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Time domain simulation of nonlinear acoustic beams
generated by rectangular pistons with application
to harmonic imaging
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A time-domain numerical codghe so-called Texas coflthat solves the Khokhlov—Zabolotskaya—
Kuznetsov(KZK) equation has been extended from an axis-symmetric coordinate system to a
three-dimensional3D) Cartesian coordinate system. The code accounts for diffractiorthe
parabolic approximationnonlinearity and absorption and dispersion associated with thermoviscous
and relaxation processes. The 3D time domain code was shown to be in agreement with benchmark
solutions for circular and rectangular sources, focused and unfocused beams, and linear and
nonlinear propagation. The 3D code was used to model the nonlinear propagation of diagnostic
ultrasound pulses through tissue. The prediction of the second-harmonic field was sensitive to the
choice of frequency-dependent absorption: a frequency squiredependence produced a
second-harmonic field which peaked closer to the transducer and had a lower amplitude than that
computed for arf!! dependence. In comparing spatial maps of the harmonics we found that the
second harmonic had dramatically reduced amplitude in the near field and also lower amplitude side
lobes in the focal region than the fundamental. These findings were consistent for both uniform and
apodized sources and could be contributing factors in the improved imaging reported with clinical
scanners using tissue harmonic imaging. 2@05 Acoustical Society of America.
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I. INTRODUCTION Computer technology has now advanced to the point

that realistic three-dimensional problems in diagnostic ultra-

~ High amplitude sound waves are used in many applicagqng can be solved. Christopheeported results using a
tions. Two examples in biomedical acoustics are focused u

s : o s , lfrequency domain code, which accounts for diffraction ex-
trasound surgefy* and diagnostic imaging> At the ampli-

) TS " .actly using the angular spectrum method, to simulate the
tudes used in these applications, effects associated wi

; i : X opagation of finite-amplitude ultrasound through inhomo-
nonlinear distortion become important, for example, extr

g in tissUb ; i ) itide? %eneous tissue. Christopher’s algorithm has been used by
heating in tissugand improved imaging capabilities’ Re-  qihars 1o consider harmonic leakage in tissue harmonic
alistic simulations for these applications need to account fofmagingz“ and pulse-inversion harmonic imagifThe so-

three-dimensional3D) propagation becausd) the sources .aieq Bergen code, a frequency domain solution of the KZK
that are used, parupularly in imaging, generate acoustlcﬁeldéquaﬁon, has also been used to simulate the propagation of
that are 3D and?) tissue is mhomogeneo’t?sgnd evenfora rasonic beams of finite amplitude from rectangular and
perfect axis-symmetric source it will result in acoustic f|eldsSquare sourcé®?” Recently a three-dimensional time-

that are inherently 3D. domain code has been shown to be in agreement with mea-

_Apopular model for the propagation of nonlinear direc- 5, ,ements made in water of the pressure field generated by a
tive sound beams is the Khokhlov—Zabolotskaya—Kuznetsoyinical scannef®

(KZK) equationt™? This equation accounts for diffraction
(in the parabolic approximationnonlinearity, and thermo-
viscous absorption. It can be modified to account for arbi
trary absorption law$® sound speed inhomogeneitiésand
media with convectiof® Numerical solutions of the axis-
symmetric version(two spatial dimensionsof the KZK

The main purpose of the present article is to describe a
time-domain numerical code capable of simulating the
propagation of ultrasonic beams of finite amplitude from a
rectangular source. The 3D time-domain code was adapted
from an algorithm developed by Lee and Hamilton for axis-

' ) ) symmetric sourcéé—the so-called “Texas code.” The 3D
equation f°3r16_a19 circular  source have been widelyqq4e accounts for the combined effects of diffraction, non-
mvesﬂggted‘u Numerical solutions for nonlinear axis- jinearity, thermoviscous absorption, and multiple relaxation
symmetric beams noztsrestrlcted to the pgraxml region haVEhenomené? Relaxation processes allow for frequency-
also been reF’O”e%?-_ However, calculations for the non yenendent absorption and dispersion effects to be incorpo-
axis-symmetric case, for example, the field from a rectanguzateq into the model. The code was used to consider spatial
lar source, have been limited by the added computationgisyinytion of the fundamental and second-harmonic signal
cost of the extra dimension. in tissue for an ultrasound-like imaging scenario and the im-
portance of using the appropriate frequency-dependent ab-
dElectronic mail: robinc@bu.edu sorption is demonstrated. The extension of the code to model
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FIG. 1. Geometry and system of coordinates of a rectangular piston.

is a characteristic pressufe.g., peak source pressur8ub-
stitution of Eq.(2) into Eqg. (1) yields

aP_lJ'f 1 0P 1 4°P 4 NP(?P AaZP

doa) G axe TG, 2|0 TN TAGE
T 9?P )

+Z va_ mei(TiT)mUdT', 3)

where the dimensionless coefficients are
Gy=koa’/2d, Gy=kob?2d, N=d/z,

A=0[0d, szkodC;/Co, gvzﬂ)otv .

Hereky= wqg/cq is the wave numbeg= pocg/ﬂwopo is the
plane wave shock formation distance, amg= 6w3/2c3 is
the thermoviscous absorption coefficiéNip/m) at the char-
acteristic frequency.

Equation (3) is solved by marching in the principal
propagation directiong. Operator splitting”*®is employed

the propagation of nonlinear beams through an inhomoget-0 separate Eq3) into the following:

neous medium is discussed.

Il. MODEL EQUATION AND NUMERICAL METHOD

The KZK equation is a model for the paraxial region of
a directive nonlinear sound beam. The original equation wa
developed for thermoviscous fluids, with a frequency
squared absorption, but can be extended to fluids with arb
trary absorption and dispersidfin Cartesian coordinates,
the KZK equation, for a relaxing fluid, can be written in the
following form:

3P_Coft’ PP\, B 90 8 P
0z 2 ) .\ ox® " ay? 2pocs at’ " 2¢3 at'?
Cl,} t’ 192[) —(t'=t"y/
+2 = | —ope g, 1)
v CyJ-wot

where p is the sound pressure, the coordinate along the
axis of the beamyx,y the transverse coordinatésee Fig. 1,
t'=t—2z/cy the retarded timeg, the small-signal sound
speed(in the presence of dispersion this is the equilibrium,
f—0, sound speed § the diffusivity of sound,py the den-
sity, B the coefficient of nonlinearityt, the relaxation time,
andc, the small-signal sound speed increment for each o
the relaxation processes(wherev=1,2,...). The terms on
the right-hand side account for diffraction, nonlinearity, ther-
moviscous absorption, and relaxation, respectively.

We obtain a numerical solution to E(L) following the
method of Lee and Hamiltoh:?° First, Eq. (1) is trans-

JP lfT 1 <92Pd , A
g0 4] g, x2d (43
ﬁP_lff 1 aZPd , a5
go 4] .Gy ov? T (4

S
gP _ _JP A
i- 9o s (40
P P A
Fraar s e
1+6 a)ap_ D i =1,2 4
Uo"_T %— v UW, v=1,.2,.... (e)

Each of these equations is solved sequentially at each march-
ing step,Ac. Equations(4a) and(4b) account for the effect

of diffraction, Eqg.(4c) the nonlinearity, Eq(4d) thermovis-
cous absorption, and E¢4e) accounts for the effects of a
finite number of individual relaxation processes.

The operator splitting methodology is valid if the step
size is small enough that each effect introduces a small cor-
rection to the wave form For this reason it is numerically
advantageous if the characteristic distadds based on the
fength scale of the dominant process in the problem. If the
step sizeAo is chosen to be small enough to capture the
dominant process, then it will also capture the dynamics of
the other processes. For the case of ultrasound propagation in
tissue (transducer characteristics: 15 85 mm aperture,

3.5 MHz working frequency, and 1 MPa source presktire

formed into nondimensional form on a Cartesian grid; theapproximate scales are absorption length 60 mm, shock for-
rationale for the Cartesian grid is discussed in Sec. Il B. Thenation distance 30 mm, focal length 70 mm, and Rayleigh

following dimensionless variables are introduced:

distance 1200 mm. We note that the first three length scales
have similar values, which means that any of them is an

o=z/d, X=xl/a, 7= wot’,

Y=ylb, P=p/po. () appropriate candidate for the characteristic distashcé&or
whered is a characteristic length in the direction of propa- modeling an ultrasound scanner a convenient characteristic
gation(e.g., the focal lengh the quantitiesa andb are the distance is the focal length associated with the elevation
characteristic lengths in the andy direction(e.g., the size plane of the transducer because it is normally a fixed value
of the source aperturew, is a characteristic angular fre- while the other length scales may vary with either the oper-
qguency(e.g., working frequency of the source pylsendp,  ating frequency of the transducer or the beam forming.
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In this work two finite-difference schemes were com- (2) A focused sound beam, where the source condition
pared for calculating the diffraction effects, Eqda and can be written within the parabolic approximation as fol-
(4b). The first scheme is the same as that used in the twdews:
dimensional(2D) Texas code and consisted of the implicit _ 2 2 _
backward finite differencélBFD) method for the first 100 P=Pof (t+X*/2codx +y™/2cody)g(x,y) - at z=0.
marching steps Xo=0.001), in order to damp numerical In dimensionless variables this source condition takes the
oscillations, and the Crank—NicoI?%]O finite difference form:

(CNFD) method thereafterXo=0.01).""*" An extra check _ 2 2 _

is carried out at each step to ensure that the nonlinear distor- P=H(7+GxX ™ Gysfg(X.Y) - at o=0, ®

tion will not allow the wave form to become multivaluéf. Where Gys=Gxd/dyx and Gys=Gyd/dy ensure the correct

In the 3D code this is implemented by solving E¢ta) and ~ phase in the source wave form to effect focusing at distance
(4b) independently over each incremental step; as it is  dx in the xz plane anddy in the yz plane. The shading
not possible to solve both diffraction terms simultaneouslyfunctiong(X,Y) was taken as a top-hat function.

and still retain a system of equations that can be expressed as (3) An apodized focused sound beam, where the focus-
a tri-diagonal matrix, which has significant advantages froming was effected using E¢8) but the amplitude was shaded

a computational point of view using a cosine function in thé direction and thus impacting

The second scheme replaces the CNFD method with therimarily the scan plane. The shading function used was

; At i 30
Alternating Dlrgctlon_ ImpI|C|t§ADI) met_hod. In the ADI . 9(X,Y)=g5(X)gu(Y),
method each diffraction step is broken into two half-steps: at
the first half-step one transverse coordinate is solved implic- TrX 1ex<1
itly and the other explicitly and this is alternated at the sec- 4 (x)= 0§57 TISAS 9)
ond half-step. In this case it is possible to combine E4a). .
0, otherwise
and(4b) to
, , ) :1, —-1=<Y=1

P 1 (7 [1 ¢*P 1 ¢*P 92(Y)= .

= _ — ' 0, otherwise.

=) G, x5, vz ®

Apodization is commonly used in imaging systems to reduce

and still produce a tri-diagonal system at each half-step. Thi§Ide lobe levels.

means for both CNFD and ADI it is necessary to solve two N

diffusion-like equations at each full step. The full step size ofB- Boundary conditions

the ADI is the same as the CNFD and we found it was still  |n the lateral directions the Cartesian grid extended from

necessary to employ the IBFD method for the first lOOxmin to Xmaxin the x axis with uniform Spacin@)( and from

marching steps in order to damp numerical oscillations. Fol . to Y., in they axis with uniform spacing\Y. A zero

both schemes the other equations are solved in the manngfessure boundary condition was applied along the edges of

developed in the axis-symmetric Texas cot&Briefly, Eq.  the numerical domains, that is, 8=Xa, X=Xmin, Y

(40) is solved exactly using the Poisson solution. Equations= Y max: @dY=Y .. The zero pressure boundary condition

(4d) and(4e) are solved using initially an IBFD method fol- was simple to implement but did result in reflections from

lowed, after the same 100 step transition, by the CNFDhe edge of the numerical grid that can interfere with the

method. desired signals in the central part of the grid. The time do-

main code described here used pulses and in this work the

numerical boundaries were placed far enough away that the
The source condition for the KZK equation is deter- reflections did not interfere with the signals of interest. This

mined by defining the time wave formsat=0 for allXand  js analogous to an experimental system where physical

Y. In general the code is capable of having arbitrary excitanoundaries need to be far enough away to prevent real ech-

tion applied at the source location. Three source conditiongeg affecting measurements. The trade-off with this approach

were considered in this study. is that the outer boundaries may need to be placed at very
(1) An unfocused uniformly excited piston, where the |5rge distances to ensure that reflections do not interfere with

source conditioriin dimensional variablgsvas expressed in  the field of interest, which can result in a large computational

A. Source conditions

the following form: cost particularly for long tone bursts.
One method of reducing the size of the grid and yet still
P=pof(t)g(x,y) at z=0, (6)  avoid reflections is to use a transformed spatial grid whereby
) the outer boundary is allowed to move as the sound beam
wheref(t) was the source wave form agdx,y) the ampli-  gither focuses or spreads. A reflection is still generated but

tude shading function. For uniform shading the funcipis ¢ poundary is placed such that the amplitude of the reflec-

the two-dimensional top hat function, which in dimension- s, js small. For example, in the case of an unfocused piston

less co-ordinates is a spreading grid that approximates the field of a circular
source in the linear limit has been udkdénd for highly

7) focused beams a mixed converging/diverging grid has been
used®?23n this work we anticipate applying the algorithm

1, —1s=sX<1 and —1=sVY=<1

gxX,Y)= 0, otherwise.
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to the problem of biomedical ultrasound imaging which is a
low focusing problem(typical gains around 3 to }0and
transforming the equation does not provide a significant
advantagé* Therefore, the KZK equation was solved di- &
rectly on a Cartesian grid without transformation. *

We note that an alternative method to reduce boundary _,
reflections is to employ an absorbing boundary layer at the | i
outer edge of the grid. In this case the outer edge of the -4 0504 0% 08 3 159475 18
domain is approximated to appear as an infinite space. Ex 2
amples include using the plane wave impedance condition,
application of a tapered spatial windé%:° or a perfectly 4t
matched layer which can be designed to absorb the soun ,f
before reflections occdf. Absorbing boundary layers allow o |
the size of the numerical grid to be reduced but they add & °:
level of complexity to the code. For the simulations investi- -2f
gated here, which involved short time pulses, it was possible 1
to obtain solutions in a timely manner without implementing 02 04 00 08 1T 12 & 4 0 4 8
an absorbing boundary layer.

In special cases where it is known a priori that the fieldFIG. 2. Linear. propagation from a circular piston: 2D vs 3@} axial
has symmetry, internal boundaries can be introduced to rémPlitude ¢ axis), (b) transverse beam plots at=1/0, (c) wave forms at
duce the size of the numerical domain. For the case of squ_ -
metric sources, e.g., square or rectangular, propagating into a
homogeneous or layered medium, it is possible to halve th&. Focused circular source: Linear and nonlinear
size of the numerical domain for each axis of symmetry by
placing an artificial rigid boundary along the axis. Therefore
in the case of a square or rectangular piston it is necessary
solve for only one quadrant of thé—Y space. At each axis
of symmetry one of the following boundary conditions was
applied: 9P/ 9X|x_o=0 or dP/3Y|y—_o=0. In the numerical P=exd — (7/nm)?M]sinr. (11)
implementation the second-order derivative at boundary wa

. ) X 3, this section the number of cycles=0.9549 and the en-
determined from a Taylor series expansion around the axi

©

First, results of the 3D code were compared with the 2D
"Texas code for a focused circular symmetric source of radius
goand focal lengthd. The source wave form was a smooth
pulse given by’

SVelope exponenm=1 resulted in a short pulse about one-
9P (AX)2 [ 2P cycle in duration. The focusing gain of the transducer was
_) + _(_) taken to beG=5.0. The time window stretched fromy;,
Xy o 2 \XF =—20m 0 Tma=20m with a sampling rate\ 7= 27/60, that

is, there were 60 points per cycle and 1200 points in the time
window. In the 2D code the grid had a maximum radius
Pmax=r/a=4 and there were 160 grid points in radial direc-
tion (Ap=0.025). In the 3D simulation the symmetry of the
problem allowed us to solve the problem on a quadrant with

P(AX)=p|x=o+AX

+0((AX)3).

Setting the first-order derivative to zero yields

2 —
ﬂ; :2w+O(AX)_ (100 a lateral grid given by &X<Xpa O O0SY<Y, with
IX"yo (AX) Xmax=Ymax=4 and 160 grid points in th¥ andY directions

(AX=AY=0.025). The step size waso=0.001 for IBFD
We note that this approximation is correct only to first-orderand A=0.01 for CNFD. The memory requirement of the
in space, whereas all other finite-difference apprOXimation%)(is_symmetric code was on the order of 800 000 unknowns
are correct to second-order in space. Increasing the accurag¢r marching step, for the 3D code the requirement was
of this expreSSion to second-order would result in Iosing th€500 000000 unknowns per marching step. The memory and

tri-diagonal nature of the algorithm, so the first-order exprescomputational requirements became almost 1000 times
sion was used in our simulations. An identical trade-off is|arger by solving this particular problem in 3D.

made in the axis-symmetric Texas code. The 3D code was The first scenario considered a linear lossless problem
written to be able to include either axis of symmetry as re-(A: O,N:())_ Figure 2 compares axial propagation curves,
quired. focal beam patterns, and focal wave forms from the two

codes. There is excellent agreement between the results of

the 2D and 3D codes. A slight discrepancy exists in the posi-
IIl. NUMERICAL RESULTS tive peak of the wave form in Fig.(8). The discrepancy was

the result of the extra dimension of discretization used in the

The results from the code were benchmarked to otheBD code(recall the 2D code assumed cylindrical symmetry

solutions in the literature for both circular pistons and rect-and introduced no discretization error in tidecoordinate
angular pistons. The code was then used to simulate thend we found it could be reduced by using more lateral grid
propagation of a diagnostic ultrasound beam in tissue. points in the 3D code.
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FIG. 3. Nonlinear propagation from a circular piston: 2D vs 88).Axial
amplitude ¢ axis), (b) transverse beam plots at=1/0, (c) wave forms at
o=1.0.

52 53
Figure 3 shows a similar comparison for the same source ct(mm)
Condl_tlon and grid but for a (_:ase with nqnhngarlty and ab'FIG. 5. Predicted axial wave forms at=30 mm (uppe) and z=50 mm
sorption present. The dimensionless nonlinearity and absorpower for linear propagation from a rectangular aperture—comparison of
tion coefficients werdN=1.0 andA=0.5. The agreement is the Rayleigh integral, KZK3QCNFD) and KZK3D (ADI). The KZK code
again excellent except in Fig.((S where the 3D code @adrees well with the analytical solution except for the edge wave at

lightl nderpredicted th Kk itive pr re d to the 30 mm where the parabolic approximation should start to break-down.
slig y,u e_ P e C_e € peak posilive pressure due to ?here was no significant difference between the CNFD and ADI methods.
extra discretization in the 3D code.

B. Unfocused rectangular source: Linear and tance of 720 mm which, in the absence of a focal length, was
nonlinear used as the characteristic distance. Neither absorption nor

. . nonlinearity was calculated in the simulations. The time win-
For the case of a uniform unfocused rectangular pistongq,, was fromrn=—20m t0 Tre—=20m with 30 points per

we compared the result of a linear, lossless calculation usingyde that is,A 7= m/15. The outer edges of the numerical
the 3D code with the results of the Rayleigh integral. Wegrid were atX = Yma—4 and there were 800 grid points in

used the solution and excitation pulse of Ullate and Sarygin thex andy directions A X=AY =0.005). The step size
Emeterio®® The excitation was a short pulse of approxi- wasAo=5x10"5 for IBED andAo=5% 104 for CNFD.

mately 1.5 cycles at 3 MH@ee Fig. 4 which propagated in Figure 5 compares on-axis wave formsat30 mm and
water (o=1500 m/s). The aperture size was>X2#5mm  ;_ 50 mm with the Rayleigh integral results. At50 mm
(a=12mm andb=7.5 mm) with a resulting Rayleigh dis- there is excellent agreement between the exact solution and
the KZK code. Atz=30 mm, which is well within the near
1.Gl field of this transducer, there is excellent agreement for the
0.8
0.6

portion of the wave that can be identified as arriving from the
center of the transducer, but a small error in the arrival time
of the edge wave. This discrepancy was due to the use of the
parabolic approximation that is incorporated into the KZK
equation. At a range of 30 mm the half-aperture angle to the
corner of the source was 25° which is beyond what is usually
acceptable for the parabolic approximation to be valid and,
although rectangular apertures are less sensitive to errors in
the edge wavé® the error manifests itself in the arrival time

of the edge wave.

In Fig. 5 we also show results obtained using the ADI
method on the same grid. The curves completely overlap
with the results from IBFD/CNFD. However, the ADI
05 1 15 method required about 10% more CPU time than the IBFD/

ct(mm) CNFD, and nearly twice as much computational memory.
FIG. 4. Source velocity of rectangular piston for comparison with a Ray- 1 nerefore we chose to use IBFD/CNFD algorithms for our
leigh integral solutior(Ref. 38. The central frequency i§,=3 MHz. code.

0.4}
0.2p
0
-0.21
0.4}
0.6}
-0.8

-1.0
0
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FIG. 7. Amplitude of the fundamental, second, and third harmonic as a
1 L 2 2 function of propagation distance from a rectangular aperture. The results
from this code compare favorably with those of Bakeral. (Ref. 26 for
1 T T T the same parameters.
(©
0 AT~ we wish to investigate the spatial distribution of the funda-
mental and second-harmonic signals in tissue for application
-1 . : . to diagnostic imaging. Tissue harmonic imagifigHl) is
50 52 54 56 currently implemented on most mid-range and high-end

ct (mm) commercial scanners, and in this mode images are formed

FIG. 6. Comparison of off-axis wave forms from a rectangular aperture atfrom the reflected S'gna!s at the second h_armc_)nlc rather than
z=50 mm for(a) x=0,y=bh, (b) x=a, y=b, and(c) x=a, y=0. There is  the fundamental. THI is currently the imaging mode of
generally excellent agreement between the analytical solution and thehoice in cardiology where it has been shown to impro\/e
KZK3D cod‘e—the sr_nall _dlscrepanmes in the edge wave are attributable “E)order delineatioﬁ?"‘o and measurements of heart
the parabolic approximation. . om .. L .
function™ THI also appears to be promising in imaging

other organs in the body, for example, it offers improved

Figure 6 shows three off-axis wave formg<0, Y jatection of cysts in the bre&and lesions in the livé? and
=b; x=a, y=b and x=a, y=0) at a distance ofz kidney*

=50 mm. The agreement is generally excellent between the THI is reported to provide enhancement in the spatial
analytical solution and the KZK code with the exception of resolution of target¢“detail contrast’)*® which has been at-
{slight discrepancies in the arrival of the final edge wave. Thiﬁributed to the smaller focal sp&t=%immunity to aberration

is because even though 2+ 50 mm the parabolic approxi- e generated by near field inhomogenetiti#sand non-
mation was fine on axis, the propagation of sound from th inear interaction at interfacd§.THI is also reported to pro-
furthest points .Of the source occurred at tO(.) great' an angl@ide superior “contrast resolution” as it is less sensitive to
for the parabolic approximation to hold for field points that clutter?3® Clutter refers to received echo signals that are

were substantlal_ly off axis. . enerated outside the region of interest, for example, rever-
For the nonlinear pressure field of rectangular aperturesgeration in the near field due to the presence of a fat layer
we compared otur coo!e W'tg re;”:isjrolgg t?ﬁ Bergen c?de foﬁear the skin or scattering by objects in the side-lobes. We
a sguar.e aptir ure .glant. y baketal. _14(;6pa;ame ers investigated possible reasons for the image enhancement
lisleooo Il<n i e _§|r5nufa 'gn Wterlefco— ”21525 I\p/IOH based on the distribution of the spatial distribution of the
B g/m, 5=3.5, fundamental frequency 2. %' fundamental and second harmonic. We also evaluated the

andaod=0.094. The time window was fToMyn=—20m 10 ogo ot of source apodization and different tissue absorption
Tmax=207 with A7= /32 (64 points per cycle the extent laws on the predictions.

of the lateral grid WaXmax=Yma=4 With grid spacingAX The source was modeled as a rectangular source with

_ _ . . . . _ _3
=AY=0.025(160 points in each directigrandAc=10 dimensions of 15 mm in the scan planedxis) and 10 mm

—10°2 i i
for IBFD andAg=10"% for CNFD. The time-domain code in the elevation planey( axis). We modeled the source as

was used to simulate cw performance by using a 10 Cyc'%ein ; : P
) ! B ) g continuously phased, that is, no individual array ele-
long pulse[Eq. (10) with n=10 andm=11]. The amplitude ments, however, the code is capable of modeling arbitrary

of the hgrmomcs.ln the tlme—(_jomaln code was determined by, iitions. The source was given two different geometrical
calculating the discrete Fourier transform of the center cyclg ) .\ yictoncesd. = 80 mm in the scan plan@ormally done
X

in the pulse. Figure 7 shows the amplitude of the fundamenb . . . . !
. . ) . electronic focusing in an imaging systenand d
tal, second harmonic and third harmonic along the axis for ay g ging_syste y

. . =50 mm in the elevation plan@ormally a fixed focus in an
square aperturelwnh ampllt'ude of 220. kPa. We found eXC,GIFmaging systermas most imaging is done with different focal
lent agreement in the predicted amplitude of the harmonic

fengths in the scan and elevation planes. The source was
by the KZK code and the Bergen code. uni?ormly excited with a short pulngq. (11) with n=3
cycles andn=4] and a center working frequency of 2 MHz.
This wave form is similar to what will be used by a clinical
scanner in THI mode, which uses more cycles than would be
In this section results are presented for the propagationsed in regular B-scan to improve the spectral purity in the
of a nonlinear ultrasound beam through tissue. In particulasource wave form. The pressure at the source was modeled

C. Focused rectangular source: Nonlinear
propagation in tissue
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0.4
to have an amplitude of 0.5 MPa resulting in a mechanical
index (M) in the tissue of approximately O(hote this was a03
based on the peak negative pressure predicted by the simu-
lation and not from derating the peak pressure obtained from 02
a simulation through watgr 01 —— f\'absorption
The tissue was modeled as a homogeneous medium with = - t"absorption
densityp,= 1050 kg/nt and sound speet}= 1540 m/s, and 0% == ) = == i
coefficient of nonlinearityB=5. The absorption was as- z(mm)

sumed to obey the following power law: ) ) ) S ) ) )
FIG. 9. Simulation of nonlinear propagation in a tissue-like medium. Axial

f\7 plots of the amplitude ofa) the fundamental antb) the second harmonic.
a=ao| | (12 The solid line is the result fof! absorption and the dashed line fbF
0 absorption.

where ag=3.4538 Np/m, »=1.1, andf,=1 MHz (equiva-

lent to 0.3 dB/cm at 1 MHg The time-domain code cannot time window was fromr,=—20m 0 Tyu=20m With A7
model such frequency-dependent absorption exactly; how- 277164, X o= Yrma=4, andAX=AY=0.01. The step size
ever, this behavior can be approximated by using a NUMb&f55 A =105 for IBFD andAo=10"2 for CNFD.

of relaxation processes. In this simulation we used two re- |, Fig. 9 we present plots of the axial amplitude of the

laxation processes to model the absorption properties of thgnqamental and second harmonic in the tissue. In this case
tissue, that is, the effective absorption coefficient was the amplitudes were determined by carrying out a discrete

Chi(1—jf) cho(1—jf) , Fourier transform on a five-cycle window around the pulse.

a(f)= 212 2512 +amyfe. (13)  The solid lines are the predictions fot* absorption and the
R1 R2 dashed lines fof? absorption. The coefficient of thi& ab-

The parametersy; , fri, Cro, fro, @ndaqy were chosen to  sorption law was chosen to yield the same absorption as the
give a best fit, in a least squares sense, to the absorption laf#* law at the fundamental frequency of 2 MHz. The results
given in Eq.(12) over the frequency band of 100 kHz to 30 show that the absorption law had little impact on the predic-
MHz. The fminsearch function fronmaTLAB (The Math-  tion of the fundamental. This is not unexpected as the two
works, Natick, MA was used to determine the parametersabsorption laws match at this frequency. However, there was
for the two relaxation processes and the thermoviscous ala substantial difference in the prediction of the second har-
sorption coefficient. The fitted parameters were: relaxationmonic, in particular the peak amplitude of the second har-
frequenciesfr,;=237.0 kHz andfr,=3.749 MHz; relax- monic for thef? simulation was reduced by more than 20%
ation dispersion ¢'/c0)r;=1.3990<10 % and ('/c0)g, and the location of the peak shifted toward the source by 6
=1.6597x 10 3, and the thermoviscous absorption coeffi-mm. Both of these phenomena are consistent with the fact
cient ary=1.625< 10" ** Np/m/HZ. The comparison of the that f? absorption will attenuate the second harmonic more
power-law absorption and the fit using relaxation processestrongly thanf!! absorption. We note that the amplitude of
is shown in Fig. 8. There is excellent agreement over theéhe fundamental in thé'! case was slightly lower in ampli-
frequency band of interest. We note that the relaxation optude in the focal region which is because the second har-
erator also correctly accounts for dispersion, that is, thenonic has higher amplitude for tHé case and this resulted
Kramers—Kronig relations are satisfied by the absorptionin more efficient transfer of energy from the fundamental to
given in expression in Eq13).%’ the third and higher harmonics.

The dimensionless parameters for this simulation were  Figure 10 shows contour plots of the amplitude of the
N=0.6554, Gyx=2.869, Gy=1.275, A=0.0520, D, fundamental and second harmonic of the pulse in the scan
=0.9133,0,=8.4377,D,=1.0835, ant¥,=0.5334. The fo-  plane. The solid lines are the predictions fdr* absorption
cusing at the source waBys=2.869 andGys=2.04. The and the dashed lines fdf absorption. We see that the off-
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FIG. 11. Simulation of nonlinear propagation in a tissue-like medidift (
absorption with a cosine amplitude shading of the source in the scan plane.
Contour plots of(a) the fundamental an¢b) the second harmonic in the
scan k—z) plane.

ments in detail resolution on-axis. Further, th0 dB con-

tour of the second harmonic barely extends more than 5 mm
from the axis where as for the fundamental it extends up to
10 mm away which means that the second harmonic should
suffer less from clutter signals due to off-axis scatterers.

sl Lastly, in the near field of the transducer the levels of the
] second harmonic~—10 dB atz=20 mm) are much less

sl than those of the fundamental-(~3 dB atz=20 mm) and

£ therefore the second-harmonic signal should suffer from less

- Al clutter in the presence of reverberating layers. Figurés)10

and 1Qd) show the contour plots in the elevation plane, and
similar features can be observed in these plots. We note that
repeating these simulations with a larger gid,.,=Ymax

=6 produced no changes to the results, and this indicates that
the data were not affected by reflections from the edge of the
numerical grid.

FIG. 10. Simulation of nonlinear propagation in a tissue-like medium. con-  Finally, we demonstrate the impact of apodization on the
tour plots of the amplitude ofa) the fundamental in the scan+z) plane,  field of the fundamental and second harmonic for propaga-

(b) the second harmonic in the scan pla(e the fundamental in the eleva-  tion through tissugwith f11 absorption lay. The source
tion (y—z) plane, andd) the second harmonic in the elevation plane. The

reference value was the peak amplitude for each condition. The solid line igondltlon described by chg) was employed. Figure 11
the result forf-1 absorption and the dashed line i absorption. shows contour plots of the fundamental and the second har-

monic in the scan plane. Compared to Fig. 10, one observes
that the apodization greatly reduced the amplitude of the side

axis distribution of the second harmonic was not as sensitiviodes of the fundamental as expected. The apodization re-
as the on-axis distribution to the use of an incorrect absorpduced the “side-lobes” of the second-harmonic signal as
tion. In comparing Figs. 1@ and 1@b), we note that the well. Contour levels are shown down te40 dB and for the
second-harmonic signal in the scan plane was more spatiallsecond-harmonic signal the 40 dB contour rarely extends
confined than the fundamental. The distance to t&#dB  to approximately 6 mm from the axis whereas for the funda-
contour was~0.9 mm for the second harmonic andl.3  mental the—20 dB contour lies around 6 mm off axis and
mm for the fundamental which could contribute to improve-the —40 dB contours extends mostly beyond the range

0

z (mm)
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shown. The effect of the source apodization on the acoustiproximation, to leading order, one finds that the density term
field in the elevation plane was much less dramétata not  reduces to
shown, which is consistent with the fact that no apodization

0 P 1 dpo 3p 1(5’Poo7p+'9pof9_p

was implemented in that axis. Therefore, even though the L — i
IX IX  dy dy

beam pattern of the fundamental signal is improved by  CoPo 9z ' po

apodization, the second harmonic still has a narrower beam  Small scale variations in other parameters, i.e., nonlin-

(with lower side lobesand much less near field structure earity, absorption, and dispersion, do not introduce extra

than the fundamental. terms into the second-order wave equation. For an inhomo-
geneous medium Ed1) can be rewritten in the following
form:

. (14)

IV. CONCLUSIONS AND DISCUSSION

ap Co (v [Pp p B dp?> 5 &p

A time-domain algorithm that solves the KZK equation - =+ fﬁ (WﬂL &—yz) dt’+ T3 T3
in three spatial dimensions has been described. The code - Po%o 0
includes the effects of diffraction, absorption, nonlinearity, c) (v #°p o c' dp
and relaxation on the propagation of the finite-amplitude +2 P Wef(t B )/t”dt”+?ﬁ
sound beams and is capable of describing the propagation of v ST 0
qrbitrary sound beams in a yv@de variety of media. The algo- 1 dpg Co [t dpodp dpo Ip
rithm used. an operator—§plltt|qg algorithm to mtegrat.e the + 2—,)0 Ep_ 2—,)0 _.oX 5+ W Wdt'
KZK equation. The 2D diffraction term was solved using a
combined IBFD/CNFD method which we found to produce (19

similar results to the ADI method but at lower computationalthe added terms can be incorporated in the current numeri-
cost. Results obtained from the algorithm were in excellenty scheme. The phase-speed term associated with sound
agreement with linear and nonlinear fields from a focusedspeed could be included into the nonlinear term, as an
circular source; and the linear and nonlinear fields of unfopmplitude-independent effect, and calculated using the Pois-
cused rectangular sources. We note that the 3D code is cogpn solution. The transverse density fluctuation could be in-
putationally intensive but can be parallelized very effec-corporated into the diffraction term using finite-differences to
tively. Our simulations were carried out on an IBM pSeriesgyg|yate the first-order derivatives. The density fluctuation in
690 machine with 16 parallel processors; the tissue simulane axial direction is the only term that requires a new equa-

tions shown in Figs. 10 and 11 each required a total of Sion to be included into the operator splitting paradigm:
CPU-hours and executed in about 0.6 wall-clock hours,
which is close to the theoretical minimum of 0.56 wall-clock @: i @
hours. dz  2pgy 9z P

The code was used to simulate the field from a diagno
tic ultrasound scanner. It was observed that the choice
absorption law had a strong effect on the prediction of the
second-harmonic field. In comparing the spatial distribution 2po(X,y,z+AZ)

of the fundamental and second-harmonic fields, we observed P(x.y,z+A2)=p(xy,2) po(X,Y,z+AZ)+po(X,y,2)

hat th -h ic fiel harply f . -
that the second armonic leld was more s arply ocuseq a“PmS corresponds to the plane wave pressure transmission
that the second harmonic had much lower signal amplitude efficient for the propagation between two media of differ-

in the near field. These phenomena were present with both® o
. : ent densities.
uniform and apodized sources. Both of these effects could bé : .
In conclusion the extension of the Texas code to 3D

contributing factors to the improved imaging ability attrib- rovides an effective tool for modelina arbitrary finite-
uted to tissue harmonic imaging. The tighter focus should V! . 9 y
amplitude beams. In its current form it can account for

improve detail contrast, in particular by improving the lateral : . : :
P P y imp 9 ropagation of arbitrary beams in a thermoviscous and relax-

resolution. Clutter will be reduced both due to the narrower!?]g fluid. We speculate that it may be advantageous over

beam, which results in lower pressure levels off-axis, anci . . .
. ) . . requency domain codes in problems that involve short
due to the lower levels in the near-field, which results in less

reverberation pulsed wave forms, for example, shock wave therapy and the

One effect not modeled with the 3D code at present is]‘orward propagation problem in ultrasound imaging. The

, . resent formulation can be extended to account for propaga-

the effect of an inhomogeneous medium. The current mod - X
i . .~ flon in inhomogeneous media.

can be extended to account for small fluctuations in ambien

properties. For variations in sound speed one may add a

small fluctuationc’(x,y,z) th_at.can vary in space to the ACKNOWLEDGMENTS
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