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ABSTRACT

In this paper we introduce pkann, a freely available software package for interpolating the
non-linear matter power spectrum, constructed using artificial neural networks (ANNs). Pre-
viously, using HALOFIT to calculate matter power spectrum, we demonstrated that ANNs
can make extremely quick and accurate predictions of the power spectrum. Now, using a
suite of 6380 N-body simulations spanning 580 cosmologies, we train ANNs to predict
the power spectrum over the cosmological parameter space spanning 30 confidence level
around the concordance cosmology. When presented with a set of cosmological parameters
(Qmh?, Qh?, ng, w, os, >~ m, and redshift z), the trained ANN interpolates the power spec-
trum for z < 2 at sub-per cent accuracy for modes up to k < 0.9 » Mpc ™. pkann is faster than
computationally expensive N-body simulations, yet provides a worst-case error <1 per cent
fit to the non-linear matter power spectrum deduced through N-body simulations. The overall
precision of PKANN is set by the accuracy of our N-body simulations, at 5 per cent level for cos-
mological models with > m,, < 0.5 eV for all redshifts z < 2. For models with Y m, > 0.5 eV,
predictions are expected to be at 5 (10) per cent level for redshifts z > 1 (z < 1). The pkann

interpolator may be freely downloaded from http://zuserver2.star.ucl.ac.uk/~fba/Pk ANN.

Key words: cosmological parameters—cosmology: theory—Ilarge-scale structure of

Universe.

1 INTRODUCTION

With the upcoming surveys promising to breach the per cent level
of precision, any efforts to further improve the constraints on cos-
mological parameters will be predominantly theory limited. The
Baryon Oscillation Spectroscopic Survey (BOSS; Eisenstein et al.
2011) aims to determine the angular diameter distance with a pre-
cision of 1 percent at redshifts z = 0.3 and 0.55, and the cosmic
expansion rate H(z) with 1-2 percent precision at the same red-
shifts. The Dark Energy Survey (DES; The Dark Energy Survey
Collaboration 2005) will probe the nature of dark energy through
both the growth of structure in the Universe as a function of time
and the dependence of distances on the expansion rate. The Dark
Energy Spectroscopic Instrument (DESI; Levi et al. 2013), through
redshift measurements of millions of galaxies and quasars, will
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enable baryon acoustic oscillation (BAO) and redshift space distor-
tion measurements. The Large Synoptic Survey Telescope (LSST;
Ivezic et al. 2008) will measure the comoving distance in the red-
shift range z = 0.3-3.0 with an accuracy of 1-2 percent. These
studies will shed more light and possibly solve some of the unan-
swered questions in cosmology including the nature of dark energy,
and the absolute mass scale, the hierarchy and the effective num-
ber of neutrino species N Using BAO and the cosmic microwave
background (CMB) data, Planck (Planck Collaboration et al. 2013)
constrains the dark energy constant equation of state parameter at
w = —1.13 = 0.13 with no evidence for dynamical dark energy.
This is consistent with a cosmological constant (w = —1) domi-
nated flat universe. In order to distinguish between various models
of dark energy, such as w # —1 and/or a time-varying equation of
state parameter, one needs more precise and accurate measurements
of the matter power spectrum.

Neutrino oscillation experiments (SNO 2004; Adamson et al.
2008; KamLAND 2008) indicate that at least two neutrino
eigentstates have non-zero masses. Massive neutrinos thus qualify
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as a hot dark matter component and contribute to the total energy
density of the Universe. Free-streaming of massive neutrinos damps
small-scale density perturbations, thereby suppressing the growth of
cosmological structure. Accurate measurements of the matter power
spectrum offer a powerful tool to constrain the absolute mass-scale
of neutrinos, and complement the oscillation experiments which, be-
ing sensitive to the mass squared differences between the neutrino
eigentstates, only provide a lower bound on the total neutrino mass.
Specifically, mass splittings of | Am3,| = (2.43 £ 0.13) x 1073 eV?
and Am3, = (7.594+0.21) x 10 eV? (Adamson et al. 2008;
KamLAND 2008) imply a lower limit for the sum of the neu-
trino masses to be 0.06 and 0.1 eV for the normal and inverted mass
hierarchies (Otten & Weinheimer 2008), respectively. Assuming a
minimal-mass (Y _m, = 0.06 eV) normal hierarchy for the neutrino
masses, the Planck survey find > m, < 0.23 eV (95 percent CL).
Wilkinson Microwave Anisotropy Probe (WMAP) 9-year (Hinshaw
et al. 2013) analysis find > m, < 0.44 eV (95 percent CL). Lahav
et al. (2010) obtained an upper limit of 0.11 eV (95 percent CL).
Numerical studies of the scale-dependent suppression of matter
power spectrum has been performed by various groups: Brandbyge
& Hannestad (2010), Viel, Haehnelt & Springel (2010), Agarwal &
Feldman (2011), Bird, Viel & Haehnelt (2012) and Wagner, Verde
& Jimenez (2012). Agarwal & Feldman (2011, hereafter Paper 1)
and Wagner et al. (2012) show that resolving the neutrino mass
hierarchy may require the power spectrum to be measured at better
than 0.5 percent accuracy, which may be possible with the next
generation of experiments.

Currently, there are four popular approaches to estimate the non-
linear matter power spectrum: (i) HALOFIT (Smith et al. 2003);
(ii) higher order perturbation theory (PT; e.g. Saito, Takada &
Taruya 2008, 2009; Nishimichi et al. 2009; Upadhye et al. 2013);
(iii) N-body simulations (e.g. Enzo, O’Shea et al. 2010; GADGET,
Springel 2005); (iv) spectrum interpolators (e.g. Heitmann et al.
2006, 2014; Habib et al. 2007; Lawrence et al. 2010). While HALOFIT
performs well on large scales (k < 0.1 /2 Mpc™'), its performance
degrades rapidly on smaller scales. Takahashi et al. (2012) re-
calibrated the original HALOFIT (Smith et al. 2003) extending it to
include dark energy models with constant equation of state w # —1.
The accuracy of HaLoFIT predictions is model dependent and may
be as low as 5-10 per cent at k ~ 1 Mpc~! (Takahashi et al. 2012;
Heitmann et al. 2014). Likewise, PT improves upon linear theory
predictions on large scales but fails on smaller (k>0.09 h Mpc™')
scales. At higher redshifts when the perturbations are less evolved,
the accuracy for both HaLoFIT and PT improves. However, since dark
energy is a late-time phenomenon (z < 2), one cannot rely on fitting
functions like HALOFIT and PT at low redshifts if one aims to develop
a theoretical framework capable of predicting the non-linear matter
power spectrum at per cent level. This leaves N-body simulations
as the only method capable of controlling the accuracy levels as
desired. Heitmann et al. (2010) show that gravity-only simulations
can be used to calculate the matter power spectrum at sub-per cent
accuracy up to k < 14 Mpc~'. On smaller scales, baryonic physics
affects the power spectrum and needs to be included in numerical
simulations to maintain per cent accuracy.

A typical high-resolution dark-matter only simulation intended to
probe k < 14 Mpc! scales can cost ~10000 CPU hours. Includ-
ing hydrodynamics in simulations to probe smaller scales can take
prohibitively long, especially when running multiple simulations
spread across the cosmological parameter space. As discussed ear-
lier in Heitmann et al. (2006) and Habib et al. (2007), parameter es-
timation and model building typically involves sampling the param-
eter space and evaluating the power spectrum for each cosmology.

pPkanNN — Matter power spectrum interpolator 2103

As we mentioned in Agarwal et al. (2012, hereafter Paper I1), given
the multidimensionality of the cosmological parameter space, a
brute force application of N-body simulations is beyond our current
state of the art computing capabilities.

A novel alternative to running numerical simulations to deter-
mine the non-linear response from varying parameter settings is
to use machine learning techniques. Machine learning has found
use in a variety of applications such as brain—machine interfaces
(Jenatton et al. 2011; Pedregosa et al. 2012), analyses of stock mar-
ket (Ghosh 2011; Hurwitz & Marwala 2012), fitting of cosmological
functions (Auld et al. 2007; Fendt & Wandelt 2007; Auld, Bridges
& Hobson 2008) and estimating photometric redshifts (Collister &
Lahav 2004).

Using machine learning in the form of Gaussian processes,
Heitmann et al. (2009, 2014) and Lawrence et al. (2010) have de-
veloped a matter power spectrum calculator — COSMIC EMULATOR,
that is an order of magnitude improvement over the popular HALOFIT
prescription. The cosmiCc EMULATOR, based on gravity-only N-body
simulations, comes in two versions: i-fixed (Lawrence et al. 2010)
and h-free (Heitmann et al. 2014). The h-fixed version computes
the Hubble parameter % using the CMB constraint on the acoustic
scale and predicts the non-linear matter power spectrum up to z < 1
for modes k < 1 hMpc™'. The h-free version has / as a free param-
eter that can be set by the user. The range of validity of the h-free
version is up to z < 4 for modes k < 15 4 Mpc~!. Both versions are
restricted to cosmological models with massless neutrinos. Since
the current understanding is that at least two neutrino eigentstates
have non-zero masses, it is reasonable to develop a power spectrum
interpolator that is suitable for cosmological models with/without
massive neutrinos.

In Paper II, we developed the formalism for estimating the
non-linear matter power spectrum using artificial neural networks
(ANNSs). Using HALOFIT spectra as mock N-body spectra, we showed
that the ANN formalism enables a remarkable fit with a manageable
number of simulations. In this paper, we use a suite of 6380 N-body
simulations spanning 580 cosmologies around the WMAP 7-year
central values, and train ANNs to predict the power spectrum accu-
rate at 5-10 per cent level for k < 0.9 h Mpc ™" up to redshifts z < 2.
The pkann package, along with instructions to use, is available at
http://zuserver2.star.ucl.ac.uk/~fba/Pk ANN.

We trained pkann for a range of cosmologies including w # —1
and m, # 0. However, the training can be easily extended to include
other parameters such as time-varying dark energy, modified gravity
as well as probing small-scale baryonic effects. This will require (i)
running a few N-body simulations around the cosmological param-
eter(s) being probed, (ii) calculating the matter power spectra from
numerical simulations, (iii) randomly dividing these power spectra
into two sets, namely, the training and validation sets (explained in
Paper II, and here in Appendix Al) and (iv) training PKANN using
the training and validation sets. Once training is over, the trained
network can be used to predict the matter power spectrum at new
parameter settings.

The outline of this paper is as follows. We discuss our numeri-
cal simulations in Section 2. We develop the PkaNN interpolator in
Section 3. We present our results in Section 4 starting with the per-
formance of the pkanN interpolator against spectra computed using
N-body simulations (Section 4.1). The estimate of errors in PkKANN’s
predictions is summarized in Section 4.2. In Section 4.3, we use
PkANN to study the response of matter power spectrum to variations
in cosmological parameters. PkaNN’s performance is compared with
the h-fixed cosmic EMULATOR as well. We conclude in Section 5. In
Appendix A, we detail the formulae used in developing pkann.
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Table 1. Parameter space used in generating the ANN training and validation sets. The last
column shows the corresponding WMAP 7-year+BAO+H, constraints at 68 percent CL.
Inside parentheses is the range for the ANN testing set. The range of the parameters for the
testing set is designed to avoid the boundaries of the parameter space. Neutrino mass being
physically bound (3" m, 2 0), the lower bound on neutrino mass is set at zero.

Cosmological parameters Lower value

Upper value

WMAP 7-year+BAO+H

Qmh? 0.110 (0.120)
Qph? 0.021 (0.022)
ng 0.85 (0.90)
w —1.35(—1.15)
o3 0.60 (0.70)
>omy (eV) 0(0)

0.165 (0.150)

0.1352 £+ 0.0036

0.024 (0.023) 0.02255 + 0.00054
1.05 (1.00) 0.968 =+ 0.012
—0.65 (—0.85) —1.1£0.14
0.95 (0.85) 0.816 =+ 0.024
1.1 (0.5) <0.58"

¢ Komatsu et al. (2011).
595 per cent CL for w = —1.

2 NUMERICAL SIMULATIONS

We run N-body simulations over a range of cosmological parame-
ters with the publicly available adaptive mesh refinement (AMR),
grid-based hybrid (hydro+gravity) code Exzo' (Norman et al. 2007;
O’Shea et al. 2010). All our simulations are hydro+gravity and run
in unigrid (AMR switched off) mode. For the hydrodynamical sim-
ulations, we include radiative cooling of baryons using an analytical
approximation (Sarazin & White 1987) for a fully ionized gas with a
metallicity of 0.5 M. The cooling approximation is valid over the
temperature range from 10* to 10° K. Below 10* K, the cooling rate
is effectively zero. We do not account for metal-line cooling, super-
nova (SN) feedback or active galactic nucleus (AGN) feedback. The
parameters we consider are I = (Qumh?, Qh?, ng, w, o3, S m,),
where h, Qu, Qb, ns, w, og and Y m, are the present-day nor-
malized Hubble parameter in units of 100 km s=! Mpc~!, the
present-day matter and baryonic normalized energy densities, the
primordial spectral index, the constant equation of state parame-
ter for dark energy, the amplitude of fluctuation on an 8 A~! Mpc
scale and the total neutrino mass, respectively. The limits (see
Table 1) on this six-dimensional parameter space includes the
WMAP T7-year+BAO+H, (Komatsu et al. 2011) constraints.

For details on generating the initial conditions for simulations,
and treating massive neutrinos, refer Paper I. Our N-body simu-
lations do not explicitly account for the presence of neutrino per-
turbations and implement neutrinos only through its effects on the
background evolution. Specifically, we modified the cosmological
routines of the ENzo code to include the effects of massive neutri-
nos on the homogeneous Hubble expansion /(a) (for details, see
Paper II) and the linear growth factor. Our modifications to the
growth factor neglect any scale dependence in the presence of mas-
sive neutrinos. We sample 70 (>_m, = 0) + 130 (> _m, # 0) = 200
(training set), 18 + 32 = 50 (validation set) and 150 + 180 = 330
(testing set) cosmologies from the parameter space (see Table 1)
using an improved Latin hypercube technique (for details, see
Paper II). The training set guides the neural network training, the
validation set prevents the ANN from overfitting to the training set
and the testing set is used to evaluate the performance of the trained
network. The testing set has no effect on training and provides an
independent measure of network performance. For each cosmology
I =(Quh?, Qh®, n,, w, og, >,m,), we compute the Hubble
parameter 4 using the WMAP 7-year+BAO constraint on the acous-
tic scale 7td)s/rs = 302.54, where djs is the distance to the surface

Uhttp://lca.ucsd.edu/projects/enzo
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of last scattering and r; is the comoving size of the sound horizon
at the redshift of last scattering. The procedure to compute % is
outlined in Paper II. This / value, together with the chosen Q,,4>
and Q,/?, is used to derive ©,, and Q. The present-day normalized
energy density of dark energy is fixed as Q4. = 1 — 2,,,. Starting at
redshift z = 99, all simulations are run in a comoving box of length
200 A~! Mpc, with 256° cold dark matter (CDM) particles evolved
on a 5123 grid. We take 111 snapshots of the CDM and baryon
positions between redshifts z = 2 and 0; specifically 100 snapshots
(Az = 0.01 apart) in the range 0 < z < 0.99, and 11 snapshots
(Az =0.1 apart) in the range 1 <z < 2.

Using a cloud-in-cell (CIC) interpolation scheme, we transform
the CDM and baryon positions into their respective mass density
fields. The densities are fast Fourier transformed to obtain the
CDM and baryon non-linear power spectra, namely PS and PJ,
respectively. Together with the neutrino linear spectrum P, and
the weights £ = Qi/Qm, the non-linear matter power spectrum Py
is then calculated (for details, see Paper I) as

2
Pu(k) = {(f°+fb) P+ Y Pﬁ’n(k)} , (1)
where
2
P = (fC+ 072 [f“\/Pnﬁ(ka" Pn"l(k)} . ()

The subscripts ‘lin’ and ‘nl’ indicate quantities in the linear and non-
linear regimes, respectively. Throughout our analyses, we work with
flat cosmological models: ,,( = Qp + Q¢ + 2,) + Q4. = 1, where
Q. and 2, are the present-day normalized energy densities of CDM
and neutrino, respectively. To suppress statistical scatter in the mat-
ter power spectrum, we average the power spectra for 11 realizations
per cosmology. In Fig. 1, we show PS, P% and P, spectra (long-
dashed, short-dashed and solid lines, respectively) for one of the cos-
mological models I = (0.1196, 0.0232,0.992, —0.72, 0.8587, 0)
with & = 0.6496. The linear matter power spectrum is shown by
dot—dashed line. At k = 1hMpc~!, baryons suppress the CDM
spectrum at 1-2 percent level. At low redshifts (z < 2), as the
gas component cools and condenses, it collapses to the centre of
CDM haloes, thereby enhancing the gas power spectrum above
the CDM spectrum on smaller scales (k > 102 Mpc™!). This is
consistent with previous studies (Rudd, Zentner & Kravtsov 2008;
Casarini et al. 2011) that investigated the effect of baryonic physics
on the matter power spectrum through simulations including gas
cooling, star formation and SN feedback. We note that although
all our simulations in this work are hydro+gravity, on large scales
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Figure 1. Top panel: matter power spectrum evaluated at redshifts z = 0,
1, 2 (top to bottom sets, respectively) for the cosmological model
I =(0.1196, 0.0232,0.992, —0.72, 0.8587, 0) with & = 0.6496. At each
redshift, the various lines are the non-linear spectra computed using
hydro-+gravity simulations: (i) Py (long-dashed), (ii) Pr?l (short-dashed)
and (iii) Py (solid). The linear matter power spectrum is shown by dot—
dashed line. Py is constructed using P¢ and PP, as discussed in the text

nl nl>
(see equations 1 and 2). Lower panels: the ratio of the non-linear spectra

(PS. PY and Py) to the CDM spectrum Py
(k < 1hMpc™') the matter power spectrum is minimally affected
by baryonic dynamics and one can rely on gravity-only simulations.
We use the one-loop standard PT as implemented by Saito
et al. (2008) for estimating the matter power spectrum up to
k <0.085hMpc~! and stitch it with the non-linear power spec-
trum from numerical simulations. Finally, the stitched spectrum is
sampled at 50 k-values in the range 0.006 < k < 1 hMpc~'. The
stitched-and-sampled non-linear power spectrum is used as Py (k, z)
for ANN training. This stitch-and-sample procedure is repeated for
each cosmology I in the training set to complete the training set
Pu(k, z|I).

3 ARTIFICIAL NEURAL NETWORKS

Fig. 2 shows a skeleton of a machine learning network. Using a
suitable training set (input parameters for which data is available),
the machine learning algorithm is trained to learn a parametrization.

New Input Data

2 A 4
Trained Network

Predicted Output

Figure 2. Steps | and 2: a machine learning network learns to parametrize
the output, for the input patterns that form the training set. Steps 3 and 4: the
trained network is capable of making predictions when presented with input
parameter settings. The queried input settings must lie within the parameter
ranges of the patterns in the training set.

— | Machine Learning
| Training Set —> " Ao richm
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With this parametrization the network is capable of reproducing (as
closely as possible) the output, when queried with input parame-
ter settings that are part of the training set. The trained network
can now be presented with new settings of the input parameters
(for which one does not have any prior data) and by using the
same parametrization learnt during the training process, the net-
work makes predictions.

ANN - a form of machine learning — is a collection of nodes
arranged in a series of layers, with each node in a layer connected
to all other nodes in adjacent layers. A network’s architecture is
specified by the number of nodes from input to output as Ny, :
Ny : Ny :.... : N, : Ny That is a network with an architecture
4:9:5:7 has 4 inputs, two hidden layers with 9 and 5 nodes,
respectively, and finally 7 outputs. An extra node (called the bias
node) is added to the input layer as well as to each of the hidden
layers. The bias nodes are added in order to compensate for the
difference between the network’s mean prediction and the mean of
the outputs of training set patterns (for details, refer Bishop 1995).
Each bias node connects to all the nodes in the next layer. Note
that the counts N;,, Ny, N», ..., N, do not include the bias nodes.
The output layer has no bias node. The total number of connections
(also called the weights) Ny for a generic architecture Ni, : Ny : N,
... N, @ Ny can be calculated using the formula

n n
Ny = NiNi + Y NiiNi + NoNow + Y Ni + Nou, 3)
1=2 =1

where the summation index [ is over the hidden layers only.
Throughout this paper, we will use the vector notation w to col-
lectively refer to all the network weights.

In Fig. 3, we show a typical ANN architecture (left-hand panel)
and the formulae to calculate the node activations (right-hand pan-
els). In the network configuration depicted, there are N, input
parameters/features (x, ..., x;), a single hidden layer with N,
nodes (z1, . .., z;) and Ny output parameters/features (yy, . . ., yi).
The bias nodes in the input and hidden layers are x, and zo,
respectively.

Each node in the /th hidden layer is a neuron with an activation,
z;j = g(a;), taking as its argument

aj :ijiZh “4)
i=0

where the sum is over all nodes i (including the bias node) of the
previous layer sending connections to the jth node (barring the bias

Input layer  Hidden layer Output layer
For Hidden Layer

Ni
3= D WiXi
i=0

7= g(a) = 1/[1+exp(-a)]

For Output Layer
N
A= JWiiZj
=0

Zy = g(ax) = ak

Figure 3. A typical ANN architecture (left-hand panel) with node activation
formulae for the hidden and output layers (right-hand panels). There can be
more than one hidden layers. Throughout our PkaNN analysis, we work with
a single hidden layer.

MNRAS 439, 2102-2121 (2014)
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node) of the current layer. Note that for networks with a single
hidden layer (as in Fig. 3), z; in equation (4) would correspond to
the input parameters x;. The activation functions are typically taken
to be sigmoid functions such as g(a;) = 1/[1 + exp (—a;)]. Since
the range of g(a;) is from O to 1, it allows the output of the neurons
to be interpreted as the probability that any specific neuron will
“fire’ when presented with an input parameters setting. The sigmoid
functions impart some degree of non-linearity to the neural network
models. A network becomes overly non-linear if the weights w
deviate significantly from zero. This drives the activation g(a;) of
the nodes to saturation. The number and size of the hidden layers
add to the complexity of ANNs. The activation of all bias nodes
is permanently set to a value of 1 and during network training the
bias parameters (namely, wj, and wyo in Fig. 3 left-hand panel)
are adjusted so as to minimize the difference between the mean
prediction for the network and the mean of the outputs of the training
set patterns.

The activation y; = g(ay) for neurons in the output layer is usu-
ally taken to be ay, i.e. g(ax) = ai, with g, being the weighted sum
of all nodes in the final hidden layer,

ay :Zwkaj. (5)
j=0

For a particular input vector (xj, ..., X;), the output vector
15 - - .» yx) of the network is determined by progressing sequen-
tially through the network layers, from inputs to outputs, calculating
the activation of each node.

Adjusting the weights w to get the desired mapping is called the
training of the network. For matter power spectrum estimation, we
use a training set of N-body simulations with known cosmological
parameters:

I= (th2, Quh%, ne, w, o, Zm)

PANN/PN—body -1 [%]

0.1 1 0.01 0.1 1

k (h Mpc-1)

Figure 4. Percentage error at redshift z = 0 (left-hand panel), z = 1 (middle panel) and z = 2 (right-hand panel) between the predicted non-linear power
spectrum (using PkanN) and the true underlying spectrum (using N-body simulations) for 200 training set cosmologies. The shaded region contains the middle
99.73 per cent (30) of the residuals. The rows (from top to bottom) correspond to Npigden = 14-98 in increments of 14. The mean error over all 200 cosmologies

is shown by a solid line — an indicator of any bias in the ANN training scheme.
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It has been shown (see Hornik 1991; Ito 1991; Bishop 1995) that
networks with a single hidden layer are capable of making arbitrarily
accurate approximation to a function and its derivatives. As such,
for pPkanN’s architecture, we only consider networks having single-
hidden layer with sigmoidal activations and output nodes with linear
(g(ar) = ay) activations, as depicted in Fig. 3.

In Appendix A1, we develop the Pkann cost function x&(w). Min-
imizing this cost function with respect to the weights w generates
a trained ANN that can be used for non-linear matter power spec-
trum interpolation. To minimize Xé(w) (see equation A11) with re-
spect to the weights w, we use an iterative quasi-Newton algorithm
(Appendix A2) that involves evaluating the first-order derivative
(gradient) of the cost function. See Appendix A3 for the derivation
of the gradient. The quasi-Newton algorithm also involves informa-
tion about the inverse of the Hessian (second-order derivative) ma-
trix which we approximate using the Broyden—Fletcher—Goldfarb—
Shanno (BFGS) method (see Appendix A4; for details, see Bishop
1995).

Starting with randomly assigned weights w, their values are re-
estimated iteratively, making sure that each iteration proceeds in
a direction that lowers the cost function xé(w). In order to avoid
overfitting to the training set, after each iteration to the weights,
equation (A11) is also calculated for what is known in neural net-
work parlance as a validation set. The validation set for our appli-
cation of neural networks is a small set of simulations with known
I = (Quh®, k%, ng, w, os, Y,m,) and Py(k, z). The final
weights wy are chosen so as to give the best fit (minimum Xé(w)) to
the validation set. The network training is considered finished once
xé(w) is minimized with respect to the validation set. The trained
network can now be used to predict Py (k, z) for new cosmolo-
gies. It is important to note that starting with a different (but still
random) configuration of weights, may lead to a trained network
with a different set of final weights w¢. As such, we train a number
of networks that start with an alternative random configuration of
weights. The trained networks are collectively called a committee
of networks and subsequently give rise to better performance than
any single ANN in isolation. For the final output, we average over
the outputs of the committee members.

4 RESULTS

4.1 Comparing PKANN against numerical simulations

In Paper II, we compared pPkanN’s performance against HALOFIT spec-
tra to demonstrate that a suitably trained network is capable of repro-
ducing the HALOFIT spectra at sub-per cent accuracy. Here, we repeat
the procedure, this time using spectra calculated using N-body sim-
ulations. We selected the combination 7 : Npjggen : 50 as our PKANN
architecture, where Nyiggen (number of nodes in the hidden layer)
was varied from 7 to 98, in steps of 7. The number of inputs were
fixed at 7, corresponding to I = (Quh%, Quh?, n,, w, oz, Y. m,)
including redshift z. We use the cams (Lewis, Challinor & Lasenby
2000) code to calculate the CDM, baryon and neutrino transfer
functions. The initial conditions for CDM particles and baryons are
then generated from their transfer functions using Exzo. The non-
linear matter power spectrum Py (k) is constructed using equations
(1) and (2).

As in Paper II, we do not sample the redshift in the Latin hy-
percube but instead evaluate Py (k, z) at 111 redshifts between
z = 0 and 2 from numerical simulations, using equations (1) and
(2). As we discussed in Section 2, we extend the range of our
spectra to k = 0.006 4 Mpc~! by using the one-loop standard PT
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(Saito et al. 2008). We estimate the matter power spectrum up to
k < 0.085 h Mpc~! using the one-loop standard PT and stitch it with
P.i(k, 7). The stitched spectrum is then sampled at 50 k-modes in the
range 0.006 < k < 1 A Mpc~". Since our training and validation sets
have (130 + 70) and (32 + 18) cosmologies, respectively (see Pa-
per II), we calculated P, (k, z) for each cosmology, at 111 redshifts.
These Py(k, z) are scaled by their respective linear spectra Py, (k, z)
(see equation A9), before being fed to the neural network. Thus,
the overall size Ny of the training set that we train our ANN with
is Nt =200 x 111 = 22200. Likewise, we have 50 x 111 = 5550
patterns in the validation set. For each Npjgqen Setting, we trained a
committee of 16 ANNs. The weights w for each ANN were ran-
domly initialized (the random configuration being different for each
ANN). The weights are allowed to evolve until xé(w) (see equation
A11) is minimized with respect to the cosmologies in the validation
set.

In Fig. 4, we show the percentage error in the ANN predictions
with respect to the N-body results when presented with the 200
cosmologies in the training set. We average the PANN(k, z) predic-
tions over the 16 ANN committee members. The rows correspond
to Npigden = 14-98 (from top to bottom) in increments of 14. The
columns (from left to right) correspond to z = 0, 1, 2. The mean
error over all 200 cosmologies in the training set is shown by a
solid line in each panel, to get an idea about any systematics in
our ANN training scheme. With Nyigeen = 70 and higher, the ANN
predictions are within 1 per cent of the N-body power spectra for
k < 0.9 Mpc™!, after which the performance degrades marginally
to 1.5 per cent. The worst-performing cosmologies correspond to
the parameter settings with at least four of the six cosmological
parameters at their boundary values.

0.8 —

0.2

0 20 40 60 80 100
Number of Hidden Layer Nodes

Figure 5. The residual error Xé(w) (see equation All) evaluated as a
function of the number of nodes in the hidden layer, Npjqden. The error is a
monotonically decreasing function for the training set (dashed line) while
for the validation set (solid line), it starts increasing beyond Nhidden = 70
indicating that the generalizing ability of the neural network is best with
Nhidden = 70. The error bars correspond to the spread in Xé(w) for the 16
ANN committee members.

MNRAS 439, 2102-2121 (2014)

STOZ ‘ST Jequiaoa uo sesuey| 10 A1SBAIuN e /BI0'S [euInolpuoxo'seiuw//:dny woJj pepecjumod


http://mnras.oxfordjournals.org/

2108  S. Agarwal et al.

PANN/PN—body -1 [%]

0.01 0.1 1 0.01

0.1 1 0.01 0.1 1

k (h Mpc™t)

Figure 6. Similar to Fig. 4, using 50 validation set cosmologies.

Increasing the number of nodes in the hidden layer increases the
flexibility of a neural network. An increasingly complex network
can make extremely accurate predictions on the training set. This
is evident from Fig. 4, where the prediction over the training set
becomes progressively better (from top to bottom) with increasing
Nhidgen units. However, such complex networks can adversely affect
their generalizing ability when presented with a new data set. The
validation set helps in controlling the complexity of a network, as
we discussed earlier in Section 3. In Fig. 5, we show the residual
cost function Xé(w) (see equation A11) evaluated as a function of
the number of nodes in the hidden layer, Npiggen. The residual error
is a monotonically decreasing function for the training set (dashed
line) while for the validation set (solid line), it increases beyond
Nhigden = 70. The performance of the trained ANNs as a function of
Nhidgen Units, over the cosmologies in the validation set, is shown in
Fig. 6. Increasing Ny;gqen beyond 70 increases the error marginally,
indicating that Nngqen = 70 saturates the generalizing ability of our
network.

MNRAS 439, 2102-2121 (2014)

The performance of the trained ANNs for cosmological models
in the testing set is shown in Fig. 7. Increasing Npigqen beyond 70
does not contribute to a significant error reduction on the testing set,
confirming our assessment that Nyqeen = 70 saturates the general-
izing ability of the network. With Nyiggen = 70, the ANN prediction
for every cosmology, at all redshifts z < 2, is within £0.5 per cent
of the N-body power spectra up to k < 0.9 Mpc~'. The Pkann
performs exceedingly well within the boundaries of the restricted
parameter space.

Next, we assess the accuracy of the pkanN network
across the range for each of the six parameters, namely,
Quh?, Quh®, ng, w, og and > m,. We vary each parameter be-
tween its minimum and maximum values and bin the 200 cos-
mologies of the training set in 10 intervals across the parameter
range. We calculate the prediction error for each bin. We repeat this
for all six parameters and show the results for the Q4> case in
Fig. 8. The rows correspond to the 10 linearly spaced bins between
Qmh*> = 0.11-0.165. The columns are redshift z = 0 (left-hand
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Figure 7. Similar to Fig. 4, using 330 testing set cosmologies.

panel), z = 1 (middle panel) and z = 2 (right-hand panel). As dis-
cussed above, we fix Npjggen = 70. As expected, Pkann’s performance
degrades near the edges of the range Q2,,4#> = 0.11-0.165 (compare
the middle rows against the outer rows). Overall, the prediction
errors remain within 1 per cent of the N-body power spectra for
k < 0.9 h Mpc~'. Results with the other five parameters are similar
to Fig. 8. We summarize the prediction errors for all six parameters
in Table 2.

4.2 PKANN error estimates

Our ANN framework successfully recreates the input power
spectrum at sub-per cent level up to k < 0.9 2 Mpc™!, and the over-
all accuracy of the pkann interpolator is set by the force resolu-
tion and statistical variance from our N-body simulations. Running
ENZO in a 200 &~! Mpc box with 512% unigrid results in a matter
power spectrum that is progressively suppressed from 1 percent

level at k = 0.5hMpc~' to 5 percent level at k = 0.9 Mpc™',
when compared to spectrum calculated from high-resolution runs.
Limited computing resources prohibited us from running higher
resolution simulations. Since PKANN is built using conservative
simulation settings described above, we expect all PkaNN predic-
tions to be suppressed at 1-5 per cent level between k£ = 0.5 and
0.9 hMpc™".

We follow the approach outlined in Jeong & Komatsu (2009) (see
their appendix A) to roughly estimate the statistical error on our non-
linear power spectrum from numerical simulations. A simulation
box of length 200 4~ Mpc corresponds to a fundamental wavenum-
ber of 8k = 271/200 = 0.0314 » Mpc~'. The number of indepen-
dent k-modes available in a spherical shell at k = 0.1 2 Mpc™!
is N = 2m(k/8k)* ~ 64. With our 11 realizations per cosmology,
this gives a relative error of opy) pk) = 1/4/11N; ~ 4 percent at
k = 0.1 h Mpc~". Higher k-modes are sampled more frequently and
the corresponding sampling errors become progressively smaller, to
~0.4 percent at k = 0.9 h Mpc ™.

MNRAS 439, 2102-2121 (2014)
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Figure 8. The 200 cosmologies of the training set are binned in 10 equal intervals between Qm/? = 0.11-0.165 (from top to bottom, in increasing order). The
columns are redshift z = 0, 1, 2 (from left to right, respectively). Npigdgen = 70 for all panels. For each bin, pkann’s predictions are compared to the N-body
power spectra and the residual errors (30 CL) are plotted. Closer to the middle of the range Qnh® = 0.11-0.165 (middle rows), the prediction errors get
smaller. Even near the edges (outer rows), the errors are within 41 per cent of the N-body power spectra for k < 0.9 h Mpc ™.

Table 2. Performance of the PkanN network as a function of the range of the six parameters, namely, thz, th2, ng, w, og and Zm,,. Each parameter
range is subdivided into 10 equal intervals and the training set cosmologies are binned accordingly. The 30 bounds on the PkaNN prediction errors (in per cent)
are mentioned for each bin, at redshifts z = 0, 1 and 2. The QA2 case is shown in Fig. 8.

Bins Quh? Quph? ng w og Smy
z=0 z=1 z=2 z=0 z=1 z=2 z=0 z=1 z=2 z=0 z=1 z=2 z=0 z=1 z=2 z=0 z=1 z=2

1.0 1.0 1.0 0.9 0.7 1.1 1.0 0.9 1.2 0.9 0.9 0.9 0.8 0.5 1.0 0.8 0.8 1.1
1.0 0.8 1.1 0.6 0.7 1.1 0.9 0.8 0.9 0.8 0.8 0.9 0.8 0.5 1.0 0.8 0.7 1.0
0.9 0.9 0.9 0.9 0.7 1.0 0.9 0.8 0.9 0.7 0.7 0.9 0.6 0.5 1.0 0.5 0.4 1.0
0.7 0.8 0.9 0.8 0.6 0.9 0.8 0.6 0.9 0.6 0.7 0.9 0.6 0.5 1.0 0.5 0.6 0.9
0.7 0.5 0.9 0.7 0.6 0.9 0.6 0.5 1.0 0.6 0.6 0.9 0.5 0.5 0.9 0.7 0.5 0.9
0.9 0.5 1.0 0.4 0.5 0.8 0.7 0.5 1.0 0.7 0.5 0.9 0.4 0.5 0.8 0.8 0.7 1.0
0.8 0.6 0.9 0.7 0.6 1.0 0.7 0.8 1.0 0.7 0.7 0.9 0.5 0.4 0.9 0.9 0.5 0.9
1.0 0.6 0.9 0.8 0.6 0.9 0.6 0.7 1.0 0.8 0.5 0.8 0.6 0.4 1.0 0.9 0.8 0.9
0.9 0.8 1.0 0.8 0.6 1.0 0.8 0.8 1.0 0.9 0.7 0.9 0.8 0.5 0.9 0.9 0.8 0.9
0 1.0 0.8 1.1 0.9 0.7 1.1 0.8 0.8 1.0 0.9 0.6 0.9 1.0 0.7 0.9 0.8 0.9 1.2

— O 00 3 O W R W N
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As mentioned earlier, we match the matter power spectra
from one-loop standard PT with numerical simulations at k =
0.085 h Mpc~!. Heitmann et al. (2010, their fig. 6) showed that
small simulation volumes fail to capture linear evolution on the
largest scales probed by the simulation box as well as miss the on-
set of non-linearity, resulting in the suppression of the matter power
spectrum at ~2-3 per cent level. As such, for a simulation box of
length 200 h~' Mpc, we expect our spectra amplitudes to be in error
at ~3 per cent level around k & 1 h Mpc™".

pkANN can be used for spatially flat cosmological models with
three species of degenerate massive neutrinos up to  ,m, = 1.1 eV.
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Since our implementation of neutrinos in numerical simulations
does not take into account the non-linear evolution of neutrino
perturbations, this is expected to introduce errors in the estimated
matter power spectrum. In Paper I, we discussed the expected errors
by comparing our results with Brandbyge et al. (2008) and Brand-
byge & Hannestad (2009). At redshift z = 0, our neutrino spectra
for > m, up to 0.1,0.475 and 0.95 eV are expected to be in error by
<0.1, 4 and 10 per cent, respectively. The respective errors at z = 1
and 2 are <0.1, 3, 6and <0.1, 3, 5 percent. These error estimates
are large for _m, > 0.475 eV; however, it is important to note that
the current constraints on the total neutrino mass are around 0.3 eV.

104 E
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Figure 9. Variations in the power spectrum at redshift z = 0 (top row), z = 1 (middle row) and z = 2 (bottom row). Parameter Qmh? is varied between its
minimum and maximum value (see testing set range, Table 1) while Quh?, ng, w, og are fixed at their central values. >~ m, = 0 to facilitate comparison with
the h-fixed version of the cosmic EMuLATOR (Lawrence et al. 2010). The left-hand panels show natural logarithm of the ratio of the power spectra with different
Qumh? to the base power spectrum. The cosmological parameters for the base power spectrum are I = (0.135, 0.0225, 0.95, —1, 0.775, 0). The absolute power
spectra are shown in the right-hand panels. Within each panel, the power spectra (from top to bottom) correspond to increasing values of Q,42. The predicted
ratios using PKANN (dotted) are within 0.2 percent of the cosmic EMULATOR’s predictions (solid lines). At z = 2, only pkann predictions are shown since the

h-fixed cosmiC EMULATOR is valid only for z < 1.
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Using photometric redshifts measured from Sloan Digital Sky Sur-
vey III Data Release 8 (SDSS DRS; Aihara et al. 2011), de Putter
et al. (2012) obtained constraints of Y m, < 0.26-0.36 eV. Using
BAO and CMB data, the Planck survey (Planck Collaboration et al.
2013) finds an upper limit of 0.23 eV. Using numerical simulations,
Wagner et al. (2012) studied the effect of neutrinos on the non-
linear matter power spectrum for » m, < 0.3 eV and found very
similar results as ours in Paper I. For such low neutrino masses
(O>_m, <0.3 eV), Brandbyge & Hannestad (2009, their fig. 1) show
that at z = 0 non-linear neutrino corrections are at 0.3 per cent level,
and negligible at higher redshifts. Overall, for > m, < 1.2 eV, cor-
rections are at 1.5 per cent level for z > 1.

To summarize, across all cosmological models (see Table 1) with
> m, < 0.5 eV, the pkann interpolator is expected to be accu-
rate at 5 percent level for all redshifts z < 2. For models with
>~ m, > 0.5 eV, the spectra predictions are expected to be accurate
at 5 percent level only for z > 1 and degrade to ~10 per cent for
z=<1l
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4.3 Exploring cosmological parameter space with PKANN

Having built the power spectrum interpolator, we now study the
behaviour of the power spectrum as a function of the cosmolog-
ical parameters. Similar tests were performed by Heitmann et al.
(2014). In Fig. 9, we show variations in the power spectrum at red-
shift z = 0 (top row), z = 1 (middle row) and z = 2 (bottom row). At
each redshift, Q.4 is varied between its minimum and maximum
value (see parameter ranges for the testing set, in Table 1) while
Quh%, ng, w, oy are fixed at their central values. We fix >m, =0
since we want to compare our PKANN predictions with the A-fixed
version of the cosmic EMULATOR, which is not trained for cosmo-
logical models with massive neutrinos. The left-hand panels show
natural logarithm of the ratio of the power spectra with different
QA to the base power spectrum. The base power spectrum corre-
sponds to the central values: Q,h> = 0.135, Qu,h> = 0.0225, n, =
0.95, w= —1, oy = 0.775, with >_m, = 0. The absolute power
spectra are shown in the right-hand panels. Within each panel,

104

103

104

103

104

103

0.01 0.1 1
k (h Mpc-1)

Figure 10. Similar to Fig. 9, but for a range of Qph? values. Within each panel, the power spectra from bottom to top correspond to increasing 2,4 values.
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Figure 11. Similar to Fig. 9, but for a range of n values. Within each panel, the power spectra from top to bottom correspond to increasing ng values.

the power spectra (from top to bottom) correspond to increasing
Quh?. Higher ©,,h* reduces the large-scale normalization of the
power spectrum significantly. Accurate measurements of the power
spectrum amplitude on large scales can help improve the constraints
on Q,,h%. Pkann predictions (dotted) agree well with the cosmic Emu-
LATOR (solid lines). Note that for redshift z = 2, we only show pkanN
predictions since the A-fixed cosMIiC EMULATOR can make predictions
onlyuptoz=1.

In Figs 10-13, we vary Quh%, ng, w and o, respectively. The
power spectra trends from minimum to maximum values are as
follows: top to bottom (1, and w) and bottom to top (4> and
og). At z = 0, except og, all other parameters affect the power
spectrum predominantly on large scales (~k < 0.1 A Mpc™"). Re-
ducing uncertainties in the other parameters using small-scale data
would be difficult unless one measures the power spectrum at higher
redshifts where almost all parameters leave discernible imprints.
Note that the power spectra converge around k ~ 0.1 Mpc™' in
the Qmh?, Quh?, ng and w plots. This is a direct consequence of

our imposing the CMB constraint on the acoustic scale based on
WMAP T-year+BAO data. The acoustic scale is model dependent.
Fixing its value to match observations requires adjusting the Hub-
ble parameter /& accordingly. As we discussed in Section 2, given
a cosmological model I, we compute & to satisfy the constraint
midys /15 = 302.54.

In Fig. 14, we plot the ratio of the non-linear spectra at redshifts
z = 0 (upper panel) and z = 1 (lower panel) computed using PKANN
and the h-fixed cosmic EMULATOR. The cosmologies considered are
all models of Section 4.3 as well as the 150 testing set cosmolo-
gies with > m, = 0. The loss of power due to our use of 5123
unigrid simulations is evident beyond k = 0.6 2 Mpc~'. Strictly
speaking, a direct comparison of PKANN with COSMIC EMULATOR is
not possible for two reasons: (i) to compute the Hubble parameter
h, COSMIC EMULATOR uses the constraint equation 7tdys/ry = 302.4
for the acoustic scale, while pkann is built using WMAP 7-
year+BAO value of mdys/ry = 302.54, and (ii) the contribution of
N massless species of neutrinos to the radiation energy density is
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Figure 12. Similar to Fig. 9, but for a range of w values. Within each panel, the power spectra from top to bottom correspond to increasing w values.

given by

7 4\
v=Ne S| 77 B 6
p 3 (11) Py (0)

where p, and p, are the neutrino and the photon energy densi-
ties, respectively. For PkanN (where Neg = 3.00), the pre-factor in
equation (6) reduces to 0.68132. cosmic EMULATOR uses 0.6851.
The above two factors result in ~0.5 percent variations in the
estimates of the Hubble parameter 4 between pkaNN and cosmic
EMULATOR. Running the two codes with identical cosmological pa-
rameters (Qmh?, Quh%, ng, w, og with > m, = 0) still corresponds
to different cosmologies because the slightly different & values
change the normalized densities (€2, 2y, Q24 etc.). This changes
the matter power spectra, both linear and therefore, the non-linear.
To make this point clear, in Fig. 15, we show the linear power spec-
tra for one of the 150 testing set cosmologies. The model param-
eters are Qnh% = 0.120, Quh> =0.02213, n, =0.97584, w =
—1.0131, oy = 0.7795 with }_m, = 0. The upper panel shows the

MNRAS 439, 2102-2121 (2014)

linear spectrum calculated using (i) camB (dotted) and (ii) A-fixed
cosMIC EMULATOR (solid). Their ratio is shown in the lower panel.
The two spectra differ at ~2 per cent level because the normalized
densities (summarized in Table 3) as computed by pkanN and cos-
Mic EMULATOR are different. This difference in the linear spectrum
also correctly reflects in Fig. 14 where the solid triangles show the
ratio of the non-linear spectra at z = 0 (upper panel) and z = 1
(lower panel) corresponding to the two cosmological models of
Table 3. Figs 14 and 15 demonstrate the consistency between pPkANN
and COSMIC EMULATOR, with PkANN valid not only over an extended
range of parameter space, but for models with massive neutrinos as
well.

5 CONCLUSIONS

Machine learning techniques offer unparalleled advantage in anal-
yses of large data sets of the kind being generated by current and
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Figure 13. Similar to Fig. 9, but for a range of o'g values. Within each panel, the power spectra from bottom to top correspond to increasing o'g values.

upcoming surveys. A brute force application of numerical sim-
ulations can consume millions of CPU hours and may not be a
feasible solution. Instead, by running a limited number of simula-
tions, one can develop machine learning schemes. These schemes
can then be used to efficiently handle new and previously unseen
data.

In this paper, we have introduced pkann — the non-linear
matter power spectrum interpolator. Using a manageable num-
ber of N-body simulations, we have successfully developed a
neural-network-based interpolating scheme that reconstructs the
matter power spectrum over the parameter space spanning 3o
CL around the WMAP 7-year central values. Although pkanN
reproduces the input power spectrum at sub-per cent level, its
overall accuracy is limited by the accuracy of our N-body simu-
lations. pkanN (i) predicts matter power spectrum up to redshifts
z < 2, (ii) is capable of handling spatially flat cosmological mod-
els with/without massive neutrinos, as well as dark energy models

with w # —1 constant equation of state parameter, (iii) is accu-
rate at 5 percent level up to k < 0.92Mpc~' for models with
> m, < 0.5 eV for all redshifts z < 2, (iv) is accurate at 5
(10) percent level for redshifts z > 1 (z < 1) for models with
> m, > 0.5¢eV.

The new generation of experiments, such as the DESI redshift
maps, will measure matter density fluctuations with precision ap-
proaching ~1 per cent level. Such unprecedented precision, while
having the potential to refine constraints on various cosmological
parameters, poses a tremendous challenge on theoretical predictions
of the matter power spectrum. Baryon physics alters the power
spectrum at ~20 percent level at k &~ 10 Mpc™'. van Daalen
et al. (2011) have shown that AGN feedback reduces power rela-
tive to CDM-only simulations at per cent level at k ~ 0.4 h Mpc~".
While the dark energy component in numerical simulations is usu-
ally assumed smooth and implemented only through its effects
on the background evolution, Alimi et al. (2010) find that dark
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Figure 14. The ratio of the non-linear matter power spectra at z = 0 (up-
per panel) and z = 1 (lower panel) computed using PkaNN and the i-fixed
cosmic EMULATOR for all models of Section 4.3 as well as the 150 test-
ing set cosmologies with Y m, = 0. For clarity, we show the ratio for
one of the 150 testing set cosmologies (mentioned in Table 3) by solid
triangles. The two prediction schemes differ at 5 percent level out to
k<09h Mpc~!. Beyond k = 0.6 2 Mpc™!, pkann predictions fall off due
to our use of unigrid simulations (see Section 4.2 for discussion). See Sec-
tion 4.3 for a discussion on why the two schemes do not converge on larger
scales.

energy clustering leaves distinct imprints on the non-linear matter
power spectrum. To extract any meaningful and unbiased infor-
mation from current and upcoming data, such effects will need to
be incorporated in N-body simulations and any fitting functions
thereof. Although we did not consider a wide range of cosmo-
logical models such as the ones with non-zero spatial curvature,
time-varying equation of state for dark energy or dark energy clus-
tering, our ANN scheme can be readily extended for these cases by
running extra simulations. The pkanN package is freely available at
http://zuserver2.star.ucl.ac.uk/~fba/PKANN/PkANN.tar.gz.
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Figure 15. Linear power spectrum for one of the 150 testing set cosmolo-
gies. The model parameters are Qmh? = 0.120, Qph? =0.02213, ng =
0.97584, w = —1.0131, oy = 0.7795 with > m, = 0. The upper panel
shows the linear spectrum calculated using (i) camB (dotted) and (ii)
h-fixed cosmic EMULATOR (solid). Their ratio is shown in the lower panel.
The two differ at 2 percent level on large scales due to the differ-
ences in the derived parameters (summarized in Table 3) as discussed in
Section 4.3.
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Table 3. Running pkanN and the h-fixed cosmic EmuLaTOR with identical values of the six cosmological parameters
(Qmh?, Qh2, ng, w, og with >-m, = 0) correspond to different normalized densities (€2, Qp, Qqe etc.) due to the slight varia-
tions in the Hubble parameter £, as explained in Section 4.3. For one of the cosmological models (columns 2-7), the derived parameters
are summarized (columns 8—11) for pkann and the A-fixed cosmic EMuLaTOR. The linear matter power spectra for these two sets of derived
parameters are shown in Fig. 15. The ratio of the corresponding non-linear spectra is shown in Fig. 14 by solid triangles.

Cosmological parameters

Derived parameters

Scheme Qmh? Qph? ng og >omy, h Qe Qp Qe
PKANN 0.120  0.02213 0.97584 —1.0131  0.7795 0 0.7601  0.1694 0.0383  0.7923
h-fixed cosmic EmuLaToR ~ 0.120  0.02213  0.97584  —1.0131  0.7795 0 0.7642  0.1676  0.0379  0.7945
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APPENDIX A

The following is based on the treatment presented in Bishop (1995).

A1 PKANN cost function

PkANN is a single hidden-layer feed-forward network with sigmoid
hidden nodes and linear output nodes. For training the PkaNN neu-
ral network to predict the matter power spectrum, we consider
a training set consisting of cosmological models for which we
have full information about the non-linear matter power spectra
P (computed from N-body simulations) as a function of scale k
and redshift z, as well as the underlying cosmological parameters:
I = (Quh?, Quh?%, ng, w, o, >, m,). The joint likelihood of get-
ting the set of matter power spectra { Py (z; I,)} for all cosmologies
I, in the training set is

T
E [Pz IO = [ [ pLPutz: 1))

=1

T
= [ ptPutlIN] pLLL, (A1)
t=1

where p[ P,(z|I,)] is to be interpreted as the conditional probability
of getting spectrum P (z) given cosmology I,, while p[I,] is the
unconditional probability that the cosmological parameters I take
a particular setting of I,. The index ¢ runs over all cosmologies
I, in the training set. We can take the product of the individual
probabilities since each model I, is drawn independently from the
cosmological parameter space.

The weights w of the Pkann network are chosen (iteratively during
network training) so as to minimize the negative logarithm of the
likelihood L (which is equivalent to maximizing L),

T T

x> =—Ink =Y Inp[PulI)]+ > Inpll]. (A2)
t=1 t=1

If the power spectrum is sampled at different values of scale k (the

k-modes being represented by the set {k} h Mpc™'), we can write

plPu(z|1)] as

pLPuzl )] = H plPuk, z[I))], (A3)
ki elk}

where the product k; is over all the scales that form the set
{k} h Mpc‘l, and we have assumed that Py (k, z|I,) have indepen-
dent distributions.

To suppress sampling uncertainties in the power spectrum
Pu(k, z|1,), the numerical simulation code is run multiple times
with different seeds while keeping the underlying cosmological
model I, fixed. Assuming Py (k, z|I,) has Gaussian distribution
about the true power spectrum P, (k, z|1,) with variance o2, we can
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write the probability that a numerical run would give Py (k, z|1,)
as

1 [Pirkzinn .v,‘,(k‘;u,)]z

Putl 2l = e (A4)
N-body codes give larger variance o2 on scales comparable to the
simulation volume since the density field on these scales can only
be sampled fewer times. However, to simplify the pkann training
algorithm, in equation (A4) we have assumed that the variance o>
is independent of the scale k and model I,.

Since the aim of developing pkanN is to model the true spectrum
PXt(k, z|I,) by making an optimal choice for the network weights
w, we replace PX(k, z|I,) in equation (A4) by the ANN prediction
PH’?NN(k, z|lw, I,) to get

1 {PQNNM,:\w,I,>—Pnl(k.:u/)]2
[Pulk, z|I )] = We 202 . (AS)
o

Inserting equation (A5) into equation (A3), we get

[Pu(zIT)] ! R (A6)
n(ZH ) = 5 2 € 20 )
(27.(0,2) out

where Ny is the number of k-modes in the set {k}. Remember
that, by construction, N, is also the number of nodes in the output
layer of the PkanN network. Using equation (A6), we can now write
equation (A2) as

T
Xw) =5 ZZ [Pk, zlw, 1) — Puk, 2l1))]
t=1 k;elk}

_Tln{(z vaz] Zlnp 1] (A7)

We can drop the terms that do not depend on the weights w, since
these terms merely scale x?(w) without altering its location in
the weight space. Thus, the cost function for the purposes error
minimization can be written as

x(w) = Z Z [PANNK, zlw, 1,) —

t=1 kjelk

Putk, 21" (A8)

Remember that the matter power spectrum is a function of scale
k (hMpc™"). We sample the matter spectrum at discreet values in
the range 0.006 < k < 1 h Mpc~! and assign the sampled spectrum
to the output nodes of the neural network. The discreet values of
scale k form the set {k} h Mpc" . In equation (AS8), the sum k; is over
all the nodes in the output layer, with each node sampling the mat-
ter power spectrum at some specific scale, k (h Mpc™"). Py(k, z|I)
is the non-linear matter power spectrum for the specific cosmol-
ogy I, computed using N-body simulations. Given the weights w
PAN(k, z|w, I)is the ANN’s predicted power spectrum for the Ith
cosmology. In our fitting procedure, we work with the ratio of the
non-linear to linear power spectrum, namely R(k, z) = Py(k, 2)/
Piin(k, z), where Py, (k, z) is calculated using camB. As such, weigh-
ing equation (A8) by Py, (k, ) gives

PANN(k, z|w, I,) — Pu(k, z|1,)]°
2 w) = |: nl ) s Xt n ) t
o 2; Pintk, 2I1,)

,
= %Z > RNk, zlw, 1) - Rk, 211)]. (A9)

=1 k;e(k)
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The ratio R(k, z) is a flatter function and gives better performance,
particularly at higher redshifts where the ratio tends to 1. Given
the weights w, RANN(k, z|w, I) in equation (A9) is the network’s
prediction of the ratio R(k, z|I) for the specific cosmology I
The predicted non-linear spectrum P4NN(k, z|w, I) is recovered
by multiplying RANN(k, z|w, I) by the corresponding linear spec-
trum Py, (k, z|I).

In equation (A9), optimizing the weights w so as to minimize
x2(w) generates an ANN that predicts the power spectrum very
well for the specific cosmologies in the training set. However, such
a network might not make accurate predictions for cosmologies
not included in the training set. This usually indicates (i) an overly
simple network architecture (very few hidden layer nodes), (ii) very
sparsely or poorly sampled parameter space and/or (iii) a highly
complex non-linear mapping that actually overfits to the noise on the
training data set. In order to generate smoother network mappings
that generalize better when presented with new cosmologies that
are not part of the training set, a penalty term Xé(w) is added to the
cost function x%(w),

xp(w) = %nwnz, (A10)

where ||w||? is the quadratic sum of all the weights. The penalty
term xé(w) prevents the network weights from becoming too large
during the training process by penalizing in proportion to their sum.
The regularization parameter £ controls the degree of regularization
(smoothing) of a network’s predictions. After having initialized &,
its value is re-estimated during the training process iteratively. For
the update formula, see Appendix AS. For its derivation, see Bishop
(1995).

Thus, the overall cost function which is presented to the ANN
for minimization with respect to the weights w is

1 T
xe(w) = > SN RNk 2w, 1) — Rk, 2]

t=1 kie{k}

+ §||w||2. (Al1)

A2 Quasi-Newton method

Quasi-Newton method, used for finding stationary points (local
maxima and minima) of a function, assumes that the function can
be approximated by a quadratic in the region around a stationary
point. Taylor expanding the pkann cost function x&(w) (see equation
A11) around some point wy in the weight space and retaining terms
up to second order, we get

xew) = xG(wo) + (w — wo)'g,,
+ %(w — wo) Hy, (w — wy), (A12)

where the superscript “T’stands for the transpose and g, is defined
to be the gradient of xé evaluated at w,

(A13)

H,, is a symmetric Ny x Ny Hessian matrix (evaluated at w,) with
elements

azxé

H:| =_——2¢
w( E)w,-aw_,-

L

, (A14)

wo
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where Ny (see equation 3) is the total number of nodes in the
network. Note that in equation (A14), instead of referencing the
weights by the relevant nodes they connect to, for the sake of clarity
we refer to the weights with a single subscript running from 1 to
N w-

Taking the gradient of equation (A12) gives the local approxima-
tion for the gradient itself,

8w = 8w, T Huy(w — wo). (A15)

To find the stationary point around wy, one sets g, in equation
(A15) to zero, thereby giving the Newton step,

w=mw—H,lg,. (A16)

Since the cost function Xé(w) is not an exact quadratic function, the
Newton step of equation (A16) does not point to the local minimum
around wy. As such, we apply equation (A16) iteratively, and if
the Hessian matrix is positive definite (i.e. all of its eigenvalues are
positive), then each successive Newton step moves closer to the
local minimum. If the initial choice of the weights w happens to
be around a local maximum of Xé(w), then the Hessian matrix is
not positive definite and the cost function may increase with each
Newton step.

One can apply some modifications to the Newton method that
guarantee convergence towards a local minimum, irrespective of
the initial choice of the weights. Instead of taking a step in the New-
ton direction (—H™'g), one proceeds in a quasi-Newton direction
(—Gg),

W = W — Au,Guy gy, (A17)

where matrix G represents an approximation to the inverse of the
Hessian H™!, and A is the size of the step taken along the quasi-
Newton direction —Gg. The step size A is allowed to vary with
each iteration to the weights. Its value is determined by proceed-
ing in the direction —Gg until the minimum of the cost function
is found along —Gg. Thus, in equation (A17), Ay, is such that
the gradient of x2 at w (namely, g,,) vanishes along the direction
—Guy, g wo?

(_Gwong)Tgw = 0. (A]S)

The quasi-Newton algorithm involves taking a series of steps t of
equation (A17), which can be written as

Wrp) = Wy — )"w, Gwrgwr7 (A19)

with the step size A,,, for the tth step being such that

(~Gu. £4.)" 8u.., =0 (A20)

Ateach step of the algorithm, G is constructed to be positive definite,
ensuring that the direction —Gg proceeds towards a local minimum
of the cost function. To construct G, we use the BEGS method (see
Appendix A4).

A3 PKANN cost function gradient

The overall cost function which is presented to the ANN
for minimization with respect to the weights w is given by
equation (A11).

‘We now derive the expression for its derivative with respect to the
weights w. PkanN’s network architecture is Ny, : Ny @ Noy With two
layers of adaptive weights. The first layer of weights w;; connect the
input layer nodes (xo, X1, ..., x;) to the hidden nodes (zi, ..., z;).

pPkanN — Matter power spectrum interpolator — 2119

Note that the hidden bias node activation z is permanently fixed
at 1 and therefore does not receive any connections from the input
layer. The activation of each hidden node is z; = g(a;), taking as its
argument

Nin

aj = Z W;iXi, (A21)
i=0

where the sum is over all input nodes i (including the input bias)
sending connections to the jth hidden node (barring the hidden bias
node).

PkANN’s hidden nodes have sigmoidal activations g(a;) = 1/[1
+ exp (—a;)]. The second layer of weights wy; connect the hidden
nodes (2o, z1, . - - , Zj) to the network outputs (y, . . ., yx). The output
nodes have linear activations y; = a;, with a; being the weighted
sum of all hidden nodes,

Ny
ap = Z Wgjlj- (A22)
j=0

PkANN has two layers of adaptive weights and we will consider the
cost function derivatives separately for the two layers.

A3.1 Gradient with respect to first layer weights

Taking the gradient of equation (A11) with respect to a first layer
weight wj;, we get

, ANN
9 [xew)] _ S T[RMNk, zlw, 1)) — R(k. 2| 1) aaL
w

Owji T Ji
+Ew;. (A23)

Since RANN(k, z|lw, I,) = a(k, z|lw, I,) (see equation A22) for the
output nodes, we get

0 [xé(w)]
awj,-

ANN da;
=Y [R™N(k. zlw, I,) — R(k. 2| )]
R awji

+ &wji, (A24)

where we have introduced the shorthand notation af =
a(k, zlw, I,). Using equation (A22) for a; together with sigmoidal
activation for z;, we get

M 0g (“;) da,

= Wy

. (A25)
= aa;, aw_,-,-
For sigmoidal activation functions, it is straightforward to show
that

9g(a’) _

t
aaj

g (a) (1—g)). (A26)
Inserting equation (A26) into equation (A25), we get

daj,

aw/-,-

t
Oay,

Ni
= _wyg) (1-g)) (A27)
=0

aw/-[
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Differentiating equation (A21) with respect to a first layer weight
Wiji, We get

N
0a,  Yn dwy,
- = X -
E i
awj,- o aw_,-,-
Nin
= xi',(?,-,-/(s_,-_,-/ = X;Sjj’. (A28)

i'=0
Inserting equation (A28) into equation (A27), we get

t
Oa;,

6w,~,~

Ny
> wipg” (1-g5) 58
7'=0

wii g (1 - g%) xf. (A29)

From equations (A24) and (A29), we get our final equation for the
derivative of the PkanN cost function with respect to the first layer
of adaptive weights wj; to be

0 [xé(w)]

P = Z RNk, z|w, 1) wyi g’ (1 — g5) x|

t,{k}

— Y Rk, 2l1) wygl (1 - g) x! + Ewji. (A30)
t.{k}

A3.2 Gradient with respect to second layer weights

Taking the gradient of equation (A11) with respect to a second layer

weight wy;, we get

) XZ(w) , aRANN

ofxétm)] _ > [RMNNGK, zlw, 1) — R(K, 2 |1)]
1,{K')

awk_,» E)wk_,-

+ Ewy,. (A31)

Since RANN(K', z|w, I,) = a(k’, z|w, I,) (see equation A22) for the
output nodes, we get

0 [x&(w)]

awkj

Oay,
By + Ewy;,

=Y [R™N(&, zlw, I,) - R(K, 2|1,)]
t,{k'}

(A32)

where as before, we use the shorthand notation a}, = a(k’, z|w, I,).
From equation (A22), we get

Ni
aa;\,/ _ Z aUIk’_/" '

Z
. .
6wa 20 6wa

N

= ZSkk’a_jj/Z;/ = 31{1('2;-. (A33)

J'=0

Inserting equation (A33) into equation (A32), we get our final equa-
tion for the derivative of the Pkann cost function with respect to the
second layer of adaptive weights wy; to be

0 [xé(w)]

awk_,»

=Y [R™NK zlw, 1)) — R(K, 21182’y + Ewy
t,{k'}

= > [R™WNk, zlw, I,) = R(k, z|1,)] 2 + Ewy,.

t

(A34)

MNRAS 439, 2102-2121 (2014)

For any choice of weights w, the network output vector
RANN(k, z|w, I,) is determined for each cosmology I, in the train-
ing set, by progressing sequentially through the network layers,
from inputs to outputs, calculating the activation of each node. Hav-
ing calculated the activations and network outputs for all cosmolo-
gies, it is straightforward to compute the derivatives in equations
(A30) and (A34).

A4 BFGS approximation for inverse-Hessian matrix

In order to minimize the PkanN cost function Xé(w) (see equation
A11) with respect to the weights w, the weights are first randomly
initialized to w( and then updated iteratively using equation (A19).

Updating the weights involves estimating G — an approximation
to the inverse Hessian matrix H™!. The inverse Hessian H™! eval-
uated at wy is approximated by a Ny x Ny identity matrix (i.e.
Gy, = I). Following our discussion in Appendix A2, the weight
vector is updated to w, as

Wi = Wo — Awy&u, (A35)

by stepping a distance Ay, in the quasi-Newton direction —g,, .
Note that the gradient g, is computed using equations (A30) and
(A34). The step size Ay, is such that the gradient of Xé at w;
(namely, g, ) vanishes along the direction —g,, ,

— 80,8u, = 0. (A36)

To make any further updates in the weight space, one needs to eval-
uate H;ll. The inverse Hessian, being a Ny x Ny matrix, can be
computationally expensive to calculate exactly for networks with
Ny 2 1000 connections. We employ the BFGS method to approxi-
mate H;ll by Gy, . In general, for the (7 + 1) step, the approximation
Gwz+1 is

1 S
Gu,., =Gy, + 5 Kl + S%) aa’ —ab"G,, — G, ba"|,

(A37)

where we use the following definitions for the vectors (a and b) and
the scalars (S; and S»),

a=wW; — W,

b= ngl — 8w,

Sl = aTb,

S, = b"Gb. (A38)

At each step, the BFGS method makes increasingly more accurate
approximations for G. Moreover, since G is positive definite (by
construction), the Xé(w) minimization algorithm is guaranteed to
converge to a local minimum.

A5 Regularization parameter &

In situations where the training data is noisy, controlling the com-
plexity of a network is crucial to avoid overfitting and underfitting
issues. An overly complex network may fit the noise in the train-
ing data. On the other hand, a very simple network may not be
able to capture the signal in a data set, leading to underfitting.
Both overfitting and underfitting lead to models with low predictive
performance. One of the methods employed to regularize the com-
plexity of a neural network is to train the network by minimizing a
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cost function that includes a penalty term xé(w) (e.g. see equation
A10).

Small (large) values of the regularization parameter £ lead to
complex (simple) networks. Since the optimum value for & is not
known a priori, its value is initialized randomly, and updated itera-
tively by the cost minimization algorithm.

Here, we only present the updating rule for £. For its derivation,
refer Bishop (1995). The pkann cost function (equation A11) can
be written as

1 o
xe(w)=p 5%[RANN(k,zlw,Il)—R(k,zllr)] +@|lw||2 ,

(A39)

where o and B are the regularization parameters with & = o/
and B = 1. For the purposes of cost minimization, the overall scale
factor B is irrelevant and the degree of regularization depends only
on the ratio £ = «/f. For networks where the number of training
patterns Nt far exceeds the number of weights Ny, Bishop (1995)
derives the following updating rules for o and B:

Nw

= v (A40)
w2

(228
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Nt

Bt = 2w’ (A41)

where x%(w) (see equation A9) is the sum of squares of residuals
for the training data. Thus, we update & as
Nw x 2(wr)

= . (A42)
Nr [lw.|?

Sr+1

From equation (A42), we see that for sufficiently complex net-
works (Nw >> 1) with lots of training data (Nt >> Ny), the param-
eter £ < 1. It shows that underfitting and overfitting issues can
be avoided by simply choosing network architectures that satisfy
conditions: (i) Nw > 1 and (ii) Nt > Nw. However, both these
conditions can put tremendous load on the computing resources. In
situations where the computing time is at a premium, a penalty term
is used to achieve a balance between computing load and desired
prediction accuracy of the neural network.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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