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[1] This paper evaluates the dual-domain mass transfer (DDMT) model to represent
transport processes when small-scale high-conductivity (K) preferential flow paths (PFPs)
are present in a homogenous porous media matrix. The effects of PFPs upon solute
transport were examined through detailed numerical experiments involving different
realizations of PFP networks, PFP/matrix conductivity contrasts varying from 10:1 to
200:1, different magnitudes of effective conductivities, and a range of molecular diffusion
coefficients. Results suggest that the DDMT model can reproduce both the near-source
peak and the downstream low-concentration spreading observed in the embedded
dendritic network when there are large conductivity contrasts between high-K PFPs and
the low-K matrix. The accuracy of the DDMT model is also affected by the geometry of
PFP networks and by the relative significance of the diffusion process in the network-
matrix system.
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1. Introduction

[2] Small-scale preferential flow paths (PFPs) are believed
to exert a strong influence on solute transport on field-scale
transport at the MADE site located on the Columbus Air
Force Base in Mississippi [Boggs and Adams, 1992; Boggs
et al., 1993; Zheng and Jiao, 1998; Feehley et al., 2000;
Harvey and Gorelick, 2000]. Due to the extreme aquifer
heterogeneity and likely occurrence of small-scale PFPs at
the site, the observed concentration profiles of nonreactive
tracers, i.e., bromide in the first experiment (MADE-1) and
tritium in the second experiment (MADE-2), exhibit highly
non-Gaussian patterns with a near-source peak and extensive
spreading to the far-field in low concentrations [Boggs et al.,
1992, 1993]. The observed plume distribution could not be
represented using the standard advective-dispersive equation
[Feehley et al., 2000; Harvey and Gorelick, 2000], although
this matter has been recently debated [Barlebo et al., 2004;
Molz et al., 2006; Hill et al., 2006].
[3] The dual-domain mass transfer (DDMT) approach is

able to reproduce the near-source peak as well as the
extensive solute spreading downgradient at low concentra-
tions. Using a DDMT model, Harvey and Gorelick [2000]
explained the change in observed plume mass with time at
the MADE site, a phenomenon that had been previously
attributed to experimental errors. Haggerty et al. [2001]

applied a DDMT model to investigate the observed behav-
ior in a series of single-well injection-withdrawal tests
conducted in a fractured dolomite. Considering that the
mass exchange in natural heterogeneous media may be a
consequence of different mass transfer rates, the DDMT
approach was also extended to consider multidomain
[Gwo et al., 1995], multiphase [Falta, 2000] and multirate
[Haggerty and Gorelick, 1995; McKenna et al., 2001; Wang
et al., 2005] transport.
[4] In aquifers containing high-K PFPs, transport can be

divided into two domains: a relatively mobile domain (i.e.,
the PFPs) where advection is enhanced, and a relatively
immobile region where the rate of advection can be several
orders of magnitude smaller compared to that in the
relatively mobile domain. The rate-limited mass transfer
process between the two domains is controlled by molecular
diffusion and slow advection across the mobile-immobile
domain interface. The latter factor is further dependent on
the geometry of PFPs and the magnitude of the conductivity
contrast between the PFPs and the relative immobile flow
barriers. Theoretically, if the spatial distribution of these
small-scale PFPs were fully defined and a numerical model
grid were sufficiently refined to permit explicit representa-
tion of the PFPs, transport could be characterized accurately
by an advection-diffusion model. In practice, however, this
is generally precluded both by a lack of detailed field data
and by extreme computational requirements [Zheng and
Bennett, 2002]. Thus the effects of small-scale PFPs on
solute transport are often accounted for using models that
treat the system in an upscaled manner. In this study, we
evaluate the applicability of the DDMT model to represent
the small-scale PFPs under various conditions.
[5] It is noteworthy that other novel theories have also

been developed to describe transport controlled by small-
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scale heterogeneities [Berkowitz and Scher, 1998; Benson et
al., 2000]. Berkowitz et al. [2002, 2006] provide some
theoretical insights among various transport formalisms
and demonstrate that these different approaches may be
unified under the general framework of continuous time
random walk. Anomalous transport behavior has also been
observed in catchments [Kirchner et al., 2000; Scher et al.,
2002].
[6] Here we report the results of numerical experiments

conducted on a 3-D synthetic aquifer containing decimeter-
scale high-K ‘‘channels’’ (i.e., PFPs) embedded in a low-
conductivity ‘‘matrix.’’ The hypothetical 3-D PFP networks
are generated using an invasion percolation algorithm [Liu
et al., 2004]. The effective hydraulic properties of such
networks in 2-D were investigated by Ronayne and Gorelick
[2006]. Given the explicit representation of these decimeter-
scale PFPs, solute transport is systematically examined
under a variety of flow and transport conditions. The key
question we seek to answer is whether or not the DDMT
model can be applied to satisfactorily simulate solute trans-
port processes in aquifers containing fine-scale PFPs under
varied conditions. Major factors that dictate the applicability
of the DDMTmodel are explored, including the conductivity
contrast between the PFPs and the matrix, molecular diffu-
sion, and different geometries of PFPs.
[7] The PFPs examined in this study are intended to provide

one possible representation of permeable interconnected struc-
tures even if many others are possible. The dendritic patterns

that we represent may be applicable to karst systems as well as
other porous media environments. We merely use this partic-
ular system as a convenient construct to explore the case of
tortuous connected pathways that are embedded in a perme-
able matrix. We note that the PFPs in fractured bedrock are
quite different in that our matrix is much more permeable than
bedrock even under the highest K contrast we consider.

2. Methodology

[8] To determine the viability of the DDMT model in
representing transport processes in aquifers containing
small-scale PFPs, we conducted a series of numerical experi-
ments using the flow and transport codes MOFLOW-2000
[Harbaugh et al., 2000] and MT3DMS [Zheng and Wang,
1999; Zheng, 2006]. First, advection-diffusion processes
were simulated in great detail in a binary 3-D PFP-matrix
flow system (Figure 1). The solute plumes were obtained for
different PFP/matrix conductivity contrasts, effective con-
ductivity values, molecular diffusion coefficients, and PFP
network geometries. These are the same model systems that
were used to explore the applicability of the classical
advective-dispersive equation from Liu et al. [2004]. The
generated plumes are then used as the ‘‘true’’ references for
comparison with those resulting from the equivalent DDMT
model applied to each case. The DDMTmodel consists of an
advective-dispersive transport equation for solutes in the
mobile fluid zone coupled with a mass transfer equation that

Figure 1. Schematic diagram of 3-D synthetic-aquifer model. Also shown are the PFP images at layer
10 of the detailed transport analysis window: (a) PFP network realization 1, (b) PFP network realization
2, and (c) PFP network realization 3. The volumetric fraction of PFPs is �9% in realization 1, �20% in
realization 2, and �46% in realization 3.
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describes the mass exchange between the mobile and
immobile fluid zones.

2.1. PFP Network Advection-Diffusion Model

[9] The advection-diffusion equation describing the fate
and transport of conservative solutes in 3-D groundwater
flow systems can be expressed in subscript form as

@ nCð Þ
@t

¼ @

@xi
nD *

@C

@xi

� �
� @

@xi
qiCð Þ þ qsCs; ð1Þ

where C is the dissolved solute concentration; n is the
porosity of the porous media; D* is the molecular diffusion
coefficient in porous media; qi is the ith component of the
specific discharge; and Cs is the concentration of the fluid
source/sink flux qs.
[10] The basic flow and transport model setup is sketched

in Figure 1. The flow domain is 200 m long by 51.2 m wide
by 2 m thick and discretized into 20 layers. Each layer is
10 cm thick and consists of 512 columns and 430 rows.
The area ABCD-ABCD is the region where the high-K PFPs
are embedded within the low-K matrix. The high-K PFPs are
assumed 10 cm wide. Preliminary simulations indicated that
the representation of 10 cm-wide channels with 10 cm-wide
cells is sufficiently accurate for the purposes of this study.
The PFP network used in this study was generated using an
invasion percolation algorithm based on Stark [1991]. Fur-
ther details regarding the numerical model, the percolation
algorithm, and the realizations generated are given by Liu
et al. [2004] and Gorelick et al. [2005]; we employ the
same system and realizations in this study.
[11] The aquifer is confined and the flow field is steady

state. There is no groundwater flow across the eastern and
western boundaries. The southern boundary is constant-
head. The northern boundary is a specified-flux with the
groundwater inflow (Q) so determined as to achieve an
average hydraulic gradient of 0.001 in the dominant flow
direction. To minimize the boundary effects, the area
ABCD-A0B0C0D0 is set sufficiently far away from the
northern and southern borders throughflow buffer zones.
The grid spacing in PFP-matrix area ABCD-A0B0C0D0 is 10
cm in both row (east-west) and column (north-south)
directions. Detailed solute transport analysis is conducted
in a smaller window (MNOP-M0N0O0P0 in Figure 1) inside
the area ABCD-A0B0C0D0. Transport boundary conditions
are zero concentration gradient across all sides of the
transport analysis window. The source placement configu-
ration examined here is a zone of 7 m wide, 0.4 m deep and
0.4 m extended in the direction of flow, within which initial
mass is non-uniformly distributed in proportion to the
respective K values. This ‘‘partitioned’’ source represents
the distribution of solutes in the aquifer where the PFPs
receive a higher amount of injected mass than the matrix in
proportion to the ratio of PFP/matrix K values during an
instantaneous tracer injection event. The source area occu-
pies 4.7% of the total area perpendicular to mean flow.
[12] Only advection and molecular diffusion are modeled

when considering the full 3-D embedded PFP network. The
diffusion coefficient is 8.64 � 10�6 m2/day unless stated
otherwise. Local pore-scale dispersion is not included. To
achieve this full representation of the decimeter-scale high-
K PFPs, 4.4 million cells are used in the flow and transport
simulations. Practically, the effects of small-scale high-K

PFPs must be represented in an upscaled manner in field
situations.

2.2. Dual-Domain Mass Transfer (DDMT) Model

[13] In this study we consider the efficacy of the DDMT
model for representing transport processes in the PFP net-
works. The DDMT system is conceptualized as consisting
of two domains: a mobile zone with pore spaces filled with
mobile water where transport is primarily by advection; and
an immobile zone with pore spaces filled with stagnant
water where advective transport is negligible. Solute ex-
change between the mobile and immobile fluid zones is
driven by the concentration difference between the two
domains. The governing equations for the DDMT model
can be expressed for conservative solutes as [Feehley et al.,
2000; Gorelick et al., 2005]

nm
@Cm

@t
þ nim

@Cim

@t
¼ @

@xi
nmDij

@Cm

@xj

� �
� @

@xi
qiCmð Þ þ qsCs;

ð2aÞ

nim
@Cim

@t
¼ x Cm � Cimð Þ; ð2bÞ

where Cm and nm are the concentration and porosity in the
mobile domain; Cim and nim are the concentration and
porosity in the immobile domain; and x is the first-order
mass transfer rate. Note that with equation (2b), the mass
transfer between the mobile and immobile zones is
approximated by a linear non-equilibrium model. Dij is
the dispersion coefficient. To account for more complex
field conditions, a higher-order diffusion or first-order
multirate equation may be applied [Haggerty and Gorelick,
1995].
[14] In the DDMT model, solute is transported by advec-

tion through the high-K mobile zone, while no advection
occurs in the low-K matrix immobile zone. The immobile
zone essentially acts as a sink or source for solutes in the
mobile zone depending on the direction of the concentration
gradient between the two zones. It is noteworthy that in the
DDMT model, it is assumed that no advective transport
occurs in the immobile zone; but in the true PFP network
model advection may still be present in the matrix though at
a slower rate. Thus there is always a discrepancy using the
DDMT approach because relatively low-velocity flow zones
are approximated as absolutely immobile zones. In the
DDMT model we consider local-scale, sub-grid dispersion
as an additional process that can occur. Numerical experi-
ments showed that results were not affected by local scale
longitudinal dispersivity, so it was set equal to zero. The
nominal values of local-scale dispersivities in the transverse
directions were determined by spatial moment analysis [Liu
et al., 2004, equation (11)].
[15] The DDMT model has two additional parameters,

the mobile versus total porosity ratio F, where F = nm/(nm +
nim), and the mass transfer rate coefficient x between mobile
and immobile zones. In general, these parameters are
determined indirectly by matching simulated concentrations
to observed tracer data [Feehley et al., 2000; Harvey and
Gorelick, 2000; Haggerty et al., 2001]. For the synthetic
PFP network-matrix systems considered in this work, how-
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ever, in the following sections we show that they can be
directly estimated using physically derived formulae with-
out resorting to model calibration.
[16] Here we present the logic leading to the development

of the relationship between the mobile porosity ratio and the
hydraulic conductivities of the PFP network-matrix system.
To determine the mobile porosity ratio, consider that the
DDMT system can be conceptually treated as straight
mobile and immobile strips aligned along the ambient flow
direction. Accordingly, we conceptualize the dendritic PFP
network system as straight PFP conduits embedded in the
homogeneous low-K matrix. Imagine that the straight con-
duits have the same properties as the dendritic PFPs (i.e.,
conductivity and porosity). To obtain the equivalency be-
tween the dendritic network and straight PFP conduits, the
total flow rate must remain identical under the same
hydraulic gradient. Applying Darcy’s law to both the
dendritic and straight conduit systems, respectively, one
obtains

KNIA ¼ RKCIAþ 1� Rð ÞKMIA; ð3Þ

where I is the mean hydraulic gradient; A is the cross-
sectional area of the entire system; KM is the matrix
conductivity; KC is the conductivity of PFPs; KN is the
effective conductivity (the average hydraulic conductivity
value that preserves total discharge) of the dendritic PFP
network-matrix system, which is easily determined using
the flow model once KM and KC are known; and R is the
volumetric fraction of straight PFP conduits. The first,
second and third terms of (3) are the total flow rates for the
dendritic system, the straight PFP conduits, and the low-K
matrix between the straight conduits, respectively. It is
noteworthy that in the dendritic network system, the flow in
the PFPs and low-K matrix is integrated through the single
effective conductivity term, KN.
[17] As a conceptual approximation of the dendritic

network system in this development, we treat the straight
PFP conduits as the mobile strips and the low-K matrix as
the immobile strips in the DDMT model. Because the PFPs
and low-K matrix are assumed to have the same porosity of
0.2 here, the fraction of mobile porosity F in the DDMT
model is equivalent to the volumetric percentage of straight
PFP conduits relative to the total porosity (nm + nim) set
equal to 0.2. From (3), the mobile porosity fraction is
calculated as

F ¼ R ¼ KN � KM

KC � KM

: ð4Þ

Note that during the above derivation, we approximate the
low-K matrix with conductivity KM as the absolutely
immobile strips with zero conductivity in the DDMT
model. As demonstrated in the following sections, the error
associated with this approximation may or may not be
significant, depending mainly on the PFP/matrix conduc-
tivity contrast.
[18] The mass transfer rate coefficient used in the DDMT

model is calculated as [Gorelick et al., 2005]

x ¼ bð Þ D=Lð Þ
DVKNR

þ KM

KN � KR

� �
� fc � F

F

� �� �
; ð5Þ

where DVKNR = jVKN � VKRj, which is the difference
between average velocity, VKN, in the entire embedded
dendritic network system and the average velocity, VKR, in a
completely random (binary) heterogeneous conductivity
field consisting of the same materials as the dendritic PFP
network (i.e., the PFP volume is randomly distributed
within the low-conductivity matrix rather than being
connected); KR is the effective conductivity of the random
field. D is the product of mobile porosity and molecular
diffusion coefficient, nmD*; L is the representative width of
PFPs, here taken to be 10 cm; fc is the volume fraction of
high-K PFPs. Of importance,DVKNR describes the degree to
which flow occurs in preferential pathways in structures
containing a PFP network versus flow that occurs through
comparable randomized structures with few connected
pathways. It essentially provides a measure of the relative
connectivity of PFPs, The value of the constant b, which
has the same units as x, was determined previously by
fitting to be 0.001875 d�1 [Gorelick et al., 2005].
[19] Equation (5) not only yields x, but also provides

insight into the nature of the mass transfer processes
[Gorelick et al., 2005]. The first and second terms in the

square bracket (i.e.,
D=Lð Þ

DVKNR
and KM

KN�KR
) consider the relative

significance of diffusion and matrix-limiting advection,
respectively. The first term is essentially an inverse Peclet
number. The second term is akin to a Courant number for
the case of steady flow under a specified hydraulic gradient,
which cancels in the numerator and denominator written in
terms of the groundwater velocity equation. This term
describes the velocity in the matrix relative to velocity
through the PFP minus that in a completely random binary

conductivity field. The third term (i.e., fc�F
F ) is a normali-

zation factor to accommodate different PFP volumetric
percentages in the network system and different mobile
zone fractions used in the DDMT model. From (5), smaller
values of effective mass transfer coefficients correspond
typically to larger conduit-matrix conductivity contrasts,
smaller values of diffusion coefficients, greater network
connectivity, and lower conduit-volume fractions.

2.3. Model Evaluation Criterion

[20] Quantitative comparison between the two model
predictions is made by computing the root-mean-square
error (RMSE) between the plumes simulated through the
true PFP network system and the plumes simulated by the
equivalent DDMT model,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NROW

XNROW

i¼1
log M1;i=M0

� �
� log M2;i=M0

� �� �2r
;

ð6Þ

where M0 is the initial source mass; M1,i and M2,i are the
solute mass in the PFP-network system and that simulated
by the DDMT model at location i, respectively,

Mp;i=M0 ¼
XNLAY

k¼1

XNCOL

j¼1
Cp j; i; kð Þ � V j; i; kð Þ=M0; ð7Þ

where p is either 1 to indicate the PFP-network system or
2 to indicate the DDMT model; NROW, NCOL and NLAY
are the total numbers of row, columns and layers, which
are 370, 300 and 20, respectively, of the detailed solute
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transport analysis window (MNOP-M0N0O0P0 in Figure 1);
and V( j, i, k) and C( j, i, k) are the pore water volume and
concentration at cell ( j, i, k). Note that the row direction
(index i) is perpendicular to the mean flow. Because the
DDMT model is intended to represent the bulk behavior of
PFP network transport, it is more meaningful to use the
integrated mass profiles as expressed in (7) in computing
the RMSE so that the local effects of cell-to-cell mismatch
would not skew the comparison. By taking the log
transformation in (6), the RMSE provides an unbiased
statistical indicator in that the transport characteristics in
both the high-concentration plume center and low-
concentration plume edges are appropriately accounted
for. For Mp,i/M0 below a minimum threshold value of
10�6, the mass at the ith row is considered indistinguish-
able from zero and log[Mp,i/M0] is set equal to �6.
[21] Note that for the DDMT model, as each cell consists

of mobile and immobile domains, C2( j, i, k) is computed as

C2 j; i; kð Þ ¼ FCm j; i; kð Þ þ 1� Fð ÞCm j; i; kð Þ; ð8Þ

where Cm( j, i, k) and Cim( j, i, k) are the concentrations in
the mobile and immobile domains at cell ( j, i, k).
[22] The RMSE describes statistically the error in con-

centration that occurs when the DDMT model is applied to
predict transport through the embedded PFP network. The
DDMT model is more accurate when the RMSE value
decreases.

3. Results

[23] Using the models developed in section 2, we con-
ducted a series of detailed numerical simulations that
involve three different realizations of percolation-generated
decimeter-wide PFP networks (Figure 1), a wide range of
conductivity contrasts between high-K PFPs and low-K
matrix, and varied diffusion coefficients. The first high-K
network realization contains �9% PFPs by volume, com-
pared to �20% and �46% in the second and third realiza-
tions, respectively. Most simulations were conducted in the

first realization and are referred to in this study as ‘‘base
case’’, ‘‘Low K’’, ‘‘High K’’ and ‘‘DD* @ K 100:1’’.
[24] In the ‘‘base case’’, the molecular diffusion coeffi-

cient in porous media is a typical value of some ions in pore
fluid, 8.64 � 10�6 m2/d. The PFP/matrix conductivity
contrast was systematically adjusted from 10:1 to 200:1
while the effective conductivity of the dendritic PFP net-
work-matrix system was maintained constant at 1.28 m/d.
Table 1 provides the summary statistics of the K field at
different conductivity contrasts.
[25] The Peclet number of the dendritic network system is

calculated as

Pe ¼
KN IL



nD*: ð9Þ

In the base case the effective PFP network-matrix conduc-
tivity KN is 1.28 m/d; the ambient gradient I is 0.001; the
representative PFP width L is 0.1 m; and porosity n is 0.2.
The Peclet number Pe is computed as 74, indicating a
relative dominance of advective over diffusive processes
in the dendritic PFP network system.
[26] In the ‘‘Low K’’ case, the magnitudes of both PFP

and matrix conductivities were decreased to one ninth of
their original values. As a result, the effective PFP-matrix
conductivity KN and Peclet number Pe are one ninth of the
base-case values, which indicates a ninefold relative in-
crease in the effect of diffusion. In the ‘‘High K’’ case, by
contrast, conductivity values were increased 50 times,
representing a decrease in the effect of diffusion to one-
fiftieth of its original level. In both the ‘‘Low K’’ and ‘‘High
K’’ cases the conductivity contrast was varied from 10:1 to
200:1. In the ‘‘DD* @ K 100:1’’ case, the PFP/matrix
conductivity contrast was fixed at 100:1 while the diffusion
coefficient was varied from 1/3 � D* to 9 � D*, where D*
is the base-case value of 8.64 � 10�6 m2/d.
[27] In the source configuration investigated here, solute

mass is proportioned on the basis of the hydraulic conduc-
tivity value of the PFPs versus the value for the matrix in
the true detailed network model. For the corresponding
DDMT model, initial solute mass is only distributed in
the mobile zone given that in the immobile zone, no
advective flow occurs and solute can only move in or out
through the mass exchange with the mobile zone. The initial
total mass is identical between the true network and DDMT
models.
[28] Figure 2 compares the plume obtained from the PFP

network system with that from the DDMT model at a
conductivity contrast of 100:1 in the base case. Figure 2a
shows the ‘‘true’’ concentration distribution in 3-D at time
0.13 pore volume that develops through the PFP network.
Part of the plume is cut away for the ease of visualization.
Solute spreading is asymmetric with most mass skewed to
the upstream. The local shape of the plume is dominated by
the geometric distribution of the PFP network. Figure 2b
presents the equivalent 3-D plume simulated by the DDMT
model. The calculated RMSE is 0.435 reflecting the quality
of overall match between the network and the DDMT
plumes. Direct visual comparison between the PFP network
and DDMT plumes is also provided in Figure 2c, where the
2-D contours are vertically averaged from the 3-D concen-
trations. Despite the local point-to-point mismatch due to

Table 1. Summary Statistics of Conductivity Field at Different

Conductivity Contrasts for PFP Network Realization 1a

K Ratio Model K Values Mean K Var K
Mean
(lnK)

Var
(lnK)

10:1 PFP, 8.34
Matrix, 0.84

1.51 4.63 0.03 0.44

15:1 PFP, 10.76
Matrix, 0.72

1.62 8.29 �0.09 0.60

20:1 PFP, 12.66
Matrix, 0.63

1.72 11.87 �0.19 0.74

30:1 PFP, 15.48
Matrix, 0.52

1.87 18.40 �0.35 0.95

50:1 PFP,19.14
Matrix,0.38

2.08 28.90 �0.61 1.26

100:1 PFP, 24
Matrix, 0.24

2.38 46.36 �1.01 1.74

150:1 PFP, 26.75
Matrix, 0.18

2.58 57.97 �1.27 2.06

200:1 PFP, 28.68
Matrix, 0.14

2.72 66.87 �1.46 2.31

aK values are in m/d.
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the use of an effective conductivity field, the DDMT model
provides a reasonable representation of the overall solute
spreading pattern in the PFP network. Specifically, the
DDMT model is able to reproduce both the near-source
peak and low-concentration spreading in the downstream
area.
[29] Figure 3 compares the plumes obtained from the true

network model with those from the DDMT model at
different PFP/matrix conductivity contrasts examined in
the base case. Parameter values used to generate Figure 3
are listed in Table 2. The values of mobile porosity fraction
and mass transfer rate coefficient were calculated using (4)
and (5), respectively. Figure 3 demonstrates that the DDMT
model provides a more reasonable representation of the
average behavior of PFP network transport processes when
the PFP/matrix conductivity contrast increases.

[30] Table 3 shows the computed RMSE values for the
true network versus DDMT plumes at the different conduc-
tivity contrasts in the base case. Note that when the PFP/
matrix conductivity contrast is small, the applicability of the
DDMT model becomes poor, as displayed visually by the
large mismatch in the near-source area (Figure 3). However,
when contrasts between the high-K PFPs and the low-K
matrix are larger, the accuracy of the DDMT model
improves rapidly until the contrast reaches 150:1. When
the PFP/matrix conductivity contrast increases beyond
150:1, no further significant improvement is observed. If
one is willing to accept an RMSE �0.5 as a criterion, the
DDMT model may be suitable for representing the PFPs
under field conditions when the PFP/matrix conductivity
contrast is determined to be �100:1 or greater.
[31] The effects of the PFP/matrix conductivity contrast

on the applicability of the DDMT model are mostly evident
in the near-source area. The larger the PFP/matrix conduc-
tivity contrast, the better the match of the DDMT model in
the near-source area. As shown in Figure 3, for example, at
a 10:1 conductivity contrast, there is no mass 3 m down-
gradient from the source in the PFP-network system, while
in the DDMT model solute spreading is continuously
present in the area. This near-source mismatch is reduced
when the conductivity contrast increases. This is due to
better meeting the key assumption of the DDMT model that
the relatively slow-moving fluid in the low-K matrix can be
regarded as completely immobile. When the conductivity
contrast increases, the flow velocity in the low-K matrix
becomes progressively smaller, and conceptually, the
DDMT model becomes a better approximation.
[32] To further demonstrate the relation between the

conductivity contrast and the near-source match by the
DDMT model, we plotted the 1-D mass distribution profiles
calculated by equation (7), wherein the 3-D solute plumes
were integrated over each cross section i perpendicular to
flow, relative to initial source mass. The calculated 1-D
integrated mass profiles for the network and DDMT models
in the base-case conductivity contrast suite are presented in
Figure 4. It can be seen that when the PFP/matrix conduc-
tivity contrast increases, solute spreading is more dispersed
and extends further into the downgradient area, and there is
an increasing amount of local oscillation along the mass
profile. Similar to the 2-D contours (Figure 3), as the
conductivity contrast becomes larger, the DDMT model
provides a better representation of the integrated mass
distribution in the detailed network, particularly in the
near-source region.

4. Discussion

4.1. PFP-Matrix Mass Transfer

[33] The mass transfer process between the low-K matrix
and high-K PFPs consists of two different components,
molecular diffusion and slow advective transport limited by
the low-K matrix. The matrix-limiting slow advection is
controlled by the conductivity contrast between the high-K
PFPs and low-K matrix and the particular geometry of the
dendritic PFP network. Diffusion, on the other hand,
depends on the magnitude of the diffusion coefficient
relative to the flow velocities in the PFP network system.

Figure 2. Comparison of plume matches by the DDMT
model at a conductivity contrast of 100:1 in the base case:
(a) 3-D network plume, (b) equivalent DDMT plume, and
(c) 2-D network versus DDMT contours. Fill contours
represent the true network model; line contours represent
the DDMT model. The 2-D contours are vertically averaged
from the original 3-D plume snapshots at time 0.13 pore
volume.
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4.1.1. Matrix-Limiting Slow Advection
[34] Effects of the matrix-limiting advection were ex-

plored from two perspectives: (1) changing the geometry
of PFP network while maintaining the PFP/matrix conduc-

tivity contrast and diffusion rate constant and (2) changing
the PFP/matrix conductivity contrast while maintaining the
PFP geometry and molecular diffusion coefficient. With
D* = 8.64 � 10�6 m2/d and the PFP/matrix conductivity

Figure 3. Plume matches by the DDMT model at different PFP/matrix conductivity contrasts in the
base case. Simulation time is 0.13 pore volume. The calculated RMSE for each conductivity contrast is
presented in Table 3.

Table 2. Parameter Values Used to Produce the Plumes Shown in Figure 3a

PFP/Matrix
K Constrast

True PFP Network Model DDMT Model

KN, m/d KC,
b m/d KM,

b m/d K,c m/d Fd nm
d nim

d xe

10:1 1.28 8.34 0.83 1.28 0.060 0.012 0.188 25.2
15:1 1.28 10.76 0.72 1.28 0.056 0.011 0.189 19.7
20:1 1.28 12.66 0.63 1.28 0.054 0.011 0.189 15.6
30:1 1.28 15.48 0.52 1.28 0.051 0.010 0.190 12.0
50:1 1.28 19.14 0.38 1.28 0.048 0.010 0.190 9.00
100:1 1.28 24.00 0.24 1.28 0.044 0.009 0.191 6.00
150:1 1.28 26.75 0.18 1.28 0.042 0.008 0.192 4.80
200:1 1.28 28.68 0.14 1.28 0.040 0.008 0.192 4.44

aOther important parameters not listed include molecular diffusion coefficient D*, 8.64 � 10�6 m2/d; total porosity n, 0.2;
and ambient hydraulic gradient i, 0.001.

bAdjusted to maintain a constant KN across different conductivity ratios.
cConductivity field is uniform in the DDMT model and set equal to KN.
dnm = F � n; nim = (1 – F) � n; F is calculated using (4).
ex is calculated using (5). The unit of x is in � 10�4 d�1.
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contrast at 50:1, the PFP volumetric fraction was increased
from 9% to 46% in three network realizations (Figure 1).
Figure 5 shows the transport behavior simulated from
these different PFP geometries. As the PFP fraction
increases, the solute plume becomes more symmetric.

The extensive downgradient low-concentration tail evident
in realization 1 no longer occurs in realization 3. This can
be explained from two angles. First, when the PFP fraction
increases, less mass is initially distributed in the low-K
matrix. At the conductivity contrast of 50:1, the percentage
of source mass in the matrix is 17% for realization 1, as
compared to 7% in realization 2, and 2% in realization 3.
Note that the mass initially distributed in the low-K matrix
has to be transferred into nearby high-K PFPs before it can
move more rapidly downstream. When the PFP fraction is
large, as there is already significant mass initially distrib-
uted in the PFPs, the slow transfer of the limited source
mass out of the low-K matrix is not as influential.
Consequently, the plume is less asymmetric as it moves
downgradient. Second and more importantly, when there
are more PFPs, the matrix-limiting advective mass ex-
change is enhanced because the average distance a solute
particle has to travel between the matrix and PFPs is
reduced. As a result, the calculated mass transfer rate
coefficient in the DDMT model increases from 9.0 �

Table 3. Calculated RMSE for the Network Versus Equivalent

DDMT Plumes at Different PFP/Matrix Conductivity Contrasts in

the Base Case

PFP/Matrix K Contrast
RMSE for

DDMT Versus Network

10:1 0.851
15:1 0.781
20:1 0.733
30:1 0.648
50:1 0.545
100:1 0.435
150:1 0.288
200:1 0.287

Figure 4. One-dimensional integrated mass distribution profiles of the PFP network and equivalent
DDMT plumes at different PFP/matrix conductivity contrasts in the base case. Simulation time is
0.13 pore volume.
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10�4 d�1 in realization 1 to 27.6 � 10�4 d�1 in realization
3. In addition, the calculated RMSE between the network
and DDMT plumes is 0.545 in realization 1, 0.433 in
realization 2 and 0.197 in realization 3, indicating that the
applicability of DDMT model improves with the increase
in PFP fraction.
[35] Within each PFP network realization, PFP-matrix

advective mass transfer is controlled by the conductivity
contrast between the high-K PFPs and the low-K matrix. As
shown in Figures 3 and 4, when the conductivity contrast
increases, the true network plume is more asymmetric and
skewed upstream. This is because the rate of PFP-matrix
advective mass exchange becomes smaller when the relative
magnitudes of the conductivities in the low-K matrix
decline (see Table 1). The decreasing rate of matrix-limiting
advective mass exchange with increasing conductivity con-
trasts is further substantiated by values in Table 2 where
the calculated mass transfer rate coefficient decreases from
25.2 � 10�4 d�1 to 4.44 � 10�4 d�1 when the PFP/matrix
conductivity contrast increases from 10:1 to 200:1.
4.1.2. Diffusion
[36] Because of the particular importance of diffusional

mixing in media containing connected high-K networks
[LaBolle and Fogg, 2001; Zinn and Harvey, 2003; Liu et
al., 2004], we explored the effects of diffusion using three
sets of experiments, ‘‘Low K’’, ‘‘High K’’, and ‘‘DD* @ K
100:1’’, as mentioned at the beginning of section 3. Figure 6

displays the comparison of plumes using different diffusion
rate coefficients in the ‘‘DD* @ K 100:1’’ case. The
molecular diffusion coefficient was varied from 1/3 � D*
to 9 � D*, where D* is the base-case diffusion coefficient,
8.64 � 10�6 m2/d. When the diffusion coefficient increases,
the plume becomes less asymmetric as preferential transport
of solutes in the PFP network system is balanced by
diffusive mass transfer between PFPs and the matrix.
Furthermore, the roughness in the solute distribution that
is evident using the diffusion coefficient of 1/3 � D* in the
network model is significantly reduced at 9 � D*.
Corresponding to the increase in molecular diffusion coef-
ficient value, the mass transfer rate coefficient in the DDMT
model increases from 5.4 � 10�4 d�1 for 1/3 � D* to 8.4 �
10�4 d�1 for 9 � D*. The calculated RMSE between the
DDMT and network plumes declines as the diffusion
coefficient value is increased, suggesting that the DDMT
approximation becomes more appropriate for systems and
solutes with higher molecular diffusion coefficients. Con-
sistent results were obtained in the ‘‘Low K’’ and ‘‘High K’’
simulations.

4.2. DDMT Parameter Analysis

[37] The two DDMT parameters, the fraction of mobile
porosity F and the mass transfer rate coefficient x, are
typically treated as fitting parameters in common modeling
applications [Feehley et al., 2000; Harvey and Gorelick,

Figure 5. Plume comparison among different PFP network realizations at a constant PFP/matrix
conductivity contrast of 50:1. Simulation time is 0.13 pore volume. The calculated mass transfer rate
coefficient in the DDMT model is 9.0 � 10�4 d�1 in realization 1, 15.4 � 10�4 d�1 in realization 2, and
27.6 � 10�4 d�1 in realization 3.
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2000; Haggerty et al., 2001]. For the synthetic aquifers
investigated in this work (based on three PFP realizations),
we demonstrate that these parameters can be directly deter-
mined on a physical basis using equations (4) and (5),
respectively. Table 2 lists the calculated values of DDMT
parameters for the base-case conductivity contrast suite.
[38] Calculation of F only involves different representa-

tive conductivity values in the PFP network system (see
equation (4)). Two observations can be made regarding F.
First, the calculated value of F is always smaller than the
actual volumetric percentage, 9%, of high-K PFPs in the
network system. This is because the distribution of PFPs in
the network is dendritic and contains some dead-end
branches that do not function as the main conduits to
transport solute. When the dendritic network (with effective
conductivity KN) is translated into straight PFP conduits
(with conductivity KC) embedded in the low-K matrix (with
conductivity KM), a significant portion of PFPs are effec-
tively removed. Recall that in this work we used the
volumetric percentage, R, of straight PFP conduits to
approximate the fraction of mobile porosity in the DDMT
model. Second, for a given PFP network, F declines with
the increase in conductivity contrast and appears to con-
verge to an asymptotic value when the conductivity contrast

is sufficiently high. This is because when the conductivity
contrast increases, the flow velocities in the straight PFP
conduits (i.e., KCIA in equation (3)) increase while the flow
velocities in the low-K matrix (i.e., KMIA in equation (3))
decrease. As shown in Table 2, the increase in KC is larger
than the decrease in KM, and R becomes small as the total
flow rate (i.e., KNIA in equation (3)) has to remain identical
to maintain equivalency among different conductivity con-
trasts. From Table 2 it is noteworthy that the increase in KC

becomes progressively less significant as the PFP/matrix
conductivity contrast becomes large. For example, the
relative increase in KC is 1.93 m/d when the conductivity
contrast increases from 150:1 to 200:1, compared to 2.75 m/d
when the contrast increases from 100:1 to 150:1. Therefore,
when the conductivity contrast is sufficiently high, such as
in a fractured rock system, the conductivity in the matrix is
so small that it can be treated practically as zero, the
increase in KC shall become negligible, leading to an
asymptotic value for the estimated F for a given PFP
network.
[39] Table 2 shows that x decreases with increasing

conductivity contrasts between high-K PFPs and low-K
matrix. This is because, as discussed in section 4.1.1, the
rate of matrix-limiting advective mass exchange decreases

Figure 6. Plume comparison among different diffusion coefficients at a constant PFP/matrix
conductivity contrast of 100:1 in PFP network realization 1. Simulation time is 0.13 pore volume. The
base diffusion coefficient D* is 8.64 � 10�6 m2/d. The calculated RMSE for each diffusion coefficient is,
in turn, (a) 0.414, (b) 0.435, (c) 0.333, and (d) 0.256. The mass transfer rate coefficient in the DDMT
model is (a) 5.4 � 10�4 d�1, (b) 6.0 � 10�4 d�1, (c) 6.6 � 10�4 d�1, and (d) 8.4 � 10�4 d�1.
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with increasing PFP/matrix conductivity contrasts. When
the diffusion rate coefficient increases from 1/3 � D* (i.e.,
2.88 � 10�6 m2/d) to 9 � D* (7.78 � 10�5 m2/d) at a PFP/
matrix conductivity contrast of 100:1 in the base case, x
increases from 5.4� 10�4 d�1 to 8.4 � 10�4 d�1 (Figure 6).
Across different PFP network realizations, x generally
increases with the volumetric fraction of PFPs (Figure 5).

5. Summary and Conclusions

[40] This study explores the efficacy of the DDMT model
to characterize transport in the presence of decimeter-scale
PFPs to a 3-D binary heterogeneous flow system involving
an embedded dendritic network. Numerical experiments
covered a range of flow and transport conditions including
a suite of PFP/matrix conductivity contrasts varying from
10:1 to 200:1, different geometries of the PFP network,
different magnitudes of effective conductivities and diffu-
sion rate coefficients.
[41] The DDMT model reproduced both the near-source

peak and low-concentration tail in the downstream area
resulting from transport through the PFPs when the con-
ductivity contrasts between high-K PFPs and low-K matrix
were relatively significant. When the conductivity contrast
increases, the flow velocity in the low-K matrix becomes
progressively smaller, and the discrepancy associated with
the DDMT model becomes less significant. This is because
the inherent limitation of the DDMT model, which treats
relatively slow-moving fluid in the low-K matrix as com-
pletely immobile, is minimized.
[42] The DDMT model was shown to match the true

network system better when molecular diffusion coeffi-
cients were higher. When the diffusion coefficient values
were increased, the plume became less asymmetric as pref-
erential transport of solutes in the PFP network system was
balanced by diffusive mass transfer between PFPs and the
matrix, and the solute profile showed less roughness. As the
volumetric fraction of PFPs was increased, the plume was
generally less asymmetric. This is because (1) there is already
significant mass initially distributed in the PFPs and the slow
transfer of the limited source mass out of the low-K matrix is
not as influential, and (2) the matrix-limiting advective mass
exchange is enhanced as the average distance a solute particle
must travel between the matrix and PFPs is reduced. The
DDMT model became more effective in representing the
network system when there were more PFPs.
[43] Our results have provided some insights into the

DDMTmodel parameters. While they are typically treated as
fitting parameters, in this work the fraction of mobile porosity
F and mass transfer rate coefficient x are directly computed
on the basis of physical relations (4) and (5) without resorting
to model calibration. F is generally smaller than the actual
volumetric proportion of PFPs owing to the tortuous nature of
PFPs. As the PFP/matrix conductivity contrast increases, the
F value declines and appears to converge to an asymptotic
value when the conductivity contrast is sufficiently high. x is
controlled by two different processes, i.e., the matrix-limiting
slow advection and molecular diffusion. The greater the
diffusion coefficient value, the larger the x value in the
DDMT model. When the PFP/matrix conductivity contrast
increases or the volumetric fraction of PFPs decreases, the x
value becomes smaller because the rate of matrix-limiting
advective mass exchange decreases.
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