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[11 This study investigates connectivity in a small portion of the extremely heterogeneous
aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total
of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m.
Detailed grain size analysis was performed on 5 cm segments of each core, yielding
1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation
methods were used to generate 3-D conditional realizations of the K field for the sampled
block. Particle tracking calculations showed that the fastest particles, as represented by
the first 5% to arrive, converge along preferential flow paths and exit the model domain
within preferred areas. These 5% fastest flow paths accounted for about 40% of the
flow. The distribution of preferential flow paths and particle exit locations is clearly
influenced by the occurrence of clusters formed by interconnected cells with K equal to or
greater than the 0.9 decile of the data distribution (10% of the volume). The fraction

of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based
K fields, some of the fastest paths are through media with lower K values, suggesting that
transport connectivity may not require fully connected zones of relatively homogenous K.
The high degree of flow and transport connectivity was confirmed by the values of

two groups of connectivity indicators. In particular, the ratio between effective and
geometric mean K (on average, about 2) and the ratio between the average arrival time and
the arrival time of the fastest particles (on average, about 9) are consistent with flow and

advective transport behavior characterized by channeling along preferential flow paths.
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1. Introduction

1.1. Background and Literature Review

[2] Understanding transport processes and developing
mathematical models capable of simulating observed solute
plumes are fundamental to environmental risk assessment
and the remediation of contaminated sites. Historically,
innovations in the discipline of solute transport modeling
were developed and tested by using extensive data sets
collected during controlled experimental field studies. These
data sets usually include measurements of solute concen-
tration and hydraulic conductivity (K), which are essential
to properly characterizing subsurface heterogeneity and
transport behavior. In the last 2 decades, for example, data
collected from a tracer test site at the Columbus Air Force
Base in Mississippi, commonly known as the Macrodisper-
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sion Experiment (MADE) site, have been invaluable for
advancement of new transport theories and mathematical
models [Zheng et al., 2011]. The importance of this site is
mainly due to its extreme heterogeneity indicated by the high
variance of the natural logarithm of the measured hydraulic
conductivity K (ohx = 4.5) [Rehfeldt et al., 1992], which is
significantly higher than that of other aquifers for which
similar data sets exist [e.g., Mackay et al., 1986; LeBlanc
et al., 1991].

[3] Three large-scale natural gradient tracer tests, usually
referred to as MADE-1, MADE-2, and MADE-3 (also known
as NATS) experiments, were conducted at the MADE site
[Boggs, 1991; Boggs et al., 1993; Julian et al., 2001]. Mea-
sured concentrations revealed that transport behavior is char-
acterized by highly asymmetric plumes, with significant mass
accumulation near the source and extensive mass spreading
to the far field. Several studies applied different modeling
approaches to simulate the concentration distributions observed
during the these tracer tests [Adams and Gelhar, 1992;
Eggleston and Rojstaczer, 1998; Berkowitz and Scher,
1998; Zheng and Jiao, 1998; Harvey and Gorelick, 2000;
Feehley et al., 2000; Julian et al., 2001; Baeumer et al.,
2001; Schumer et al., 2003; Barlebo et al., 2004; Salamon
et al., 2007; Zhang and Benson, 2008; Llopis-Albert and
Capilla, 2009]. All these studies have in common the con-
clusion that the classical advection-dispersion model (ADM)
is not able to reproduce the transport behavior observed at
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the MADE site unless physical heterogeneity is adequately
resolved. When small-scale variations of water flux due to
aquifer heterogeneity are not explicitly described, the ADM
underestimates the extensive spreading or “tailing” along the
flow direction and is not able to reproduce the substantial
mass accumulation near the injection points. This conclu-
sion was further confirmed by two recent forced-gradient
tracer tests [Liu et al., 2010; Bianchi et al., 2011].

[4] As initially suggested by Harvey and Gorelick [2000]
and Feehley et al. [2000], a reasonable hypothesis to explain
the failure of the ADM is the presence of a network of
interconnected highly permeable sediments embedded in a
less conductive matrix. This conceptual model of hetero-
geneity can in fact favor the fast movement of a fraction
of solute mass along preferential flow paths (PFPs), while
most of the mass stagnates in the matrix. This hypothesis
was proposed after modeling results showed that the dual-
domain mass transfer model can reproduce the transport
behavior observed at the MADE site more accurately. The
dual-domain model conceptualizes the aquifer as consisting
of distinct, but coexisting, mobile and immobile domains,
and this separation is particularly appropriate when reprodu-
cing transport in the presence of connected high-K struc-
tures embedded in a low-K matrix [Gorelick et al., 2005;
Liu et al., 2004; Bianchi et al., 2008]. The efficacy of
the dual-domain model in reproducing the solute plumes
observed during the MADE-1 and MADE-2 experiments
was considered by Harvey and Gorelick [2000] and Feehley
et al. [2000] an indirect proof of the existence of a PFP
network controlling solute transport at the MADE site. This
hypothesis was also proposed by Julian et al. [2001] and
more recently by Llopis-Albert and Capilla [2009]. Zheng
and Gorelick [2003] investigated more specifically the trans-
port behavior in a field characterized by a binary dendritic
K distribution, generated using an invasion-percolation algo-
rithm. Their numerical experiments offered support to the
PFP network hypothesis by demonstrating that solute trans-
port in a hypothetical networked K field displays highly
non-Fickian characteristics similar to those observed at the
MADE site.

[5s] The traditional approach for reproducing hydraulic con-
ductivity fields in heterogeneous porous media has been based
on the assumption of multivariate Gaussian distribution of
InK. With this approach, InK is considered a spatially cor-
related random variable. An important characteristic of multi-
Gaussian fields is that entropy (disorder) is maximized and
therefore extreme values tend to cluster in isolated zones
rather than being arranged in connected structures [Silliman
and Wright, 1988; Rubin and Journel, 1991; Journel and
Deutch, 1993; Gomez-Hernandez and Wen, 1998; Zinn and
Harvey, 2003]. The multi-Gaussian approach has become
popular due to its relative mathematical simplicity and easy
interpretation. However, several studies have demonstrated
the importance of connectedness rather than randomness in
heterogeneous aquifers [e.g., Anderson, 1989; Sanchez-Vila
et al., 1996; Koltermann and Gorelick, 1996; Webb and
Anderson, 1996; Tsang and Neretnieks, 1998; Fogg et al.,
1998, 2000].

[6] Fogg [1986], for example, suggested that ground-
water flow in the Wilcox aquifer in Texas is controlled by
the continuity and connectivity of large-scale sand bodies.
Scheibe and Yabusaki [1998] demonstrated that methods
for upscaling the K distribution, which lead to a good match
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between simulated and observed heads, may not be ade-
quate to reproduce transport behavior because transport is
strongly affected by the existence and connectivity of high-K
zones. Labolle and Fogg [2001] recognized that the con-
nectivity of highly permeable channel hydrofacies is the
most important factor controlling solute migration in the
alluvial system at the Lawrence Livermore National Labo-
ratory (LLNL). The hydrostratigraphic reconstruction of
the LLNL aquifer showed that about 80% of the channel
hydrofacies forms a connected network that percolates in
three dimensions. Proce et al. [2004] applied transition prob-
ability and sequential indicator simulations to simulate the
assemblage of facies in a system of buried valley aquifers.
A multiscale realization of aquifer heterogeneity showed
the presence of interconnected pathways resulting from
the significant connectivity of sand and gravel facies. The
influence on groundwater flow patterns exerted by the dis-
tribution of different lithofacies with significant contrasts
in K was also investigated by Heinz et al. [2003]. By using
particle tracking calculations, they showed that sedimentary
processes are responsible for the heterogeneities that deter-
mine local groundwater flow in aquifers. The importance of
connectivity on fracture flow has also been acknowledged
[e.g., Journel and Alabert, 1989; Tidwell and Wilson, 1999].
[7] Numerical studies most commonly have been used
to quantify the connectivity of K fields. Gomez-Hernandez
and Wen [1998] analyzed groundwater travel times in four
alternative unconditional representations of a 2-D synthetic
K field sharing the same Gaussian histogram and covari-
ance function, but different in terms of connectivity pat-
terns. Results showed that travel times in the multi-Gaussian
model could be 10 times slower than those observed in the
other models. Western et al. [2001] applied connectivity
functions to produce unconditional 2-D fields with almost
identical histograms and omnidirectional variograms, but
with very different connectivity. They concluded that stan-
dard geostatistical approaches based on variogram models
do not properly capture connectivity. Zinn and Harvey [2003]
showed that unconditional 2-D fields with connected struc-
tures can have the same lognormal probability density func-
tion and isotropic covariance function as multi-Gaussian
fields without connected structures. Since rate-limited mass
transfer may be a significant process in K fields with highly
permeable connected structures, their results highlighted the
importance of identifying the connectivity of porous media
in order to choose the most appropriate transport model.
[8] One of the first attempts to establish some criteria
for ranking K fields on the basis of their connectivity was
made by Deutsch [1998]. The method is essentially based on
measuring the number and the size of connected bodies in a
3-D Cartesian grid. More recently, Knudby and Carrera
[2005] proposed and evaluated nine different indicators of
connectivity in order to assess the possibility of predicting
flow connectivity from statistical connectivity and, conse-
quently, transport connectivity from flow connectivity. From
the lack of correlation between indicators measuring differ-
ent types of connectivity, they concluded that it is a process-
dependent concept. Lee et al. [2007] used 3-D data from a
real aquifer to investigate connectivity in the LLNL aquifer.
Several realizations of aquifer heterogeneity were generated
using sequential Gaussian simulation (SGS) and transition
probability indicator simulation (T-PROGS). Simulated
K fields were also used as input to a groundwater flow model
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to simulate a pumping test performed at the LLNL site.
Measures of spatial connectivity showed that the network
of high-K is characterized by greater lateral connectivity
in the T-PROGS realizations compared to the SGS fields.
T-PROGS realizations were also more accurate in reprodu-
cing the observed drawdown. Vassena et al. [2009] investi-
gated the effects of facies heterogeneity on flow and transport
in small blocks (1 m?) sampled from the alluvial sediments
of the Ticino valley in Italy. Numerical tracer experiments
in these systems combined with the use of connectivity
indicators suggested that transport and statistical connec-
tivity indicators are correlated with dispersivity. In a recent
study of MADE site single-well injection-withdrawal test
data, Ronayne et al. [2010] showed that intrafacies hetero-
geneity is responsible for local-scale mass transfer based on
a hybrid model that combines 3-D lithofacies to represent
submeter connected channels in a matrix based on a corre-
lated multivariate Gaussian hydraulic conductivity field.

1.2. Objectives

[¢] The main objective of the present study is to inves-
tigate connectivity in a small block of the aquifer at the
MADE site and the role of that connectivity in advective
transport. To attain this goal, 3-D conditional realizations of
the geologic heterogeneity were first generated using three
different geostatistical methods including sequential Gauss-
ian simulation, sequential indicator simulation and transition
probability indicator simulation. Geostatistical realizations
are conditioned to K values estimated through the grain size
analyses of 19 newly collected cores (20 cores were initially
collected, but one was found to be unusable due to incom-
plete depth records). This approach differs from our previ-
ous studies [Gorelick et al., 2005; Liu et al., 2007; Bianchi
et al., 2008] in which connectivity and solute transport were
investigated in synthetic aquifers characterized by a den-
dritic distribution of the high-K zones generated using an
unconditional invasion-percolation algorithm.

[10] Since at present there is not agreement in the scien-
tific community about which geostatistical method can better
represent connected features in heterogeneous aquifers, we
chose to apply three of the most commonly used in order to
obtain a wider spectrum of possible representations of the
aquifer heterogeneity. In this way we also tried to reduce the
possibility that our conclusions regarding the connectivity
within the aquifer are biased by the characteristics of a par-
ticular geostatistical method. Particle tracking calculations
were used to assess the influence of connectivity on advec-
tive transport and eventually analyze the geometric char-
acteristics of the connected pathways. Indicators similar to
those presented by Deutsch [1998] and Knudby and Carrera
[2005] were then used to quantify the connectivity of each
of the generated K fields. We also present an exceptionally
detailed 3-D data set that provides a close representation of
the heterogeneity of an actual aquifer block. On the basis of
the analysis of this unique data set, another attribute of our
study is that we considered connectivity in 3-D geostatis-
tical realizations conditioned to K measurements.

[11] The remainder of the paper is organized as follows.
After a brief description in section 2 of the hydrogeological
setting of the MADE site aquifer, section 3 presents the core
sampling method, the grain size analysis used to estimate
the vertical distribution of K of each core segment, and the
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descriptive statistics of the collected data set. Section 4 dis-
cusses the geostatistical methods for generating 3-D K
fields using the cores data, the groundwater flow and particle
transport models, and the parameters used for measuring
spatial connectivity. Section 5 illustrates and discusses the
nature of the connectivity of the studied portion of the
MADE aquifer based on the results of the geostatistical con-
ditional simulations, the characteristics of simulated break-
through curves and particle paths, and the values of the
connectivity indicators. Finally, section 6 presents general
insights drawn from this study.

2. Site Description

[12] The hydrostratigraphic setting of the MADE site
is characterized by a shallow unconfined aquifer, averag-
ing about 11 m in thickness, underlain by an aquitard unit
represented by the marine clay-rich deposits of the Eutaw
formation. The aquifer is composed of poorly sorted to
well-sorted sandy gravel and gravelly sand with small
amounts of silt and clay. Extensive sampling of the aquifer
[Boggs et al., 1990, 1992] revealed a predominance of sandy
to gravelly clay deposits in the surficial 2 m, overlaying an
interval, of about 8 m in thickness, characterized by sandy
gravel and gravelly sand. A deeper interval of about 1 m to
2 m in thickness and composed by a mixture of sand and
fine sediments characterizes the bottom part of the aquifer,
representing the transition from alluvial facies to the marine
sediments of the Eutaw formation. Recently, Bowling et al.
[2005] used ground-penetrating radar and direct current
resistivity data, integrated with previously collected bore-
hole flowmeter measurements and sediment cores [Boggs,
1991; Boggs et al., 1993], to assemble a hydrogeological
conceptual model of the aquifer consisting of four major
hydrostratigraphic units: a meandering fluvial system at the
top (from O to about 3 m in depth), a braided fluvial system
in the middle portion of the aquifer (from 3 m to 10 m),
fine-grained sands at the bottom of the aquifer, and the
underlying clay aquitard.

[13] Rehfeldt et al. [1992] investigated the spatial distri-
bution of K by performing flowmeter tests in 66 fully
penetrating wells distributed in an area of approximately
90 m x 270 m. The vertical spacing of the measurements
within each flowmeter well was approximately 15 cm. Sta-
tistical analysis of the collected data (more than 2500 mea-
surements) indicated a lognormal distribution of K and an
extremely high heterogeneity. The geometric mean of K
derived from the flowmeter measurements is approximately
5 x 107 cm/s, while the variance of InK is 4.5.

3. Data Collection

3.1.

[14] The soil cores analyzed in this study were collected
with a Geoprobe® core sampler (model 5410) using direct-
push technology to minimize the disturbance of the sam-
ples and preserve the actual heterogeneity and structure of
the aquifer. The cores were collected from a portion of the
MADE site aquifer that was previously investigated by
the borehole flowmeter measurements performed during the
MADE-1 and MADE-2 experiments (Figure 1). In partic-
ular, the new cores are representative of the block located
in proximity of boreholes K-41, K-42, and K-45 as labeled

Soil Core Collection and Grain Size Analysis
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Figure 1. Map of the Macrodispersion Experiment (MADE)

site showing the location of the flowmeter boreholes (open cir-
cles), the location of injection wells used during the MADE-1
and MADE -2 experiments (solid square), and the area investi-
gated in this study. Boreholes are labeled as in Boggs [1991],
Rehfeldt et al. [1992], and Boggs et al. [1993]. The Y axis is
rotated 12° counterclockwise from the north.

by Boggs [1991], Rehfeldt et al. [1992], and Boggs et al.
[1993]. Coring was performed over a 4 m by 4 m area
using a regularly spaced sampling grid with a new well
installed at the center (Figure 2). Soil cores (5.08 cm in
diameter) are spaced 1 m apart and located within 2 m of the
well. They were drilled in 1.22 m sections, and at least five
sections were collected for each core in order to sample over
the depth interval from the water table to the bottom of the
aquifer. Immediately after removal from the Geoprobe®
core sampler, the cores were sealed to prevent moisture loss
and placed in an on-site freezer stored with dry ice. They
were then transported to the laboratory where they remained
frozen until grain size analysis was performed.

[15] The frozen 1.22 m long core sections were horizon-
tally dissected into approximately 5 cm segments with a
masonry block saw under frozen conditions. At the begin-
ning of the grain size analysis, cores segments were wet
sieved to determine the weight percentage of silt and clay.
During this step, segments were first dried at 105°C in
an oven for a 24 h period to eliminate any residual mois-
ture in the sample and then cooled for 1 h before the initial
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weight was recorded. Using a 230-mesh sieve screen (63 um
opening) as a filter, segments were rinsed with water for
5 min and placed back in the oven for a second 24 h drying
period. Segments were weighed again after cooling, and the
amount of silt and clay was calculated by subtracting the
two measured weights. The fine sand, medium sand, coarse-
very coarse sand, and gravel fractions of the core segments
were determined using a stack of sieves of 230 mesh (63 um
opening), 60 mesh (250 pm), 35 mesh (500 pm), and 10 mesh
(2 mm) screen.

[16] Grain size analysis confirmed the significant het-
erogeneity of the sediments constituting the aquifer at the
MADE site. In all 19 cores, the weight percent of fines, fine,
medium, and coarse sand and gravel fluctuates significantly
along the vertical extent of the cores (Figure 3). The aver-
age percentage of fines (<0.063 mm) is around 8% with
a tendency to increase toward shallow depths. In all the
cores, fines are not organized into uniform silt/clay layers,
but they are disseminated throughout the sands. Gravel con-
tent is very variable, ranging from almost 0% to 95%. The
diameters of the soil particles at 10% (d;() and 60% (dgo)
cumulative weights, the coefficient of uniformity (C, =
dgo/d1o), and the porosity of each core segment were deter-
mined from the grain size distribution curves. In particular,
the porosity was estimated using the following empirical
relation [Kasenow, 2002]:

n=0.255(1+0.83%). (1)

Considering all the cores, the average values for the d
and dgo are 0.40 mm and 6.16 mm, respectively. The high
deo value indicates the relative coarseness of this sector of
the MADE aquifer. The average C, is equal to 16.56,
which is typical of poorly sorted sediments, while the
average porosity is 0.28. This value is comparable to the
porosity (0.32) determined from the analysis of previously
collected soil cores [Boggs et al., 1992].
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Figure 2. Location of the 19 cores collected for grain size
analysis and hydraulic conductivity estimation. IW indicates
the injection well installed at the center of the sampling grid.
Core 3 (not shown) was collected, but grain size data are not
usable due to missing depth information.
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Figure 3. Cumulative grain size distribution measured in
core 5. Colors represent relative abundance of fines (F), fine
sand (Sf), medium sand (Sm), coarse sand (Sc), and gravel (G).

3.2. Hydraulic Conductivity Data and Descriptive
Statistics

[17] The hydraulic conductivity of each 5 cm core seg-
ment was not measured with permeameter or in situ meth-
ods. Instead, approximate values of K were estimated using
empirical equations based on the data determined from the
grain size analysis of the core segments.

[18] These can be generalized as

K =2cf(ma, 2)

where g is the gravitational constant, v is the kinematic
viscosity, C; is the sorting coefficient, f(n) is a function
dependent on the porosity, and d, is an effective grain
diameter. Several forms of equation (2) can be used that
differ in the values assigned to the parameters Ci, f(n),
and d,. After comparison, we selected K estimates based
on the Hazen formulation [Hazen, 1892] where C; is equal
to 6 x 107*, f(n) is equal to (1 + 10(n — 0.26), and d, is equal
to d;o. Despite the fact that the Hazen equation is usually
recommended for well-sorted sediments with C, <5, we did
not find a significant difference between the estimates cal-
culated using the Hazen equation and those from other
equations [i.e., Breyer, 1964]. We recognize that petrophy-
sical models explicitly accounting for infilling of pores by
fine particles suggest substantial reduction in hydraulic con-
ductivity values [Koltermann and Gorelick, 1995, 1996;
Conrad et al., 2008]. However, in this work we believe that the
relative values of hydraulic conductivity variations are cap-
tured using the above formula. We proceed with this caveat.
[19] The grain-size derived data set presented in this work
consists of 1740 estimates of hydraulic conductivity dis-
tributed in a 4 m x 4 m x 6 m sector of the MADE site
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Figure 4. Three-dimensional spatial distribution of the
1740 hydraulic conductivity values estimated from grain size
analysis of the core segments. Cores are labeled as in Figure 2.

aquifer (Figure 4). The frequency distribution and the uni-
variate statistics of the In-transformed K values are illus-
trated in Figure 5. The mean and variance of the InK data
are equal to —3.48 (mean K = 0.28 cm/s) and 4.35, respec-
tively. The minimum of 8.68 x 10~ cm/s is observed at a
depth of 4.1 m in core 17, while the maximum of 7.96 cm/s
is located at 5.77 m below ground surface in core 2. The
comparison between the normal probability plots of the
cumulative density function of the data and that of a normal
distribution having the same mean and variance (Figure 6)
shows that the distribution of the InK data approximates
normality for values ranging from —6.5 to —2 but deviates
significantly at both tails of the distribution.

[20] To qualitatively test the reliability of the grain size
analysis, we compared the distribution and the statistics of
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Figure 5. Frequency distribution and descriptive statistics
of the InK estimates.
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Figure 6. Normal probability plot of the cumulative den-
sity function of the InK estimates.

the K estimates with those of the 2483 log-transformed
flowmeter measurements of Rehfeldt et al. [1992]. The mean
of K estimated from the log-transformed flowmeter data is
—5.23, significantly lower than that of the InK estimates
presented in this study. This difference can be explained by
the nonstationarity of the K field at the MADE site, which
is shown by the distribution of depth-averaged flowmeter
measurements. This shows that the MADE site is charac-
terized by zones of lower conductivity at the south and
northeast ends and by a zone of higher conductivity near the
center of the site [Boggs et al., 1990; Rehfeldt et al., 1992;
Bowling et al., 2005]. The block of aquifer investigated in
this study is located approximately at the boundary between
a zone with K ranging from 1072 cm/s to 107! cm/s and a
zone characterized by lower K with values ranging from
107 cm/s to 1072 cm/s. The discrepancies between the flow-
meter data and the K estimates obtained in this study can
also be related to the empirical method used to determine
K from the grain size analysis. It has in fact been shown
that Hazen equation tends to overestimate K in heteroge-
neous poorly sorted sediments [Carrier, 2003]. However,
it is important to clarify that for the purpose of this study,
our primary concern was measuring relative, highly resolved
variations of K rather than absolute values. In this sense, it
is noteworthy that the two data sets have almost the same
variance, indicating that our K estimates are representative of
the actual level of heterogeneity of the MADE site aquifer.

4. Geostatistical Analysis and Flow Modeling

4.1. Geostatistical Analysis

[21] Two variogram-based approaches, sequential Gaussian
simulation (SGS) and sequential indicator simulation (SIS),
and the transition probability approach (T-PROGS) were
used to generate conditional realizations of the InK field.
Realizations were conditioned to the 1740 K values esti-
mated from the grain size analysis of the cores. The inter-
polated domain is 6 m long by 6 m wide, with a thickness of
6.2 m, and was discretized with an interpolation grid with
resolution of 20 ¢cm in the horizontal directions (x and y) and
10 cm in the vertical direction (z). A total of 60 conditional
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realizations of the K distribution, consisting of 20 realiza-
tions for each simulation method, were generated.
4.1.1. Sequential Gaussian Simulation (SGS)

[22] With the SGS approach the estimate of a normal
random variable Z at any point in space is calculated by
randomly selecting a value drawn from the normal distri-
bution defined by the kriging mean and variance. A speci-
fied number of data and previously simulated values are
allowed to condition each new simulated point. To honor
the assumption of normality, the original InK estimates were
initially transformed to their normal scores. The spatial cor-
relation of the normal scores was then evaluated using the
experimental semivariogram. As in other geostatistical
analyses at the MADE site [Rehfeldt et al., 1992; Salamon
et al., 2007; Llopis-Albert and Capilla, 2009], spatial cor-
relation was investigated only in the horizontal (dip = 0°)
and vertical directions (dip = 90°). In this way we assumed
that the depositional structures, responsible for the vari-
ability of K, are horizontal. Directional anisotropy in the
horizontal plane was also investigated, but variograms did
not show preferential directions of spatial correlation. The
experimental variograms were fitted with an exponential iso-
tropic model with nugget, sill, and effective range equal
to 0.2, 0.8, and 0.8 m, respectively. Isotropic conditions are
indicated by the similarity between the omnidirectional hor-
izontal, the omnidirectional, and vertical experimental var-
iograms presented in Figure 7. This result contrasts with the
geostistical analyses result of the flowmeter data, which
indicated that the aquifer at the MADE site is characterized
by anisotropy. However, the scales of concern are quite dif-
ferent. As shown by Rehfeldt et al. [1992] and Salamon
et al. [2007], the horizontal correlation scale of the flow-
meter measurements is about 40 m and therefore signifi-
cantly larger than the dimension of the sampled block (4 m
by 4 m). Therefore, it is possible that we were not able to
sample significant variations in grain size within our sam-
pling block that can lead to an anisotropic behavior of the

1.2

1.0

0.8

>~ 0.6

) e Omnidirectional

0.4 Omnidirectional horizontal

0.2 Vertical
E —— Exponential model

0.0 —r r 1 r r 1 r r r 1
0 1 2 3

Distance (m)

Figure 7. Omnidirectional, omnidirectional horizontal, and
vertical experimental variograms of the normal scores of the
InK estimates. The exponential model used for the sequential
Gaussian simulation (SGS) realizations is also shown. Exper-
imental variograms are calculated for log-K values.
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Table 1. Geostatistical Parameters of the Isotropic Variogram
Models Used for the Sequential Indicator Simulations®

Probability Effective
Density Ranges (m)
Function
Z Values Model Amax  3min Averr NuUgget ¢o  Sill ¢
-6.414 0.1 exponential 0.7 0.7 0.7 0.03 0.03
-5.397 0.2 exponential 0.5 0.5 0.5 0.05 0.10
—4.725 0.3 exponential 0.6 0.6 0.6 0.05 0.14
—4.011 0.4 exponential 0.8 0.8 0.8 0.05 0.18
-3.359 0.5 exponential 0.8 0.8 0.8 0.05 0.18
-2.950 0.6 exponential 0.6 0.6 0.6 0.05 0.18
—2.580 0.7 exponential 0.5 0.5 0.5 0.07 0.14
-2.207 0.8 exponential 0.4 04 04 0.06 0.10
-0.339 0.9 exponential 04 04 04 0.05 0.05

“The nine thresholds z; correspond to the deciles of the probability
density function of the InK estimates.

experimental variogram. Moreover, the formula used to esti-
mate K from the grain size analysis does not consider the
effects of the ratio of sand to gravel. Since this ratio varies
significantly in the vertical direction (Figure 3), it is pos-
sible that the K estimates based on the d;q do not represent
the “true” vertical variations. Sequential Gaussian condi-
tional realizations were generated with the SGSIM code of
the Geostatistical Software Library (GSLIB) [Deutsch and
Journel, 1998]. Simulations were performed in lognormal
space and then the simulated values were back transformed.
4.1.2. Sequential Indicator Simulation (SIS)

[23] Unlike the SGS method, which assumes a multi-
Gaussian spatial distribution, the SIS method does not
require a particular type of distribution of InK. Even though
studies have suggested that due to these characteristics the
SIS approach can provide a better representation of connected
structures [e.g., Journel and Alabert, 1989; Rubin and
Journel, 1991; Koltermann and Gorelick, 1996; Anderson,
1997; Gomez-Hernandez and Wen, 1998], results are not
conclusive [e.g., Bloschl, 1996]. With the indicator approach,
the distribution of the InK estimates, which was considered a
continuous variable, was discretized into mutually exclusive
classes bounded by the thresholds z; (Table 1). In this work,
the thresholds correspond to the nine deciles of the univar-
iate distribution of the InK estimates. This choice of cutoff
values is the most commonly used [Isaaks and Srivastava,
1989] and was also applied by Salamon et al. [2007] and
Llopis-Albert and Capilla [2009] to simulate conditional K
fields at the MADE site using the flowmeter measurements.
As for the normal scores, the analysis of the nine indicator
variograms revealed isotropic behavior and for each thresh-
old the model that best represents spatial continuity is an
exponential function. Nugget, sill, and ranges values of the
nine indicator variogram models are presented in Table 1.
The effective ranges of the exponential models are between
0.4 m and 0.8 m, and the spatial continuity increases from
the 0.2 decile to the 0.6 decile and then slightly decreases
until the 0.9 decile. Sequential indicator conditional reali-
zations were generated with the code SISIM of GSLIB
[Deutsch and Journel, 1998].

4.1.3. Transition Probability Indicator Simulation
(T-PROGS)

[24] We also applied the transition probability approach
(T-PROGS) based on the Markov chain model [Carle and
Fogg, 1996, 1997; Carle et al., 1998]. T-PROGS is an indi-
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cator approach that can model the full transition probability
function, including cross correlations representing commonly
observed geologic juxtapositional tendencies with a small
number of parameters and a single Markov Chain equation
in each direction. The method can also be used to trans-
parently account for quantitative and qualitative geologic
information, such as volumetric proportions and mean lengths
of categorical classes and depositional facies relationships
[Carle et al., 1998; Ritzi, 2000; Ritzi et al., 2004; Dai et al.,
2005]. The transition probability approach uses transition
probabilities to represent the spatial structure of the data.
They are defined as the probability that a certain category j
occurs at the location u + h conditioned to the occurrence
of another category i at the location u. Considering a
number N of categories or classes, the transition proba-
bilities between classes can be modeled by a 1-D Markov
chain model in the form [e.g., Carle and Fogg, 1996]

T(hy) = exp(Ryhy), (3)

where T(h,) is N x N matrix of transition probabilities,
hg is the distance or lag in the direction ¢, and R(%,) is the
transition rate matrix whose elements r; represent the rate
of change from class i to class j, per unit length, in the
direction ¢. Conditional simulations are generated in two
steps consisting of a preliminary generation of the distri-
bution of the categorical variable by using sequential indi-
cator simulation and a simulated quenching stage to improve
the agreement between measured and modeled transition
probabilities. Thorough descriptions of the algorithm are
given by Carle and Fogg [1996, 1997] and Carle et al. [1998].

[25] Since the transition probability approach requires cate-
gorical variables, the 1740 InK estimates were distributed in
five mutually exclusive classes (Figure 8) and a single value
of InK was assigned to each class. In detail, the 0.1, 0.3, 0.7,
and 0.9 deciles were chosen as the limits of the five classes
(Figure 8), and the mean of the InK estimates falling within

1.0

| Class 5 (0.66
0ol Class (0.66) /

| Class 4 (-1.90) /
0.7

L Class 3 (-3.43)

0.3

Cumulative frequency

0.1

Class 1 (-6.70)

0.0 A " . i .

-8 -6 -4 -2 0 2 4
LnK (cm/s)

Figure 8. Quantile plot of the InK estimates showing the
thresholds used to define the classes of homogeneous con-
ductivity used for the conditional T-PROGS realizations.
The numbers within parentheses are the mean values of
the data falling within the thresholds and represent the InK
assigned to each class.

7 of 18



WO05524

BIANCHI ET AL.: SPATIAL CONNECTIVITY IN A HETEROGENEOUS AQUIFER

W05524

Class1 Class2 Class3 Class4 Class5
1.0
- ] ]
A ] ] ] ]
E Olsj j j 000400, j
(@] 4 000009000 | . o
1 °T 3 o ee%® 162%00n00 o, o000
0.0 +———"F+—— S e S 55U 55555555555
1.0 .
(o] ] ]
@ ] ]
& Eos 1 1 o k ]
O \J %0000

0030 06,0

ol 1 L

o
o

090009996 50%000, |

D il L Tkl PYNCLTT YT,
L

T T 7T L T

N
o
L

°°°°o 4

00g 4 00

o
o
PRI B

0,
00°0%, o

o= s

Class3
Vertical transition probability
o
1
|
PR PRI TR ol 11 PR
n P PR PR

5000,
1rsoese0e009°0%% ]
1u"ﬂ°ﬂo°°°"" 10090404, 0
L L T T T L T T
1.0
<t 1 ] ] ]
Eg 4 4 . 4
0.5+ - 1o, - -
®© 1 o° ° ° APReg000%0 1 4
O J 0,500 ] 95°,0 | A 4
] ; 0000°90° o h Re0995000_ o | ]
0.0 T T T — T o] JPSP2e%0aag000090%%,
1.0
[Te} ] ] ] ] ]
g 097 o o1 ] o, | Tnecens? ] ]
= ] o o ] o0 1 o e ]
O = \ ° N o o °
177 oo %o ] c°°o°°°° %00 °T ) o] IN_.°° 0 0g0 ]
0.0 4#— T T T T T T T T e S s 00

Data

000OOOO0OCOOOO

Distance (m)

T T of

— T ———T %
12 3 40 1 2 3 40 1 2 3 4

Markov chain

Figure 9. Vertical-direction transition probabilities for the classes defined in Figure 8. Plots on the main
diagonal represent autotransitions between like classes, while plots off the main diagonal represent cross
transitions between different classes. The isotropic Markov chain model was used for the conditional
transition probability indicator simulation (T-PROGS) realizations.

the cutoffs was considered as the homogeneous InK value
assigned to each class. The deciles of the InK distribution,
including those delimiting the T-PROGS classes, are tabu-
lated in Table 1. Transiograms were calculated in the vertical
and horizontal directions and then a 3-D Markov chain model
was fitted to the sample transiograms. As with the variogram-
based approaches, isotropy is assumed. The transition proba-
bilities of the five InK classes are shown in Figure 9, where
the solid line represents the Markov chain model used to
generate the conditional realizations of the InK field. Tran-
sition probability analysis and stochastic simulations were
performed using the software T-PROGS [Carle, 1999].

4.2. Groundwater Flow and Advective Transport
Modeling

[26] Groundwater flow and advective transport were sim-
ulated for each of the generated 3-D conductivity fields.
Steady state flow was simulated with MODFLOW [Harbaugh
et al., 2000] using a 3-D finite difference grid with the
same dimensions and resolution as the interpolation grid.
No-flow boundary conditions were imposed on the four
faces perpendicular to the x and z axes (Figure 10). Speci-

Constant

No flow head = 0.940 m
/

boundary

Constant
head =1 m

No flow boundary

Average

Particles starting™< flow direction

positions

Figure 10. Schematic showing the geometry and boundary
conditions of the model used for groundwater flow and par-
ticle tracking simulations. The modeling domain is 6 m wide
(¢ direction), 6 m long (y direction), and 6.2 m thick (z direc-
tion). The finite difference grid used for the simulations has
a regular grid spacing of 0.2 m in the x and y directions and
of 0.1 along the z direction.
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fied heads were assigned to the other two boundaries per-
pendicular to the y axis to impose a mean hydraulic gradient
of 0.01 across the entire domain. The simulated groundwater
flow direction was oriented approximately as the actual
average flow direction at the MADE site as indicated by
potentiometric surface maps derived from head measure-
ments [Boggs et al., 1992].

[27] Flow paths and particle travel times in the simulated
flow fields were calculated using MODPATH [Pollock,
1994]. Only advective transport was simulated, while the
effects of mechanical dispersion and molecular diffusion
were not considered. A uniform porosity equal to 0.28 was
assigned to the model domain. At the beginning, 15,624
particles were evenly distributed (eight for each cell) across
the upstream face of the model domain. This configuration
mimics an instantaneous, distributed source, and each par-
ticle is viewed as a solute particle having an indivisible
mass. Spatially averaged breakthrough curves (BTCs) were
then calculated by counting the number of particles exiting
the system at the face located down gradient with respect to
the starting positions. In order to smooth the shape of the
BTCs, time intervals of 5 h were used to count the particles.
Since the specified heads and no-flow conditions are
directly adjacent to the study volume, the influence of the
no-flow boundaries on the particle path geometry and dis-
tribution was also assessed. For all the realizations, this
influence is very limited, and only very few particle paths
are the expression of unnatural fluxes on the boundary faces.

4.3. Measures of Spatial Connectivity

[28] Two groups of indicators were used to quantify con-
nectivity in the 3-D hydraulic conductivity fields. The first
group refers to a set of parameters that measure connec-
tivity based on the spatial characteristics of clusters of a
certain categorical class or geologic facies [Deutsch, 1998].
In this work, we focused on the connectivity of high-K zones
defined by clusters of face-connected cells (i.e., sharing a
face) with InK equal to or higher than the 0.9 decile of the
data distribution. The 0.9 decile of the InK estimates (—0.34
corresponding to 0.71 cm/s) is also the threshold used to
define the class with the highest conductivity for the SIS
and T-PROGS realizations. Connectivity of the high-X clus-
ters was evaluated by calculating the following parameters:
total number of high-K clusters and their volume fraction;
dimension (number of cells) of the largest connected high-K
cluster and its specific surface (surface area per unit volume);
dimension (number of cells) of the second largest connected
high-K cluster; and fraction of single cell high-K clusters.

[29] The code GEO_OBJ [Deutsch, 1998] was used to
identify the high-K clusters and to calculate these quantities.
Since the considered high-K clusters occupy a volume pro-
portion of 0.10, they are not expected to fully percolate,
meaning that they are not expected to span any two opposing
domain boundaries. This is because the volume proportion
of the high-K cluster is less than the percolation thresholds
measured for correlated three-dimensional cubic lattice media
[Harter, 2005; Guin and Ritzi, 2008].

[30] The second group of connectivity indicators are mea-
sures of flow and transport connectivity and includes some
of the parameters presented by Knudby and Carrera [2005],
here indicated as CI; and CL,. In this work we refer to flow
and transport connectivity in the sense originally used by
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the same authors such that flow connectivity indicates the
presence of preferential flow paths and transport connec-
tivity indicates the existence of fast paths allowing early
solute arrival. The first indicator CI; is defined as [Knudby
and Carrera, 2005, equation (6)]

K,
cr, = KZ , (4)

that is, the ratio between the effective conductivity (K,;) and
the geometric mean of the 1740 K estimates (Kg). Darcy’s
law between the upstream and the downstream faces of
the groundwater flow modeling domain was applied to cal-
culate Kz,

(5)

Ky = )
7 (h] - hz)A

where Q is the volumetric flow rate across the downstream
face of area 4 and /4, and &, are the constant heads applied at
the upstream and the downstream faces. Since the upper
bound of the effective conductivity is the arithmetic mean
K, of the K estimates, and the lower bound is the har-
monic mean Ky, CI; can assume any positive value between
Ki/K and K /K. CI; is an indicator of flow connectivity,
and it is a function of the degree of flow channeling or,
in other words, of the fraction of the total flow in a small
portion of the porous medium. The effective K is larger than
the geometric mean (CI; > 1) for K fields characterized by
the presence of preferential flow paths, while it is smaller
(CL < 1) for fields in which the high-K media are poorly
connected [Sdnchez-Vila et al., 1996; Zinn and Harvey,
2003]. CI; is equal to 1.0 in statistically random fields with
no connectivity.

[31] The second connectivity indicator CI, is related to
transport behavior and is defined as the ratio between the
average arrival time (¢,,,.) and the arrival time of a smaller
fraction (5%) of particles [Knudby and Carrera, 2005,
equation (8)]:

cr = e (6)
159

where f50, is the time at which 5% of the particles has arrived
at the exit face of the simulation domain. Both #,,, and fs.,
were calculated from the distribution of particle arrival times.
A breakthrough curve skewed toward smaller arrival times,
with an early peak and significant tailing, will result in a
higher value of CI, when compared to a Gaussian-shaped
breakthrough curve [Knudby and Carrera, 2005]. A high CI,
can also be interpreted as an indication of channeling.

5. Results and Discussion

5.1. Generated 3-D Hydraulic Conductivity Fields

[32] The ensemble mean and variance of the InK fields
generated with the SGS method are equal to —3.60 and 4.33,
respectively. These are similar to the corresponding values
of the SIS (—3.67 and 4.11) realizations and also compa-
rable to the mean and the variance of the original InK data.
The average mean of the T-PROGS realizations is —3.45,
while the average variance is 3.98. The lower variance of the
T-PROGS realizations is due to the zonation of continuous
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Table 2. Average Values of the Arithmetic (K,), Harmonic (Ky),
and Geometric Means (Kg) of the Generated InK Fields and of
Their Average Effective Conductivities (K.z)*

SGS SIS T-PROGS
Parameter Average SD Average SD Average SD
In(K,) -1.28 0.11 -1.30 0.16 —1.45 0.01
In(Ky) —5.18 0.11 -5.06 0.07 —4.95 0.00
In(Kg) -3.60 0.14 -3.67 0.11 -3.45 0.00
In(K.p) -2.93 0.14 -2.92 0.18 —2.68 0.05

*Values are expressed in cm/s.

K values into classes of homogeneous conductivity. Con-
sequently, the appearance of T-PROGS fields is smoother
than that of the fields generated with the variogram-based
methods, where a cell in the domain can assume, in
theory, any value. However, the average InK variance of all
the T-PROGS realizations is only about 8% lower than the
data variance, indicating that the actual variability is almost
fully preserved.

[33] A summary of the average values of the arithmetic
(K4), harmonic (Kg), and geometric means (Kg) of the
generated K fields is presented in Table 2, together with
the average effective conductivity (K, calculated from the
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groundwater flow simulations. Average values of K, and
Ky confirm the similarity between the SGS and SIS reali-
zations, while the average K, of the T-PROGS fields is
lower than the corresponding value of the variogram-based
methods by about 16%. The reduced variance of the con-
ductivity fields generated with the T-PROGS method due to
the K zonation is corroborated by the observation that the
standard deviations of the K, Ky, and Kg values or the SGS
and SIS realizations are significantly higher than those of
the T-PROGS realizations.

[34] Three realizations of the 3-D conductivity fields gen-
erated with SGS, SIS, and T-PROGS are shown in Figure 11.
From the simple qualitative observation of the 3-D con-
ductivity fields, it is hard to distinguish a connected arrange-
ment of high K cells. For this reason, we further investigated
the connectivity of the generated fields by analyzing ground-
water flow and transport and by comparing the indicators of
spatial connectivity. The results of these two analyses are
the topics of sections 5.2 and 5.3.

5.2. Flow and Transport Simulation Results

[35] As expected, the average K, values for the SGS and
SIS fields are almost identical (InK.; equal to —2.93 and
—2.92, respectively), while that of the T-PROGS realizations

Figure 11.
One realization is shown for each method.

Three-dimensional conductivity fields generated with different geostatistical methods.
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Figure 12. Spatially averaged breakthrough curves result-
ing from particle tracking simulations. The normalized con-
centration is defined as the fraction of particles exiting the
model domain.

is greater by a factor of about 1.25, indicating a higher
average flow velocity. Spatially averaged breakthrough
curves calculated from particle tracking simulations are
shown in Figure 12, while Table 3 compares the average
values of temporal parameters resulting from the analysis of
particle arrival times. The ensemble means of the BTCs
from the SGS and SIS fields are similar in shape and show
a sharp and well-defined peak at early times and an exten-
sive tail at later times. Although the scale of our investiga-
tion is significantly smaller than that of the natural gradient
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Table 3. Average Temporal Parameters Calculated From Particle
Tracking Simulations®

SGS SIS T-PROGS
Parameter ~ Average SD Average SD Average SD
Lave 11.17 4.05 10.84 2.34 13.61 1.57
Tso, 1.65 0.34 1.64 0.44 1.04 0.12
Ipeak 3.07 0.96 2.97 1.20 2.03 1.36

*Values are expressed in days.

tracer tests conducted at the MADE site, these character-
istics of the simulated BTCs are consistent with the trans-
port behavior observed during the large-scale tests and the
hypothesis that transport is controlled by a network of prefer-
ential flow paths embedded in lower K matrix.

[36] The average arrival time of the peaks of the BTCs
(tpear) is 3.1 days for the SGS realizations and 3.0 days
for the SIS fields. All the other temporal parameters (7.
and ts0,) are also similar for the SGS and SIS realizations. In
particular, the average arrival times (%,,.) are 11.2 days and
10.8 days, while the average of the arrival times of the
fastest particles corresponding to 5% of the total (#50;) is
about 1.6 days for both the SGS and SIS realizations.

[37] The shape of the BTCs calculated in the T-PROGS
fields is more asymmetric and jagged than those in the SGS
and SIS fields. Multiple peaks of arrival times are also
observed. The average arrival time of the particles is 2.0 days
and is about 1 day faster than the average of the SGS and
SIS fields. The average t#so, observed in the T-PROGS
realizations is also faster by a factor of about 1.6 than the
respective values in the SGS and SIS fields. On the other
hand, the average of the particles arrival times (¢,,.) is higher
in the T-PROGS realizations than in the variogram-based
realizations. The higher degree of asymmetry of the BTCs
calculated in the T-PROGS fields is also indicated by the
ratio between #,,, and the average arrival time of the peaks
(tpeak)> Which is equal to 6.7, while for the variogram-based
fields it is about 3.5.

[38] In order to test the significance of the conditioning
K estimates on the geostatistical simulations and on the
transport behavior, the BTCs calculated for the conditional
sequential Gaussian fields were compared to those in uncon-

7 BTCs for unconditional SGS fields

S 0.03 Ensemble mean for unconditional
:g SGS fields
= i
g SN I Ensemble mean for conditional
%] R SGS fields
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Figure 13. Comparison of breakthrough curves for condi-
tional and unconditional K realizations. Conditioning is
based on the 1740 K data.
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Figure 14. Three-dimensional perspective views of the spatial distribution of the cells with K less than
the median (in blue) penetrated by the fastest pathlines (black lines). Particle paths start at the upgradient

face (Y =167.9 m).

ditional realizations. Unconditional K fields were generated
using the same variogram model and flow modeling and
particle tracking analysis was performed with the model
setup previously described. The comparison clearly shows
that the shape of the BTCs for conditional and unconditional
fields is significantly different (Figure 13). It is remarkable
that the BTCs for unconditional fields do not show any of
the characteristics typical of transport behavior influenced
by high flow and transport connectivity (i.e., early time sharp
peak and significant tailing) that are conversely shown by
the BTCs in the conditional fields.

[39] Anomalous transport behavior and significant con-
nectivity in the simulated K fields are also indicated by the
slope of the tails of the simulated BTCs (Figure 12). The
slope for each BTC was calculated by plotting the log-log
scale BTCs and then by performing least squares regression
of the tail values [Riva et al, 2008]. The average slope
for the SGS realizations is 2.42, with values ranging from
1.51 to 2.97. For the SIS realizations, the average slope is
equal to 2.63, with a minimum slope of 1.80 and a maxi-
mum of 3.11. The average slope of the BTCs generated for
T-PROGS realizations is slightly lower (1.89), with values
ranging from 1.46 to 2.39. The low values for the slopes
of the tails are a clear indication of anomalous transport.
Assuming an homogeneous domain with conductivity equal
to the mean effective conductivity of the SGS realizations,
the slope of the tail of the BTC generated by solving the
advection-dispersion equation for an instantaneous pulse
is much steeper and equal to 8.92 (longitudinal dispersivity
equal to 1.0 m). More interestingly, the slope of the simulated
BTCs suggests a high degree of connectivity. According to
Willmann et al. [2008], the slope of a log-log plot BTC is
mainly influenced by the connectivity of the K field and it
reaches asymptotically 2 as connectivity increases.

5.3. Connectivity of the Generated K Fields

[40] The analysis of the characteristics of the simulated
flow fields and of the particle tracking simulations showed
that the generated K fields are characterized by a high

degree of flow connectivity. This is suggested by the tra-
jectories of the particles with fastest arrival times (within the
shortest 5% of the arrival time distribution) that tend to
converge along preferential flow paths (Figures 14, 15,
and 17) whose distribution within the model domain is clearly
influenced by the occurrence of the high-K clusters. In
particular, preferential flow paths are less scattered in the
xy plane in the variogram-based K fields compared to
the T-PROGS realizations (Figure 15, left). Projected on the
plane perpendicular to the x direction (Figure 15, middle),
preferential flow paths are more tortuous in the variogram-
based fields. For all realizations, the exit locations of the
fastest particles tend to cluster at certain patches (Figure 15,
right), showing that particles, which initially entered the
system as a distributed cloud, converged along preferential
flow paths and exited the systems in a few selected loca-
tions. These fast flow paths (first 5% to arrive) exert a strong
control on the flow field as shown by the significant fraction
of the total discharge flowing through their exit locations. In
the SGS fields, the average cumulative discharge through
the exit locations of the fastest particles is equal to 39.9% of
the total discharge, with a standard deviation equal to 3.6%.
Similar results were calculated for the SIS (44.2% on average
with a standard deviation of 3.4%) and the T-PROGS fields
(40.1% on average with a standard deviation of 3.1%).

[41] Probabilistic maps showing the exit locations of the
fastest particles were generated by considering all the K-fields
for each geostatistical method (Figure 16). These maps show
that for the simulated portion of the MADE site aquifer,
preferential flow paths are most likely located between 5 m
and 8 m below the land surface, while large areas at the
top and at the bottom of the simulated domain are devoid
of exit locations. In particular, an area of higher density of
exit locations of about 0.5 m in thickness and 1 m in length
along the x direction is shown by the T-PROGS realiza-
tions. Other areas of high concentration of exit locations
are located along the right boundary (at x = —15.25) of the
simulated domain in the SGS and SIS realizations, but their
position can be influenced by the no-flow conditions imposed
along this border.
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Figure 15. Spatial distribution of the 20 largest high-K clusters (green areas) and of the paths of the
fastest particles (black lines) in one realization for each geostatistical method. In each diagram, high-K
clusters and particles paths are projected on the plane formed by two Cartesian axes. Black dots in the

right-hand plots represent the particle exit locations.

[42] The spatial relationship between the particle paths
and the high-K clusters was also analyzed by calculating the
cumulative percentage of fastest path trajectory (i.e., path-
line travel distance) that falls below a certain InK threshold
(Table 4). Results show that about 43% of the total length
of the fastest pathlines is located within the high-K clusters
in the SGS fields while higher percentages were calculated
for the SIS (57%) and the T-PROGS realizations (69%).
These percentages suggest the importance of the extreme
values of the InK distribution in determining the geometry of
preferential flow paths and the degree of flow and transport
connectivity.

[43] Another important aspect revealed by Table 4 is the
different characteristics of the fastest pathlines in variogram-
based fields (SGS and SIS) and the T-PROGS fields. In
the SGS and SIS fields, sections of the pathline trajectory
are within cells with K values significantly lower than the

0.9 decile of the K data set. In particular, about 5% of
the pathline trajectory is through cells with K less than
the median, about 10% of the pathline trajectory is through
cells with K less than the 0.6 decile, and more than 15%
of the total pathline length is through cells with K less than
the 0.7 decile. Figure 14 shows the cells with K less than
the median penetrated by the fastest pathline trajectories.
These values indicate that significant transport connectivity
does not necessarily require fully connected zones of
homogenous K. Rather, particles can travel along preferen-
tial flow paths “jumping” (or leaking) from a high-K cluster
to another with the transition through much lower K zones.
This finding is consistent with that of Trinchero et al.
[2008], who studied point-to-point connectivity in a con-
vergent flow field. In the T-PROGS fields, however, we
observe that only 1.3% of the total length of the pathlines
is within cells with a K value less than the 70% of the K
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Figure 16. Probabilistic contour maps showing the spatial
density of the exit locations of the fastest particles.

distribution. This small fraction indicates a greater connec-
tivity of K values within the upper tail of the distribution and
that the fastest particle paths remain in zones of relatively
homogenous high K.
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Table 4. Average Cumulative Percentages of Trajectories (i.e.,
Pathline Travel Distances) of the Fastest Particles, Defined as the
First 5% to Arrive, That Fall Below a Certain InK Threshold®

Probability SGS SIS T-PROGS
Density
Function Average Average Average
InK Values % SD % SD % SD

—6.42 0.1 0.0 0.0 0.0 0.0 0.0 0.0
—5.40 0.2 0.2 0.1 0.3 0.1
—4.72 0.3 0.8 0.3 0.8 0.1 0.0 0.0
—4.01 0.4 2.5 0.6 1.5 0.1
-3.36 0.5 6.3 1.0 4.5 1.1
-2.95 0.6 10.5 1.7 9.4 3.0
-2.58 0.7 15.3 2.4 15.8 4.0 1.3 0.7
—2.21 0.8 22.1 3.0 21.4 4.7
-0.34 0.9 57.4 44 43.0 2.9 31.2 7.8

“The nine thresholds correspond to the deciles of the probability density
function of the InK estimates. For the T-PROGS realizations, only the
deciles that represent the cutoffs of the five InK classes (0.1, 0.3, 0.7,
and 0.9 deciles) are considered (see Figure 8).

[44] Other observations resulting from the flow and trans-
port simulations also suggest high connectivity. Regarding
flow connectivity, for example, the geometric mean of the
generated K fields is lower than the calculated effective con-
ductivity for all the generated K fields. As demonstrated by
Zinn and Harvey [2003] and Sdnchez-Vila et al. [1996], the
effective K deviates significantly from the geometric mean
in K fields with nearly identical lognormal univariate con-
ductivity, but different in the patterns by which high- or
low-conductivity regions are connected. High transport con-
nectivity is also suggested by the highly asymmetric shape
of the BTCs, which indicates that a significant number of
particles moved faster than others in the simulated domain
due to the presence of preferential flow paths. Finally, par-
ticle arrival time distributions show multiple peaks, espe-
cially in the T-PROGS realizations, and this feature can also
be interpreted as the effect of channeling. Multiple peaks
can in fact be generated when particles initially move slowly
out of zones of low K and then travel at higher velocity
along the preferential flow paths [see also Liu et al., 2007].

[45] A more quantitative assessment of the degree of
connectivity in the SGS, SIS and T-PROGS realizations is
shown by the values of the indicators presented in Table 5.

Table 5. Average Spatial Connectivity Indicators

SGS SIS T-PROGS
Indicator Average SD Average SD Average SD
Group 1
Total number of 1608 85.6 5947 79.6 260 432
high-K clusters
Volume fraction 0.10 0.01 0.08 001 0.10 0.001
Number of cells in the 987 4704 1243 5549 2305 809.6

largest connected
high-K cluster
Surface area/volume 2.9 0.3 2.8 0.2 22 0.1
Number of cells in the 562 3440 616 2623 914 3971
2nd largest connected
high-K cluster
Surface area/volume 3.0 0.2 29 0.2 2.1 0.2
0.63 0.02 0.59 0.04

Fraction of single cells 0.67  0.01

Group 2
CI, 1.96 0.09 214 021 216 0.11
CL 6.69 126 7.07 242 1315 0.77
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As previously described, the first group of indicators
(group 1) is based on the spatial characteristics of the
high-K clusters. The average number of high-K clusters
in the SGS realizations is almost 3 times higher than in the
SIS realizations and more than 6 times higher than the cor-
responding average in the T-PROGS realizations. The vol-
ume fraction of the channels in the SGS and T-PROGS
methods honors the actual frequency of high-K values in
the data (10%), while in the SIS realizations the average
volume fraction of high-K clusters is slightly lower (7.9%).
Even though the SGS realizations have the largest number
of high-K clusters, the average number of cells in the largest
and second-largest connected zones is lower than in the SIS
and T-PROGS fields. The average number of cells com-
posing the largest connected high-K cluster in the SGS
realizations is in fact 987, and it is lower than the corre-
sponding values in the SIS and T-PROGS realizations by a
factor of 1.26 and 2.34, respectively.

[46] The disparity between the different methods is reduced
when we consider the dimensions of the second largest
connected high-K cluster which is composed by an average
of 562 (SGS), 615 (SIS), and 913 cells (T-PROGS). In addi-
tion, Gaussian realizations have the highest percentage of
single cell bodies (almost 70%) and also the highest surface
area to volume ratio for the largest and second-largest high-
K clusters. This ratio is an indication of the shape of the
connected zones since it is proportional to the degree of tor-
tuosity. For a fixed volume, the greater the surface area, the
more tortuous the connected high-K clusters. The character-
istics of the generated SGS fields are consistent with the
results of previous studies suggesting that extreme values
are less inclined to cluster in multi-Gaussian random fields
[e.g., Rubin and Journel, 1991; Sanchez-Vila et al., 1996;
Gomez-Hernandez and Wen, 1998]. However, observing the
spatial distribution of the largest, second largest, and third
largest connected high-K clusters (Figure 17), it is possible
to recognize a spatial arrangement that resembles that of a
PFP network, even in the SGS realizations, and this has an
impact on the distribution of the fastest paths. The highest
degree of connectivity is clearly shown by the T-PROGS
realizations where the high-K clusters are more continuous
especially in the horizontal plane.

[47] The results of the first group of connectivity indicators
indicate that connected high-K clusters certainly can be
present in the investigated portion of the MADE site aquifer.
Among all 60 realizations, the largest connected high-K
cluster corresponds to the T-PROGS realization 17 and is
composed of 4530 cells. This value corresponds to a volume
that is about 7.5% of the total. On the other hand, the smallest
connected high-K cluster was observed in the SGS realiza-
tion 3 and is composed by only 268 cells.

[48] Flow and transport connectivity in the generated
K fields is also confirmed by the values of the second group
of indicators (group 2 in Table 5). These are calculated from
the results of the groundwater flow and particle tracking

Depth (M)

Depth (M)

Depth (M)

Figure 17. Three-dimensional perspective views of the
spatial distribution of the third largest, second largest, and
the largest high-K cluster (in green). Black lines represent
the paths of the fastest particles corresponding to the 5th per-
centile of the arrival time distribution. The complete set of
high-K clusters is shown in Figure 15.
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simulations. The indicator of flow connectivity CI; shows
that for all generated K fields the average effective con-
ductivity is higher than the average geometric mean by a
factor ranging from 1.97 for the SGS realizations to 2.16 for
the T-PROGS fields. According to Zinn and Harvey [2003]
and Knudby and Carrera [2005], such results suggest that
the flow fields are characterized by the presence of prefer-
ential flow paths. Values of the indicators CI, and CI3
confirm that particle transport in the generated K fields is
highly asymmetric, determining anomalous peaks of arrival
times and extensive tailing in the simulated BTCs. This is
mostly evident for the T-PROGS realizations that have an
average CI, value of 13.15, but it is also indicated by the
averages calculated for the SIS and SGS fields.

6. Conclusions

[49] Previous experimental and modeling studies sup-
ported the hypothesis that the connectivity of highly per-
meable sediments exerts a significant control on solute
transport in the highly heterogeneous aquifer at the MADE
site. In this study we tested this notion by analyzing the
connectivity of 3-D simulated K fields, representative of a
small portion (6 x 6 x 6.2 m®) of the aquifer. Geostatistical
simulations were conditioned to 1740 values of hydraulic
conductivity estimated from the grain size analysis of soil
samples corresponding to small segments (5 cm in thick-
ness) of 19 newly collected cores. On the basis of results of
previous studies showing that different geostatistical meth-
ods can produce realizations with very different degrees
of connectivity, we applied three different geostatistical
simulation methods. This choice was made with the twofold
objective of producing a wider range of possible representa-
tions of the actual heterogeneity and minimizing the chance
that our results could have been biased by the characteristics
of a single geostatistical simulation method.

[s50] The 3-D data set itself represents one of the con-
tributions of this work. The level of detail at which hetero-
geneity is documented, especially along the vertical direction,
is extraordinary and quite valuable. For this reason, it can be
used for the development and testing of new approaches for
the characterization of the heterogeneity of porous media and
the conceptualization of the mechanisms of solute transport.

[5s1] Groundwater flow, advective transport simulations,
and two groups of connectivity indicators were used to
assess and eventually quantify flow and transport connec-
tivity in the generated K fields. Several observations derived
from the flow and particle tracking simulations suggested a
high degree of connectivity. Particle tracking simulations
showed that the fastest particles converge along preferen-
tial flow paths and exit from the model domain in just a
few selected small patches. In this study, these patches are
concentrated mostly in the middle sector of the domain, at
depths ranging from 5 m to 8 m below the land surface.
About 40% of the total discharge is through patches where
the first 5% of particles exited the system. The distribution
of the preferential flow paths and particles exit locations is
clearly influenced by the occurrence of the highest K zones.
The average percentage of the fastest particle paths’ trajec-
tory that is within the high K zones ranges from 43% in the
SGS realizations up to 69% in the T-PROGS fields. It was
also observed in the SGS and SIS realizations that sections
of the fastest paths’ trajectory are within cells with K sig-
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nificantly lower than the 0.9 decile of the synthetic K dis-
tribution. This indicates that particles traveled along pref-
erential flow paths jumping (or leaking) from one high-K
cluster to another with transitions through lower K zones,
suggesting that significant transport connectivity may not
require connected zones of relatively homogenous high K.

[52] Other characteristics of the simulated flow fields and
transport behavior consistent with significant connectivity
and channeling include the ratio between effective conduc-
tivities and their corresponding geometric mean values, and
the shape of the simulated BTCs. The K ratio is equal to
about 2 on average, suggesting the entire K field becomes
twice as conductive due to the connectedness of higher K
zones. The simulated BTCs are characterized by sharp peaks
at early times and extensive tailing. Moreover, multiple
peaks are observed especially in the K fields generated with
T-PROGS. All these characteristics can be interpreted to be
the results of a transport mechanism consisting of the fast
movement of a significant number of particles along pref-
erential flow paths.

[53] The high degree of connectivity suggested by the
flow and transport simulations was confirmed by the values
of two groups of connectivity indicators. The first group
[Deutsch, 1998] indicates that connected high-K clusters
can be present in the investigated portion of the MADE site.
On average, the largest connected high-K body in the sim-
ulated fields represents a small fraction of the total volume,
ranging from 1.6% in the SGS realizations to 3.8% for the
T-PROGS fields. The largest connected body among all the
realizations occupies about 7.5% of the total interpolated
volume. In addition to their dimension, the spatial distribu-
tion of the high-K clusters is not random and supports the
formation of preferential flow paths as indicated by the
values of the second group of connectivity indicators that
contain information on the degree of flow channeling and
transport connectivity [Knudby and Carrera, 2005]. In all
the generated K fields the effective conductivity is higher
than the geometric conductivity by a factor of about 2. The
average arrival time of the particles is also 9 times greater
than the arrival time of a smaller fraction of particles corre-
sponding to 5% of the total. The values of the second group
of connectivity indicators are consistent with the results of
the groundwater flow and transport simulations. A signifi-
cant proportion of particles traveled faster than the average
along preferential flow paths and generated the highly asym-
metric shape of the BTCs.

[54] Anomalous transport behavior and significant con-
nectivity in the simulated K fields are also indicated by the
slope of the tails of the simulated BTCs. The slope for each
BTC was calculated by plotting the log-log scale BTCs
and then by performing least squares regression of the tail
values. The average slope for the SGS realizations is 2.42.
For the SIS realizations, the average slope is equal to 2.63.
The average slope of the BTCs generated for T-PROGS
realizations is slightly lower at 1.89. The low values for the
slopes of the tails are a clear indication of anomalous trans-
port due to significant connectivity.
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