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Abstract. A semianalytical solution is presented to a mathematical model describing 
the flow of groundwater in response to a slug test in a confined or unconfined porous 
formation. The model incorporates the effects of partial penetration, anisotropy, finite- 
radius well skins, and upper and lower boundaries of either a constant-head or an 
impermeable form. This model is employed to investigate the error that is introduced 
into hydraulic conductivity estimates through use of currently accepted practices (i.e., 
Hvorslev, 1951; Cooper et al., 1967) for the analysis of slug-test response data. The 
magnitude of the error arising in a variety of commonly faced field configurations is the 
basis for practical guidelines for the analysis of slug-test data that can be utilized by 
field practitioners. 

Introduction 

The slug test is one of the most commonly used techniques 
by hydrogeologists for estimating hydraulic conductivity in 
the field [Kruseman and de Ridder, 1989]. This technique, 
which is quite simple in practice, consists of measuring the 
recovery of head in a well after a near instantaneous change 
in water level at that well. Approaches for the analysis of the 
recovery data collected during a slug test are based on 
analytical solutions to mathematical models describing the 
flow of groundwater to/from the test well. Over the last 30 
years, solutions have been developed for a number of test 
configurations commonly found in the field. Chirlin [1990] 
summarizes much of this past work. 

In terms of slug tests in confined aquifers, one of the 
earliest proposed solutions was that of Hvorslev [1951], 
which is based on a series of simplifying assumptions con- 
cerning the slug-induced flow system (e.g., negligible spe- 
cific storage, finite effective radius). Much of the work 
following Hvorslev has been directed at removing one or 
more of these simplifying assumptions. Cooper et al. [1967] 
developed a fully transient solution for the case of a slug test 
in a well fully screened across a confined aquifer. Moench 
and Hsieh [1985] extended the solution of Cooper et al. to 
the case of a fully penetrating well with a finite radius well 
skin. A number of workers [e.g., Dougherty and Babu, 1984; 
Hayashi et al., 1987] have developed solutions for slug tests 
in wells partially penetrating isotropic, confined aquifers. 
Butler and McElwee [ 1990] presented a solution for slug tests 
in wells partially penetrating confined aquifers that incorpo- 
rates the effects of anisotropy and a finite-radius skin at the 
test well. In most field applications, the methods of Hvorslev 
[1951] or Cooper et al. [1967] are used. The error that is 
introduced into hydraulic conductivity estimates by employ- 
ing these models in conditions where their assumptions are 
inappropriate has not yet been fully evaluated. Note that 
Nguyen and Pinder [1984] proposed a method for the anal- 
ysis of data from slug tests in wells partially penetrating 
confined aquifers that has received a fair amount of use. 
Recently, however, Butler and Hyder [1993] have shown 
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that the parameter estimates obtained using this approach 
must be viewed with considerable skepticism owing to an 
error in the analytical solution upon which the model is 
based. 

In terms of slug tests in unconfined aquifers, solutions to 
the mathematical model describing flow in response to the 
induced disturbance are difficult to obtain because of the 

nonlinear nature of the model in its most general form. 
Currently, most field practitioners use the technique of 
Bouwer and Rice [1976; Bouwer, 1989], which employs 
empirical relationships developed from steady state simula- 
tions using an electrical analog model, for the analysis of slug 
tests in unconfined flow systems. Dagan [1978] presents an 
analytical solution based on assumptions similar to those of 
Bouwer and Rice [1976]. Amoozegar and Warrick [!986] 
summarize related methods employed by agricultural engi- 
neers. All of these techniques result from the application of 
several simplifying assumptions to the mathematical descrip- 
tion of flow to a well in an unconfined aquifer (e.g., negligible 
specific storage, finite effective radius, representation of the 
water table as a constant-head boundary). As with the 
confined case, the ramifications of these assumptions have 
not yet been fully evaluated. 

In this paper a semianalytical solution is presented to a 
mathematical model describing the flow of groundwater in 
response to an instantaneous change in water level at a well 
screened in a porous formation. The model incorporates the 
effects of partial penetration, anisotropy, finite-radius well 
skins of either higher or lower permeability than the forma- 
tion as a whole, and upper and lower boundaries Of either a 
constant-head or an impermeable form. This model can be 
employed for the analysis of data from slug tests in a wide 
variety of commonly met field configurations in both con- 
fined and unconfined formations. Although packers are not 
explicitly included in the formulation, earlier numerical work 
has shown that such a model can also be used for the 

analysis of multilevel slug-test data when packers of moder- 
ate length (0.75 m or longer) are employed [e.g., Bliss and 
Rushton, !984; Butler et al., !994a]. 

The major purpose of this paper is to use this solution to 
quantify the error that is introduced into parameter estimates 
as a result of using currently accepted practices for the 
analysis of response data from slug tests. The magnitude of 
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Figure 1. Cross-sectional view of a hypothetical confined 
aquifer (notation explained in text). 

where rw is the screen radius ILl, B is aquifer thickness [L], 
H is level of water in well [L], and H0 is height of initial slug, 
equal to level of water in well at t = 0 (H(0)), [L]. 

The boundary conditions are the following: 

h2( o•, z, t) = 0 t > 0 0 -< z -< B (4) 

Ohi(r, 0, t) Ohi(r, B, t) 
Oz Oz 

=0 rw<r<o• t>0 (5) 

1 fd+b - h l(rw, z, t) dz = H(t) 
bald 

t >0 (6) 

2 dH(t) Oh•(rw, z, t) •rr c 
2•rr•Kr• Or b dt l-l(z) t > 0 (7) 

the error arising in a variety of commonly met field config- 
urations serves as the basis for practical guidelines that can 
be utilized by field practitioners. Although such an investi- 
gation of parameter error could be carded out using either a 
numerical or analytical model, the analytical model de- 
scribed in the previous paragraph is employed here in order 
to provide a convenient alternative for data analysis when 
the error introduced by conventional approaches is deemed 
too large for a particular application. 

where d is distance from the top of the aquifer to the top of 
the screen [L]; b is screen length [L]; r c is radius of well 
casing (casing and screen do not have to be of equal radius) 
[L]; and Vl(z) is the boxcar function, equal to zero at z < d, 
z > b + d, and equal to 1 otherwise. 

In order to ensure continuity of flow between the skin and 
the formation, auxiliary conditions at the skin-formation 
boundary (r = rsk) must also be met: 

hl(rsk, z, t)= h2(rsk, z, t) O-<z<B t>0 (8) 

Statement of Problem 

The problem of interest here is that of the head response, 
as a function of r, z, and t, produced by the instantaneous 
introduction of a pressure disturbance into the screened or 
open section of a well. For the purposes of this initial 
development, the well will be assumed to be located in the 
confined aquifer shown in Figure 1. Note that, as shown on 
Figure 1, there is a well skin of radius rsk that extends 
through the full thickness of the aquifer. The skin has 
transmissive and storage properties that may differ from the 
formation as a whole. Flow properties are assumed uniform 
within both the skin and formation, although the vertical 
(K z) and radial (Kr) components of hydraulic conductivity 
may differ. 

The partial differential equation representing the flow of 
groundwater in response to an instantaneous change in water 
level at a central well screened in a porous formation is the 
same for both the skin and the aquifer and can be written as 

82h '•r/) (S•il i 1 Oh i Kzi 02hi Oh i 
Or 2 +-•-t- = (1) r Or , 8'•' •Kri]"•' 

where hi is the head in zone i [L]; Ssi is the specific storage 
of zone i [I/L]; Kzi, Kri are the vertical and radial compo- 
nents, respectively, of the hydraulic conductivity of zone i 
[L/T]; t is time [T]; r is radial direction [L]; z is vertical 
direction, z = 0 at the top of the aquifer and increases 
downward [L]; i is the zone designator, for r -< rsk , i = 1, 
and for rsk --< r, i = 2; and rsk is the outer radius of skin [L]. 

The initial conditions can be written as 

hi(r, z, O) = h2(r, z, O) = 0 r w < r < c• 0 < z < B (2) 

Oh l(rsk, Z, t) Oh2(rsk, Z, t) 
Krl -' Kr2 (9) 

Or Or 

O-< z<B t>0 

Equations (1)-(9) approximate the flow conditions of in- 
terest here. Appendix A provides the details of the solution 
derivation. In summary, the approach employs a series of 
integral transforms (a Laplace transform in time and a finite 
Fourier cosine transform in the z direction) to obtain func- 
tions in transform space that satisfy the transform-space 
analogs of (1)-(9). The transform-space function that is 
obtained for the head in a partially penetrating well with a 
finite-radius well skin in an anisotropic confined aquifer can 
be written in a nondimensional form as 

(y/2)fI 
tI)(p) -- (10) 

[1 + (3•/2)pfI] 

where (I)(p) is the Laplace transform of H(t)/Ho, p is the 
Laplace-transform variable, a = (2r•2Ss2b)/rc 2, 3/ TM Kr2[ 
Krl , and 

f(+l D, = {Fj'•[Fc(w)f•]} drl 

where to is the Fourier-transform variable, Fc(tO) is the finite 
Fourier cosine transform of El(z), Fj -• is the inverse finite 
Fourier cosine transform, 

[A2K0(vl) -- Allo(Vl) ] 

I•I[A2K!(Vl) + Alll(Vl) ] ' 
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•1 = z/b; •' = d/b; vi = (½/2to2 q_ Rip)O.5. ½i = (Ai/a2) ø'5' 
Ai -- Kzi/Kri; a = b/rw; R1 = 7a/2A; R 2 = a/2; A = 
Ss2/Ssl; 

Al=KO(Vl•sk)Kl(V2•sk)- (TN•)Ko(v2•:sk)Kl(Vl•sk); 
A2=Io(Vl•sk)Kl(v2•:sk)+ (•)Ko(V2•sk)II(Vl•sk); 

N = Vl/V 2 •:sk = rsk/r w. 

For the unconfined case the upper no-flow boundary 
condition in (5) is changed into a constant-head boundary 
condition, so the upper and lower boundary conditions are 
rewritten as 

hi(r, O, t) = O r w < r < oo t>0 (11) 

Ohi(r, B, t) 
O• = 0 rw < r < oo t > 0 (12) 

Appendix A also provides the details of the solution deriva- 
tion for the unconfined case. The transform-space function 
that is obtained for the head in a partially penetrating well 
with a finite-radius well skin in an anisotropic unconfined 
aquifer can be written in a nondimensional form as 

(•/2)a* 
ß uo(p) = (13) 

[1 + (y/2)pll*] 

where •uc(P) is the Laplace transform of H(t)/Ho for the 
unconfined case; 
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Figure 2. Plot of conductivity ratio (Cooper et al. estimate 
(Kest) over actual conductivity (Kr))• versus ½((Kz/K r) 1/2/ 
(b/rw)) as a function of a((2rw2Ssb)/r•) for the case of a well 
screened near the center of a very thick aquifer (/3 = 64, • = 
32). 

[1967] for the skin and no-skin cases, respectively. Similarly, 
if the test well is assumed to be partially screened across an 
isotropic, confined aquifer, (10) reduces to the Laplace- 
space form of the solution of Dougherty and Babu [1984, 
equation (62)]. Butler et al. [1993b] describe additional 
checks performed with a numerical model to verify the 
solutions proposed here. 

f••+l n* = {Ff•[Fs(to*)f •]} 

F,(to*) is the modified finite Fourier sine transform of[2(z); 
and to* is the Fourier transform variable for the modified sine 
transform. 

For expressions of the complexity of (10) and (13), the 
analytical back transformation from transform space to real 
space is only readily performed under quite limited condi- 
tions. in the general case the transformation is best per- 
formed numerically. Numerical evaluation of the Fourier 
transforms and their inversions was done here using discrete 
Fourier transforms [Brigham, 1974], thereby allowing com- 
putationally efficient fast Fourier transform techniques 
[Cooley and Tukey, 1965] to be utilized. This approach, 
which is briefly outlined in Appendix B, did not introduce 
significant error into the inversion procedure. An algorithm 
developed by Stehfest [!970], which has been found to be of 
great use in hydrologic applications [Moench and Ogata, 
1984], was employed to perform the numerical Laplace 
inversion. 

Several checks were performed in order to verify that (10) 
and (13) are solutions to the mathematical model outlined 
here. Substitution of (!0) and (13) into the respective trans- 
form-space analogs of (1)-(9) and (11)-(12) demonstrated 
that the proposed solutions honor the governing equation 
and auxiliary conditions in all cases. In addition, if the test 
well is assumed to be fully screened across an isotropic, 
confined aquifer, (10) reduces to the Laplace-space form of 
the solutions of Moench and Hsieh [!985] and Cooper et al. 

Ramifications for Data Analysis 
As discussed in the introduction, the primary purpose of 

this paper is to evaluate the error that is introduced into 
parameter estimates through use of currently accepted prac- 
tices to analyze response data from slug tests performed in 
conditions commonly faced in the field. This evaluation is 
carried out by using (10) and (!3) to simulate a series of slug 
tests. The simulated response data are analyzed using con- 
ventional approaches. The parameter estimates are then 
compared with the parameters employed in the original 
simulations to assess the magnitude of the error introduced 
into the estimates through use of a particular approach for 
the data analysis. The simulation and analysis of slug tests 
were performed in this work using SUPRPUMP, an auto- 
mated well-test analysis package developed at the Kansas 
Geological Survey [Bohling and McEtwee, 1992]. 
Partial Penetration Effects 

The first factor examined here was the effect of partial 
penetration on parameter estimates in a homogeneous aqui- 
fer (no-skin case). Figure 2 displays a plot of the hydraulic 
conductivity ratio (K½st/K r) versus ½, where ½ is the square 
root of the anisotropy ratio (Kz/Kr) •/2 over the aspect ratio 
(b/rw), for a configuration in which the upper and lower 
boundaries are at such a large distance from the screened 
interval that they have no effect (/3 = B/b = 64, •r = d/b • 
32). In this case the hydraulic conductivity estimates are 
obtained using the solution of Cooper et al. [1967], which 
assumes that the well is fully screened across the aquifer 
(i.e., flow is purely radial). Figure 2 shows that the error 
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Figure 3. Plot of conductivity ratio (Hvorslev estimate 
(Kest) over actual conductivity (Kr)) versus •(Kz/Kr)•/2/ 
(b/rw)) for the case of a well screened near the center of a 
very thick aquifer (/3 = 64, •' = 32). (a) Hvorslev estimates 
obtained with (14) (anisotropy ratio known) as a function of 
t•((2r•2Ssb)/rc2). (b) Hvorslev estimates obtained with (14) 
(anisotropy ratio unknown) as a function of & (• term with 
an assumed anisotropy ratio) for a = 1.0 x 10 -5. (c) 
Hvorslev estimates obtained with the fully penetrating well 
variant of the Hvors!ev model (assuming an effective radius 

9 2 
of 200rw) as a function of a((2r•,Ssb)/rc). 

arising from the radial flow assumption diminishes with 
decreases in $. This is as expected, since $ reflects the 
proportion of vertical to radial flow in the slug-induced flow 
system. Decreases in $ correspond to decreases in the 
anisotropy ratio or increases in the aspect ratio, the effect of 
both of which is to constrain the slug-induced flow to the 
interval bounded by the top and bottom of the well screen 
(i.e., the proportion of radial flow increases). In addition, 
Figure 2 shows that the error in the conductivity estimates 
decreases greatly with increases in a, the dimensionless 
storage parameter. This is in keeping with the results of 
Hayashi et al. [1987], who noted that, for a constant aspect 
ratio, vertical flow decreases with increases in the storage 
parameter. Based on Figure 2, it is evident that application 
of the Cooper et al. solution to data from slug tests per- 
formed in conditions where $ is less than about 0.003 should 
introduce little error into the conductivity estimates. For 
isotropic to slightly anisotropic systems, this • range corre- 
sponds to aspect ratios greater than about 250. Only in the 
case of a very low dimensionless storage parameter will 
significant error (>25%) be introduced into the estimates. 
Note that Figure 2 should be considered an extension of the 
findings of Hayashi et al. [!987] to the case of slug tests in 
open wells, a more common configuration for groundwater 
applications than the shut-in pressurized slug test configura- 
tion that they examined. 

Currently, the most common method for analysis of slug 
tests in partially penetrating wells in confined aquifers is that 
proposed by Hvorslev [1951]. Hvorslev developed a model 
that can be used for the analysis of slug tests performed in a 
screened interval of finite length in a uniform, anisotropic, 
vertically unbounded medium. Figure 3a displays a plot 
analogous to Figure 2 for the case of the Hvorslev model 
being used to obtain the conductivity estimates. Note that 
the Hvorslev model requires the use of a "shape factor," 
which is related to the geometry of the well intake region. 
The shape factor used in Figure 3a is that for case 8 
described by Hvorslev [1951] and results in the following 
expression for the radial component of hydraulic conductiv- 
ity: 

2 In {1/(2½) + [1 + (1/(2½))2] 1/2} F c 

KHv = 2bTo (14) 
where KHv is the estimate for the radial component of 
hydraulic conductivity obtained using the Hvorslev model 
and To is the basic time lag, the time at which a normalized 
head of 0.37 is reached. As the aspect ratio gets large (1/2½ 
gets large), (14) will reduce to Hvorslev's expression for a 
fully penetrating well (case 9) if the effective radius (distance 
beyond which the slug-induced disturbance has no effect on 
heads) is set equal to the screen length in case 9. Note that 
the anisotropy ratio, which appears in the ½ term, and KHV 
are perfectly correlated in (14), so these parameters cannot 
be estimated independently. 

In Figure 3a, all analyses were performed using (14) while 
assuming that the anisotropy ratio was known. Given •e 
difficulty of reliably estimating the degree of anisotropy in 
natural systems, this assumption must be considered rather 
unrealistic. Therefore, the analyses were repeated assuming 
that the degree of anisotropy was not known. However, 
since the anisotropy ratio and KHV cannot be estimated 
independently, some value for the anisotropy ratio must be 
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assumed for the analysis. This assumption of an arbitrary 
anisotropy ratio will give rise to an apparent 0 (•) value, 
which is the square root of the assumed anisotropy ratio over 
the aspect ratio. Figure 3b displays results obtained for slug 
tests analyzed using different •* values. When considered in 
order of decreasing magnitude, the • curves correspond to 
aspect ratios of 10, 50, and 200, respectively, for the case of 
an assumed anisotropy ratio of 1 (a common assumption in 
field applications). These curves will apply to different 
aspect ratios when an anisotropy ratio other than 1 is 
assumed. 

Often, field analyses are performed using the fully pene- 
trating well model of Hvorslev (case 9). For this approach, 
some assumption must be made concerning the effective 
radius of the slug test. In a frequently cited publication, the 
U.S. Department of the Navy [1961] recommends that an 
effective radius of 200 times the well radius be employed. 
Figure 3c displays the error that is introduced into conduc- 
tivity estimates when that recommendation is adopted. 

Figure 3a indicates that the estimates provided by (14) will 
be reasonable for moderate to small values of dimensionless 

storage if the anisotropy ratio is known. At larger a, how- 
ever, the error introduced into the parameter estimates 
increases beyond the limit of what is considered reasonable 
for this investigation (+-25%). Note that in Figure 3a, as in 
the remaining figures of this paper, the smallest • value 
plotted is 0.001. This is a result of the relationships shown in 
Figure 2, which indicate that, except in the case of very 
small values of dimensionless storage, the Cooper et al. 
model is the appropriate tool for analysis for ½ values less 
than 0.001. 

Figure 3b indicates that the quality of the estimates 
provided by (14) will be dependent on the assumed apparent 
½ (•) value for the case of an unknown anisotropy ratio. 
This figure demonstrates that for each • value there is a 
range of actual •for which the Hvorslev method will provide 
reasonable estimates. Although it is difficult to summarize 
the results of Figure 3b succinctly, it is clear that, if the 
assumed anisotropy is moderately close to the actual aniso- 
tropy (within a factor of 2-3), the Hvors!ev estimate will 
meet the criterion of reasonability employed here (_+25%). It 
can be readily shown that the • curves of Figure 3b are 
related to one another by a simple multiplicative factor. This 
relationship enables curves for • values other than those 
considered here to be generated by multiplying the Kest/Kr 
ratio for one of the curves given in Figure 3b by a factor 
consisting of the ratio of the natural logarithm term from (14) 
for the curve to be generated over the same term for the 
curve in Figure 3b. Although several standard references 

Table 1. Tabulated Values of the Conductivity Ratio for 
the Plots of Figure 3c 

a= 0.1 a=0.001 a= 1.0x !0 -5 a= !.0 x !0 -7 
, 

1.00 x 10 -3 3.196 1.249 0.867 
2.23 x 10 -3 3.198 1.275 0.950 
3.16 x 10 -3 3.203 1.293 1.00! 
7.07 x 10 -3 3.221 1.374 1.150 
!.00 x 10 -2 3.244 1.429 1.233 
2.22 x 10 -2 3.330 1.641 1.49! 
3.20 x 10 -2 3.399 1.774 1.638 
7.10 x 10 -2 3.693 2.225 2.108 
1.00 x 10 -! 3.920 2.508 2.388 
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Figure 4. Plot of conductivity ratio (Hvorslev estimate 
(Kest) over actual conductivity (Kr)) versus a((2rw2Ssb)/rc 2) 
as a function of •(Kz/K r) 1/2/(b/rw)) for the case of a well 
screened near the center of a very thick aquifer (/3 • 64; •' • 
32; • = 0.005). 

[e.g., Freeze and Cherry, 1979] recommend use of the 
isotropic form of (14), these results indicate that such an 
approach is only appropriate in isotropic to slightly aniso- 
tropic systems. This recommendation will result in a consis- 
tent underprediction of hydraulic conductivity in moderately 
to strongly anisotropic systems. 

Figure 3c indicates that the fully penetrating well model of 
Hvorslev (using an effective radius of 200 times the well 
radius) is appropriate in conditions where •t is less than 
about 0.01 for moderate to small values of dimension!ess 

storage. This ½ range corresponds to an aspect ratio greater 
than 100 for isotropic systems. For strongly anisotropic 
systems (Kz/K r considerably less than !), the aspect ratios 
at which the fully penetrating well model becomes appropri- 
ate are much smaller. Given the form of the fully penetrating 
well model of Hvorslev employed here and the earlier 
discussed relationship between the fully and partially pene- 
trating variants of the Hvorslev model, it should be clear that 
the curves on Figure 3c correspond to a q/* value of 0.005. 
Using the relationships discussed in the previous paragraph, 
the curves plotted in Figure 3c can be employed to generate 
all needed • curves for common values of the dimension- 
less storage parameter. Table 1 presents the results from 
Figure 3c in a tabular form, so that the reader can generate 
the curve needed for a particular application. Since the ½* 
curves can be readily related to one another, the results 
presented in the remainder of this paper will be for one 
particular ½* value (½* = 0.005), which as stated above, also 
corresponds to the fully penetrating well model of Hvorslev. 
The tabulated values for all the curves presented here are 
given by Hyder [ !994]. 

Figures 3a-3c show that the quality of the Hvorslev 
estimates deteriorates rapidly as dimensionless storage in- 
creases above 0.001. Figure 4 graphically displays the large 
errors that are introduced into parameter estimates as a 
approaches 1 for the same conditions as shown in Figure 3c. 
Clearly, the Hvorslev model must be used with extreme 
caution at large values of the dimensionless storage param- 
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Figure 5. Plot of conductivity ratio (Hvorslev estimate 
(Kes t) over actual conductivity (Kr)) versus •(d/b) as a 
function of •(Kz/K r) i/2/(b/rw)). Solid lines designate im- 
permeable upper boundary; dashed lines designate constant- 
head upper boundary; circles and triangles designate esti- 
mates obtained using the semi-infinite variant of the 
Hvorslev model for • values of 0.1 and 0.001, respectively; 
/3 = 64; a = 1.0 x 10-s; ½ = 0.005. 

eter. Since Figure 2 indicates that the Cooper eta!. model 
provides excellent conductivity estimates at large values of 
dimensionless storage, the Cooper et al. model should al- 
ways be employed when such dimensionless storage values 
are expected. As shown by Chirlin [1989], large values of 
dimensionless storage will often be reflected in a distinct 
concave upward curvature in a log head versus time plot. 
Note that the ½ curves on Figure 4 become nearly horizontal 
as a decreases. Therefore the results that are discussed in 

this paper concerning the viability of the Hvorslev model at 
a values of 10-5-10 -7 should be very good approximations 
for conditions where a values are smaller than 10 -7. 

An important goal of this paper is to define guidelines for 
the field practitioner. Since in actual field applications the 
aspect ratio should be a known quantity, guidelines based on 
the magnitude of the aspect ratio would be preferred. Al- 
though the general lack of information concerning anisot- 
ropy and specific storage introduces uncertainty, the results 
of this section can be used to roughly define aspect ratio 
guidelines for the analysis of response data from slug tests in 
partially penetrating wells. Clearly, at large aspect ratios 
(greater than 250), the Cooper et al. [1967] model is the most 
appropriate tool for data analysis. In strongly anisotropic 
systems (Kz/K r considerably less than 1), the Cooper et al. 
model will be applicable at much smaller aspect ratios. 
Although it is difficult to accurately estimate the degree of 
anisotropy from slug-test response data, Butler eta!. [ 1993a] 
present a simple approach that can be used to assess if 
significant anisotropy is present. In the general case, the 
fully penetrating well model of Hvorslev [ 1951 ] would be the 
best approach for analyzing response data from wells of 
aspect ratios between 100 and 250. At smaller aspect ratios 
the partially penetrating model of Hvorslev is best in the 
most general case. However, the most appropriate model for 
any particular application will depend on the anisotropy ratio 

and specific storage. If some reasonable estimates can be 
made about these parameters, Figures 2--4 and Table 1 can 
be used to assess which method is most appropriate for that 
specific application. Note that the model of Cooper et al. 
should be employed at all aspect ratios when the dimension- 
less storage parameter is large. 

Boundary Effects 

The previous discussion has focused on the effects of 
partial penetration in a vertically infinite system. Although 
one might suspect that most natural systems can be consid- 
ered as vertically infinite for the purposes of the analysis of 
response data from slug tests, there may be situations in 
which the upper and/or lower boundaries of the system 
influence the response data. Thus the next factor examined 
here was the effect of impermeable and constant-heM 
boundaries in the vertical plane on parameter estimates. 
Figure 5 displays a plot of the hydraulic conductivity ratio 
versus the normalized distance to a boundary (s r = d/b). 
Results are shown for both impermeable and constant-heM 
boundaries. In all cases, an apparent ½ (½*) value of 0.005 is 
used to obtain the conductivity estimates. It is clear from 
Figure 5 that a boundary will only have a significant effect 
(>25%) on parameter estimates when the screen is very 
close to the boundary (i.e., • < 1-2) and • is relatively large. 
If there is any degree of anisotropy in hydraulic conductiv- 
ity, the influence of the boundary will be considerably 
lessened. Note that Hvorslev [1951] also proposed a semi- 
infinite, partially penetrating well model (single impermeable 
boundary with screen extending to boundary) for slug tests. 
The equation for estimation of hydraulic conductivity in this 
case is the same as (!4) except • is used instead of 25 in the 
logarithmic term. The circles and triangles in Figure 5 show 
the estimates that would be obtained using this model for the 
confined case. Clearly, the semi-infinite variant of the 
Hvorslev model is only necessary at large • values (wells of 
small aspect ratios in isotropic aquifers). As the proportion 
of vertical flow decreases (• gets small), the semi-infinite 
model becomes slightly inferior to the vertically infinite form 
of the Hvorslev model. Although all of the parameter esti- 
mates in Figure 5 were obtained using the Hvorslev model, 
the method of Bouwer and Rice [1976] would normally be 
employed if an unconfined boundary is suspected. Hyder 
and Butler [1994] provide a detailed discussion of the error 
introduced into parameter estimates using the Bouwer and 
Rice model. 

The above discussion focuses on results when only a 
single boundary is influencing the response data. In thin 
formations, one may face conditions when both the upper 
and lower boundaries are close enough to the screen to be 
affecting the slug-test responses. Figure 6 displays a plot of 
the hydraulic conductivity ratio versus normalized aquifer 
thickness (/3 = B/b) for the case of a well screen located at 
the center of the unit. Clearly, in thin confined systems, the 
pair of impermeable boundaries will have a significant effect 
on Hvors!ev estimates for relatively large values of •. In thin 
unconfined systems, the lower impermeable boundary acts 
in an opposite manner to the upper constant-head boundary, 
so that the estimates are more reasonable than in the 
single-boundary case. 

The results of this section indicate that, except in cases of 
very thin formations (/3 < 10), screens located very close to 
a boundary (g < 5), and large values of • (>0.05), the 
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assumption of a vertically infinite system introduces a very 
small amount of error into the parameter estimates obtained 
using the Hvors!ev model. Thus the relationships presented 
in Figures 3 and 4 can be considered appropriate for the vast 
majority of field applications. Note that no analyses were 
performed in this section using the Cooper et al. [1967] 
model. In the previous section, a range of aspect ratios 
(>250) was defined for which the Cooper et al. model would 
provide reasonable estimates. Since boundaries in the verti- 
cal plane will only introduce sizable errors into parameter 
estimates when there is a considerable component of vertical 
flow, the effects of boundaries will be very small if the 
Cooper et al. model is only applied over the previously 
defined range. 

Well-Skin Effects 

The results of the previous sections pertain to the case of 
slug tests performed in homogeneous formations. Often, 
however, as illustrated in Figure 1, well drilling and devel- 
opment create a disturbed, near-well zone (well skin) that 
may differ in hydraulic conductivity from the formation in 
which the well is screened. It is important to understand the 
effect of well skins on conductivity estimates in order to 
avoid using estimates representative of skin properties to 
characterize the formation as a whole. 

Figure 7a illustrates the effect of a well skin on conduc- 
tivity estimates obtained using the Hvorslev model (• -- 
0.005) for a broad range of contrasts between the conductiv- 
ity of the skin and that of the formation. Clearly, the 
existence of a well skin can have a dramatic effect on the 

Hvorslev estimates. In the case of a skin less permeable than 
the formation, a conductivity estimate differing from the 
actual formation value by over an order of magnitude can 
easily be obtained. Figure 7a displays results for the case of 
a skin whose outer radius is twice that of the well screen 

(•sk = rsk/rw = 2). Figure 7b shows how the results depend 
on the thickness of the skin for the case of a skin I order of 

magnitude less conductive than the formation (3' = 10.0). 

3.0 - Impermeable Upper Boundary 
Constant-Head Upper Boundary 

2.0 •• tP = 0.1 

'v' 1.0 

½ = 0.001 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 

Figure 6. Plot of conductivity ratio (Hvorslev estimate 
(Kes t) over actual conductivity (Kr)) versus 13(B/b) as a 
function of •(Kz/Kr)i/2/(b/rw)). Solid lines designate im- 
permeable upper boundary; dashed lines :designate constant- 
head upper boundary; a = 1.0 x 10-5; ½ = 0.005. 
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Figure 7. Plot of conductivity ratio (Hvorslev estimate 
(Kes t) over actual formation conductivity (Kr)) versus 
½i((Kzl/Krl)l/2/(b/rw)) for the case of high and low con- 
ductivity well skins (/• • 64, •r .• 32, a = 1.0 x 10 -5 6' = 
0.005, qq = ½2, X = 1). (a) Hvorslev estimates as a function 
of •'(Kr2/Kri) for •sk = 2. (b) Hvorslev estimates as a 
function of •sk(rsk/rw) for ?, = 10.0. 

Note that when the skin radius equals the effective radius 
assumed in the Hvorslev fully penetrating well model (•sk = 
200), the estimated conductivity will approach that of the 
skin for small values of ½. 

Figure 8 displays a plot of a simulated slug test and the 
best fit Hvors!ev model, which is representative of all the 
low-conductivity skin cases shown in Figures 7a and 7b. As 
can be seen from Figure 8, the Hvorslev model matches the 
simulated data extremely well. In fact, a large number of 
additional simulations have shown that the Hvors!ev fit for 

the low-conductivity skin case is almost always better than 
that for the homogeneous case. This is especially true at 
small ½ values (moderate to large aspect ratios), where the 
response data for the homogeneous case generally will 
display a distinct concave upward curvature [e.g., ½hirlin, 
19891. 

At moderate to small ½ values, an underlying assumption 
of the Hvorslev model is that there is an effective radius 
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1 • ..... Simulated slug test 

0.01 .... , , , , , , , , , I ] ] '• ' ; ] ' [ • I "] '"' '• • • [ [ [ ] 
0.0 ,50.0 100.0 1•56.0 
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Figure 8. Normalized head versus time plot of simulated 
slug test and the best fit Hvorslev model for the case of a skin 
2 orders in magnitude less conductive than the formation 

(b/r w = 50 rsk •, 0.10 m, rw = rc = 0.05 m, Sst = Ss2 = 1.0 x 10 -] m- Kr2 = Kz2 = 0.001 m/s, Krl = Kz• = 
0.00001 m/s). 

beyond which the slug-induced disturbance has no effect on 
aquifer heads. In the low-conductivity skin case, this as- 
sumption is a very close approximation of reality, for almost 
all of the head drop occurs across the skin; heads in the 
formation are essentially unaffected by the slug test [e.g., 
Faust and Mercer, 1984]. Another major assumption of this 
model is that the specific storage has no influence on the 
response data. In most cases the thickness of the skin is 
relatively small, so the influence of the specific storage of the 
skin on slug-test responses is essentially negligible. Thus the 
assumptions of the Hvorslev model actually appear to be 
more reasonable in the low-conductivity skin case than in 
the homogeneous case. So, if one assumes an effective 
radius equal to the skin radius (e.g., •sk = 200 in Figure 7b), 
the estimated conductivity will be a reasonable approxima- 
tion of the conductivity of the skin at moderate to small ½ 
values. Hyder and Butler [1994] show that a low- 
conductivity skin has a similar effect on parameter estimates 
obtained using the Bouwer and Rice [1976] method. 

Figure 9 illustrates the effect of a well skin on conductivity 
estimates obtained using the Cooper et al. model. In general, 
the effect of a skin on the Cooper et al. model estimates is 
similar to that seen with the Hvorslev model. Again, the 
effect of a low-conductivity skin is quite pronounced. If the 
specific storage is assumed known or constrained to physi- 
cally realistic values, application of the Cooper et al. model 
to data from a well with a low-conductivity skin will produce 
an estimate that is heavily weighted toward the conductivity 
of the skin. In addition, there will always be a considerable 
deviation between the best fit Cooper et al. model and the 
response data in a manner similar to that shown in Figure !0. 
At small ½t values (moderate to large aspect ratios), the 
combination of an excellent Hvorslev fit and a systematic 
deviation between the Cooper et al. model and the test data 
appears to be a very good indication of a low-conductivity 
skin. At larger ½ values (lower aspect ratios), however, such 
a combination is also an indication of a strong component of 
vertical flow. Note that McElwee and Butler [1992] have 
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Figure 9. Plot of conductivity ratio (Cooper et al. estimate 
(Kest) over actual formation conductivity (Kr)) versus 
½l((Kzl/Krl)l/2/(b/rw)) as a function of •/(Kr2/Krl) for 
•sk =2(/3•64,•r•32, a= 1.0 X 10 -5 ½1 = ½2 A= 1). 

proposed an empirical equation that relates the Cooper et al. 
conductivity estimate to skin and formation properties. The 
practical use of this equation is limited, however, since 
estimation of formation conductivity from the Cooper et al. 
estimate requires knowledge of skin conductivity and thick- 
ness. 

In the high-conductivity skin case, as shown in Figures 7a 
and 9, conductivity estimates will be greater than the forma- 
tion conductivity as a result of a considerable amount of 
vertical flow along the more conductive skin. The difference 
will be greatest at large ½t values because of the larger 
proportion of vertical flow under those conditions. Note that 
the difference between the two high-conductivity skin cases 
(y = 0.01 and 0.1) decreases at small ½values because ofthe 
lessening importance of vertical flow. If the radius of the well 

1.00 - 

0.80 : '• \ 

o0,60 

'•/0.40 

• - '- Simulated slug test 

0.2o• .--Cooper et al.--model '\• 
o.1 I lO lOO 

Time (secs) 
Figure 10. Normalized head versus time plot of simulat.'ed 
slug test and the best fit Cooper et al. model for the case of 
a skin 2 orders in magnitude less conductive than the 
formation (parameters as in Figure 8). 
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screen is set to the nominal screen radius in the analysis, 
there will always be an offset between the high-conductivity 
skin cases and the homogeneous case at small ½ values, as 
shown in Figures 7a and 9. 

Since there is a very small head drop in the radial direction 
across a high-conductivity skin, one might expect that pa- 
rameter estimates for the high-conductivity skin case could 
be considerably improved by assuming the radius of the well 
screen equals the radius of the high-conductivity skin. Al- 
though such an approach will decrease the offset at small ½ 
values displayed in Figures 7a and 9, additional simulations 
have shown that the gains obtained through this approach 
are quite modest 0ess than 10%). The reason for these 
smaller than might have been expected gains is that an 
increase in the well radius only influences a and ½. As has 
been shown in plots in the previous sections, hydraulic 
conductivity estimates are not strongly affected by moderate 
changes in these dimensionless variables. The major cause 
of the differences between the high-conductivity skin and 
homogeneous cases shown in Figures 7a and 9 is the 
uncertainty concerning the screen length. Since screen 
length is a term in the dimensionless time variable (•- = 
(tbKr2)/rc2), an error in the screen length estimate of a 
certain magnitude directly translates into an error in the 
estimated hydraulic conductivity of the same magnitude. 
Thus uncertainty about the value to use for the screen length 
can introduce considerable error into the conductivity esti- 
mates. In the case of a partially penetrating well, the 
high-conductivity skin (e.g., the gravel pack) will normally 
be of greater length than the well screen. In this situation, 
the length of the high-conductivity skin, and not the nominal 
length of the well screen, is the quantity of interest. This 
larger-than-the-nominal screen length can be termed the 
"effective screen length" for the purposes of this discussion. 
In Figures 7a and 9 the high-conductivity skin cases were 
analyzed assuming that the nominal screen length was the 
appropriate screen length for the analysis. At large ½ values, 
such an approach is clearly incorrect. A more appropriate 
approach would have been to attempt to estimate the actual 
effective screen length. If there is an adequate seal in the 
annulus, the effective screen length should be the length of 
the gravel pack up to that seal. However, in cases where the 
length of the high-conductivity skin is considerably longer 
than the nominal screen length, such as in Figures 7a and 9, 
where the skin extends to the upper boundary of the forma- 
tion, the effective screen length will be dependent on the 
conductivity contrast between the formation and the skin. 
Further work is required to develop approaches for estima- 
tion of the effective screen length in such situations. 

Summary and Conclusions 
A semianalytical solution to a model describing the flow of 

groundwater in response to a slug test in a porous formation 
has been presented. The primary purpose for the develop- 
ment of this model was to assess the viability of conventional 
methods for the analysis of response data from slug tests. 
The results of this assessment can be summarized as follows. 

1. In a homogeneous formation the Cooper et al. model 
will provide reasonable estimates (within 25%) of the radial 
component of hydraulic conductivity for •O values less than 
about 0.003. For isotropic to slightly anisotropic systems, 
this ½ range corresponds to aspect ratios greater than about 

250 (much smaller aspect ratios for strongly anisotropic 
formations). In systems with a large dimensionless storage 
(a > 0.01) the Cooper et al. model should provide reasonable 
estimates at virtually all commonly used aspect ratios. The 
viability of this model at ½ < 0.003 is only in question for 
configurations with very small values of dimensionless stor- 
age (a < 10-6). 

2. In a homogeneous formation the Hvorslev model 
(case 8) will provide reasonable estimates of the radial 
component of hydraulic conductivity at moderate to small 
values of dimensionless storage (a < 10 -4) for a broad range 
of ½ values if the magnitude of the anisotropy ratio is known. 
If the anisotropy ratio is not known, which is the situation 
commonly faced in the field, the Hvorslev model will pro- 
vide reasonable estimates if the assumed anisotropy ratio is 
within a factor of 2-3 of the actual ratio. Table 1 allows the 

error introduced by the anisotropy ratio assumption to be 
readily assessed for any value of the assumed anisotropy. If 
the effective radius is assigned a value 200 times the well 
radius, the fully penetrating variant of the Hvors!ev model 
(case 9) will provide reasonable conductivity estimates for ½ 
values less than 0.01. 

3. Except in cases of large values of ½(>0.05), and very 
thin formations (/3 < 10) or well screens located very close to 
a boundary (• < 5), upper or lower boundaries will have little 
influence on parameter estimates obtained using conven- 
tional approaches. If the formation has any degree of anisot- 
ropy in hydraulic conductivity, the range of conditions over 
which boundary effects are significant will be quite limited. 
In general, the assumption of a vertically infinite system 
introduces a very small amount of error into parameter 
estimates. Relationships developed for vertically infinite 
systems should thus be appropriate for most field applica- 
tions. 

4. In the case of a low-conductivity skin, neither the 
Hvorslev nor the Cooper et al. model provides reasonable 
estimates of hydraulic conductivity of the formation. Both 
approaches will yield estimates that are heavily weighted 
toward the conductivity of the skin. The underlying assump- 
tions of the Hvorslev model actually appear to be more 
reasonable in the low-conductivity skin case than in the 
homogeneous case. At small ½ values (moderate to large 
aspect ratios) the combination of an excellent fit of the 
Hvorslev model to the test data and a systematic deviation 
between the test data and the best fit Cooper et al. model 
appears to be a very good indication of a low-conductivity 
sldn. 

5. In the case of a high-conductivity skin the Cooper et 
al. model will provide reasonable estimates of formation 
conductivity at small ½ values. The fully penetrating well 
variant of the Hvorslev model (effective radius 200 times the 
well radius) will provide viable estimates at ½ values less 
than about 0.01. The quality of the estimates for both models 
can be slightly improved if the radius of the screen is set 
equal to an approximate skin radius. At ½ > 0.01 the viability 
of Hvors!ev conductivity estimates will strongly depend on 
the quality of estimates for the effective screen length. In 
such conditions the length and radius of the gravel pack 
should be used in place of the nominal screen length and 
radius, respectively, for the analysis of the response data. 

The restfits of this assessment indicate that there are many 
commonly faced field conditions in which the convention.al 
methodology for the analysis of response data from slug tests 



2954 HYDER ET AL.: SLUG TESTS IN PARTIALLY PENETRATING WELLS 

appears viable. Since the definition of what constitutes a 
reasonable parameter estimate will be application depen- 
dent, the user can consult the figures of this paper to assess 
if the introduced error is acceptable for a specific applica- 
tion. If it appears that conventional approaches will not 
provide acceptable parameter estimates for a test in a 
particular configuration, the model developed here can be 
used to analyze the response data. Butler et al. [1993a] 
describe a series of slug tests in both consolidated and 
unconsolidated formations in which the model described in 

this article is employed for the data analysis. Considerable 
experience is required, however, for successful application 
in configurations with low-conductivity skins or a moderate 
degree of anisotropy owing to uncertainties introduced by a 
high degree of parameter correlation. 

Note that the results of this study must be considered in 
light of the three major assumptions used in the mathemat- 
ical definition of the slug-test model employed in this work. 
First, in (7) we adopted the commonly employed assumption 
of a uniform radial hydraulic gradient along the well screen 
as a mathematical convenience. In actuality, one would 
suspect that the gradient would be larger at either end of the 
screen, producing a U-shaped profile in the vertical plane. 
Butler et al. [1993b], however, have performed detailed 
simulations with a numerical model to show that the use of 

this mathematical convenience introduces a negligible de- 
gree of error to the results reported here and virtually all 
practical applications. 

Second, in (8) and (9) we assumed that the skin fully 
penetrates the formation being tested. Although this assump- 
tion is appropriate for the case of multilevel slug tests 
performed in a well'fully screened across the formation, it is 
clearly not representative of reality in the general case. For 
tests in wells with a low-conductivity skin, however, this 
assumption is of little significance, since a low-conductivity 
skin will not serve as a vertical conduit. In this situation, 
flow in response to a slug-induced disturbance will be 
primarily constrained to an interval bounded by the top and 
bottom of the well screen. In the case of a high-conductivity 
skin, this assumption will produce considerably more verti- 
cal flow in the skin than would actually occur. Butler et al. 
[1993b], however, have shown through numerical simulation 
that a slug test performed in a partially penetrating well with 
a high-conductivity skin that extends to the bottom of the 
screen is indistinguishable from a slug test performed in a 
similar configuration in which the well screen terminates 
against a lower impermeable layer. Thus for the high con- 
ductivity skin cases examined here, the slug tests were 
simulated assuming that the screen abutted against a lower 
impermeable layer. Note that this approach is only appro- 
priate for a skin considerably more conductive (i.e., larger 
by a factor of 2-3) than the formation and considerably 
longer than the nominal screen length. Thus the high- 
conductivity skin results presented here should be consid- 
ered representative of bounding, worst case conditions. 

Third, in (11) we assumed that the water table could be 
represented as a constant-head boundary. Given the small 
amount of water that is introduced to/removed from a well 

during a slug test, this assumption is considered reasonable 
under most conditions. The cases in which this assumption 
may be suspect are that of a well that is screened across the 
water table or a well screened over a deeper interval with a 

gravel pack that extends above the water table. Ongoing 
numerical and field investigations are currently being under- 
taken to assess the error that is introduced through this 
assumption and to suggest approaches for data analysis 
when that error is deemed unaceeptab!y large [Butler et al., 
1994b]. 

Appendix A 

In this section the mathematical derivations of the soh. 
tions discussed in the main body of the text are presented. 
For the sake of generality, the solutions are obtained in a 
dimensionless form. The solutions will be presented here as 
transform-space expressions. Details concerning the scheme 
used to numerically invert these expressions to real space 
are given in Appendix B. Note that the expressions given 
here are only for the head within the stressed well. Solutions 
for heads outside the stressed well are available from the 

authors upon request. 

Confined Aquifer Solution 

Equations (1)-(9) describe the flow conditions of interest 
here. To work with the most general form of the solution, 
this derivation is performed using dimensionless forms of 
(1)-(9). The dimensionless analogs of (1)-(9) are as follows: 

•(g, n, O)=0 g> 1 O< n < t• 

0(0)= ] 

02(oo, ,/, r)= 0 . > 0 0-< n -</• 

aOi(•, O, •') aOi(•, /•, *) 
....... 0 •>1 

Or/ 

(A1) 

(A2) 

(^3) 

r>O 

r>O (A6) 

ao•(1, r/, r) ? dO(,-) 

a[ 2 dr 
------ [2(•) r>O 

o_<n<• r>O 

aOl(•sk, •/, •') aqb2(gsk, */, r) 

where 

(• 

(AS) 

(A9) 

r>O 

4•i = hdHo •: = r/rw '1 = z/b 

• = (tbKr2)/(r•) ½i = (Ai/a2) 0'5 

A i = Kzi/Kri a = b/rw 

R ! = ?ce/2X R2 = a/2 

A = Ss2/Ss• • = B/b 
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• -- H/Ho 'Y = Kr2/Krl a = (2r2•bSs2)/rc 2 

= o < 

[2](r/) = 1 elsewhere 

•>f+l 

•' = d/b •:sk = rsk/rw. 

A solution can be obtained for (A1)--(A9) through the use 
of integral transforms [Churchill, 1972]. A Laplace transform 
in time followed by a finite Fourier cosine transform in the ./ 
direction produces a Fourier-Laplace space analog to (A1) of 
the following form: 

o24,• 1 o4• 
2 (q,2o, 2 + = o (A10) 

where •i is the Fourier-Laplace transform of6i,f(•, •o, p); 
•0 is the Fourier-transform variable, equal to (n •r)//5, n = 0, 
1, 2, --'; and p is the Laplace-transform wadable. 

The Fourier-Laplace space solution to (P•10) is quite 
straightforward, as (A10) is simply a form of the modified 
Bessel equation [Haberman, 1987]. A solution can therefore 
be proposed in the form 

•i-' CiKo(vi•) q- Dilo( (All) 

where vi = (½/2to2 + Rip)ø'5; Ci, Di axe constants; K i is a 
modified Bessel function of the second kind of order i; and li 
is a modified Bessel function of the first kind of order i. 

Using the transform-space analogs of auxziliary conditions 
(A4) and (A6)-(A9), the constants in (A11) can be evaluated. 
Since the focus of interest in most slug tests is responses in 
the stressed well, only the transform-space expression for 
head at a radial distance of • = 1 is given here: 

qbl(1 , to, p)= •- [1- p(I>(p)JFc(o)f 1 (A12) 

where Cb(p) is the Laplace transform of •(t), the nondimen- 
sional form of H(t); Fc(oo) is the finite Fourier cosine 
transform of Vl(z), equal to 

-- sin cos ß 0• = n •r//3 
to 2 

and equal to 1, to = 0; 

n=l, 2,3'--, 

[A2K0( v 1) - AI!0(•'l)] 
. 

Vl[A2Ki(vl) + Alll(Vl)-l' 

Al'=Ko(Vl•sk)Kl(V2•sk)- (•.).Ko(v2fsk)Kl(Vl•sk); 
A2=Io(Vl•sk)Kl(V2•sk)+ (•)KO(V2•$k)II(Vl•sk); 

N = Vl/V2. 

The application of an inverse finite Fourier cosine trans- 
form to (A12) for ,/within the screen and •atilization of the 
Laplace-space analog of (A6) produces the folloxving expres- 
sion for head in the stressed well: 

where 

¾ 

tI)(p) -- •- [ 1 - p(I)(p)]l• (A13) 

f•+l I), = {F•-l[Fc(w) f l]) 

Fg • is the inverse finite Fourier cosine transform. 
Solving for •(p) yields 

(•,/2)fl 
t!> (p) = (A14) 

[1 + (y/2)pll] 

Appendix B provides details of the fast Fourier transform 
scheme used to invert the expression in the 11 term. The 
algorithm of Stehfest [1970] was used to perform the numer- 
ical Laplace inversion of (A14). 

Unconfined Aquifer Solution 

For the unconfined ease, (A5) is replaced by the dimen- 
sionless analogs of (11) and (12): 

•bi(•:, 0, •) = 0 • > 1 z > 0 (A15) 

*) 
= 0 • > 1 r > 0 (A16) 

O• 

A solution for (A1)-(A,4), (A6)-(A9), and (A15)-(A16) is 
obtained using the same approach as in the confined case. 
The Fourier-Laplace expression for head at a radial distance 
of •: = 1 in the tanconfined case can be written as 

01u½(1, to*, p) =y [1 - p•u½(p)]Fs(w*)fl (A17) 

where 4•l•c is the Fourier-Laplace transform of 6h,, the 
nondimensional f0rrn of hi for the unconfined case; •uc(P) 
is the Laplace transf'onn of the nondimensional form of H(t) 
for the unconfined case; F•(•o*) is the modified finite Fourier 
sine transform of El(z), equal to 

•0' sin 2 ' 
and oJ* is the Fourier transform variable for the modified sine 

transform, equal to (nrr)/2/3, n = 1, 3, 5, '- -. 
The application of an inverse modified finite Fourier sine 

transform to (A 17) for ./within the screen and rewriting in 
terms of •uc(P) produces the following expression: 

(y/2)fl* 
= 

+ 

where 

f•+l 11' = {Ff•[F•(w*)fl]} drl. 

The modified finite Fourier sine transform employed in the 
unconfined case requires a bit of discussion. The standard 
finite Fourier sine transform is quite useful when a constant 
head is maimairier at both boundaries. In the unconfined 

case the upper boundary (• = 0) is defined as a constant- 
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head condition, while the lower boundary (r/- b) is defined 
as a no-flow condition. Churchill [1972] presents the modi- 
fied finite Fourier sine transform 

Fs(n) = •f(r/) sin•, 2b J dr/ n=1,3,5,'.' 

(A19) 

as an example of a Sturm-Liouville transformation. When 
this modified sine transform is applied to the second-order 
derivative with respect to r/, integration by parts yields 

0'-•' sin • 2• d•/ = --O•*2qbi q- O•*•i(0) 

- (- 1) n (A20) 

where 

w*= (n•')/2fl n= 1, 3, 5,... 

Fs(n) = t•fuc(r/) sin k 2/• ' ' 
(B3) 

where F s is the modified finite Fourier sine transform and 
fuc(r/) = Fs(w*)fi. Equation (B3)is only defined for 
odd-numbered n. For ready implementation with standard 
FFT algorithms, (B3) is rewritten in terms of a continuous 
sequence of n: 

F•(n) [1 + (-1)n+•] I• = 2" fuc(r/) sin • 2/S ] a,/ (B4) 
n=l, 2, 3,... 

Equation (B4) is now approximated using a discrete Fourier 
transform: 

Fs(n) [1 +(1) +l]A • fuc(Ak) sin •2N] (B5) 2 
k-1 

For the boundary conditions employed here, (A20) reduces 
to 

--0•* 2•// (A21) 

Appendix B 

In this section, details are presented of the procedures 
employed to numerically invert the transform-space expres- 
sions derived in Appendix A. As discussed in the main text, 
the fast Fourier transform (FFT) procedure was employed to 
perform the required Fourier transforms/inversions in this 
work. In order to demonstrate that the discrete Fourier 

transforms introduced negligible error into the numerically 
inverted solution, a comparison between the discrete solu- 
tion and the continuous form is discussed. 

For the confined case (cL (A14)), a finite Fourier cosine 
transform was employed. The continuous form of this trans- 
form can be written as 

Fc(n)= flsf(•) cos (n-•) d• (B1) 
where F c is the finite Fourier cosine transform and f(r/) = 

In order to utilize the FFT procedure, (B1) is approxi- 
mated using a discrete Fourier transform: 

rc() a f(ak) cos 
k--0 

(B2) 

n=0, 1,2,...,N-1 

where N, the number of equally spaced points between 0 and 
/•, must be an integer power of 2; and A is the interval 
between equally spaced points, equal to I3/N. 

For the unconfined case (cf. (A18)) a modified finite 
Fourier sine transform was employed. The continuous form 
of this transform can be written as 

n=l, 2,---,N-1 

Equations (B2) and (B5) can be directly implemented in 
standard FFT algorithms. In this work an FFT algorithm 
given by Press et al. [1992] was employed. The total number 
of sampling points (N) in r/was constrained, such that there 
would always be at least 10 points within the screened 
interval. 

In order to check on the approach outlined above, an 
additional series of simulations was performed in which the 
continuous forms of the finite Fourier transforms were 

employed for the required transforms/inversions. The 11 
term that is employed in (A14) can be written in the 
continuous form as 

fl fl(n=O)8t• •ø f•(n)nw (n•r(l+2•)) = + Z sin2 cø$2 ' fl • n 2 2fl 2fl n=l 

(B6) 

The fl* that is employed in (A18) can be written in contin- 
uous form as 

16/3 • 
'2 

n=l 

ß [1 + (-1)n+l] fl(n) n,r (nw(.1...+. 2•')) (B7) • sin2 •'• sin2 k 4• 
In all cases the inversion of (B6) and (B7) produced results 
that were virtually indistinguishable from those found using 
an FFT algorithm with (B2) and (B5). The computational 
time, however, was significantly greater. 

The inverse Laplace transform, the final step of the 
numerical inversion procedure, was performed here us• 
the algorithm of $tehfest [1970]. Sixteen terms were used in 
the summation of the Stehfest algorithm for all the cases 
examined in this work. Note that the procedures discusse•d 
here are implemented in a series of Fortran programs fo•d 
in the work by Hyder et al. [1993]. 
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