013a). Third, the ability
of an immigrant population to radiate adaptively has much
to do with the properties of the colonists (and progenitors)
and less with differences of habitat. Some colonists remain
as a single larger population and are not responsive to
adaptive change in different ecological zones, whereas
others disperse well to micro-zones and quickly become
modified morphologically and genetically. Fourth, perhaps
most importantly, the total amount of genetic diversity
within an anagenetically derived species in comparison
with an entire adaptively radiating lineage is approximately
the same (Fig. 5).

Genetics of speciation in endemic plants of oceanic
islands

A number of previous studies have assessed levels of gen-
etic variation within and among populations of endemic
species of the Juan Fernández Archipelago with other
markers such as isozymes, random amplified poly-
morphic DNA (RAPDs) and inter simple sequence repeats
(ISSRs). Isozymes have been analysed in Dendroseris
(Crawford et al. 1987), Chenopodium sanctae-clarae
(Crawford et al. 1988), Wahlenbergia (Crawford et al.
1990), Robinsonia (Crawford et al. 1992), Lactoris (Craw-
ford et al. 1994) and Myrceugenia (Jensen et al. 2002).
RAPDs have been investigated in Dendroseris (Esselman
et al. 2000) and Lactoris (Brauner et al. 1992), and ISSRs
also in Lactoris (Crawford et al. 2001b).

Crawford et al. (2001a) summarized the results from
isozyme studies on 29 endemic species of the Juan Fer-
nández Archipelago, and this represents the best set of
observations to compare with the AFLP and SSR data
summarized here. The most conspicuous result is that
the mean genetic diversities at the species level are low
(Hes ¼ 0.065). Higher levels of diversity were seen in larger
populations or in many small populations and also in out-
crossing species in contrast to selfers. Of relevance for
comparisons to the present study, isozymes have been
analysed from four species of Robinsonia and in M. fernan-
deziana, E. fernandezianus and R. venustus. It is difficult to
compare the results of the isozymes because they provide

less detailed genetic information than from AFLPs and
SSRs. Isozyme studies on the endemic Lactoris fernande-
zianus, for example Crawford et al. (1994), revealed virtu-
ally no variation, but ISSRs showed considerable variation
within and among populations (Crawford et al. 2001b).
Studies on isozymes (Crawford et al. 1987) and RAPDs
(Esselman et al. 2000) from Dendroseris showed greater
resolution of relationships from the latter. The isozyme
data for the four cladogenetically derived species of
Robinsonia show higher levels of genetic variation than
in the anagenetic R. venustus (Crawford et al. 1993b)
and Myrceugenia (Jensen et al. 2002), which would be
in contrast to the trends documented here. It is import-
ant, therefore, that for questions involving population
genetics in endemic plants of oceanic islands, rapidly
evolving markers need to be used.

The employment of AFLPs and SSRs in the present
study from 15 species of the Juan Fernández Archipelago,
therefore, does provide detailed genetic data at the popu-
lation level for purposes of comparing consequences of
different modes of speciation. A general review has
recently been published on the general topic of interpret-
ation of genetic variation within endemic species of
oceanic islands (Stuessy et al. 2014), and the present
data corroborate ideas summarized there. Clearly, the
alternative modes of speciation, anagenesis and clado-
genesis result in different genetic consequences. Inter-
pretation of the evolutionary significance of levels of
genetic diversity, therefore, must be done in context of
type of speciation. As can be seen in the results of adap-
tive radiation in Erigeron and Robinsonia, on the young
and older islands, respectively, the geological age of the
island also matters, as this provides the time dimension in
which the evolutionary processes unfold.

Another very significant impact on levels of genetic
variation in populations of endemic plants of oceanic
islands is that from human activity. Because oceanic
islands often have agreeable climates and attractive bea-
ches, people have come to live, play and build homes and
apartments, all of which have caused pressures on the
native vegetation. In the Juan Fernández Archipelago,
for example, people have been living continuously on
Robinson Crusoe Island for .300 years (Woodward
1969; Wester 1991). It is not impossible that the species
of Robinsonia on the older island have suffered some gen-
etic loss due to human activity. Although these species
occur either on high ridges or in deep forests, far removed
from most persons who live at sea level in the village
(San Juan Bautista), incursions into the native forest
must have taken place and some plants destroyed.
It is known that two species of Robinsonia, both on Rob-
inson Crusoe Island, are now extinct (R. berteroi and
R. megacephala; Danton and Perrier 2005; Danton et al.
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2006). Assessing the level of human impact on the vege-
tation of an oceanic island, therefore, is challenging. At
least in the Juan Fernández Archipelago, there were no
aboriginal peoples, and human activity could only have
begun with discovery by Europeans (Juan Fernández;
Medina 1974) at the end of the 16th century. Since
that time, however, considerable negative impact from
human activity has been documented in the archipelago
(Wester 1991; Matthei et al. 1993; Stuessy et al. 1997;
Swenson et al. 1997; Cuevas and Leersum 2001; Greimler
et al. 2002; Dirnböck et al. 2003; Cuevas et al. 2004; Ricci
2006; Vargas et al. 2011), especially from introduced ani-
mals, such as rats, rabbits and goats (e.g. Camus et al.
2008). These combined activities have surely had some
impact on the levels of genetic variation within and
among populations.
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de una invasión histórica. Historia 41:305–339.

Carlquist S. 1974. Island biology. New York: Columbia University
Press.

Carlquist S, Baldwin BG, Carr GD, eds. 2003. Tarweeds & silverswords:
evolution of the Madiinae (Asteraceae). St. Louis: Missouri Botan-
ical Garden.

Crawford DJ. 2010. Progenitor-derivative species pairs and plant spe-
ciation. Taxon 59:1413–1423.

Crawford DJ, Stuessy TF, Silva M. 1987. Allozyme divergence and the
evolution of Dendroseris (Compositae: Lactuceae) on the Juan
Fernandez Islands. Systematic Botany 12:435–443.

Crawford DJ, Stuessy TF, Silva M. 1988. Allozyme variation in Cheno-
podium sanctae-clarae, an endemic species of the Juan Fernan-
dez Islands, Chile. Biochemical Systematics and Ecology 16:
279–284.

Crawford DJ, Stuessy TF, Lammers TG, Silva M, Pacheco P. 1990. Allo-
zyme variation and evolutionary relationships among three spe-
cies of Wahlenbergia (Campanulaceae) in the Juan Fernandez
Islands. Botanical Gazette 151:119–124.

Crawford DJ, Stuessy TF, Haines DW, Cosner MB, Silva M, Lopez P.
1992. Allozyme diversity within and divergence among four spe-
cies of Robinsonia (Asteraceae: Senecioneae), a genus endemic
to the Juan Fernandez Islands, Chile. American Journal of Botany
79:962–966.

Crawford DJ, Stuessy TF, Cosner MB, Haines DW, Silva M. 1993a. Ribo-
somal and chloroplast DNA restriction site mutations and the
radiation of Robinsonia (Asteraceae: Senecioneae) on the Juan
Fernandez Islands. Plant Systematics and Evolution 184:
233–239.

Crawford DJ, Stuessy TF, Rodriguez R, Rondinelli M. 1993b. Genetic
diversity in Rhaphithamnus venustus (Verbenaceae), a species
endemic to the Juan Fernandez Islands. Bulletin of the Torrey
Botanical Club 120:23–28.

Crawford DJ, Stuessy TF, Cosner MB, Haines DW, Wiens D, Peñaillo P.
1994. Lactoris fernandeziana (Lactondaceae) on the Juan

AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2015 13

Takayama et al. — Genetic consequences of cladogenetic vs. anagenetic speciation



Fernandez Islands: allozyme uniformity and field observations.
Conservation Biology 8:277–280.

Crawford DJ, Sang T, Stuessy TF, Kim S-C, Silva M. 1998. Dendroseris
(Asteraceae: Lactuceae) and Robinsonia (Asteraceae: Senecio-
neae) on the Juan Fernandez Islands: similarities and differences
in biology and phylogeny. In: Stuessy TF, Ono M, eds. Evolution
and speciation of island plants. Cambridge: Cambridge University
Press, 97–119.

Crawford DJ, Ruiz E, Stuessy TF, Tepe E, Aqueveque P, González F,
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