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Abstract

Background

Newborns and young infants are at higher risk for infections than adults, and manifest sub-

optimal vaccine responses, motivating a search for novel immunomodulators and/or vac-

cine adjuvants effective in early life. In contrast to most TLR agonists (TLRA), TLR8

agonists such as imidazoquinolines (IMQs) induce adult-level Th1-polarizing cytokine pro-

duction from human neonatal cord blood monocytes and are candidate early life adjuvants.

We assessed whether TLR8-activating IMQ congeners may differ in potency and efficacy in

inducing neonatal cytokine production in vitro, comparing the novel TLR7/8-activating IMQ

analogues Hybrid-2, Meta-amine, and Para-amine to the benchmark IMQ resiquimod

(R848).

Methods

TLRA-induced NF-κB activation was measured in TLR-transfected HEK cells. Cytokine pro-

duction in human newborn cord and adult peripheral blood and in monocyte-derived den-

dritic cell cultures were measured by ELISA and multiplex assays. X-ray crystallography

characterized the interaction of human TLR8 with Hybrid-2.

Results

Hybrid-2 selectively activated both TLR7 and 8 and was more potent than R848 in inducing

adult-like levels of TNF-α, and IL-1β. Consistent with its relatively high in vitro activity, crys-

tallographic studies suggest that absence in Hybrid-2 of an ether oxygen of the C2-ethoxy-

methyl substituent, which can engage in unfavorable electrostatic and/or dipolar
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interactions with the carbonyl oxygen of Gly572 in human TLR8, may confer greater efficacy

and potency compared to R848.

Conclusions

Hybrid-2 is a selective and potent TLR7/8 agonist that is a candidate adjuvant for early life

immunization.

Introduction
There are more than 2,000,000 deaths per year worldwide due to infection in those less than 6
months of age [1–3]. The increased vulnerability of newborns and infants to infections as com-
pared to older children and adults has been attributed to distinct early life immunity [4]. Given
the significant morbidity and mortality associated with infections in early life, there is a press-
ing need for safe immunization early in life. However, distinct immunity in early life poses a
challenge for developing neonatal and infant vaccines [5]. Vaccine efficacy in those with weak-
ened immunity at the extremes of age, may require addition of an adjuvant to instruct and
enhance the immune response [6]. Live attenuated or killed whole-cell vaccines provide intrin-
sic adjuvant activity, whereas subunit vaccines are adjuvanted with Alum, oil-in-water emul-
sions such as MF-59 or purified microbial products such as monophosphoryl lipid A (MPLA;
Toll-like-receptor (TLR) 4 agonist (TLR4A). However, adjuvants have age-specific immune
modulating effects such that not all adjuvants are effective in early life [7].

Neonatal and infant immunity is functionally distinct from that of adults due to both cellu-
lar and soluble immunosuppressive factors [8,9] and is biased towards the induction of regula-
tory T cell (Treg) or T-helper type 2 (Th2) responses, which may limit immune responses to
intracellular pathogens and to vaccines directed against them [10]. Insights into the mecha-
nisms that limit early life immune responses have informed the search for and development of
age-specific adjuvanted vaccine formulations [4,10–12]. One promising approach to enhance
the immunity of newborns and infants is the use of TLRAs as either stand-alone immunomod-
ulators to enhance innate immune defense against infection and/or as vaccine adjuvants [13–
15] TLRAs, including single stranded ribonucleic acid (ssRNA: a TLR8 agonist), are present in
live attenuated vaccines such as the Japanese Encephalitis Vaccine and Yellow Fever Vaccine
17D (YF-17D) that activate multiple dendritic cell (DC) subsets via TLR2, TLR7, TLR8, and
TLR9 [16,17].

Newborn whole blood, cord blood mononuclear cells and monocytes demonstrate impaired
production of the pro-inflammatory, Th1-polarizing cytokine Tumor Necrosis Factor (TNF)
to TLR 1-7As [12]. In contrast, TLR8As may possess unique activity in newborns [18,19].
TLR7, -8 and -9 are activated by nucleic acids, and are located in the endosomal compartment
[18–20]. Human dermal and myeloid DCs, as well as T cells, express TLR8 [21]. TLR8As,
including dual TLR 7/8As, such as those of the small, synthetic imidazoquinoline (IMQ) family
of anti-viral molecules activate robust immune responses in newborn cells as these agents are
refractory to endogenous suppressive factors, such as adenosine, present in newborn blood
plasma [22]. For example, R848 a TLR-7/8A induces adult levels of TNF and interleukin (IL)-
12p40/70 production in newborn whole blood and cord blood mononuclear cells (CBMCs)
[19]. Although agonists of the same TLR can vary substantially in their relative potency [23],
little is known regarding the relative activity of different TLR8As towards human leukocytes.
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A family of novel, low molecular weight synthetic IMQs that selectively activate cells via
TLR7 and/or -8 are being evaluated as vaccine adjuvants [24,25]. A key approach to enhance
adjuvant potency is the use of medicinal chemistry to create congeners with more favorable
properties [26,27]. In this study, we characterized three TLR7/8 dual-agonistic compounds for
Th1- and Th17-polarizing cytokine induction in human newborn and adult leukocytes. We
found that Hybrid-2, a TLR7/8 selective imidazoquinoline agonist, demonstrates greater cyto-
kine-inducing potency in both newborn and adult leukocytes compared to R848. Crystallo-
graphic studies suggest that absence in Hybrid-2 of an ether oxygen of the C2-ethoxymethyl
substituent present in R848 that engages in unfavorable electrostatic and/or dipolar interac-
tions with the carbonyl oxygen of Gly572 in human TLR8 may contribute to its greater potency
compared to R848. Thus, Hybrid-2 may be a particularly attractive immunomodulator and
adjuvant candidate for early life immunization.

Materials and Methods

Ethics Statement
Non-identifiable cord blood samples were taken with approval from the Ethics Committee and
Institutional Review Boards of The Brigham and Women’s Hospital, Boston, MA and Beth
Israel Deaconess Medical Center, Boston, MA. Adult blood samples were collected from volun-
teer donors following written informed consent with approval from the Ethics Committee and
the Institutional Review Board of Boston Children’s Hospital, Boston, MA. Human experimen-
tation guidelines of the U.S. Department of Health and Human Services, The Brigham and
Women’s Hospital, Beth Israel Deaconess Medical Center and Boston Children’s Hospital
were observed.

TLR Agonists and Assay Reagents
The following IMQ TLRAs were synthesized from diaminoquinoline analogues at the Univer-
sity of Kansas, KS: Para-amine (TLR7/8), Meta-amine (TLR7/8), Hybrid-2 (TLR7/8) as previ-
ously described [24]. The commercially available TLR7/8 agonist, R848 (InvivoGen, San Diego,
CA) was also used at the concentration noted in the figure legends. TLRAs were verified to be
free of endotoxin (< 1 EU/ml) as measured by the Limulus amoebocyte lysate (LAL) assay per
the manufacturer’s instructions (Charles River, Wilmington, MA). TLRAs were prepared in
dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St Louis, MO).

Human TLR expressing HEK 293 Cell Assays
Agonist specificity was characterized using TLR-transfected human embryonic kidney (HEK)
cells. Briefly, the induction of nuclear factor (NF)-κB was quantified using human TLR2-5 and
7-9-specific HEK-Blue (InvivoGen) reporter gene assays as previously described [24,25].
HEK293 cells stably co-transfected with the appropriate human TLR (hTLR), and secreted
alkaline phosphatase (sAP), were maintained in HEK-Blue Selection medium containing zeo-
cin and normocin. Stable expression of sAP under control of NF-κB/AP-1 promoters is induc-
ible by cognate TLR agonists, and extracellular sAP in the supernatant is proportional to NF-
κB induction. HEK-Blue cells were incubated at a density of ~105 cells/ml in a volume of 80 μl/
well, in 384-well, flat-bottomed, cell culture-treated microtiter plates until confluency was
achieved, and subsequently stimulated with graded concentrations of stimuli. sAP was assayed
spectrophotometrically using an alkaline phosphatase-specific chromogen (present in HEK-
detection medium as supplied by the vendor) at 620 nm.
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Human TLR8 expression, purification and crystallization
The extracellular domain of hTLR8 (residues 27–827) was prepared as described previously
[28] and was concentrated to 16 mg/ml in 10 mM 2-(N-morpholino)ethanesulfonic acid
(MES) buffer (pH 5.5), 50 mM sodium chloride (NaCl). The protein solutions for the crystalli-
zation of hTLR8/compound complexes contained hTLR8 (8.5 mg/ml) and compound (pro-
tein:compound molar ratio of 1:10) in a crystallization buffer containing 7 mMMES (pH 5.5),
35 mMNaCl. Crystallization experiments were performed with sitting-drop vapor-diffusion
methods at 293 K. Crystals of hTLR8/compound were obtained with reservoir solutions con-
taining 9–12% (w/v) polyethylene glycol (PEG) 3350, 0.3 M potassium formate, and 0.1 M
sodium citrate (pH 4.8–5.2).

Crystallography data collection and structure determination
Diffraction datasets were collected on X-ray Beamlines PF-AR NE3A (Structural Biology
Research Center, Ibaraki, Japan) and the SPring-8 BL41XU (Japan Synchrotron Radiation
Research Institute (JASRI), Hyogo, Japan) under cryogenic conditions at 100 kelvin. Crystals
of hTLR8/compound were soaked into a cryoprotectant solution containing 15% (w/v)
PEG3350, 0.23 M potassium formate, 75 mM sodium citrate pH 4.8–5.2, 7.5 mMMES pH 5.5,
38 mMNaCl, and 25% glycerol. Datasets were processed using the HKL2000 package [29] or
imosflm [30]. HTLR8/compound structures were determined by the molecular replacement
method using the Molrep program [31] with the hTLR8/CL097 structure (Protein Data Bank
(PDB) ID: 3W3J) as a search model. The model was further refined with stepwise cycles of
manual model building using the COOT program [32] and restrained refinement using
REFMAC [33] until the R factor was converged. Compound molecule, N-glycans, and water
molecules were modeled into the electron density maps at the latter cycles of the refinement.
The stereochemical quality of the final protein structure was evaluated with PROCHECK soft-
ware [34]. The statistics of the data collection and refinement are also summarized in S2 Fig.
The visualization software PyMOL was employed to generate representations of the deter-
mined crystal structures [35]. Coordinates for Hybrid-2 were deposited in the PDB of the
Research Collaboratory for Structural Bioinformatics: PDB code: 4R6A.

Human Blood
Human peripheral blood was collected from healthy adult volunteers, while human newborn
cord blood was collected immediately after Cesarean section delivery of the placenta. Births to
HIV-positive mothers were excluded. Human blood was anti-coagulated with 15–20 units/ml
pyrogen-free sodium heparin (American Pharmaceutical Partners, Inc., Schaumberg, IL). All
blood products were kept at room temperature and processed within 4 h of collection.

Blood Sample Processing and in vitro Stimulation
Assessment of TLRA activity in whole blood was completed as previously described [36].
Briefly, neonatal cord blood or adult whole blood (WB) was mixed 1:1 with sterile pre-warmed
(37°C) Rosewell Park Memorial Institute RPMI 1640 medium (Invitrogen, Carlsbad, CA) and
180 μL of the 1:1 suspension was added to each well of a 96 well U-bottom plate (Becton Dick-
inson, Franklin Lakes, NJ, USA) containing 20 μl freshly prepared TLR agonists at 10 x the
final concentration. Vehicle (DMSO) was added separately as a control. Suspensions contain-
ing 200 μl/well were gently mixed by pipetting and incubating for 6 h at 37°C in a humidified
incubator at 5% CO2. After culture, plates were centrifuged at 500 x g and 100–150 μl of super-
natant was carefully removed by pipetting without disturbing the cell pellet. Supernatants
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derived from human leukocyte stimulations were assayed by enzyme-linked immunoabsorbent
assay (ELISA) for TNF (BD Biosciences, San Jose, CA, USA) and IL-1β (eBiosciences, San
Diego, CA). Experiments were performed in triplicates.

Monocyte-derived Dendritic Cells (MoDCs)
Heparinized human newborn cord blood or adult peripheral blood was layered onto Ficoll-
Hypaque (Ficoll-Paque PREMIUM, GE Healthcare, Waukesha, WI) and centrifuged for 30
minutes at 1000 x g to collect cord blood mononuclear cell layers (CBMC) or peripheral blood
mononuclear cell layers (PBMC), respectively. Monocytes were isolated from mononuclear cell
fractions by positive selection by magnetic microbeads according to the manufacturer’s
instructions (Miltenyi Biotec, Auburn, CA) using CD14 as a pan marker for monocytes. Mono-
cyte preparations were routinely assessed by flow cytometry for cluster of differentiation (CD)
14 expression and were routinely observed to be> 95%. Isolated monocytes were cultured in
tissue culture dishes at 106 cells/ml in RPMI 1640 media containing fresh 10% autologous
plasma, supplemented with recombinant human (rh)IL-4 (50 ng/ml) and rhGM-CSF (100 ng/
ml) (R&D Systems; Minneapolis, MN) with one additional supplement of fresh media and
cytokines at day 3 of culture. After 6 days, immature MoDCs of> 90% purity (HLA-DR+,
CD14-, DC-SIGN+ as ascertained by flow cytometry) were harvested by gently pipetting only
the loosely adherent fraction and re-plated (105 cells/well) in 96-well U-bottom plates in the
presence or absence of TLRAs at the indicated concentrations.

Flow Cytometry
Monocytes or MoDCs were resuspended in staining buffer (PBS, 0.5% human serum albumin
(HSA)) and stained for 30 min at 4°C in the dark (1.5�105/per staining) with fluorophore-
labeled antibodies (HLA-DR-FITC and CD14-V450 or DC-SIGN-PE) (BD Biosciences). Cells
were then centrifuged 500 x g for 10 mins, washed with PBS, fixed (1% paraformaldehyde
(PFA)) and filtered prior to flow cytometry acquisition using an LSRFortessa cytometer (BD
Biosciences) and analyzed using FlowJo software (TreeStar Inc., Ashland, OR).

Statistical Analyses and Graphics
Analysis of data was performed using Prism for MacIntosh v. 5.0b (GraphPad Software Inc.,
San Diego, CA). Data in figures represent means ± SEM. For normal sample sets, two tailed t
test was performed. Non-normal sample tests were analyzed by Mann-Whitney test, as appro-
priate. p values< 0.05 were considered statistically significant.

Results

Specificity of Imidazoquinoline Agonists for Human TLR7 and TLR8
To assess the selectivity of the novel IMQ compounds (Fig 1a, 1b, 1c and 1d), we characterized
NF-κB induction in HEK-293 cells selectively expressing human TLR7 or TLR8 (Fig 1e and
1f). Hybrid-2, Para-amine and Meta-amine demonstrated concentration-dependent activation
of NF-κB in TLR7 and TLR8 transfected cells. We compared compound potency based on half
maximal effective concentration (EC50), the concentration of agonist at which half maximal
activation of NF-κB was observed in TLR7 and TLR8 transfected cells (Fig 1e and 1f). This
analysis indicated the following rank of potencies for TLR7: Hybrid-2 (EC50 2.5 ng/ml)>
para-amine (EC50 4.02 ng/ml)>meta-amine (EC50 29.4 ng/ml)> R848 (estimated EC50 66.6
ng/ml) and for TLR8: Hybrid-2 (EC50 19.2 ng/ml)>meta-amine (EC50 33.4 ng/ml)> para-
amine (EC50 67.5 ng/ml)> R848 (estimated EC50 362.9 ng/ml). The specificity of Hybrid-2
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was evaluated by demonstrating lack of ability to activate NF-κB in other HEK-cell lines trans-
fected with TLR2,3,4,5 and 9 (S1 Fig).

Hybrid-2 Potently Activates Human Newborn and Adult Leukocytes
We tested the ability of the IMQ TLRAs to induce concentration-dependent cytokine produc-
tion in human newborn and adult blood (Fig 2). All tested IMQs induced the production of
TNF and IL-1β in a dose-dependent manner in both newborn cord blood and adult blood, sig-
nificantly above baseline. As Hybrid-2 was the most potent of all four IMQ agonists, we tested
the concentration-dependent cytokine induction of Hybrid-2 compared with R848 (Resiqui-
mod), a TLR7/8A that has been studied as an adjuvant in non-human primates [37] and as a
topical antiviral agent human clinical trials [38]. When compared to R848 at 0.1 μM and 1 μM,
Hybrid-2 demonstrated greater efficacy in inducing TNF and IL-1β production in neonatal
blood (Fig 2a and 2b N = 6, t test, p< 0.05). Hybrid-2 also demonstrated greater efficacy in
stimulating TNF and IL-1β production in adult blood at 0.1 μM and 1 μM respectively (Fig 2c

Fig 1. NF-κB induction by TLR7/8 agonists in HEK-TLR cells. Four TLR7/8 agonists were compared. (A) Structure of R848, (B) Structure of Hybrid-2, (C)
Structure of para-amine and (D) Structure of meta-amine. HEK-293 cells transfected with (E) human TLR7 and (F) TLR8 and an NF-κB-driven reporter SEAP
gene were stimulated for 18–24 h with TLR agonists. The y-axis shows the level of SEAP activity in the Quanti-blue assay optical density (OD). The x-axis
shows the concentration of each compound in mg/ml. Each data point represents the mean ± SD of OD at 650 nm of triplicate culture wells. HEK detection
medium alone (negative control) is represented in gray. The TLR7/8 benchmark agonist R848 is represented in black; The TLR 7/8 agonists Para-amine,
Meta-amine and Hybrid-2 are represented in blue, green and red respectively. Three stars indicate significance of p < 0.001 (t test) and two green indicate
significance of p < 0.01 (t test).

doi:10.1371/journal.pone.0134640.g001
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and 2d N = 6, t test, p< 0.05). Overall, Hybrid-2 demonstrated greatest potency (i.e. lowest
EC50) of the agonists tested for both TNF and IL-1β production in newborn cord and adult
peripheral blood (Fig 2, S1 Table). With respect to efficacy (magnitude) of cytokine induction,
maximal cytokine responses were achieved at higher agonist concentrations of Hybrid-2 (e.g.,
10 μM), similar to those induced by R848, Meta-amine, and Para-amine (Fig 2, S1 Table).

Hybrid-2 induced similar TNF and IL-1β Production in Newborn and
Adult Blood
Previous work has demonstrated the unique efficacy of TLR8 agonists in activation of neonatal
antigen presenting cells [19]. Consistent with these findings, we noted that both R848 and
Hybrid-2 induced concentrations of TNF and IL-1β in newborn cord blood at least as great as
those induced in adult blood (Fig 2).

Hybrid-2 Potently Activates Human Neonatal MoDCs
DCs are key antigen-presenting cells, important for the initiation of an immune response to
adjuvanted vaccines [39]. To evaluate the effect of IMQs on DCs, we generated adult and neona-
tal monocyte-derived DCs (MoDCs). MoDCs were cultured in 10% autologous plasma, which
we have previously established as a platform that allows for evaluation of age specific function of
antigen presenting cells [18,23]. We compared concentration-dependent responses of human
neonatal MoDCs to R848 and Hybrid-2 (both 0.1–10 μM) with respect to production of TNF.
Both R848 and Hybrid-2 induced TNF production in a concentration-dependent manner as
compared to unstimulated DCs. Hybrid-2 was more potent than R848 in inducing TNF, doing

Fig 2. Hybrid-2 is more potent and effective than R848, para-amine andmeta-amine in a whole blood
cytokine assay.Human newborn and adult blood was cultured for 6h with TLR 7/8 agonists R848, para-
amine, meta-amine and Hybrid-2 and supernatants collected for TNF or IL-1β ELISA. Compound
concentrations are shown in μM. Data are shown as mean ± SEM of n = 6–8. For between-agonist analyses, t
test was applied to compare Hybrid-2 to the other compounds. For between age-group analyses, t test was
applied to compare Hybrid-2 and R848 in newborns and adults. Statistical significance is denoted as follows:
*p<0.05 and **p<0.01, with black star(s) for comparison of Hybrid-2 to R848.

doi:10.1371/journal.pone.0134640.g002
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so at a concentration at� 0.3 μM, compared to R848, which induced comparable levels of TNF
only between 1–10 μM (Fig 3). In adult MoDCs, Hybrid-2 demonstrated greater TNF produc-
tion compared to R848 at concentration of 1M (Fig 3b, N = 5, t test, p< 0.05). In newborn
MoDCs, Hybrid-2 demonstrated greater TNF production compared to R848 at concentration of
0.3 M and 1 M with this difference approaching statistical significance (N = 5, t test, p = 0.06).

Crystal structure of Hybrid-2 bound to Human TLR8
To further characterize interactions between Hybrid-2 and human TLR8, we obtained a high-
resolution (2.1 Å) structure of human TLR8 co-crystallized with Hybrid-2 (Fig 4a; the atomic
coordinates and experimental data have been deposited in the Protein Data Bank under acces-
sion code 4R6A). An examination of the complex showed that the binding geometry and inter-
actions for Hybrid-2 with TLR8 were similar to R848 [28]. The amidine group of Hybrid-2
demonstrated strong hydrogen bonding interactions with Asp543. Additionally, water-medi-
ated hydrogen bonding interactions were observed between the hydroxyl on the N1-2-methyl-
propan-2-ol substituent of Hybrid-2 and Asp545 residue. Other key interactions include

Fig 3. Hybrid-2 is more potent than R848 in inducing TNF production by human newborn and adult
MoDCs. Stimulation of (A) newborn MoDCs and (B) adult MoDCs for 24 h with Hybrid-2 or R848.
Supernatants collected for TNF ELISA. Compound concentrations are shown in μM. Data are shown as
mean ± SEM of n = 5. For between-agonist analyses, t test was applied to compare Hybrid-2 to R848.
Statistical significance is denoted as follows: *p<0.05 as a black star.

doi:10.1371/journal.pone.0134640.g003

Fig 4. Crystal structure of Hybrid-2 and R848 with human TLR8. (A) The C-atoms of Hybrid-2 are shown
in green, and the residues on TLR8 are shown in cyan. A water molecule involved in mediating the interaction
between the hydroxyl on N1-substituent of Hybrid-2 and Asp545 residue is shown as a red sphere. The
hydrogen bonds are represented as dashed lines in magenta, and the bond distances are marked in black.
Overlay of crystal structures of Hybrid-2 and R848 with TLR8 is shown in (B). R848 is shown in light red and
its TLR8 receptor shown in grey. The electrostatic repulsion between the backbone carbonyl of Gly572
residue and ether oxygen of the C2-ethoxymethyl substituent of R848 is shown in magenta.

doi:10.1371/journal.pone.0134640.g004
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hydrogen bonding of the N3-amine of the imidazole ring with the backbone amide-NH of the
Thr574 residue, π-π stacking interactions of the benzene ring of the quinoline moiety with the
side chain of Phe405, and hydrophobic interactions of the aliphatic C2-n-butyl chain of
Hybrid-2 in a pocket formed by the Tyr348, Val378, Ile403, Phe405, Gly572, and Val573 resi-
dues (Fig 4a). The only difference between the structures of Hybrid-2 and R848 is that Hybrid-
2 lacks the ether oxygen on the C2-substituent (see structures in Fig 1). Accordingly, the lower
potency of R848 may be attributable to unfavorable electrostatic and/or dipolar interactions
between the ether oxygen of the C2-ethoxymethyl substituent and the carbonyl oxygen of the
Gly572 residue (Fig 4b).

Discussion
Activation of innate immune cells is a key component of effective vaccine responses [6]. Several
current licensed vaccines achieve effective induction of these innate immune responses by
either employing live attenuated organisms or microbial components with intrinsic TLRA
activity [40]. However, live attenuated vaccines are contraindicated in sub-groups of patients
including immunocompromised populations. Multiple sub-unit vaccines are safe and effective
parts of the immunization schedule, but some, such as acellular pertussis vaccine, demonstrate
sub-optimal activity suggesting that addition of an adjuvant may be beneficial [5]. Hence, char-
acterizing the immunostimulatory properties of candidate adjuvants is important to evaluate
their translational potential. In this context, we report for the first time the in vitro cytokine
inducing activity of a potent and selective TLR7/8A, Hybrid-2 as well as its structural interac-
tions with the human TLR8 receptor.

We demonstrate that Hybrid-2 potently targets TLR7/8 and propose that, like previously
studied TLR7/8As, its Th-cytokine inducing activity is refractory to soluble and cellular sup-
pressive mechanisms such as the neonatal adenosine system [18] and suppressive erythroid
precursors [8,41]. Tested in both whole blood and MoDC assays, Hybrid-2 (EC50 0.3 μM) was
both more effective and potent than R848 (EC50 1.0 μM). The potential benefits of increased
efficacy and potency of adjuvants may include antigen dose sparing as well as reduction in the
number of vaccine doses required.

Molecular modeling studies of TLR8As have suggested that binding affinity plays an impor-
tant role in species-specificity of these agonists [42]. To gain insight into potential mechanism
(s) underlying Hybrid-2’s potency we characterized the crystal structure of hTLR8:Hybrid-2.
Transposing the N1 and C2 substituents on these IMQmolecules resulted in varying TNF
inducing potencies, which may be due to differences in binding affinity to the TLR7 or TLR8.
To further characterize interactions between Hybrid-2 and TLR8, we defined the crystal struc-
ture of hybrid-2 co-crystalized with human TLR8 and in comparison to R-848 (Fig 4). Both
R848 and Hybrid-2 demonstrate strong hydrogen bonding with Asp543 of TLR8. Hybrid-2,
however, lacks the ether oxygen on the C2-substituent. Unfavorable electrostatic and/or dipo-
lar interactions between the ether oxygen of the C2-ethoxymethyl substituent of R848 and the
carbonyl oxygen of the Gly572 residue of TLR8 may contribute to the lower potency of R848 as
compared to Hybrid-2. These observations raise the possibility that that the higher potency of
Hybrid-2 vs. R848 in inducing TNF and IL-1β production may be due to higher binding affin-
ity of Hybrid-2 to TLR8.

To the extent that our in vitro and ex-vivo studies accurately model immune responses in
vivo, our findings support the potential adjuvant activity of Hybrid-2 in early life as well as in
adults. Future translational studies may include assessing the safety and efficacy of Hybrid-
2-containing vaccine formulations in newborn animals, including non-human primates, that
express TLR 7/8 functionally and structurally similar to humans [40]. Hybrid-2’s potency is

Hybrid-2 Potently Induces Cytokine Production by Human Leukocytes

PLOS ONE | DOI:10.1371/journal.pone.0134640 August 14, 2015 9 / 12



such that lower adjuvant doses, relative to other IMQ analogs, may suffice in vaccine formula-
tions thereby potentially reducing adjuvant- and antigen-dose as well as reactogenicity. The
potency of Hybrid-2 may also be advantageous with respect to its potential development as a
“stand-alone” TLRA that may serve as an immunomodulator to boost innate defense against
infection [43], reduce atopy and allergy [44] as well as treat cancer [45].

In summary, we have identified the IMQ Hybrid-2 as a potent inducer of TNF and IL-1β by
human newborn blood leukocytes and MoDCs. The relatively high potency and efficacy of
Hybrid-2 may render it a candidate “stand-alone” immunomodulator and/or adjuvant for
novel early life vaccines.

Supporting Information
S1 Fig. Hybrid-2 does not induce NF- κB in HEK-293 cells transfected with TLR2,3,4,5,9.
HEK-293 cells transfected with (A) Human TLR2, (B) Human TLR3, (C) Human TLR4, (D)
Human TLR5 and (E) Human TLR9 an NF-κB-driven reporter SEAP gene were stimulated for
18–24 h with Hybrid-2, positive control as indicated and detection medium (negative control).
The y-axis shows the level of SEAP activity in the Quanti-blue assay optical density (OD). The
x-axis shows the concentration of each compound in mg/ml. Each data point represents the
mean ± SD of OD at 650 nm of triplicate culture wells. HEK detection medium alone (negative
control) is represented in gray, positive control is represented in black and Hybrid-2 is repre-
sented in red.
(TIF)

S2 Fig. Data collection and refinement of Hybrid-2. Values in parentheses are for the shell
with the highest resolution. Rmerge(I) = S|I −<I>|/SI,where I is the diffraction intensity. R =
S|Fo − Fc|/SFo, where Fo and Fc are the observed and calculated structure amplitudes, respec-
tively. Rfree is an R value for a 5% subset of all reflections, but was not used in the refinement
(TIF)

S1 Table. Tabular representation of data displayed in Fig 2.Human newborn and adult
blood was cultured for 6h with TLR 7/8 agonists R848, para-amine, meta-amine and Hybrid-2
and supernatants collected for TNF or IL-1β ELISA. Compound concentrations are shown
in μM/ml. Cytokine production is shown as pg/ml.
(PDF)
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