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Abstract: This article presents the design and development of a genetic algo-
rithm (GA) to generate long-range transmit codes with low autocorrelation side 
lobes for radar to minimize target profile estimation error. The GA described in 
this work has a parallel processing design and has been used to generate codes 
with multiple constellations for various code lengths with low estimated error of 
a radar target profile.
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1  Introduction
Radar coding is an extensively studied topic. Barker codes, polyphase Barker 
codes, and minimum peak side lobe level (PSL) codes are some of the more 
popular transmit signals used for radar [7]. Although total integrated side lobe 
(TISL) and PSL are two criteria commonly used in rating radar code quality, 
the purpose of radar is to estimate a target profile with as little error as pos-
sible. To this end, a radar code should be designed to minimize target profile 
estimation error. Given a function that computes the mean squared error (MSE) 
of a given transmit code, it is possible to design search algorithms that use the 
target profile estimation error as a heuristic and attempt to find optimal codes. 
There have been attempts to minimize target profile estimation error using a 
greedy algorithm. That approach has yielded good results. In this work, a 
genetic algorithm (GA) is developed to find transmit codes, and the quality of 
these codes is compared with the quality of the codes found using the available 
greedy method [7].
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2  Motivation: Radar Problem
Perhaps the most fundamental of radar problems is that of estimating a range 
profile, i.e., determining the backscattered energy of objects as a function of their 
distance from the radar. However, the accuracy of this estimate is fundamentally 
constrained by the temporal function propagated by the radar transmitter.

A standard processing tool for range profile estimation is the matched filter 
(i.e., correlation processor). For this processor, the resulting profile estimate is 
simply the convolution of the true range profile with the autocorrelation func-
tion of the transmit signal. Thus, the resulting estimate can be precisely accurate 
only when this autocorrelation function – otherwise known as the imaging point-
spread function – approaches an impulse (i.e., thumbtack) response. However, 
such a perfect imaging function would require an infinite signal bandwidth. 
Instead, a realizable transmit function (with finite bandwidth) would result in 
an autocorrelation function with a center lobe, one whose width is inversely pro-
portional to the transmit signal bandwidth. The wider the signal bandwidth, the 
narrower the autocorrelation main lobe and the closer to the optimal imaging 
function. As a result, the most important characteristic of a radar transmit signal 
is bandwidth because this parameter effectively determines the capability of the 
sensor to resolve adjacent objects along the range profile.

In addition to bandwidth, another fundamental characteristic of an effec-
tive transmit signal is its energy. Receiver noise will corrupt radar measurement, 
and thus, to diminish this deleterious effect on profile accuracy, the transmit 
signal energy should be made as large as possible. The problem is that these 
two characteristics – bandwidth and energy – can be in conflict with each other. 
For example, the simplest and most traditional of radar transmit signals is an 
unmodulated pulse. The energy of this signal is proportional to its time width 
(i.e., pulse width), whereas the signal bandwidth is inversely proportional to this 
same value. As the bandwidth of a pulse increases, its energy will decrease (and 
vice versa).

As a result, high-performance radar systems seldom use unmodulated pulses; 
instead, they use phase-modulated signals that allow for increased time width – 
and thus increased energy – without altering the signal bandwidth. Yet, a signal 
with a specified energy, bandwidth, and time width does not uniquely define it – 
there are an unaccountably infinite number of functions that can simultaneously 
exhibit the same three characteristics. The criterion for selecting the optimum of 
these infinite possibilities is their resulting autocorrelation function – the function 
whose autocorrelation is most similar to the optimal “thumbtack” imaging func-
tion. Of course, for all signals, at the center of their autocorrelation function will 
be a lobe whose width is inversely proportional to the transmit signal bandwidth. 
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The issue concerning optimality is instead the size of the autocorrelation “side 
lobes” – that is, the energy of the autocorrelation function outside of the center 
“main lobe.” For optimal range profile estimation, these autocorrelation side lobes 
are ideally zero, which, however, is unachievable. Thus, we seek an optimal radar 
transmit function with the smallest possible correlation side lobes.

There has been much work directed to finding functions – with both wide 
bandwidth and time width – that have these desired autocorrelation properties 
(i.e., low side lobes). Many of these solutions are continuous phase-modulated 
signals, but another particularly useful strategy has been to consider discretely 
modulated signals. For this method, the transmit signal time is divided into an 
integer number of “chips,” whose time width is equal to the inverse of the signal 
bandwidth. As a result, the number of chips is approximately equal to the time–
bandwidth product of the transmit signal. The relative phase of each chip can be 
one of a set of discrete values (all between 0 and 2π radians). This way, the coher-
ent transmit signal is a sequence of discrete phase-modulated states. If M is the 
number of chips and N is the number of discrete phase values, then the number 
of possible sequences is then NM. For a typical case where M  =  128 and N  =  8, 
the resulting value of 8128 renders an exhaustive search impractical. Instead, 
search algorithms such as simulated annealing or GAs have been implemented 
for finding phase sequences with good autocorrelation properties. Of course, the 
mathematical definition of “good” must be specified for these search algorithms. 
Typically, the algorithms attempt to minimize either the maximum autocorrela-
tion side lobe level (the min-max criteria) or the average autocorrelation side lobe 
level. However, other criteria can be used, for example, information theoretic 
measures such as Fisher’s information.

Fisher’s information allows the determination of the Cramer–Rao lower 
bound, a lower bound on the mean-squared estimation error of – in this case – the 
range profile estimate. Maximizing the Fisher’s information thus directly results 
in maximizing the accuracy of the range profile estimate – ultimately the goal 
of this design optimization. Moreover, Fisher’s information can be used to drive 
the search algorithm. A variant called marginal Fisher’s information (MFI) can 
be determined for each possible elemental change in the transmit sequence. The 
elemental change with the largest MFI results in the greatest possible decrease 
in estimation error and so is selected as the optimal sequence modification. An 
iterative repletion of these optimal changes will result in a transmit sequence 
that informationally converges – no one element of the transmit phase sequence 
can be altered in a manner that would further increase estimation accuracy. This 
search method is in contrast to GAs, wherein the change in the sequence (the 
mutation) is randomly (as opposed to optimally) determined, and the search has 
no specific convergence criteria.
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3  Background and Related Work

3.1  Genetic Algorithms

GAs are search algorithms that use the principles of natural selection and evolu-
tion to find a population of solutions to a given problem. GAs can be used to find 
near-optimal solutions in domains too complex for exhaustive search. During the 
course of a GA, multiple solutions are kept in what is called a population. In the 
classic simple genetic algorithm (SGA), an individual solution (or simply, indi-
vidual) is represented by a string of bits (i.e., chromosome). Every individual in 
the population is given a fitness value according to how well the candidate solu-
tion it represents solves the problem at hand. As the GA runs, the population of 
solutions is modified in an iterative, generational process [4].

The evolutionary process is carried out by three main operations: selection, 
crossover, and mutation. Selection is a process by which members of the current 
population are chosen for reproduction; crossover is the process by which sub-
strings of the chosen individuals are exchanged to create a new population of 
individuals; and finally, mutation is necessary to prevent the permanent loss of 
values at any given string position.

Selection is performed by biased roulette wheel selection. In this parent 
selection method, each individual is assigned a percent chance to be selected 
proportional to its fitness value. In this manner, pairs of individuals are selected 
from the population to undergo crossover.

Crossover is performed by randomly selecting a position in the strings of two 
individuals dividing each into two substrings and exchanging the substrings. The 
point in the strings at which they are divided into substrings is called a cut-point. 
Versions of the crossover operator that have multiple cut-points, and therefore 
exchange multiple substrings, have been shown to behave like a random shuffle 
and degrade the performance of a GA in comparison to single-point crossover 
operations [4].

The mutation operator in the SGA randomly selects a bit in the string to flip. 
Crossover and selection alone are sufficient to explore recombinations of exist-
ing solutions but can cause the loss of genetic information. Mutation allows a 
random change of value at a random string location. The mutation operator is 
applied to newly created strings at a low probability per bit. If the probability of 
mutation is low, it does not destructively interfere with selection and crossover 
and provides a mechanism to recover lost genetic information. A mutation rate of 
one mutation per thousand bits transferred to the offspring in the SGA has been 
shown to obtain good results in empirical studies [4].
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After parent selection, crossover, and mutation are complete, the result-
ing population of offspring must be combined with the previous population to 
produce the next generation of survivors, of which there is a set number. The 
method by which this is done is called survival selection. In the SGA, the selec-
tion is generational. The entire population is replaced by the offspring popula-
tion each generation.

3.2  Transmit Code Problem

The definition of the transmit code problem used in this article is given by Jenshak 
[7]. TISL and PSL are two criteria commonly used in rating radar code quality; the 
purpose of radar is to estimate a target profile with as little error as possible. The 
derivation of the target profile error estimation from that research is used for the 
evaluation function of the GA. To summarize, a radar transmit code can be rep-
resented as a weighted superposition of complex signal coefficients sn and basis 
functions φn(t):

 ( ) ( ).n ns t s tφ=∑  (1)
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The goal is to find the set of coefficients in Eq. (1) that minimize the average 
target profile estimation error [7]. The search space for an N-length code with M 
symbols in the constellation is MN. The remainder of this article discusses the 
design, implementation, and performance of a GA applied to this radar problem.

3.3  Marginal Information Algorithm

To provide an example of a formal algorithm tailored to solve this problem, an 
algorithm that uses a greedy approach to find good codes is examined [7]. The 
algorithm, called the marginal information algorithm (MIA), builds the code one 
coefficient at a time, choosing each item from the constellation based on which 
one decreases the MSE of the code the most. Given an initial code of an N-length 
zero vector, the algorithm changes the first element of the zero vector to the first 
coefficient in the transmit constellation.

The algorithm then computes the MSE of the resulting code. The first element 
is changed to each of the coefficients in the constellation. The resulting code with 
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the lowest MSE is kept. The algorithm then repeats this process for the each of 
the chips in the vector. Once all the signal coefficients have been found, the algo-
rithm goes back to the first chip and tries to find a chip that will decrease the 
MSE further. This process is repeated until the algorithm converges. The marginal 
information greedy algorithm runs as follows:
1. Select new symbol from constellation.
2. Does this new symbol decrease the MSE?

Yes: Add the chip.
No: Go back to 1.

3. Is the transmit vector full?
Yes:  Go back to 1 and continue replacing chips until the MSE does not 

reduce after a complete iteration.
No: Go back to 1 and add another chip.

An advantage of this approach is that it is fast, requiring only MN evaluations instead 
of the MN evaluations required by an exhaustive search. In this investigation, this 
algorithm is implemented for the sake of comparison with the GA. One improvement 
made is the parallelization of the evaluation function that takes place at step 2. This 
improves the execution time by computing the MSE of all the considered transmit 
codes as concurrently as possible. For example, if searching for a 128 Phase-Shift 
Keying (PSK) transmit code on a machine with an eight-core processor, eight codes 
are being evaluated at once and each processor is given 16 codes to evaluate.

Other examples of applications of GAs to radar include the works of Peng-
zheng et al. [10], Wei et al. [11], Boudamouz et al. [2], Zomorrodi [15], Zhang et al. 
[14], and Fan and Deng [3].

4  Experiment Setup
This section describes the technical details of the experimental setup used in this 
project, including the design of the GA, fitness scaling, uniqueness preservation, 
parallelization, parameters, and implementation.

4.1  Design of the GA

The GA implementation for this article differs significantly from the SGA. The 
most important difference is that the chromosome representation is built from a 
limited alphabet of symbols instead of being a simple string of bits. The alphabet 
is the integers 0 through n – 1, where n is the number of symbols in the constel-
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lation of the transmit codes to be generated. Each integer in this alphabet rep-
resents a chip in the PSK constellation. The mapping from integers to chips is 
generated at the beginning of the algorithm given the desired code length and 
PSK constellation size.

Using this integer representation instead of the binary representation avoids 
problems such as not all possible bit-strings representing a valid solution or not 
all valid solutions not being possible to generate with equal probability. Using 
an integer representation does not necessitate the modification to the selection 
and crossover operators. Mutation, however, is changed from a simple bit flip to 
a random selection of possible gene values, that is, a random chip. The chance 
of mutation is generally kept at the standard rate of one mutation per thousand 
genes transferred to the offspring.

The fitness value in the case of the transmit code problem was chosen to be 
the inverse of the estimated MSE of the radar transmit code. The inverse is used 
because, by convention, a GA seeks increasing fitness values. The GA used for 
this article also implements some additional operators including fitness scaling, 
uniqueness preservation, and parallelization of the fitness function.

4.2  Fitness Scaling

Early in a GA’s run, extraordinary individuals can be selected too often and domi-
nate the population with their offspring within a few generations. Later in a GA’s 
run, the average fitness can be close to the fitness of the best individuals. In this 
situation, average individuals and the best individuals have about the same prob-
ability of being selected for reproduction. Fitness scaling is a mechanism used to 
prevent these situations. In the algorithm developed for this article, linear fitness 
scaling is used:

 f ′  =  af + b,  (3)

where coefficients a and b are defined in this work as
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However, these definitions can lead to negative f ′ values for individuals that 
are far below favg when favg is close to fmax. To prevent this situation, if
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A certain relationship between the maximum fitness of the population and 
the average fitness of the population is maintained with the following constraint 
equations:
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where ′maxf  is the scaled maximum fitness, favg is the average fitness of the popula-
tion, and Cs is a scaling constant that specifies the number of expected copies 
of the best individual in the next generation. Additional best fitness individuals 
allowed in the population causes an increase in selection pressure, which causes 
faster convergence. This can lead to a premature convergence on the local optima.

4.3  Uniqueness Preservation

When uniqueness preservation is used, the algorithm disallows the generation of 
new individuals that are identical to any individual in the existing population. If 
an individual is generated that has a clone in the population, it is mutated until it 
is unique. The purpose of this mechanism is to maintain diversity in a population. 
This scheme comes with a small limitation: the search space must be smaller 
than the population size plus the number of children generated per generation.

It is possible for fitness scaling and uniqueness preservation to work in 
tandem, but in this work, uniqueness preservation is not used in the same run as 
fitness scaling. Instead, each method is used separately to compare their results.

4.4  Parallelization

GAs are inherently parallel processes that are typically performed serially. A 
GA is initialized by either generating a population of independently randomly 
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generated individuals or by simply loading a seed population. Every genera-
tion, the genetic operators are performed on the population based on a static 
state. Fitness scaling occurs once before parent selection. The selection of pairs 
of parents and the subsequent creation of offspring via crossover and mutation 
could also be performed simultaneously, as each set of operations does not 
influence any other. The evaluation of each individual, at both initialization 
of the population and the generation of offspring, is an independent opera-
tion. This is important because fitness evaluation is typically the most com-
putationally expensive portion of GA. Despite the structure of GAs, they are 
often designed to run as serial algorithms. However, on a machine with multi-
ple processors, this inherent parallelism can be exploited for faster run times. 
The implementation of parallelization for the GA developed for this article is 
realized using the synchronous master–slave architecture of Grefenstette [5], 
in which a single master process performs all the evolutionary operations and 
multiple concurrent processes perform fitness function evaluations. With this 
design, given a machine with N processors, N concurrent fitness evaluation 
processes are possible. The machines used for the experiments had eight core 
processors and so could take advantage of up to eight concurrent fitness evalu-
ation processes.

Experiments that required the comparison of statistical analysis of results 
therefore had 30 runs of each parameter set, each with a different random seed. 
The way this was accomplished was also in parallel. A shell script runs from a 
master machine to connect to 40 slave machines and on each of them starts a 
run of the GA. In the experiments, 40 machines are used instead of 30 because 
as many as 40 were available at a time, and this allowed as many as 10 runs to 
fail due to network interruption. Each machine saves a log file and a state file to 
a shared network drive. The log file format lists first the parameters used to run 
the GA and follows with four columns: the generation number, the best fitness 
in the current population, the average fitness in the population, and the best 
fitness found during the entire run of the GA. The reason to track the best found 
ever is that in any configuration that uses generational replacement of the popu-
lation, it is possible to lose the best individual found and replace it with a less 
fit offspring.

The state file lists the integer representation of each member of the popula-
tion at the end of each generation. Due to the large population sizes and the large 
number of concurrent experiments being run, only the most recent generation is 
recorded, with the previously written one being overwritten.

In case that a GA does not complete its run, a GA can be started with a state 
file as input to initialize the population. If the other parameters are the same, the 
course of the GA will continue as if it had not been interrupted. This allows the 
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machines to be used by other processes, only running the GA during low-usage 
times.

4.5  Parameters

Every GA is subject to a set of parameters that control the specifics of each of 
its operators. These can be numerical settings or rates, such as population size, 
number of children to create per generation, and mutation rate, or they can be 
alternative definitions of operators, such as parent selection, recombination, 
mutation, survivor selection, or termination condition.

The GA used in this article uses the same operators for parent selection, 
recombination, and mutation as the described SGA. However, it differs in sur-
vival selection. Instead of generational survival selection, elitist survival selec-
tion is used, combining the child population with the current population, sorting 
by fitness and culling the worst, and leaving a constant population size. These 
operators are the same throughout this investigation. However, in a few experi-
ments, the effects of different values for some of the numerical parameters, such 
as mutation rate and population size, are compared.

4.6  Implementation

The GA was implemented in C++ and compiled with the GNU C/C++ compiler 
(www.gnu.org). Each instance of the GA was executed on an 8 Intel® Xeon® W3520 
(www.intel.com) at a 2.67-GHz core machine with 4 GB of RAM and 119.7 GB of hard 
disk space running the 64-bit version of GNU/Linux OS distribution Fedora 13  
(www.fedoraproject.org) (Kernel Linux 2.6.34.7-61.fc13.x86 64). Each instance of 
the algorithm required a transmit code length, PSK constellation size, random 
seed, maximum number of concurrent threads, and the following GA parameters: 
number of generations, population size, children per generation, mutation rate, 
and flags to enable fitness scaling or uniqueness. Optionally, a text file can be 
used to seed the GA. If no seed file is provided, the initial population is uniformly 
randomly generated. Seeding has been shown effective [8] in GA approaches.

The output of the GA is two text files. One text file is a record of the algo-
rithm’s progress, saving at the end of each generation three data: the popula-
tion’s average MSE, the best MSE currently in the population, and the best MSE 
encountered so far. The other file is a save state, which contains the chromosomes 
of each individual in the current population. This can be used as an input file to 
seed or continue another execution of the algorithm.
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5  Experiments and Results
A series of experiments were conducted, with 30 runs each and using a different 
random seed for each run. Each experiment seeks a different transmit code, increas-
ing with length and PSK constellation size. The performance of the GA is compared 
against the parallelized version of the greedy MIA and a random transmit code gen-
erator. Each run of the greedy MIA is started with a uniformly randomly generated 
seed code instead of a zero vector. The random search generates the same number 
of codes as the GA, and reports the best code found. The number of codes evaluated 
during run of the GA depends on the number of offspring per generation and how 
many generations it runs. Although the GA may potentially find multiple good solu-
tions during a single run, only the best transmit code per run is used in this analysis.

In this section, the experimental results are presented and the effectiveness 
of the GA is discussed. With different values for parameters such as population 
size, children per generation, and mutation rate, to name a few, a GA will perform 
differently. Clearly, finding an optimal configuration for a given problem is at 
least as difficult as solving the problem to begin with. Such meta-optimization is 
not approached in this article.

However, there are versions of the GA that use fitness scaling or uniqueness to 
preserve diversity. In some experiments, their effectiveness is compared against 
a GA without any such operator. The results of each experiment are summarized 
in tables that list the mean MSE, best MSE, worst MSE, and standard deviation 
(SD) of the set of transmit codes each algorithm found. Box plots are also used to 
depict the results.

Series of statistical tests are conducted after each experiment. First, one-way 
analysis of variance (ANOVA) is used to determine if there is a significant dif-
ference in the means of results. Because each experiment compares more than 
two algorithms, it is not known which means are significantly different from each 
other. Therefore, if a difference is found, Tukey honestly significant difference 
(HSD) [1] is used to make multiple comparisons. The results of the Tukey HSD 
tests are summarized by classifying the results of the algorithms into groups that 
are not significantly different. Finally, pairwise Wilcoxon rank sum tests [13] are 
performed to test whether the distributions of the results differ. For the Wilcoxon 
rank sum tests, p-values are adjusted using the Bonferroni correction method [12].

5.1  Length 13 2 PSK

The first experiment conducted seeks a length 13, binary (2 PSK) transmit code. 
The longest known Barker code is of length 13; thus, in this case, the global 
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minimum is known and an exhaustive search would only take 213 (8192) evalua-
tions. The GA has a population size of 100, has 100 children per generation, and 
terminates after 20 generations or 20,000 evaluations. Each algorithm is run 30 
times, and the results are summarized in Table 1 and Figure 1.

The ANOVA reveals that there is a statistically significant difference some-
where in the mean result of the algorithms. Tukey HSD test results are used to 
classify the algorithms, and each one has a significantly different mean, as illus-
trated in Table 2. Finally, the Wilcoxon pairwise rank sum test further demon-
strates that the distributions in the three groups differ significantly from each 
other.

5.2  Length 52 2 PSK

This experiment seeks another binary transmit code, this time with length 52. An 
exhaustive search would take 252 (∼4.5e + 15) evaluations. The GA has a popula-
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0.25

ga pmia rand

Figure 1. Length 13 2 PSK Box Plot Results.

Table 1. Length 13 2 PSK Results.

Algorithm Mean Best  Worst Success Rate

GA 0.1533 0.0718 0.2270 0.1667
MIA 0.2926 0.1558 0.4143 0
RAND 0.0964 0.0718 0.1558 0.7000
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tion size of 500, has 500 children per generation, and terminates after 200 gen-
erations or 100,000 evaluations. Each algorithm is run 30 times, and the results 
are summarized in Table 3 and Figure 2.

The ANOVA reveals that there is a statistically significant difference some-
where in the mean result of the algorithms. However, both Tukey multiple com-
parisons of means (Table 4) and the pairwise Wilcoxon rank sum tests show that 

Table 2. Length 13 2 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

PMIA a
GA b
RAND c
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MSE of Transmit Codes Found

Figure 2. Length 52 2 PSK Box Plot Results.

Table 3. Length 52 2 PSK Results.

Algorithm Mean Best Worst SD

GA 0.2632 0.2134 0.3316 0.02897
MIA 0.2738 0.2231 0.3924 0.04207
RAND 0.3163 0.2408 0.3479 0.02315
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difference exists between the random search and the greedy MIA or the GA. There 
is no significant difference in the mean or distribution of the results of the greedy 
MIA or the GA.

5.3  Length 58 2 PSK

This experiment seeks another binary transmit code, this time with length 58. 
An exhaustive search would take 258 (∼2.8e + 17) evaluations. The GA has a pop-
ulation size of 500, has 500 children per generation, and terminates after 200 
generations or 100,000 evaluations. In this experiment, different modifications 
of the GA are tried. A standard GA, a GA using fitness scaling, and a GA using 
uniqueness preservation are all compared. In addition, each variation of the GA 
is also run with two different mutation rates. A mutation rate of 0.03 mutations 
per 1000 chips transferred is compared against a mutation rate of 0.17 mutations 
per 1000 chips. Each algorithm is run 30 times, and the results are summarized 
in Table 5 and Figure 3.

ANOVA reveals that there is a statistically significant difference in the mean 
result of the algorithms. Tukey HSD test results are used to classify the algorithms 
(Table 6). Both of the GAs that used uniqueness preservation are classified as 
having a significantly different mean from the rest of the algorithms. The GAs 

Table 4. Length 52 2 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

MIA a
GA a
RAND b

Table 5. Length 58 2 PSK Results.

Algorithm Mean Best Worst SD

GA-lu 0.2069245 0.165078 0.2261300 0.01281314
GA-mu 0.2079898 0.178671 0.2317660 0.01425155
GA-mf 0.2625325 0.201165 0.3086400 0.02761104
GA-m 0.2635027 0.215362 0.3193720 0.03009706
GA-l 0.2752430 0.175345 0.3358340 0.03435993
GA-lf 0.2808252 0.201273 0.3414180 0.03227592
MIA 0.2882690 0.208831 0.3887021 0.04464315
RAND 0.3268788 0.277506 0.3563460 0.01996862
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that used the higher mutation rate outclassed the GAs with the lower mutation 
rate and no uniqueness preservation, which did not have a significantly different 
mean from the greedy MIA. Finally, the Wilcoxon pairwise rank sum test further 
demonstrates the statistical relationships between the distributions of each set 
of results.

5.4  Length 51 32 PSK

In this experiment, polyphasic codes of length 51 and 32 PSK are generated. An 
exhaustive search would take 3251 (∼5.7e + 76) evaluations. The GA has a popula-

0.35

0.30

M
S

E

0.25

0.20

ga_If ga_Is ga_Iu ga_mf ga_ms ga_mu pmia rand

Algorithm

MSE of Transmit Codes Found

Figure 3 Length 58 2 PSK Box Plot Results.

Table 6. Length 58 2 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

Gals ab
GAlu c
GAmf a
GAms a
GAmu c
MIA b
RAND d
GAlf ab
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tion size of 500, has 500 children per generation, and terminates after 300 gen-
erations or 150,000 evaluations. In this experiment, different modifications of the 
GA are tried. A standard GA, a GA using fitness scaling, and a GA using unique-
ness preservation are all compared. A mutation rate of 0.19 mutations per 1000 
chips transferred is used throughout the experiment. Each algorithm is run 30 
times, and the results are summarized in Table 7 and Figure 4.

ANOVA reveals that there is a statistically significant difference in the mean 
result of the algorithms. Tukey HSD test results are used to classify the algorithms. 
The standard GA and the GA using fitness scaling were classified as having insig-
nificantly different means from each other but significantly different from the rest 
(Table 8). The greedy MIA mean MSE is better by  > 1 SD than the next closest algo-
rithm, the GA using uniqueness preservation. The Wilcoxon pairwise rank sum 
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Figure 4. Length 51 32 PSK Box Plot Results.

Table 7. Length 51 32 PSK Results.

Algorithm Mean Best Worst SD

GAf 0.1754435 0.141882 0.2082470 0.01692452
GAs 0.1744988 0.141882 0.2082470 0.01648276
GAu 0.1077868 0.081401 0.1381190 0.01251883
MIA 0.0878632 0.062018 0.1103647 0.01272620
RAND 0.3268788 0.277506 0.4548510 0.01568197
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test demonstrates that the distributions in the three groups differ significantly 
from each other.

5.5  Length 17 64 PSK

In this experiment, polyphasic codes of length 17 and 64 PSK are generated. 
An exhaustive search would take 6417 (∼5.0e + 30) evaluations. The GA varies 
in population size in this experiment. One set of GAs has a population size of 
500, has 500 offspring per generation, and terminates after 3000 generations 
or 1,500,000 evaluations. The other set of GAs has a population size of 5000, 
has 5000 offspring per generation, and terminates after 600 generations or 
3,000,000 evaluations.

In this experiment, different modifications of the GA are tried. A standard 
GA, a GA using fitness scaling, and a GA using uniqueness preservation are all 
compared. A mutation rate of 0.19 mutations per 1000 chips transferred is used 
throughout the experiment. Each algorithm is run 30 times, and the results are 
summarized in Table 9 and Figure 5.

Table 8. Length 51 32 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

GAs a
GAu b
MIA c
RAND d
GAf a

Table 9. Length 17 64 PSK Results.

Algorithm Mean Best Worst SD

GAfl 0.09090319 0.04486430 0.1498160 0.02600308
GAfs 0.08726232 0.04192010 0.1402750 0.02263069
GAl 0.09181526 0.05430950 0.1231710 0.01892948
GAs 0.10200423 0.04623240 0.1788180 0.02808770
GAul 0.08491796 0.04225520 0.1161510 0.01833392
GAus 0.08069726 0.04356430 0.1410860 0.02888958
MIA 0.09834705 0.05479663 0.1463733 0.02227150
Rand 0.22806287 0.19250400 0.2535850 0.01580852
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ANOVA confirms that there is a statistically significant difference in the mean 
result of the algorithms, as illustrated in Table 24. The differences given by Tukey 
HSD multiple comparisons of means are calculated, and the resulting classifica-
tions are shown in Table 10.

5.6  Length 49 64 PSK

In this experiment, polyphasic codes of length 49 64 PSK are generated. An 
exhaustive search would take 6449 (∼3.1e + 88) evaluations. The GA has a popula-
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Figure 5. Length 17 64 PSK Box Plot Results.

Table 10. Length 17 64 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

GAfs ab
GAl ab
GAs a
GAul ab
GAus b
MIA ab
RAND c
GAfl ab
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tion size of 1000, has 1000 offspring per generation, and terminates after 500 
generations or 500,000 evaluations. In this experiment, different modifications 
of the GA are tried. A standard GA, a GA using fitness scaling, and a GA using 
uniqueness preservation are all compared. A mutation rate of 0.20 mutations 
per 1000 chips transferred is used throughout the experiment. The data from the 
random search algorithm are missing due to an error at run time that has not been 
corrected at the time of writing. Each algorithm is run 30 times, and the results are 
summarized in Table 11 and Figure 6.

ANOVA confirms that there is a statistically significant difference in the mean 
result of the algorithms. The resulting classifications given by Tukey HSD are 
shown in Table 12. The results of the pairwise comparisons using the Wilcoxon 
rank sum test support these classifications.
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Figure 6. Length 49 64 PSK Box Plot Results.

Table 11. Length 49 64 PSK Results.

Algorithm Mean Best Worst SD

GAf 0.13069591 0.09612920 0.1756330 0.018230771
GA 0.12467841 0.09612920 0.1639320 0.016499612
GAu 0.09467253 0.07622120 0.1152980 0.009212712
MIA 0.08192220 0.04752182 0.1032973 0.012021836
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6  Conclusion
This article presented an SGA that attempts to find transmit codes with minimal 
radar target profile expected error. The results of the GA versions using fitness 
scaling and uniqueness preservation were compared with an existing greedy 
search method.

When searching for binary codes, the GA-generated results as good as or 
better than the greedy method. However, when searching for polyphase codes, 
the GA had equal or inferior results to the greedy method. In the case of length 51 
32 PSK code, the greedy algorithm-generated codes with mean MSE better by  > 1 
SD than the closest GA. In the case of length 17 64 PSK code, some versions of the 
GA had the same performance as the greedy method. In the largest search space, 
length 49 64 PSK, the greedy MIA found the best codes and was significantly 
better than the codes the GAs found.

GAs with varying mutation rates and population sizes were compared. Two 
different mutation rates were used when searching for length 58 2 PSK codes and 
did not cause statistically different results. Two different population sizes were 
used when searching for length 17 64 PSK codes and did not cause statistically 
different results.

Two diversity-preserving measures, fitness scaling and uniqueness preserva-
tion, were used in several of the experiments, as well as the standard GA without 
any such measure. In all the cases in which these two methods were compared 
(length 58 2 PSK, length 51 32 PSK, length 17 64 PSK, length 49 64 PSK), the GAs 
using fitness scaling found slightly better results but did not find statistically sig-
nificantly different results than the standard GA. The GA using uniqueness pres-
ervation found statistically significantly better results than both the standard GA 
and the GA using fitness scaling.

In terms of future work, although the GA did well in finding good binary radar 
transmit codes, when searching for longer codes with larger constellations, the 
GA did not perform as well as the greedy MIA. Both algorithms used the same 
heuristic, but the GA required many more evaluations to find good solutions, 
whereas the greedy algorithm quickly converged.

Table 12. Length 49 64 PSK: Tukey HSD Class Memberships.

Algorithm Class Memberships

GAs a
GAu b
MIA c
GAf a
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However, the GA could certainly be improved. One way to cut down on the 
number of evaluations the GA requires would be to keep a table of the fitness of 
previously found individuals. It is possible to regenerate and reevaluate a previ-
ously found solution. This wastes computation time. Before implementing such 
a mechanism, it would be prudent to run first an experiment that keeps a count 
of every unique individual code generated during the course of GA. If, for a given 
problem set, a good portion of the evaluations is for previously generated indi-
viduals, then this would be a wise optimization.

The fact that GAs using uniqueness preservation performed significantly 
better than any other GA configuration suggests that the more standard fea-
tures of the GA are not well suited for this problem. Only a few experiments were 
conducted to compare certain parameters of the GA such as mutation rate and 
population size. Any future investigation would require some tuning of these 
parameters. Variations in parent selection and survival selection methods should 
also be explored. The elitist survival selection method used in this project may be 
too aggressive and have causes a premature convergence of the population, even 
with fitness selection and uniqueness preservation in place. The same could be 
said of the fitness proportional parent selection.

Mutation rates, which were kept relatively low throughout this investigation, 
may need to be raised as the search space increases. Alternatively, instead of 
keeping a fixed mutation rate for every gene in all the individuals in the popula-
tion, a technique from evolutionary strategies could be used, which, along with 
the solutions, keeps a vector of mutation rates for each individual, and these 
mutation rate data are evolved along with the solutions [6].

Another diversity preservation method called crowding could be investi-
gated as well. Crowding is similar to uniqueness preservation, but instead of 
disallowing the generation of new individuals that are identical to any indi-
vidual in the existing population, it replaces the most similar member of the 
population [9].

Although the parallelization scheme used in this project took advantage of 
all the processing power available on a single multi-core machine, a networked 
approach with remote machines performing fitness evaluations at less than full 
capacity would be much better suited to today’s cloud-based computing, as pow-
erful networked computers become ubiquitous.

Another approach could be to modify the GA to run in phases. First, gener-
ate codes with a smaller constellation early in the run; then, when the popula-
tion has converged, increase the constellation size, translate the population’s 
codes to the new size, and dramatically increase the mutation rate for a few 
generations. This approach can be repeated until the desired constellation size 
is reached and the population converges. This scheme could be implemented 
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using the GA developed for this project and a function that translates trans-
mit codes from one constellation size to another. Each phase would represent 
a single run of the GA. The translation function would transform the state file 
produced, and the next phase of the GA would be another run seeded with the 
transformed state file. Finally, another scheme that would seed the GA would 
be a hybrid approach that would generate the initial population of the GA using 
multiple runs of the greedy marginal improvement algorithm. This hybrid 
approach would require a GA that is improved using any of the methods sug-
gested in this article.

Received May 7, 2013; previously published online June 5, 2013.
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