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Pumping Tests in Nonuniform Aquifers' 
The Radially Asymmetric Case 

JAMES J. BUTLER, J•., AND WENZHI L•U 

Kansas Geological Survey, University of Kansas, Lawrence 

An analytical solution for the case of transient, pumping-induced drawdown in a nonuniform aquifer 
is presented. The nonuniform aquifer is conceptualized as a uniform matrix into which a disk of 
anomalous properties has been placed. The disk can be arbitrarily located with respect to the pumping 
well. This solution can be used to develop considerable insight concerning the nature of drawdown in 
nonuniform systems. Changes in drawdown are sensitive to the hydraulic properties of a discrete 
portion of an aquifer for a time of limited duration. After that time, it is virtually impossible to gain 
further information about those properties. The volume of the aquifer controlling a given increment of 
drawdown at an observation well increases greatly as the distance between the pumping and 
observation well increases. At observation wells located at moderate to large distances from the 
pumping well, this volume is so large that the effect of spatial variations in flow properties may be 
negligible. In general, drawdown data from wells located at a distance from the pumping well should 
nicely fit the ideal models of the well hydraulics literature. When combined with previous work, these 
results demonstrate that constant rate pumping tests are not an effective tool for characterizing lateral 
variations in flow properties. 

INTRODUCTION 

Analytical solutions for drawdown in response to pumping 
at a central well are the basis of conventional pumping-test 
analysis methodology. For the most part, these solutions 
consider hydraulic behavior in an idealized aquifer in which 
media properties are invariant in space. Natural systems, 
however, may be characterized by a considerable degree of 
property variability. The issue of the validity of conventional 
pumping-test analysis methodology in highly variable sys- 
tems has not yet been resolved. This article attempts to 
address this issue by presenting an analytical solution for 
flow to a well in a laterally nonuniform configuration that the 
authors believe has not previously been fully considered. 
Evaluation of this solution provides valuable insight into the 
viability of conventional pumping-test methodology in many 
types of nonuniform aquifers. 

A number of workers have presented analytical solutions 
for flow to a well in a laterally nonuniform aquifer. For the 
most part, work has concentrated on units composed of two 
components separated by a linear or radial discontinuity. 
Streltsova [1988] and Butler and Liu [1991] summarize the 
majority of this past work. Few investigators have addressed 
the case of transient flow in a system in which the aquifer 
nonuniformity consists of a pod of material arbitrarily lo- 
cated in a matrix of differing properties. Jaeger [1944] 
outlines a solution for the flow of heat in response to an 
instantaneous line source located anywhere within a circular 
disk whose properties differ from the surrounding matrix. 
Larkin [1963] briefly extends the solution to the case of a 
constant discharging well within the circular pod. Neither 
author, however, discusses the insight that might be derived 
from the solution. Grader and Horne [1988] consider the 
influence of a circular pod on drawdown when both the 
pumping and observation wells are located outside of the 
pod. Their approach, however, requires that the pod be 
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either impermeable or at a constant head. Wheatcraft and 
Winterberg [ 1985] investigate radial and uniform steady state 
flow in an aquifer consisting of a circular disk of finite 
permeability embedded in a matrix of differing properties. 

In this article, the solution of Jaeger [1944] is extended to 
the general case of pumping and observation wells located 
anywhere within the flow system. Although this is appar- 
ently the first general presentation of the extended solution 
of Jaeger, the details of the analytical solution are relegated 
to an appendix. The major purpose of this paper is to 
demonstrate how this solution can be used to develop insight 
into pumping-induced flow in nonuniform aquifers. Two 
techniques will be employed as part of this effort: sensitivity 
analysis [McElwee, 1987] and large-time approximations of 
the analytical solution. Unlike most contributions in the 
well-hydraulics literature, the emphasis of this work is not 
on the development of a new analytical technique for appli- 
cation to a particular flow configuration. Instead, the empha- 
sis is on the development of insight into how aquifer non- 
uniformities affect pumping-induced drawdown, so that field 
practitioners will have a better idea of what to expect when 
working in highly variable natural systems. 

STATEMENT OF PROBLEM 

The problem of interest here is that of the drawdown, as a 
function of r, 0, and t, produced by pumping from a fully 
penetrating well in the configuration displayed in Figure !. 
For the purposes of this development, the pumping well is 
assumed to be arbitrarily located outside of a circular disk of 
radius a. Flow properties are assumed to be uniform within 
both the disk and the matrix, although differing between the 
two. The variation between the disk and matrix can be of any 
magnitude. Save for the variation of properties between the 
disk and matrix, the standard conditions for a pumping test 
in a confined aquifer are assumed at all times. For purposes 
of this derivation, the origin is assumed to be located at the 
center of the circular disk. The pumping and observation 
wells are located at radial distances rt, w and r, respectively, 
from the origin. The distance between the pumping and 
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Fig. 1. Nonuniform configuration employed in this work; the 
center of the disk and the dashed line are the origins for radial and 
angular locations, respectively; remaining notation explained in the 
text. 

For the purpose of this derivation, we also employ the 
condition that the drawdown within the matrix (s2) can be 
written as the sum of the drawdown predicted by Theis 
[1935] for pumping in an infinite uniform aquifer (s r) and the 
drawdown due to the existence of the circular disk (s a): 

s2 = sr + Sd (9) 

The Theis drawdown (s r) can be calculated from (2)-(4) and 
(6) by neglecting the angular dependence and assuming the 
origin is at R = 0: 

Q ft.,• exp (-u) = du (10) ST 4z-T• u 
' 2 

where 

observation wells is defined as R and, from the law of 
cosines, can be written as 

R 2 r 2 + 2 _ 2rrpw cos (0 - O pw ) (1) 
where Opt,, 0 is the angular position of pumping and obser- 
vation well, respectively (in radians). Flow within the circu- 
lar disk (i = 1) and surrounding matrix (i = 2) can be 
described mathematically by the polar-coordinate form of 
the aquifer flow equation: 

02si 1 OS i 1 02si S i Os i 
Or 2 t- - • + = (2) 

where 

s i drawdown in material i, L; 
t time, T; 

Si storage coefficient of material i [dimensionless]; 
T i transmissivity of matehal i, L2/T. 
Boundary and initial conditions are as follows: 

s2(o, 0, t) = 0 (3) 

u 2 = S2R2/4T2t 

Equation (9) can be substituted into (2) and an analogous 
equation written solely in terms of sa: 

02Sd OS d 1 02Sd S 2 c3s d 
Or'+ + = (11) - Or 7'• r2 ot 

The boundary and initial conditions, as well as the auxiliary 
conditions at the matrix-disk boundary, can also be rewritten 
in terms of s r and s d: 

sd(•, 0, t) -- 0 (12) 

sl(r, 0, 0) = sd(r, 0, 0) = 0, 0 < r < •e (13) 

s,(a, O, t)= sa(a, O, t) + sr(R(a, 0), t) (14) 

Osl(a, O, t) Osa(a, O, t) Osr(R(a, 0), t) 
Ti = T 2 + T 2 

Or Or Or 

$i(r, 0, 0) = 0, 0--< r < o• (4) 

Note that s• remains finite as r goes to zero: 

where 

sl(r, O, t) <A, r•O (5) 

A =f(T i, S i, rpw, Q) 

A pumping well discharging at a constant rate Q is assumed 
to be at (rpw, Op,,), giving rise to the following condition: 

Os2(R, t) 
lim 2,rRT2 = -Q, t > 0 (6) 

.e•o OR 

In order to ensure continuity of flow between the disk and 
the matrix, auxiliary conditions at the matrix-disk boundary 
(r = a) must also be met: 

s l(a, O, t)= s2(a, O, t) (7) 

Osl(a, O, t) Os2(a, O, t) 
T1 = T2 (8) 

Or Or 

Equations (2), (5), and (9)-(15) describe the flow condi- 
tions of interest here. Appendix A provides the details of the 
solution derivation. In summary, the approach employs a 
Laplace transform in time, in conjunction with the method of 
separation of variables and a modified Bessel function ex- 
pansion, to obtain functions in transform space that satisfy 
the transform space analogues of (2), (5), and (9)-(15). The 
Laplace-space functions that are obtained for the case of a 
pumping well located outside of the circular pod can be 
written in nondimensional form as 

2y o• Kn(p •/2fpw) 0 - 0..,, p)=- 
P An 

ß cos n(0 - 0 (16) 

•2 = 2 • Kn(p 1/2fp,,) ,/2 p A,, [ln(p •:)An 

+ O,,Kn(p•/2f)] cos n(O - Opw), (17a) 
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Fig. 2. Dimensionless drawdown ((4rrT2si)/Q) versus time 
(T2t/S2a 2) plot comparing the results of the analytical inversion of 
(16) and (17) (see Appendix B) with those from the numerical 
inversion of the same equations using the Stehfest algorithm (obser- 
vation well 1 located at s • (r/a) = 0.4, 0 = 1.05 rad, observation 
well 2 located at • = 3.6, 0 = 2.09 rad, pumping well located at 
•,,, = 6, 0 = 0 tad; 3' = P = 10). 

2 = Kn(P 1/2s•) 

+ ©nKn(pl/2•pw)] cos n(O - Opw), f > s%,w (17b) 
where 

$i Laplace transform of •bi, equal to $• e-P•c•i dr; 
qbi =(4rrT2/Q)si; 
p Laplace-transform variable, complex; 
•=r/a; 

•pw =rpw/a; 
r= T2t/a2S2; 
'y= T2/T1; 

I n modified Bessel function of the first kind of order n; 
K n modified Bessel function of the second kind of order 

, 

An =qI•(q)Kn(P 1/2) _ p 1/2 yK•(p !/2)In(q); 
On = yp ;/2In(q)I•(p 1/2) _ qln(P ;/2)I;(q); 

q = (pp) 1/2. 
p=(S1/T1)(T2/S2). 

For equations of the complexity of (16) and (17), the 
analytical back transformation from Laplace space is quite 
tedious and requires computer-intensive numerical integra- 
tion. Therefore, for most applications, the back transforma- 
tion is best performed numerically. An algorithm developed 
by $tehfest [1970], which has been found to be of great use 
in well hydraulics applications [e.g., Moench and Ogata, 
1984], was employed here to perform the numerical Laplace 
inversion. In order to demonstrate the viability of the 
Stehfest algorithm for this specific application, the analytical 
inversion of (16) and (17) was also performed, and the 
analytical and numerical results compared. Appendix B l 
briefly outlines the analytical inversion for (16). Figure 2 
displays the results of a comparison of the analytical and 
Stehfest inversion schemes for observation wells located 
both within and outside of the circular pod. In both cases, 

]Appendices B and C are available with entire article on micro- 
fiche. Order from American Geophysical Union, 2000 Florida Ave- 
nue, N. W., Washington, DC 20009. Document W92-003' $2.50. 
Payment must accompany order. 

the analytical and numerical results are essentially indistin- 
guishable from one another. Therefore, because of its much 
greater efficiency and acceptable accuracy, the Stehfest 
algorithm is employed to perform the back transformations 
for the remainder of this work. 

SENSITIVITY ANALYSIS OF THEORETICAL RESPONSES 

The primary motivation of this work was to develop 
greater insight into the nature of pumping induced drawdown 
in nonuniform aquifers. in this section, the technique of 
sensitivity analysis [McElwee and Yukler, 1978; McElwee, 
1987] is employed to help develop an understanding of the 
relationship between drawdown and flow properties in the 
nonuniform configuration considered here. The sensitivity of 
drawdown at (r, 0, t) to changes in a given parameter such 
as the transmissivity of the disk (Osi(r, O, t)/OT•) is termed 
a sensitivity coefficient. The multiplication of a sensitivity 
coefficient by the parameter of interest is defined as a 
normalized sensitivity coefficient [McElwee, 1987]. The nor- 
malized sensitivity coefficient is utilized in the discussions of 
this work to examine the dependence of drawdown on flow 
properties of the circular disk. 

Figure 3 depicts the results of an analysis of the sensitivity 
of drawdown at an observation well to the properties of the 
circular disk. Curves a-d show the sensitivity of drawdown 
to the transmissivity of the disk for observation wells located 
both within and outside of the disk. Note that for an 
observation well located at the center of the disk (curve a), 
the sensitivity curve reaches a peak and then falls quickly to 
zero. Thus, in this particular case, there is only a short 
interval of time during which information can be gained 
about the transmissive properties of the disk. After that time 
has passed, drawdown is completely independent of disk 
transmissivity. For observation wells located elsewhere in 
the disk, the sensitivity plot will be similar to that of curve b, 
which is positive at early times and negative at large times. 
The positive sensitivity is produced as the frontal portion of 
the pumping-induced pressure disturbance passes the obser- 
vation well. After passage of the pressure front, the sensi- 
tivity becomes negative and flattens to a constant value. 
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Fig. 3. Dimensionless sensitivity to disk properties versus time 
(T2t/S2 a2) plot. Curves a-d depict dimensionless normalized sen- 
sitivity to disk transmissivity (T•O[(4rrT2si)/Q]/aT•) and curve e 
depicts sensitivity to disk storativity (S•O[(4,rT2s•)/Q]/OS•! 
(pumping well located at s•pw = 6, 0 = 0 rad; y = p = 10). Note that 
each curve is defined according to the radial and angular position of 
the observation well. 
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Regardless of observation-well location, however, there is 
only a finite interval of time during which the sensitivity to 
disk transmissivity is changing. After that interval, the 
sensitivity relationships remain constant with time, indicat- 
ing changes in drawdown are independent of disk transmis- 
sivity. Butler and McElwee [1990] show that data gathered 
during a period of constant sensitivity will be essentially of 
no use for describing aquifer nonuniformities. Data collec- 
tion during the period of changing sensitivities is required if 
information is to be gained about flow properties in a 
particular portion of an aquifer. Although their study em- 
ployed a radially symmetric nonuniform configuration, the 
relationships displayed in Figure 3 show that the conclusions 
of Butler and McElwee [1990] extend to the radially asym- 
metric case as well. 

Curves c and d of Figure 3 indicate that drawdown at 
observation wells in the vicinity of the disk will also display 
some sensitivity to disk transmissivity. However, the region 
of the matrix in which measurable drawdown will reflect the 

existence of the disk is quite limited. Figure 4 is an areal 
view of pumping-induced drawdown in an aquifer in which a 
disk of anomalous properties is located at a distance from the 
pumping well. The limited angular and radial region in which 
the disk has a significant impact on pumping-induced draw- 
down is clearly illustrated. Note that the contour interval in 
Figure 4 is finer in the vicinity of the disk in order to better 
depict the curvature of the drawdown contour lines pro- 
duced by the embedded disk. 

Curve e of Figure 3 is a general depiction of the sensitivity 
of drawdown to the storativity of the disk. In all cases, there 
is only a finite duration of time during which both changes in 
drawdown and total drawdown are dependent on the storat- 
ivity of the disk. After that time, no information about the 
storage properties of the disk can be gained from drawdown 
measurements. 

The sensitivity relationships for both the transmissivity 
and storativity of the disk indicate the importance of data 
collection during the early time period when the sensitivity 
relationships are changing. Without collection of high- 
quality data at a high frequency during this period, there is 
little hope of learning much about the spatial variations in 
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Fig. 4. Areal view of dimensionless pumping-induced draw- 
down (4•rT2si/Q) at a dimensionless time (T2t/S2 a2) of 3200; 
contour interval varies (0.15 from 4.30 to 5.05, 0.10 from 5.05 to 
5.25, 0.05 from 5.25 to 5.40, 0.10 from 5.40 to 5.90, 0.20 from 5.90 to 
6.50, 0.50 from 6.50 to 9.00, and 1.0 from 9.00 to 11.00) in order to 
emphasize the effect of the disk of anomalous properties (7 = P = 
10). Note that the origin is at the center of the disk and distances are 
given in • (r/a). 

• 101 

,- lOO ''--_ '" '-.... 

• .. - -. ....... ,>• z 000 
"' " O 

" ß a o . c10-2 

•1 0-3 . 

1 0 o 1 01 102 

Fig. 5. Dimensionless maximum normalized sensitivity to disk 
transmissivity (TiO[(4rrT2Sl)/Q]/OT1) versus dimension!ess dis- 
tance to the pumping well (rpw/a) plot for different transmissivity 
contrasts (observation well located at f (r/a) = 0, 0 = 0 rad; 0p• = 
0 tad; 7= P). 

aquifer flow properties using a conventional constant rate 
pumping test. Butler and McElwee [1990] suggest a variable 
rate pumping strategy in order to obtain multiple samples of 
the critical early time data and to decrease the correlation 
between the effects of flow properties in different portions of 
the aquifer. Even this scheme, however, will probably only 
be appropriate for characterizing very large scale variations 
in flow properties. 

Figure 3 illustrates the dependence of drawdown on disk 
properties for a disk located at a distance of s%,,, = 6 from the 
pumping well. Although the form of the sensitivity relation- 
ships does not change with radial location of the disk, the 
magnitude of the sensitivity will change greatly. Figure 5 
depicts changes in the maximum sensitivity of drawdown. at 
the center of the disk to disk transmissivity (peak value of 
curve a of Figure 3) as a function of the radial distance of the 
disk from the pumping well. Results for four different cases 
are shown in order to illustrate behavior for a range of 
transmissivity contrasts. In all cases, there is a dramatic 
decrease of sensitivity with radial distance from the pumping 
well. At a large distance from the pumping well (distance 
beyond which a curve in Figure 5 is linear), the properties of 
the disk have essentially no influence on drawdown at an 
observation well sited within the disk. Thus, if there is a 
zone of low permeability material in the vicinity of an 
observation well, the effect of that zone on drawdown 
measurements at the observation well will be negligible for 
observation wells a considerable distance from the pumping 
well, a result in keeping with the findings of Tongpenyai and 
Raghavan [1981] concerning the effect of an infinitely thin 
skin on observation-well drawdown. Butler [1990] uses the 
solution developed here to illustrate how log-log drawdown 
versus time curves converge on the uniform-aquifer curve as 
the distance between the disk and the pumping well in- 
creases for the case of an observation well located in the 
vicinity of a zone of low permeability. 

The dimensionless relationships depicted in Figure 5 
clearly indicate that the volume of the aquifer that is con- 
trolling a given increment of observation-well drawdown 
increases in size as observation wells at greater distances 
from the pumping well are considered. In order for disks at 
different radial positions to have the same influence on 
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drawdown at an observation well, •pw must remain constant. 
Thus a disk located at 100 m from the pumping well must be 
25 m in radius in order to have the same influence on 
drawdown as a disk of 1 m in radius located at four meters 
from the pumping well. Given the very large aquifer volumes 
that are controlling observation-well responses at moderate 
to large distances from the pumping well, it is no surprise 
that conventional methods of pumping test analysis, which 
assume constant aquifer properties, have proven so success- 
ful in field investigations. Except in the case of quite 
large-scale variations in flow properties, the size of the 
aquifer volume controlling drawdown will be large enough to 
essentially filter out the natural property variations in a unit. 
Thus good fits between the ideal models of the we!l- 
hydraulics literature [e.g., Theis, 1935; Hahtush, 1964; etc.] 
and measured field data should be the rule, not the excep- 
tion, when observation wells at a distance from the pumping 
well are employed. 

An issue with considerable practical ramifications is that 
of the variations that might be expected between pumping- 
test parameters calculated from drawdown at different ob- 
servation wells. Butler [ 1991] addresses this issue in a Monte 
Carlo analysis of pumping tests in nonuniform aquifers 
whose transmissivity variations can be described by second- 
order stationary stochastic processes. His findings concern- 
ing radial, angular, and temporal variations in estimated 
transmissivity can be simply explained using the relation- 
ships depicted in Figure 5. A Theis analysis of drawdown 
from observation wells at differing radial distances from the 
pumping well would be expected to produce a set of radially 
dependent transmissivity estimates (at least in the vicinity of 
the pumping well) because of the difference in the size of the 
aquifer volumes controlling the early-time response data. If 
the wells were located at the same radial distance from the 

pumping well but at differing angular positions, one would 
expect much smaller differences between the estimated 
parameters because of the similar sizes of the volumes 
controlling the response data. In all cases, if drawdown at 
large distances from the pumping well or changes of draw- 
down at large dimensionless times were employed in the 
analysis, one would expect to see little if any difference 
between the estimated parameters because of the high de- 
gree of correlation between the very large aquifer volumes 
controlling observation-well drawdown at large distances 
and times. Thus it will be difficult to gain much information 
about the variation of flow properties in the subsurface using 
a constant rate pumping test with many observation wells. 

LARGE TIME APPROXIMATIONS 

OF THEORETICAL RESPONSES 

An important advantage of an analytical solution over its 
numerical counterpart is that the functional form of the 
analytical solution can often allow some insight to be gained 
into the processes governing solution behavior. Unfortu- 
nately, the complexity of (16) and (17) makes it difficult to 
obtain much insight through direct examination of the equa- 
tions. Large-time approximations of these equations, how- 
ever, can be developed so that additional insight into the 
controls on drawdown during a pumping test can be gained. 
These approximate forms can be derived by developing 
equations in Laplace space that are valid approximations for 
small arguments, and then analytically inverting these equa- 

tions to real space. The spectral representation of the 
inversion integral shows that the small-argument equations 
in Laplace space are equivalent to large-time expressions in 
real space. Small arguments in Laplace space represent low 
frequency components and thus are appropriate for consid- 
eration of large-time behavior. 

The large-time expressions for (16) and (17a) are as 
follows: 

- cos n(0 - 0 •,+1 
(18) 

q•2 In C•2•, =1 n 

+ cos n(O - Opt,) •: < •p•,, (19) p•, + 1 ' 

Where C = exp (y*), T* is Euler's constant (0.5772 -. '). For 
the case of • > •p•,, • and [•, are interchanged in (19). 
Appendix C (on microfiche) details the derivation of these 
expressions. Note that in all cases the sm•l-•gument ap- 
proximations are equiv•ent to the u < 0.01 condition used 
in the truncation of the infinite series representation of the 
well function of Theis [1935]. This equivalence results from 
the physic• significance of the infinite series truncation as 
discussed by Butler [1988]. 

The fore of (18) and (19) provides considerable infoma- 
tion concerning the nature of pumping induced drawdown in 
nonunifom aqu•ers. Both equations indicate that, at large 
times, changes in drawdown at an obse•ation well are 
solely dependent on the transmissivity of the matfix •d the 
rate of pumpage (the two parameters used to nomalize 
drawdown). The prope•ies of the disk have no impact on 
changes in drawdown at large times. Thus the semilog 
method of Cooper and Jacob [!946] for estimation of flow 
properties in uniform aquifers can also be employed in this 
case to estimate matfix transmissivity. When coupled with 
the findings of e•!ier analytical studies of pumping-induced 
drawdown in nonunifom aquifers [e.g., Barker and Herbert, 
1982; Butler and Liu, 1991], this result indicates that the 
semilog method for drawdown analysis will be viable in any 
later•ly nonunifom system if the flow to the pumping well 
is approximately radial during the pehod of the an•ysis. The 
criterion equivalent to the u < 0.01 condition, however, will 
differ depending on the p•ticular type of late•ly nonuni- 
form system. 

Consideration of the individual equations allows addi- 
tional conclusions to be drawn concerning pumping-induced 
drawdown in nonuniform aquifers. Equation (18) consists of 
two terms: the first term considers drawdown in a uniform 

aquifer at a distance from the pumping well equal to the 
distance between the pumping well and the center of the 
disk, and the second term considers the impact of the disk, 
co•ecting for the fact that the observation point may not be 
at the center of the disk, The magnitude of the second term 
depends on the position of the observation well within the 
disk, with the maximum magnitude occurring when an 
observation well is located at the disk edge. Note that, as 
shown by the sensitivity analysis, large-time drawdown at an 
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Models of Lateral Heterogeneities 

1. Butler et al. (1989) 

3 

2. Butler and Liu (this article) 

• Q 
3. Butler and Liu (1991) 

Fig. 6. Several models of lateral heterogeneities in aquifer prop- 
erties for which analytical solutions have been developed. 

observation well located at the center of the disk is indepen- 
dent of disk size and properties. Thus early-time data are 
often necessary to detect the existence of a zone of anoma- 
lous properties. However, as shown in Figure 5, the impact 
of disk properties on early-time drawdown becomes negligi- 
ble as the distance from the pumping well increases. Also 
note that when the cosine term equals one (angular positions 
of observation and pumping wells are the same) and y equals 
one, the second term converges to a form equivalent to the 
Theim equation [Bear, 1979], an expected result given that 
the first term is the drawdown at a radial distance of lpw 
from the pumping well. 

Equation (19) is similar to (18) in that the first term 
considers drawdown in a uniform aquifer at a distance from 
the pumping well equal to the distance between the pumping 
well and the center of the disk. The second term considers 

the impact of the disk and corrects for the fact that the 
observation well is not in the disk in this case. As in (18), the 
drawdown due to the disk goes to zero as the disk increases 
in distance from the pumping well. The only correction in 
that case is a function of the distance between the observa- 

tion well and the disk (i.e., an expression equivalent to the 
Theim equation). The impact of the disk is primarily a 
function of its size, relative to the location of the observation 
and pumping wells, and the transmissivity contrast. As 
would be expected, the smaller the disk and the smaller the 
transmissivity contrast, the less impact the disk has on 
observation-well drawdown. 

SUMMARY AND CONCLUSIONS 

This article has presented an analytical solution for pump- 
ing-induced drawdown in a nonuniform aquifer that consists 
of a disk of anomalous properties arbitrarily located in a 
uniform media. When considered in conjunction with the 
solution of Jaeger [1944], this work allows the effects of a 

pumping well located either within or outside of the disk to 
be assessed. 

The focus of this work, however, was not on the details of 
the solution methodology but rather on the use of this 
solution to develop insight into the effects of lateral heter0. 
geneities on pumping-induced drawdown. Sensitivity analy- 
sis and large-time approximations of the solution were used 
here to examine how drawdown at an observation well is 
influenced by a disk of properties dissimilar from those of the 
enclosing matrix. 

Regardless of observation-well placement, the transmis. 
sivity of the disk influences changes in drawdown for a time 
of quite limited duration. Although total drawdown may 
always be sensitive to disk transmissivity, it is virtually 
impossible to gain more information about the transmissivity 
of the disk once changes in drawdown are independent of 
disk transmissivity. In the case of disk storativity, there is a 
finite interval of time during which not only changes in 
drawdown but also total drawdown are dependent on the 
storativity of the disk. After that time, no information about 
the storativity of the disk can be obtained from drawdown 
measurements. 

The influence of disk properties on observation-w•ell draw- 
down is heavily dependent on the radial distance between 
the disk and the pumping well. As the disk increases in 
distance from the pumping well, its influence on observation- 
well drawdown decreases dramatically. At observations 
wells located at moderate to large distances from the pump- 
ing well, the size of the aquifer volume controlling even 
early-time drawdown is quite large. The large size of this 
controlling volume effectively filters out the influence of all 
but the very large scale variations in flow properties from 
observation-well drawdown. Thus, in general, drawdown 
data from wells located at a distance from the pumping well 
should nicely fit the ideal uniform aquifer models of the well 
hydraulics literature. Note that the conclusions of this anal- 
ysis should not be considered limited to the study of circular 
disks, as these findings should be appropriate for a patch of 
material of any arbitrary shape enclosed in a matrix of 
differing properties. 

The work described in this article completes a series of 
papers on the effects of lateral heterogeneities on drawdown 
during constant rate pumping tests. Butler [ 1991] presented a 
Monte Carlo analysis of the effects of lateral heterogeneities 
on pumping-induced drawdown. Although results concern- 
ing the dependence of the transmissivity estimated from a 
pumping test on the radial, angular, and temporal position of 
the observations were obtained, relatively little insight could 
be gained concerning the controls on drawdown in nonuni- 
form systems. In order to gain more insight into conditions in 
nonuniform systems, analytical solutions for pumping- 
induced drawdown in idealized nonuniform aquifers were 
developed (see Figfire 6). These idealized configurations 
were designed so that the effects of different nonuniform 
structures on drawdown could be isolated. When considered 
together, the results from this series of analytical solutions 
provide considerable insight into pumping-induced draw- 
down in nonuniform systems. 

In all cases, regardless of the specifics of the particular 
configuration, the following statements can be made about 
pumping tests in nonuniform aquifers. First, changes in 
pumping-induced drawdown will be dependent on the prop- 
erties of a discrete portion of the aquifer for a time of quite 
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limited duration. After that time, it will be difficult to gain 
further information concerning the properties of that portion 
of the aquifer from drawdown measurements. Thus, a tech- 
nique that uses changes in drawdown to estimate the trans- 
missivity of an aquifer (such as the Cooper-Jacob semilog 
method) can often be configured so that the influence of 
properties in a certain portion of the system (e.g., a near-well 
zone of disturbance) can be removed. Second, there is 
considerable correlation between the effects of hydraulic 
properties in different portions of an aquifer on drawdown. 
Unless this correlation can be decreased, it will be very 
difficult to reliably estimate the nature of spatial variations in 
flow properties. Third, the radial location of an observation 
well is critical for characterizing spatial variations in flow 
properties. If an observation well is located at a considerable 
distance from the pumping well, the volume of the aquifer 
controlling drawdown at that well is so large that it will be 
difficult to detect the existence of spatial variations in flow 
properties. Even an observation well close to the pumping 
well, however, can only provide limited information about 
spatial variations in aquifer properties. Fourth, drawdown at 
an observation well is rather weakly dependent on the 
properties of material between the observation and pumping 
wells. Generally, only small-time data are of use for estima- 
tion of these interwell properties. Thus special attention 
must be given to data collection strategies and equipment 
that will allow large amounts of high-quality data to be 
collected during the early-time period. 

The overall conclusion of this body of work is that 
constant rate pumping tests are not a very effective tool for 
characterizing lateral variations in flow properties. If infor- 
mation about lateral variations in flow properties is to be 
obtained from hydraulic tests, variable rate pumping strate- 
gies, such as the pulse test of Johnson et al. [1966] and the 
variable rate test proposed by Butler and McElwee [1990], or 
a program of multiple slug tests must be pursued. Further 
work, however, is required to fully assess those approaches 
for characterization of flow properties in nonuniform sys- 
tems. 

work with the most general form of the solution, this 
derivation is performed using the following dimensionless 
forms of (2), (11), (5), (9), (10), and (12)-(15): 

024• 1 I 0• l 1 020 i 04•! 

0se2 +-"---+ •2 ,=p ' , 0•• 1 (A1) • O• O0- Or 

, + -• q- •--•, • = •, 1 -< •: < o• (A2) 

ckl(g, O, r) < A', •-• 0 (A3) 

•b2 = qbr + 4>a (A4) 

fu • exp (-u) 2 

du (AS) 

(ha( oo, 0, r)= 0 (A6) 

&•(s c, 0, 0) = 4'd(•:, 0, 0) = 0, 0 < s e < •o (A7) 

•bl(1, 0, •')= •bd(1, 0, •')+ 4•r(•R(1, 0), r) (A8) 

aO•(l, o, r) Ockd(1, O, r) aOr(seR(1, 0), r) 
=y +y 

as 
(A9) 

where 

qbi = (4wT2/Q)s i ; 
•=r/a; 

•R =R/a; 
r=T2t/a2S2; 
y=T2/Ti; 
p=(S1/T1) (T2/S2). 

The Laplace-space analogues to (A1)-(A9) are as follows: 

(A10) 

APPENDIX A 

In this section, the mathematical derivation of the solution 
discussed in the main body of the article is presented. For 
the sake of generality, the solution is obtained in a dimen- 
sionless form. The approach used here is an extension of that 
employed by Jaeger [!944]. First, the Laplace transforma- 
tion technique [Carslaw and Jaeger, 1959; Doetsch, 1961] is 
applied to remove the time dependence from the equations. 
The resulting partial differential equations in terms of radial 
distance and 0 are solved using separation of variables 
[Haberman, 1987]. The solution constants are then evalu- 
ated using boundary conditions and the orthogonality of 
cosine and sine functions. After the derivation of a solution 
in Laplace space has been presented, the solution is verified 
by reduction to a simpler form for which a solution has 
previously been found. The section concludes with a brief 
discussion of the numerical inversion technique employed 
here. 

In this derivation, a solution is presented for the case of 
drawdown as a result of a pumping well located outside of 
the circular disk. Equations (2), (11), (5), (9), (!0), and 
(12)-(15) describe the flow conditions of interest here. To 

02cka 10cka 1 02cka 
p4•a = 0, (,All) 

•'•(s e, O, p) < A'/p, • --> 0 (A12) 

0, p)= 4, 0, p) + 0), p) (A13) 

2 

qb'-•(•R, p)=- Ko(p l/2 •e) (AI4) 
P 

q6a(o•, 0, p) = 0 (A15) 

•11(1, 0, p) - •-•(1, 0, p) + 4>r(•(l, 0), p) (AI6) 

e3•i(1, 0, p) 
..---. --.---. 

04, a(1, 0, p) 0), p) 

(A17) 
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where 

•bi =Laplace transform of •bi, equal to $• e-t•*qbi d•'; 
q=(oP) 1/2. 
p Laplace-transform variable, complex; 

K0 modified Bessel function of the second kind of order 
zero. 

Jaeger [1944] notes that a modified Bessel function of the 
second kind of order zero with an argument s•R can be 
expanded as an infinite series of cosine terms and modified 
Bessel functions in the following manner: 

2 

P 

= 4r(e, 0, p)=- - Ow) 
p 

ß I•(p 1/2•)Kn( p 1/2•pw), s c < 
2 

•b r(•:R, P) = - Ko(p 1/2•:R) 
p 

(A18a) 

= qbr(•:, 0, p) =- • cos n(O - Opw) 
P 

' In(p l/•'•pw)Kn(P ]/2•), •:pw < s c (A18b) 
where s•pw = r•w/a; I,• is a modified Bessel function of the 
first kind of order n; and K n is a modified Bessel function of 
the second kind of order n. The proof of this expansion can 
be found in the discussion of Gray et al. [ 1952] regarding the 
addition theorems for Bessel functions [cf. Gray et aI., 1952, 
p. 741. 

This expansion allows conditions (A13), (A16) and (A17) 
to be rewritten: 

•b2(s •, 0, p)= •ba(s e, 0, p)+•br(•:, O,p) (A19) 

•-•(1, 0, p)= •ba(1, 0, p)+ •br(1, 0, p) (A20) 

O•-•(1, 0, p) 0•ba(1, 0, p) 0•br(1, 0, p) 
=7 +¾ 

(A21) 

Given conditions (A12), (A15), and (A18)-(A21), solutions 
can be obtained for (A10) and (All) using separation of 
variables. 

The basic approach is to assume a solution for (A10) and 
(A11) can be written as: 

• = G(O)F(•) (A22) 
Substitution of (A22) into (A 10) and rearrangement produces 
the following set of equations' 

G"(O) = -AG(O) (A23a) 

•2F,,(• ) + •:F,(sc) _ (•2q2 + X)F(sC ) = 0 (A23b) 

where 3, is a separation constant. 
Equation (A23a) is a simple ordinary differential equation 

with the following general solution' 

G(O) = C• cos (3, •/20) + C2 sin (3, 2/20) (A24) 

Given periodic boundary conditions, 

G(-z-) = G( 

G'(-rr) = G'(rr), 

evaluation of (A24) at the boundaries produces the following 
condition: 

sin (3, 1/2 •/.) = 0 

Thus 

3,=n 2, n=0, _+1,2,-.- 

and (A24) can be rewritten: 

G(O) = Cln COS (nO) + C2, sin (nO), (A25) 

n=0, +_1,2... 

The solution to (A23b) is also straightforward as (A23b) 
can be rewritten as a modified Bessel equation with the 
following general solution: 

F(•:) = C3nKn(q•:) q- Cnnln(q•), (A26) 

n=0, _+1, 2,--. 

Since qh is finite as s e goes to zero (see (A12)), (A26) can be 
reduced to 

F(•) = C4 In(q•), n = 0, -+ 1, 2, '-' (A27) 
n 

The general solution to (A10) can then be written as the 
product of (A25) and (A27)' 

•1(•, 0 -- Opw , p)= • Clnln(q• ) cos rt(0- Opw ) 

+ • C2nln(q• ) sin n(O- O•w) (A28) 

where the angular argument is written in terms of (0 - Opw) 
in keeping with (A18). The general solution to (A11) can be 
found in an analogous manner using condition (A15) instead 
of (A12): 

•---•(•, 0- Opw, p)= • C3ngn( p 1/2•:) COS t/(0 - 0pw) 

+ • C4nKn(pl/2•) sin n(0- O•w) (A29) 

In order to evaluate the constants (Cid), (A18a), (A28), and 
(A29) are substituted into (A20) and (A21): 

• Clnln(q) cos rt(0 -- Opw ) 

+ • C2nln(q) sin n(0 - 0pw) 
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2 Zin( p 1/2)Kn(p l/2•:pw) COS It(0 Opw ) 
P _• 

+ Z C3nKn(p 1/2) cos n(O - Opw ) 

+ Z C4nKn(P 1/2) sin n(O - Op•,) (A30) 

rim = 
p i/2 

•. . 1/2•i•., 1/2) 1/2 ' Km(P I/'•pw)[Im(P ,,-•m(P -- I;n(P ) 

_ i,m( p 1/2)Kin( p l/2)]/[qi•n(q)Km( p 1/2) 

- p I/2TK•n(p 1/2)Ira(q) ] 

2,/Km(P 1/2sepw) 
P Am 

•A36) 

q ClnI;z(q) cos n(O - Op•,) 

+ Z C2nI•(q)sin n(O- Opw) 

C3 m -- 

where 

2 { Amlm(p I/2).) Kin( •/2fpw) Km ( p 1/2) P 

20m 
Km( P 1/2 f pw) 

P Am 
(A37) 

27 1/2) 1/2 = • Z I•(p Kn(p 
ß cos n(O - Opw) + p 1/23' 

am = qI;•(q)Km(p 1/2) _ p 

Ylm(q ) Amlm(P I/2) 
Km(P 1/2) Km(p 

1/2TK•n(p i/2)Im(q) 

ß Z C3nK•(pl/2) cos It(0 - 0pw) 
= yp I/2imql•n(p 1/2) _ qlm(P 1/2)l•n(,q) 

Note that (A36) and (A37) make use of the relationship 

+ Z C4nK•(p 1/2) sin n(O - Opw) (A31) 

The principle of orthogonality of cosine and sine functions 
can now be applied to evaluate the constants in (A30) and 
(A31). First, both sides of (A30) and (A31) are multiplied by 
sin m(O - 0•,•) and integrated from -rr to ,rto produce the 
following expressions for m = 0, + 1, 2, --': 

C2mlm(q) __ C4mKm( p 1/2) (A32) 

qC2mI•n(q) p •/2 K' 1/2) -- TC4rn m(P (A33) 

It can be shown through combination of (A32) and (A33) and 
use of recurrence relations for modified Bessel functions 

[Abramowitz and Stegun, 1972] that these equalities only 
hold if C2m '- C4m = 0. Both sides of (A30) and (A31) are 
then multiplied by cos m(0 - 0) and integrated from -•r to 
rr resulting in 

2 1 Clmlm(q) = _ im(P /2)Kin( p I/2sepw ) + C3mKm( p 1/2) 
p 

(A34) 

27 1/2fp qC1..l•(q) = p--iZ I;.•(p !/2)Km(p •.) 
+ P 1/2.yC3mK•( p 1/2) (A35) 

Since (A34) and (A35) consist of two equations with two 
unknowns. expressions for C lm and C3m can be readily 
found: 

Im(P •/2)K•n(p t/2) _ l•(p 1/2)Kin( p 1/2) __ 
(p) 1/2 

(A38) 

which can be derived through combination of the Wronskian 
and recurrence relations for derivatives of modified Bessel 

functions [Abramowitz and Stegun, 1972]. 
These constants can now be substituted back into (A28) 

and (A29) resulting in the following expressions for •'• and 
rka' 

• 2T • Kn(pi/2•pw) 
o - p)= ..... 

P An 

. In(q•) cos n(O - 0vw) {A39) 

4, o- Opw, p)=- P _ An 

' Kn(P l/2fpw)Kn(pt/2sc) COS n(O - Opw) (A40) 

Substitution of (A40) and (A18) into (A19) produces the 
following expressions for 4•'-•: 

2 Kn( p g'pw; 1/2•) Z=• Z ...... A n [In(p An 
+ OnK,(pl/2•)] cosn(0- 0vw), s e<•:•,w (A41a) 



268 BUTLER AND LIU: PUMPING TESTS IN NONUNiFORM AQUIFERS 

• 2 o• Kn(pl/2sC) 
qb2 :-- Z •; [!nCP p 

+ OnKn(p 1/2•pw) COS tl(0 -- Opw), • > •:pw (A41b) 
Note that the form of (A39) and (A41) allows ready compar- 
ison to the solution of Jaeger [1944], which, when written for 
a constant line source, is 

• 2 o• In(p•/2s•) 
qb•(•, O- Opw, p)=- Z ," [Kn(p p An 

1/2 •:pw) t• * 

- D*•!n(P 1/2•pw)] COS tl(0 -- Opw), (A42a) 

•:p•, < 1, 0 < stpw < •:pw 

-- 2 © In(p 112•pw) 
P 

[K,,(p 1/2 ß 

- a*•!n(p 1/2sc)] cos n(O - Opw), (A42b) 

o - p)= 
2p l/2 o• In(p 
p 2 

p •/2 ) ß K n •-F• f cos n(0 - 0pw), •pw<l, 1<• 
(A43) 

where 

4•rTl 
4>*= i 

Q 

ip 1/2h 

p •/21' 

Note that in (A42) and (A43) the pumping well is located 
within the disk so the dimensionless drawdown is redefined 
using the transmissivity of the disk. 

A quick check on the Laplace-space solution can be 
obtained by evaluating (A39) for the case of an observation 
well at the center of the disk (s • = 0): 

o- Opw, p)= 
2 yKo(p l/2s•pw ) 

pAo 

2yKo(p•/2fpw) 1 
- (A44) 

p[Ii(q)Ko(p '/2) q p •/2•/ K,(p '/2)Io(q)l q _ • 

q 

The principle of generalized reciprocity [Bruggeman, 1972] 
holds that drawdown in the matrix for the case of a pumping 
well sited at the center of the disk should be equivalent to 

(A44). Comparison of (A44) with (17) of Butler [1988] shows 
that such equivalence does hold. Note that (17) of Butler 
[1988] must be nondimensionalized and the numerator re- 
duced by the Wronskian 

Ko(q)I•(q) + K•(q)Io(q) = 1/q 

in order to get the same form as (A44). The Laplace-space 
solutions were also checked by substitution into (A10)- 
(A17). The solutions honored the governing equations and 
boundary conditions in all cases. 

The final step of the Laplace-transformation approach is to 
analytically invert the Laplace-space expressions back to 
real space. As is shown in Appendix B, this analytical back 
transformation is quite tedious for equations of the complex- 
ity of (A39) and (A41)-(A43). Therefore numerical approxi- 
mations of the inversion are normally employed. Several 
approaches have been proposed [e.g., Stehfest, 1970; Tal- 
bot, 1979] for the numerical inversion of Laplace-space 
expressions. As stated earlier, the algorithm of Stehfest 
[1970] is employed here. Liu and Butler [1990] have written 
a series of Fortran programs that implement the numerical 
inversion scheme of Stehfest as well as the analytical inver- 
sion schemes of Appendix B. In Figure 2 and all the other 
cases examined for this work, the drawdown computed by 
the Stehfest algorithm closely matched the analytical draw- 
down except at very small times where the difference 
between the two approached one percent of the analytical 
drawdown. The efficiency of the two schemes was quite 
different, however, as the numerical integration needed for 
the analytical inversion required several minutes of CPU 
time on a Data General MV20000 minicomputer, while the 
Stehfest algorithm required less than a second. Note that 16 
terms were used in the summation of the Stehfest algorithm 
for all the cases examined in this work. 
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