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ABSTRACT 

Many geological observation sets contain discrete-state data, which can be encoded as binary patterns. 
When there are conditional relationships between the variables, latent class analysis may be applied to 
subdivide the total sample into latent facies associations, which have local independence in the probability 
sense. Probabilities of latent facies assignments can be mapped areally as continuous surfaces of implied 
geological facies. Latent class analysis is rooted in simple probability theory and can be a useful technique 
in geological applications where observations are descriptive or weakly numerical. The method is illustrated 
by a latent facies mapping of the Morrison Formation (Upper Jurassic) in the subsurface of west Kansas. 

INTRODUCTION 

Geological observations are made on a va- 
riety of measurement scales, ranging in in- 
creasing information content from nominal to 
ratio. Although variables measured on a con- 
tinuous scale are the most desirable for math- 
ematical analysis, attributes characterized by 
simple presence or absence are common. Ex- 
amples include the presence or absence of 
fossil types, mineralogies, lithologies, or bed- 
ding structures. Facies may be identified with 
certain associations of attribute occurrence, 
which reflect a common genesis. If several 
distinctive associations are discriminated, 
this character will be shown by conditional 
relationships in the joint occurrence of sev- 
eral attributes. When plotted as symbols on 
a map, the presence or absence of attributes 
can show regional patterns that pick out the 
geographic distribution of the underlying 
facies. 

The use of binary presence-absence data 
considerably simplifies the decisions in- 
volved in codifying lithological descriptions. 
At the same time, the set of potential binary 
patterns to be mapped is two to the power of 
the number of variables, and so increase at 
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an exponential rate. Even at low numbers, it 
is difficult to map the overlap of patterns so 
that its meaning can be assimilated easily. 
This complexity suggests however, that al- 
though the binary unit is the most simple 
representation, the combination of several 
binary variables as patterns can be rich 
in information. The binary combination set 
should be reduced analytically by methods 
sensitive to intrinsic associations that can 
both be mapped and interpreted. In this pa- 
per, we describe the use of a model based on 
simple probability concepts applied to binary 
lithological information from the Morrison 
Formation. The "latent class model" seeks 
to define hidden associations that collectively 
account for the joint occurrences of observa- 
tion variables. For a geological application, 
these classes can be thought of as "latent fa- 
cies." In the initial phase, three lithological 
variables are binary coded and analyzed to 
yield a unique solution for two latent facies. 
This provides a good introductory example 
where methodology can be related easily to 
probability concepts (and solved with a hand 
calculator). Model determinancy and other 
factors in higher-order models are then con- 
sidered in conjunction with a three-class 
model based on four binary variables. 

GEOLOGICAL SETTING 

The Morrison Formation (Upper Jurassic) 
is restricted to the subsurface under much of 
western Kansas, where it ranges up to 350 
feet in thickness. Merriam (1963) suggested 
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that the upper part is correlative with the type 
Morrison in Colorado. A variety of late Juras- 
sic stratigraphic equivalents in surrounding 
states have been suggested for the lower part, 
and these are documented by both Merriam 
(1963) and Zeller (1968). The informal usage 
of "Morrison" to describe Upper Jurassic 
sediments in the Kansas subsurface will be 
retained in this paper, although the implica- 
tions of stratigraphic subdivision will be con- 
sidered in the interpretation. 

The major source of lithological informa- 
tion of this unit has been drawn from descrip- 
tions of drill-cuttings, supplemented by 
gamma-ray and resistivity logs. The section 
is dominated by sandy shales typically gray- 
green, but frequently varicolored in pastel 
shades. Limestone lenses occur locally 
(mostly in the upper part), while streaks of 
anhydrite and white-pink chalcedony chert 
are found in the lower part. Sandstone beds 
are most common in the east, often at the 
base of the section, but also within the upper 
division. 

Systematic lithofacies mapping from drill 
cuttings data is hampered by the coarse sam- 
pling interval (conventionally 10 ft) and prob- 
lems caused by infiltration of cavings and 
selective comminution of some mineral com- 
ponents by the drill bit. In addition, the gen- 
eralized descriptions must be transformed 
from prose to numbers for quantitative map- 
ping by interpolation between control wells. 
The Morrison Formation is particularly diffi- 
cult to evaluate because of its very mixed 
character and, when present, components 
can range through "trace," "streaks," 
"stringers," to beds, so that consistent volu- 
metric or thickness estimates are usually im- 
practical. However, the crucial information 
content appears to be contained in the simple 
presence or absence of key lithologies at well 
locations, whose spatial distributions indicate 
patterns of stratigraphic and lateral lithofa- 
cies variations. This observation is suggested 
by maps prepared by Merriam (1955) in 
which he outlined areas where both chert and 
anhydrite were absent, chert-present/anhy- 
drite absent, and both chert and anhydrite 
were present. He interpreted the distinctive 
geographic trends both in terms of localized 
environmental controls and stratigraphic 
overlap by younger Morrison sediments. 

BASIC PROBABILISTIC ANALYSIS 

The presence or absence of sandstone, 
limestone, and anhydrite in the Morrison 
Formation were coded as binary patterns for 
drill-cuttings descriptions from 313 wells in 
western Kansas. Maps of well locations for 
the occurrence of these lithologies are shown 
in figure 1. Distinctive geographical trends 
can be perceived suggestive of stratigraphic 
or facies controls. Frequencies of association 
between the variables are summarized graph- 
ically as the Venn diagram of figure 2. The 
numbers express the relative occurrences of 
all possible combinations. However, there is 
no immediate indication of which combin- 
ations occur more or less commonly than 
would be expected if there were no associa- 
tions. A comparison can be made by calculat- 
ing the expected frequency of each combina- 
tion under the assumption of independent 
events. This is the product of the marginal 
probabilities times the total number, 

e.g.,B = PiPjPk.N 

where pi = ni/N, and Bijk is the expected 
number of occurrences of lithologies i, j, and 
k; Pi Pp, Pk are the marginal probabilities of 
i, j, and k; N is the total number in the sam- 
ple, and ni is the number of occurrences of 
lithology i. The marginal probabilities of the 
absence of lithologies, i,j, and k, can be sym- 
bolized by P-i, P-j and pk, where P-i = 
(N- n)/N. The six marginal probabilities of 
presence/absence are then used to generate 
the eight possible combination frequencies. 
A comparison of the frequencies of observed 
patterns and numbers expected as a result of 
independent events is shown in table 1. The 
potential significance of the differences be- 
tween observed and expected totals was ex- 
amined by a chi-square contingency test. The 
calculated test value clearly exceeds the criti- 
cal chi-square at 5% significance, with a 
strong rejection of the null hypothesis of no 
association between the lithologies. 

The conclusion from this is that the total 
sample cannot be characterized by indepen- 
dent lithologies. A possible alternative model 
is that the sample is the result of some mix of 
distinctive associations or lithofacies. Each 
lithofacies would be internally independent in 
the probability sense. This concept is the ba- 
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FIG. 1.-Distribution of occurrence of sand- 
stone, limestone, and anhydrite reported in drill- 
cuttings from the Morrison Formation in Kansas. 

Null = 31 

FIG. 2.-Venn diagram of frequencies of mutual 
occurrences of sandstone, limestone, and anhy- 
drite reported in drill-cuttings from the Morrison 
Formation in Kansas. 

sis for "latent class analysis" initiated in the 
early fifties, primarily by Lazarsfeld (1950) 
and his students. Their model postulated a 
few distinct latent classes of attitude to "ex- 
plain" the observed variety of response pat- 
terns made by subjects to a series of 
discrete-state questions. They equated their 
method with the diagnostic procedure of 
medicine, where the collective presence or 
absence of symptoms reflects the operation 
of causative diseases. By analogy, observed 
associations of rock types can be considered 
to be diagnostic of ancient controls of sedi- 

TABLE 1 

FREQUENCIES OF BINARY PATTERNS FOR THE 

PRESENCE (1) OR ABSENCE (0) OF SANDSTONE (S), 
LIMESTONE (L) AND ANHYDRITE (A) OBSERVED IN 

MORRISON FORMATION SECTIONS (0) AND EXPECTED 

BASED ON AN INDEPENDENT-EVENTS MODEL (E) 

SLA O E 

0 0 0 31 37.2 
0 0 1 54 55.2 
0 1 0 47 60.6 
0 1 1 111 90.0 
1 0 0 24 10.7 
1 0 1 10 15.9 
1 1 0 24 17.5 
1 1 1 12 25.9 

NOTE.-Chi-square value is 37.61, significant at the 5% level and 
4 degrees of freedom. 
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mentation. Latent class analysis uses some 
simple ideas of probability, which are ex- 
plained below in connection with a three- 
variable, dual latent class model. 

Let xi, x1, xk be three binary variables that 
have the values of either 1 or zero as re- 
sponses to items i, j, and k. Their mean val- 
ues will be Pi, PP, Pk, the probabilities that an 
individual response will take the value 1. The 
joint probabilities of paired items are po, Pik, 
Pjk. The covariances of the binary variables 
are: 

cij = Pij- PiPj 

Cik = Pik - PiPk 

and cj = Pjk - PjPk 

Notice that these covariances will be zero in 
cases where the two variables are indepen- 
dent. They are central moments of second 
order, while the central moment of third or- 
der is given by: 

Cijk = Pijk - PiCjk - PjCik - PkCij - PiPjPk 

If there are no associations between the vari- 
ables, then the pair- and triple-joint probabili- 
ties are the same as the product of their com- 
ponent marginal probabilities, e.g., Pfk = 
PiPjPk. In this situation, the sample can be 
thought of as a single set consisting of inde- 
pendent variables. Alternatively, non-zero 
values of the central moments indicate sys- 
tematic associations between the variables. 
In this case, the sample might better be mod- 
eled as consisting of several subsets, or "la- 
tent classes," each of which consists of inde- 
pendent variables. 

The solution of the latent class variables 
follows from the model axiom that the classes 
are locally independent in the probability 
sense. A set of "accounting equations" can 
be written that are the logical outcome of lo- 
cal independence. These equations are de- 
scribed for three observational variables and 
a postulated two-class structure, but can be 
generalized to higher-order models. The pro- 
portions of the sample, vI and v2, to be as- 
signed to the two classes must sum to unity: 

vl + v2= 1 

The "manifest" marginal probability, pi for 

item i, is linked with the "latent probabili- 
ties" in each class, 01, and 02i, by: 

Pi "= 10, + v202i 

Two additional equations of this form related 
the manifest probabilities for items j and k 
with their latent probabilities. The manifest 
joint probability, py, is given by: 

Pij = VlOiOlj + v2ij 

while similar equations apply to the other 
probabilities, Pk and Pjk. Finally, the manifest 
triple joint probability, Pik, is related to the 
latent probabilities by: 

Pijk V OliOlOlk + V22i2j02k 

The unknowns in this equation set are the 
proportions of the two classes and the six 
latent probabilities. The solution is uniquely 
determined by the eight accounting equations 
for the three-variable/two-class model. Al- 
though it is not a linear simultaneous set, in 
this special limiting case, the equations can 
be solved by the following quick method. La- 
zarsfeld and Henry (1968) p. 41-43 demon- 
strate that: 

C2ijk/(CyCikCjk) = (2 - V)2/1Vv2 = (1/vV2) - 4 

where the c-terms are the central moments of 
the second and third order described earlier. 
The two latent class proportions can then be 
solved, because their summation to unity 
provides a second equation. The latent prob- 
abilities are solved next by using the account- 
ing equation: 

Pi = vl0i + V202i 

and the relationship: 

(01 - 02i)2 = CijCik/CjkVlV2 

for each of the three item variables. 
Returning to the Morrison Formation data, 

the presence or absence of sandstone, lime- 
stone, and anhydrite are three binary items 
that can be analyzed in terms of two latent 
classes, as described above. The manifest 
marginal and joint probabilities, together with 
central moments, were derived from the oc- 
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TABLE 2 

MORRISON FORMATION TWO-CLASS LATENT STRUCTURE 

Class Size Sandstone Limestone Anhydrite 

1 .345 .578 .493 .258 
2 .655 .037 .687 .776 

currence frequencies shown on the Venn dia- 
gram in figure 2. Estimates of class propor- 
tions and latent probabilities were calculated 
using the latent class procedure and are listed 
in table 2. The facies aspect of each class is 
apparent from comparisons between the val- 
ues of these latent probabilities. The first 
class can be characterized as a "clastic fa- 
cies," with moderate probability of sand- 
stone, a similar probability for limestone, and 
a low probability for anhydrite. By contrast, 
the second class is marked by a vanishingly 
small probability of sandstone, an increased 
probability of limestone, and a threefold in- 
crease in anhydrite. In the discussion of this 
paper, we will refer to this second class as 
the "chemical facies." 

In order to map the distribution of these 
implicit facies, the lithology response pattern 
from each well must first be classified in 
terms of the two latent classes. The condi- 
tional probabilities of the identification of any 
pattern with one or other of the classes can 
be calculated by Bayes' rule: 

Pr(llijk) = viOljOlkPijk 

and Pr(2Iijk) = v202i02j62k/Pyk 

The conditional probabilities for the various 
lithology patterns are listed in table 3. Each 
well location in the Morrison data set was 
assigned the probability of classification with 
the clastic facies class associated with its 
lithology pattern. A map of these probabili- 
ties (fig. 3) shows striking distinctive regional 
elements rather than a complex mosaic. The 
contours are based on values interpolated be- 
tween well control, so that the mapped classi- 
fication is a grouped aggregate of neighboring 
wells. By the same token, errors in lithologi- 
cal description will show up at wells whose 
probabilities are at marked variance with 
those of their neighbors. Since geographic co- 
ordinates are not used in the latent class com- 
putations, the map provides useful feedback 

information to check original cuttings de- 
scriptions. Although the probability map is 
keyed explicitly with clastic facies class clas- 
sification, the map simultaneously displays 
the complementary probability of assignment 
to the chemical facies class. The clastic facies 
occupies a belt adjacent to the subcrop, bro- 
ken by a major northwest trending lobe which 
projects across a platform area dominated by 
chemical facies patterns. 

The three-variable/two-class case is the 
simplest latent class model, but is easy both 
to understand and compute, and also pro- 
vides useful results. In the next section, we 
consider more generalized latent class mod- 
els which are extensions of the same con- 
cepts, but involve higher numbers of classes 
and differing numbers of binary variables. In 
particular, we apply a four-variable/three- 
class model to the Morrison Formation. This 
allows the comprehensive use of all lithologi- 
cal information concerning sandstone, lime- 
stone, anhydrite, and chert. Shale can be ig- 
nored as a variable, since it is ubiquitous 
throughout the Kansas Morrison. 

HIGHER-ORDER LATENT CLASS MODELS 

Higher-order models can be considered 
which postulate m latent classes, based on n 

TABLE 3 

MORRISON FORMATION TWO-CLASS LATENT 
CONDITIONAL PROBABILITIES 

Conditional Probability 
Pattern 
S L A Class 1 Class 2 

0 0 0 .55 .45 
0 0 1 .12 .88 
0 1 0 .35 .65 
0 1 1 .05 .95 
1 0 0 .97 .03 
1 0 1 .82 .18 
1 1 0 .95 .05 
1 1 1 .66 .34 
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FIG. 3.-Two-class latent lithofacies map of the Morrison Formation in Kansas, based on conditional 
probabilities of class assignment. 

binary variables. There are practical limita- 
tions on the feasibility of models with a large 
number of classes, since the number of re- 
sponse patterns increases as two powered by 
the model order, and doubles again with each 
new variable. Consequently, the higher or- 
ders can require inordinately large sample 
sizes if the probabilities of most combinations 
will be estimated as anything else than zero. 
Even in simple models, a small sample size 
and/or weakly heterogeneous probability 
structure can result in latent probabilities 
which are either slighly negative or exceed 
unity. These "impossible" estimates simply 

reflect that the samples provide estimates of 
population parameters and that the latent 
classes define a model of associations. Nev- 
ertheless, computed latent probabilities must 
be constrained within the conventional range 
to yield rational pattern frequencies. 

The number of unknown latent parameters 
will match the number of accounting equa- 
tions when: 

m(n + l) = 2n. 

With an insufficient number of binary vari- 
ables, there can be no unique solution, and 
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the model is not identifiable. Otherwise, ei- 
ther a solution or, more commonly a "best- 
fit" set of parameters, can be located by a 
generalized technique of latent class analysis. 
The generalized method fits a specified order 
of latent class model to the input variables by 
maximum likelihood and rational latent prob- 
ability constraint (Everitt 1984, p. 76-86). 
The optimum solution provides the best pos- 
sible match between the frequencies of bi- 
nary patterns predicted by the latent class 
model and those actually observed in the 
sample. In the partition of the Morrison For- 
mation data into two latent classes, there was 
a unique solution, since this was determined 
by the use of three variables. The solution 
was rational because of the strong conditional 
character in manifest probabilities and the 
moderately large sample size. In other appli- 
cations, one or more of these properties may 
not hold and the solution is one of best-fit. 
Where the joint probabilities of the total sam- 
ple are closely matched by products of mar- 
ginal probabilities, realistic partitions become 
impossible. 

The Morrison Formation data set was ex- 
panded to include the occurrence of chert, in 
addition to the presence or absence of sand- 
stone, limestone, and anhydrite, used earlier. 
The possible binary pattern combinations 
now number sixteen and their frequencies in 
the Morrison are shown in the Venn diagram 
of figure 4. The four variables were then ana- 
lyzed in terms of a three-class latent model. 
The results were examined to see whether a 
tripartite division was an improvement on a 
two-class model, or if the bipartite division 
was a more reasonable representation of the 
data structure. A solution based on three 
classes and four variables will not in general 
fit the data precisely and hence a best fitting 
model must necessarily be chosen using some 
criterion of misfit. Everitt (1984) described an 
iterative algorithm to find a maximum likeli- 
hood solution. His algorithm converges to a 
point at which all the partial derivatives of 
the log-likelihood are zero. Unfortunately, 
the log-likelihood often has a large number of 
critical points, most of which do not repre- 
sent maxima. The Everitt technique is ex- 
tremely sensitive to choice of initial estimates 
and can easily converge to a critical point 
which does not represent a maximum. Fur- 
thermore because the parameters are subject 

Null = 8 

FIG. 4.-Venn diagram of frequencies of mutual 
occurrences of sandstone, limestone, anhydrite 
and chert reported in drill-cuttings from the Mor- 
rison Formation in Kansas. 

to the constraints that all probabilities must 
lie between zero and one, a global maximum 
for the log-likelihood may occur at a bound- 
ary point at which not all of the partial deriva- 
tives are zero. 

The authors have further found that the 
likelihood function has a great many local 
maxima. Alternative models to the maximum 
likelihood solution, which degrade the maxi- 
mum likelihood fit almost imperceptibly, of- 
ten exist with fitted parameters widely differ- 
ent from those found by the maximum 
likelihood solution. The authors believe that 
these alternative models should be examined. 

A common approach to find the global 
maximum of a function over a constrained 
set is to use a transformation to convert all 
the local maxima to critical points (Box 
1986), then choose systematically a large 
number of possible initial points (Aird and 
Rice 1977) and iterate each to find a variety 
of possible local maxima. This procedure was 
applied to the Morrison Formation data using 
the IMSL (International Mathematical and 
Statistical Library) routine ZSRCH to sys- 
tematically locate initial points, and the sub- 
routine of ZXMIN to iterate these points a 
small number of times for the location of pos- 
sible critical points. ZSRCH is described in 
Aird and Rice. ZXMIN is based upon the 
Davidson-Fletcher-Powell quasi-Newton al- 
gorithm and is succinctly described in Press 
et al. 1986. The candidates for critical points 
were ordered in terms of log-likelihood. High 
value locations were further iterated until 
convergence. Essentially equivalent, but 
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lower value, locations were eliminated. 
ZXMIN produces an estimate of the Hessian 
of the log-likelihood that was used to deter- 
mine if the identified critical points represent 
maxima or not. All identified independent lo- 
cal maxima were printed for consideration. 
Except for the production of alternative mod- 
els, this is the approach used by the IMSL 
routine ZXMWD to find a global maximum 
of a function over a constrained set. 

As a final evaluation, the predicted binary 
pattern frequencies can be compared with the 
observed frequencies using the chi-square 
statistic. For the Morrison Formation data 
set, the optimal solution judged by both the 
maximum likelihood and the chi-square crite- 
rion results in the pattern frequencies listed 
in table 4. The chi-square statistic is 0.726 
with one degree of freedom, indicating an ex- 
cellent fit with observational data. 

The proportions of the three latent classes 
and their latent probabilities of sandstone, 
limestone, anhydrite, and chert (table 5) are 
easily interpreted, especially when compared 
with the two-class structure (table 2). The 
first class is extremely similar to the "clastic 
facies" of the two-class division with respect 
to the proportional size and latent probabili- 
ties of sandstone and limestone. This latent 
clastic facies is marked by moderate proba- 
bility of sandstone as contrasted with the 
other classes, where sandstone has a low or 
zero probability of occurrence. By implica- 
tion, the second and third classes are equiva- 
lent to a subdivision of the "chemical facies" 
of the two-class model. The chert component 
clearly has a higher association with these 
two chemical facies than the clastic facies. 
The chemical facies probabilities of sand- 
stone are low, probabilities of anhydrite and 
chert are high, and probability of limestone 
ranges from moderate to high. These two 
classes are distinguished almost entirely by a 
strong association of limestone with the third 

TABLE 4 

OBSERVED AND THREE-CLASS MODEL PREDICTIONS OF 

SANDSTONE (S), LIMESTONE (L), ANHYDRITE (A), 
AND CHERT (C) IN THE MORRISON FORMATION 

Pattern Obs. 3-Class Model 
S L A C freq. prediction 

0 0 0 8 9.6 
0 0 0 1 23 22.6 
00 1 0 2 1.9 
0 0 1 1 52 52.2 
0 1 0 0 13 11.4 
0 1 0 1 34 34.5 
0 1 1 0 6 6.2 
0 1 1 1 105 104.7 
1 0 0 0 10 9.0 
1 0 0 1 14 13.7 
1 0 1 0 1 1.0 
10 1 1 9 9.0 
1 1 0 0 9 9.9 
1 1 0 1 15 15.3 
1 1 1 0 1 1.1 
1 1 1 1 11 11.0 

class, as compared with the second, whose 
limestone probability is similar to that in the 
clastic facies. In summary, the three classes 
can be identified as a sandstone facies, an 
anhydrite-chert facies, and a limestone- 
anhydrite-chert facies. The strong polariza- 
tion of limestone between the two chemical 
facies suggests that the subdivision is real, 
although the basic structure of the data seems 
determined by a simple differentiation be- 
tween clastics and chemical rocks. A map of 
assignations of well patterns to these latent 
facies provides valuable additional informa- 
tion for model verification and interpretation. 

The three conditional probabilities for each 
lithology pattern were calculated using the 
equations cited earlier. These express the rel- 
ative probability of membership in the three 
latent classes given the responses in the pat- 
tern. In the case of the two-class model, the 
conditional probabilities of the well control 

TABLE 5 

MORRISON FORMATION THREE-CLASS LATENT STRUCTURE 

Class Size Sandstone Limestone Anhydrite Chert 

1 .322 .491 .524 .095 .576 
2 .415 .158 .553 .840 1.000 
3 .263 .000 .843 .829 .911 
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FIG. 5.-Thiessen polygonal tessellation of locations of Morrison Formation drill-cuttings samples. 

could be contoured as a single map, because 
the classification alternatives summed to 
unity. For the more complex three-class 
case, each well was classified in terms of one 
of the three latent facies as dictated by the 
highest Bayesian probability. The classifica- 
tions were then used as the basis for a sym- 
bolic facies map by assigning the facies of 
each well to its immediate neighborhood and 
fusing the results as a composite map. The 
process can be done automatically by the 
subdivision of the region into Thiessen poly- 
gons (also known as Dirichlet cells or Voro- 
noi polygons). Green and Sibson (1978) de- 
scribe an algorithm for the construction of 
a complete tessellation, where each polygon 
encloses all locations which are closer to the 
interior data point than to any other point. 
The result of the Thiessen polygon subdivi- 
sion of the Morrison Formation well control 
is shown in figure 5, where the symbols mark 
well location and latent facies classification. 

If the polygons are assigned the facies of 
their well, and edges are erased between 
neighboring polygons with common facies, 
the result is the lithofacies map of figure 6. 
As would be expected, this map shows essen- 

tially the same distribution of clastic facies as 
the two-class probability map. However, the 
most striking new feature is the marked seg- 
regation of the two chemical latent facies. 
The northeast-trending clastic belt is paral- 
leled by a zone of chert-anhydrite facies, 
which is flanked to the northwest by a 
limestone-chert-anhydrite facies. Since geo- 
graphic location does not enter the latent 
class analysis, this character supports the 
idea that the latent facies subdivision repre- 
sents geologically meaningful associations 
rather than mathematical artifacts. The map 
is easy to interpret when related to the Mor- 
rison Formation subdivision proposed by 
Merriam (1955), who recognized a lower divi- 
sion marked by anhydrite and chert and an 
upper division with limestone "stringers." 
The regional features pick up the geographic 
limits of the lower Morrison chert-anhydrite- 
shale unit overlapped by the upper unit which 
grades from nearshore clastics to shallow- 
water limestones in the northwest. The clas- 
tic belt is broken by a major northwest- 
trending lobe, which may reflect the influence 
of the Oakley Anticline as a structurally-high 
feature as suggested by Lee and Merriam 
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FIG. 6.-Three-class latent lithofacies map of the Morrison Formation in Kansas. 

(1954). In a similar way, the Cambridge Arch 
may also have been active (Merriam 1963) 
and may be linked with the west-trending 
clastic feature in the extreme north. 

DISCUSSION 

The philosophy of latent class analysis as 
a mathematical model is similar to factor 
analysis, because a few hidden classes are 
postulated to account for the observed vari- 
ety of response patterns. This is not an alien 
concept to geologists who commonly attempt 
to define facies as an ensemble of observable 
features. However, classical sedimentary fa- 

cies are rooted in models of genesis (usually 
based on modern analogs), which are then 
linked with properties observed in the field. 
The "latent facies" of this paper extract dis- 
tinctive variable associations empirically, 
and these are considered to be diagnostic of 
causal processes. The potential "meaning" 
of the latent facies must be drawn from the 
geological context. Their parameters and 
mapped variation may reflect lateral facies 
changes and/or the regional distribution of 
stratigraphic subdivisions. 

The latent model has the simple intuitive 
appeal of its elementary probability concepts 
and its nominal data requirements make no 
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high demands on precision. These qualities 
make it a useful method for many geological 
data sets where observations are either de- 
scriptive or weakly numerical. The use of 
probability also accommodates observation 
errors within the analysis. Unlike factor anal- 
ysis, latent class models have no rotation 
problem. This is because the assumption of 
normal distribution limits factor analysis to 
pairwise correlations, whereas latent class 
analysis uses joint frequencies of three or 
more items to fix the appropriate rotation. As 
Everitt (1984, p. 77) notes the cumbersome 
methods described by early workers in latent 

class analysis (such as Lazarsfeld and Henry 
1968) "are now only of historical interest 
since with modern computers and optimiza- 
tion algorithms it is fairly straightforward to 
use maximum likelihood methods." In com- 
mon with factor analysis, latent structure 
analysis is not a technique of statistical infer- 
ence, but a recasting of the data based on 
variable associations. Since the geographic 
coordinates of the observations are not used 
within the latent facies analysis, the appear- 
ance of coherent patterns and distinctive 
trends on the final maps are the best criteria 
as to the likely success of an application. 
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