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Time domain simulation of nonlinear acoustic beams
generated by rectangular pistons with application
to harmonic imaging
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A time-domain numerical code~the so-called Texas code! that solves the Khokhlov–Zabolotskaya–
Kuznetsov~KZK ! equation has been extended from an axis-symmetric coordinate system to a
three-dimensional~3D! Cartesian coordinate system. The code accounts for diffraction~in the
parabolic approximation!, nonlinearity and absorption and dispersion associated with thermoviscous
and relaxation processes. The 3D time domain code was shown to be in agreement with benchmark
solutions for circular and rectangular sources, focused and unfocused beams, and linear and
nonlinear propagation. The 3D code was used to model the nonlinear propagation of diagnostic
ultrasound pulses through tissue. The prediction of the second-harmonic field was sensitive to the
choice of frequency-dependent absorption: a frequency squaredf 2 dependence produced a
second-harmonic field which peaked closer to the transducer and had a lower amplitude than that
computed for anf 1.1 dependence. In comparing spatial maps of the harmonics we found that the
second harmonic had dramatically reduced amplitude in the near field and also lower amplitude side
lobes in the focal region than the fundamental. These findings were consistent for both uniform and
apodized sources and could be contributing factors in the improved imaging reported with clinical
scanners using tissue harmonic imaging. ©2005 Acoustical Society of America.
@DOI: 10.1121/1.1828671#
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I. INTRODUCTION

High amplitude sound waves are used in many appl
tions. Two examples in biomedical acoustics are focused
trasound surgery1–3 and diagnostic imaging.4,5 At the ampli-
tudes used in these applications, effects associated
nonlinear distortion become important, for example, ex
heating in tissue6 and improved imaging capabilities.7–9 Re-
alistic simulations for these applications need to account
three-dimensional~3D! propagation because~1! the sources
that are used, particularly in imaging, generate acoustic fi
that are 3D and~2! tissue is inhomogeneous10 and even for a
perfect axis-symmetric source it will result in acoustic fiel
that are inherently 3D.

A popular model for the propagation of nonlinear dire
tive sound beams is the Khokhlov–Zabolotskaya–Kuznet
~KZK ! equation.11,12 This equation accounts for diffractio
~in the parabolic approximation!, nonlinearity, and thermo
viscous absorption. It can be modified to account for ar
trary absorption laws,13 sound speed inhomogeneities,14 and
media with convection.15 Numerical solutions of the axis
symmetric version~two spatial dimensions! of the KZK
equation for a circular source have been wide
investigated.13,16–19Numerical solutions for nonlinear axis
symmetric beams not restricted to the paraxial region h
also been reported.20–23 However, calculations for the no
axis-symmetric case, for example, the field from a rectan
lar source, have been limited by the added computatio
cost of the extra dimension.

a!Electronic mail: robinc@bu.edu
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Computer technology has now advanced to the po
that realistic three-dimensional problems in diagnostic ult
sound can be solved. Christopher9 reported results using a
frequency domain code, which accounts for diffraction e
actly using the angular spectrum method, to simulate
propagation of finite-amplitude ultrasound through inhom
geneous tissue. Christopher’s algorithm has been used
others to consider harmonic leakage in tissue harmo
imaging24 and pulse-inversion harmonic imaging.25 The so-
called Bergen code, a frequency domain solution of the K
equation, has also been used to simulate the propagatio
ultrasonic beams of finite amplitude from rectangular a
square sources.26,27 Recently a three-dimensional time
domain code has been shown to be in agreement with m
surements made in water of the pressure field generated
clinical scanner.28

The main purpose of the present article is to describ
time-domain numerical code capable of simulating t
propagation of ultrasonic beams of finite amplitude from
rectangular source. The 3D time-domain code was ada
from an algorithm developed by Lee and Hamilton for ax
symmetric sources17—the so-called ‘‘Texas code.’’ The 3D
code accounts for the combined effects of diffraction, no
linearity, thermoviscous absorption, and multiple relaxat
phenomena.29 Relaxation processes allow for frequenc
dependent absorption and dispersion effects to be inco
rated into the model. The code was used to consider sp
distribution of the fundamental and second-harmonic sig
in tissue for an ultrasound-like imaging scenario and the
portance of using the appropriate frequency-dependent
sorption is demonstrated. The extension of the code to mo
113113/11/$22.50 © 2005 Acoustical Society of America
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the propagation of nonlinear beams through an inhomo
neous medium is discussed.

II. MODEL EQUATION AND NUMERICAL METHOD

The KZK equation is a model for the paraxial region
a directive nonlinear sound beam. The original equation w
developed for thermoviscous fluids, with a frequen
squared absorption, but can be extended to fluids with a
trary absorption and dispersion.13 In Cartesian coordinates
the KZK equation, for a relaxing fluid, can be written in th
following form:

]p

]z
5

c0

2 E
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]x2 1
]2p

]y2Ddt91
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t8 ]2p

]t92 e2(t82t9)/tvdt9, ~1!

where p is the sound pressure,z the coordinate along the
axis of the beam,x,y the transverse coordinates~see Fig. 1!,
t85t2z/c0 the retarded time,c0 the small-signal sound
speed~in the presence of dispersion this is the equilibriu
f→0, sound speed!, d the diffusivity of sound,r0 the den-
sity, b the coefficient of nonlinearity,tv the relaxation time,
and cv8 the small-signal sound speed increment for each
the relaxation processesv ~wherev51,2,...). The terms on
the right-hand side account for diffraction, nonlinearity, th
moviscous absorption, and relaxation, respectively.

We obtain a numerical solution to Eq.~1! following the
method of Lee and Hamilton.17,29 First, Eq. ~1! is trans-
formed into nondimensional form on a Cartesian grid;
rationale for the Cartesian grid is discussed in Sec. II B. T
following dimensionless variables are introduced:

s5z/d, X5x/a, Y5y/b, t5v0t8, P5p/p0 , ~2!

whered is a characteristic length in the direction of prop
gation ~e.g., the focal length!, the quantitiesa andb are the
characteristic lengths in thex andy direction ~e.g., the size
of the source aperture!, v0 is a characteristic angular fre
quency~e.g., working frequency of the source pulse!, andp0

FIG. 1. Geometry and system of coordinates of a rectangular piston
114 J. Acoust. Soc. Am., Vol. 117, No. 1, January 2005 X. Yang and
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is a characteristic pressure~e.g., peak source pressure!. Sub-
stitution of Eq.~2! into Eq. ~1! yields
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where the dimensionless coefficients are

Gx5k0a2/2d, Gy5k0b2/2d, N5d/ z̄,

A5a0d, Dv5k0dcv8/c0 , uv5v0tv .

Herek05v0 /c0 is the wave number,z̄5r0c0
3/bv0p0 is the

plane wave shock formation distance, anda05dv0
2/2c0

3 is
the thermoviscous absorption coefficient~Np/m! at the char-
acteristic frequency.

Equation ~3! is solved by marching in the principa
propagation direction,s. Operator splitting17,30 is employed
to separate Eq.~3! into the following:
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]t2 , v51,2,... . ~4e!

Each of these equations is solved sequentially at each ma
ing step,Ds. Equations~4a! and ~4b! account for the effect
of diffraction, Eq.~4c! the nonlinearity, Eq.~4d! thermovis-
cous absorption, and Eq.~4e! accounts for the effects of a
finite number of individual relaxation processes.

The operator splitting methodology is valid if the ste
size is small enough that each effect introduces a small
rection to the wave form.30 For this reason it is numerically
advantageous if the characteristic distanced is based on the
length scale of the dominant process in the problem. If
step sizeDs is chosen to be small enough to capture t
dominant process, then it will also capture the dynamics
the other processes. For the case of ultrasound propagati
tissue ~transducer characteristics: 15 mm335 mm aperture,
3.5 MHz working frequency, and 1 MPa source pressure! the
approximate scales are absorption length 60 mm, shock
mation distance 30 mm, focal length 70 mm, and Rayle
distance 1200 mm. We note that the first three length sc
have similar values, which means that any of them is
appropriate candidate for the characteristic distanced. For
modeling an ultrasound scanner a convenient character
distance is the focal length associated with the eleva
plane of the transducer because it is normally a fixed va
while the other length scales may vary with either the op
ating frequency of the transducer or the beam forming.
R. O. Cleveland: Nonlinear acoustic beams from rectangular pistons
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In this work two finite-difference schemes were com
pared for calculating the diffraction effects, Eqs.~4a! and
~4b!. The first scheme is the same as that used in the t
dimensional~2D! Texas code and consisted of the implic
backward finite difference~IBFD! method for the first 100
marching steps (Ds50.001), in order to damp numerica
oscillations, and the Crank–Nicolson finite differen
~CNFD! method thereafter (Ds50.01).17,30 An extra check
is carried out at each step to ensure that the nonlinear di
tion will not allow the wave form to become multivalued.17

In the 3D code this is implemented by solving Eqs.~4a! and
~4b! independently over each incremental stepDs; as it is
not possible to solve both diffraction terms simultaneou
and still retain a system of equations that can be expresse
a tri-diagonal matrix, which has significant advantages fr
a computational point of view.30

The second scheme replaces the CNFD method with
Alternating Direction Implicit~ADI ! method.30 In the ADI
method each diffraction step is broken into two half-steps
the first half-step one transverse coordinate is solved imp
itly and the other explicitly and this is alternated at the s
ond half-step. In this case it is possible to combine Eqs.~4a!
and ~4b! to

]P

]s
5

1

4 E2`

t S 1

Gx

]2P

]X2 1
1

Gy

]2P

]Y2Ddt8, ~5!

and still produce a tri-diagonal system at each half-step. T
means for both CNFD and ADI it is necessary to solve t
diffusion-like equations at each full step. The full step size
the ADI is the same as the CNFD and we found it was s
necessary to employ the IBFD method for the first 1
marching steps in order to damp numerical oscillations.
both schemes the other equations are solved in the ma
developed in the axis-symmetric Texas code.17,29Briefly, Eq.
~4c! is solved exactly using the Poisson solution. Equatio
~4d! and~4e! are solved using initially an IBFD method fo
lowed, after the same 100 step transition, by the CN
method.

A. Source conditions

The source condition for the KZK equation is dete
mined by defining the time wave forms ats50 for all X and
Y. In general the code is capable of having arbitrary exc
tion applied at the source location. Three source conditi
were considered in this study.

~1! An unfocused uniformly excited piston, where th
source condition~in dimensional variables! was expressed in
the following form:

p5p0f ~ t !g~x,y! at z50, ~6!

wheref (t) was the source wave form andg(x,y) the ampli-
tude shading function. For uniform shading the functiong is
the two-dimensional top hat function, which in dimensio
less co-ordinates is

g~X,Y!5H 1, 21<X<1 and 21<Y<1

0, otherwise.
~7!
J. Acoust. Soc. Am., Vol. 117, No. 1, January 2005 X. Yang and R. O.
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~2! A focused sound beam, where the source condit
can be written within the parabolic approximation as fo
lows:

p5p0f ~ t1x2/2c0dX1y2/2c0dY!g~x,y! at z50.

In dimensionless variables this source condition takes
form:

P5 f ~t1GXSX
21GYSY

2!g~X,Y! at s50, ~8!

whereGXS5GXd/dX and GYS5GYd/dY ensure the correc
phase in the source wave form to effect focusing at dista
dX in the xz plane anddY in the yz plane. The shading
function g(X,Y) was taken as a top-hat function.

~3! An apodized focused sound beam, where the foc
ing was effected using Eq.~8! but the amplitude was shade
using a cosine function in theX direction and thus impacting
primarily the scan plane. The shading function used was

g~X,Y!5g1~X!g2~Y!,

g1~X!5H cosS p

2
XD , 21<X<1

0, otherwise

~9!

g2~Y!5H 1, 21<Y<1

0, otherwise.

Apodization is commonly used in imaging systems to redu
side lobe levels.

B. Boundary conditions

In the lateral directions the Cartesian grid extended fr
Xmin to Xmax in thex axis with uniform spacingDX and from
Ymin to Ymax in the y axis with uniform spacingDY. A zero
pressure boundary condition was applied along the edge
the numerical domains, that is, atX5Xmax, X5Xmin , Y
5Ymax, andY5Ymin . The zero pressure boundary conditio
was simple to implement but did result in reflections fro
the edge of the numerical grid that can interfere with t
desired signals in the central part of the grid. The time d
main code described here used pulses and in this work
numerical boundaries were placed far enough away that
reflections did not interfere with the signals of interest. Th
is analogous to an experimental system where phys
boundaries need to be far enough away to prevent real
oes affecting measurements. The trade-off with this appro
is that the outer boundaries may need to be placed at
large distances to ensure that reflections do not interfere
the field of interest, which can result in a large computatio
cost particularly for long tone bursts.

One method of reducing the size of the grid and yet s
avoid reflections is to use a transformed spatial grid wher
the outer boundary is allowed to move as the sound be
either focuses or spreads. A reflection is still generated
the boundary is placed such that the amplitude of the refl
tion is small. For example, in the case of an unfocused pis
a spreading grid that approximates the field of a circu
source in the linear limit has been used31 and for highly
focused beams a mixed converging/diverging grid has b
used.32,33 In this work we anticipate applying the algorithm
115Cleveland: Nonlinear acoustic beams from rectangular pistons
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to the problem of biomedical ultrasound imaging which is
low focusing problem~typical gains around 3 to 10! and
transforming the equation does not provide a signific
advantage.34 Therefore, the KZK equation was solved d
rectly on a Cartesian grid without transformation.

We note that an alternative method to reduce bound
reflections is to employ an absorbing boundary layer at
outer edge of the grid. In this case the outer edge of
domain is approximated to appear as an infinite space.
amples include using the plane wave impedance conditio35

application of a tapered spatial window,26,36 or a perfectly
matched layer which can be designed to absorb the so
before reflections occur.37 Absorbing boundary layers allow
the size of the numerical grid to be reduced but they ad
level of complexity to the code. For the simulations inves
gated here, which involved short time pulses, it was poss
to obtain solutions in a timely manner without implementi
an absorbing boundary layer.

In special cases where it is known a priori that the fie
has symmetry, internal boundaries can be introduced to
duce the size of the numerical domain. For the case of s
metric sources, e.g., square or rectangular, propagating in
homogeneous or layered medium, it is possible to halve
size of the numerical domain for each axis of symmetry
placing an artificial rigid boundary along the axis. Therefo
in the case of a square or rectangular piston it is necessa
solve for only one quadrant of theX–Y space. At each axis
of symmetry one of the following boundary conditions w
applied:]P/]XuX5050 or ]P/]YuY5050. In the numerical
implementation the second-order derivative at boundary
determined from a Taylor series expansion around the a

P~DX!5puX501DXS ]P

]XD
X50

1
~DX!2

2 S ]2P

]X2D
X50

1O„~DX!3
….

Setting the first-order derivative to zero yields

]2P

]X2 U
X50

52
P~DX!2P~0!

~DX!2 1O~DX!. ~10!

We note that this approximation is correct only to first-ord
in space, whereas all other finite-difference approximati
are correct to second-order in space. Increasing the accu
of this expression to second-order would result in losing
tri-diagonal nature of the algorithm, so the first-order expr
sion was used in our simulations. An identical trade-off
made in the axis-symmetric Texas code. The 3D code
written to be able to include either axis of symmetry as
quired.

III. NUMERICAL RESULTS

The results from the code were benchmarked to ot
solutions in the literature for both circular pistons and re
angular pistons. The code was then used to simulate
propagation of a diagnostic ultrasound beam in tissue.
116 J. Acoust. Soc. Am., Vol. 117, No. 1, January 2005 X. Yang and
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A. Focused circular source: Linear and nonlinear

First, results of the 3D code were compared with the
Texas code for a focused circular symmetric source of rad
a and focal lengthd. The source wave form was a smoo
pulse given by17

P5exp@2~t/np!2m#sint. ~11!

In this section the number of cyclesn50.9549 and the en-
velope exponentm51 resulted in a short pulse about on
cycle in duration. The focusing gain of the transducer w
taken to beG55.0. The time window stretched fromtmin

5220p to tmax520p with a sampling rateDt52p/60, that
is, there were 60 points per cycle and 1200 points in the t
window. In the 2D code the grid had a maximum radi
rmax5r/a54 and there were 160 grid points in radial dire
tion (Dr50.025). In the 3D simulation the symmetry of th
problem allowed us to solve the problem on a quadrant w
a lateral grid given by 0<X<Xmax or 0<Y<Ymax with
Xmax5Ymax54 and 160 grid points in theX andY directions
(DX5DY50.025). The step size wasDs50.001 for IBFD
and Ds50.01 for CNFD. The memory requirement of th
axis-symmetric code was on the order of 800 000 unknow
per marching step, for the 3D code the requirement w
500 000 000 unknowns per marching step. The memory
computational requirements became almost 1000 tim
larger by solving this particular problem in 3D.

The first scenario considered a linear lossless prob
(A50,N50). Figure 2 compares axial propagation curv
focal beam patterns, and focal wave forms from the t
codes. There is excellent agreement between the resul
the 2D and 3D codes. A slight discrepancy exists in the po
tive peak of the wave form in Fig. 2~c!. The discrepancy was
the result of the extra dimension of discretization used in
3D code~recall the 2D code assumed cylindrical symme
and introduced no discretization error in theu coordinate!
and we found it could be reduced by using more lateral g
points in the 3D code.

FIG. 2. Linear propagation from a circular piston: 2D vs 3D.~a! axial
amplitude (z axis!, ~b! transverse beam plots ats51/0, ~c! wave forms at
s51.0.
R. O. Cleveland: Nonlinear acoustic beams from rectangular pistons
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Figure 3 shows a similar comparison for the same sou
condition and grid but for a case with nonlinearity and a
sorption present. The dimensionless nonlinearity and abs
tion coefficients wereN51.0 andA50.5. The agreement i
again excellent except in Fig. 3~c! where the 3D code
slightly underpredicted the peak positive pressure due to
extra discretization in the 3D code.

B. Unfocused rectangular source: Linear and
nonlinear

For the case of a uniform unfocused rectangular pist
we compared the result of a linear, lossless calculation u
the 3D code with the results of the Rayleigh integral. W
used the solution and excitation pulse of Ullate and S
Emeterio.38 The excitation was a short pulse of approx
mately 1.5 cycles at 3 MHz~see Fig. 4! which propagated in
water (c051500 m/s). The aperture size was 24315 mm
(a512 mm andb57.5 mm) with a resulting Rayleigh dis

FIG. 3. Nonlinear propagation from a circular piston: 2D vs 3D.~a! Axial
amplitude (z axis!, ~b! transverse beam plots ats51/0, ~c! wave forms at
s51.0.

FIG. 4. Source velocity of rectangular piston for comparison with a R
leigh integral solution~Ref. 38!. The central frequency isf 053 MHz.
J. Acoust. Soc. Am., Vol. 117, No. 1, January 2005 X. Yang and R. O.
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tance of 720 mm which, in the absence of a focal length, w
used as the characteristic distance. Neither absorption
nonlinearity was calculated in the simulations. The time w
dow was fromtmin5220p to tmax520p with 30 points per
cycle, that is,Dt5p/15. The outer edges of the numeric
grid were atXmax5Ymax54 and there were 800 grid points i
both thex andy directions (DX5DY50.005). The step size
wasDs5531025 for IBFD andDs5531024 for CNFD.

Figure 5 compares on-axis wave forms atz530 mm and
z550 mm with the Rayleigh integral results. Atz550 mm
there is excellent agreement between the exact solution
the KZK code. Atz530 mm, which is well within the near
field of this transducer, there is excellent agreement for
portion of the wave that can be identified as arriving from t
center of the transducer, but a small error in the arrival ti
of the edge wave. This discrepancy was due to the use o
parabolic approximation that is incorporated into the KZ
equation. At a range of 30 mm the half-aperture angle to
corner of the source was 25° which is beyond what is usu
acceptable for the parabolic approximation to be valid a
although rectangular apertures are less sensitive to erro
the edge wave,26 the error manifests itself in the arrival tim
of the edge wave.

In Fig. 5 we also show results obtained using the A
method on the same grid. The curves completely over
with the results from IBFD/CNFD. However, the AD
method required about 10% more CPU time than the IBF
CNFD, and nearly twice as much computational memo
Therefore we chose to use IBFD/CNFD algorithms for o
code.

-

FIG. 5. Predicted axial wave forms atz530 mm ~upper! and z550 mm
~lower! for linear propagation from a rectangular aperture—comparison
the Rayleigh integral, KZK3D~CNFD! and KZK3D ~ADI !. The KZK code
agrees well with the analytical solution except for the edge wave az
530 mm where the parabolic approximation should start to break-do
There was no significant difference between the CNFD and ADI metho
117Cleveland: Nonlinear acoustic beams from rectangular pistons
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Figure 6 shows three off-axis wave forms (x50, y
5b; x5a, y5b and x5a, y50) at a distance ofz
550 mm. The agreement is generally excellent between
analytical solution and the KZK code with the exception
slight discrepancies in the arrival of the final edge wave. T
is because even though atz550 mm the parabolic approxi
mation was fine on axis, the propagation of sound from
furthest points of the source occurred at too great an a
for the parabolic approximation to hold for field points th
were substantially off axis.

For the nonlinear pressure field of rectangular apertu
we compared our code with results from the Bergen code
a square aperture given by Bakeret al.26 The parameters
used in the simulation were c051486 m/s, r0

51000 kg/m3, b53.5, fundamental frequency 2.25 MH
anda0d50.094. The time window was fromtmin5220p to
tmax520p with Dt5p/32 ~64 points per cycle!, the extent
of the lateral grid wasXmax5Ymax54 with grid spacingDX
5DY50.025 ~160 points in each direction! andDs51023

for IBFD andDs51022 for CNFD. The time-domain code
was used to simulate cw performance by using a 10 cy
long pulse@Eq. ~10! with n510 andm511]. The amplitude
of the harmonics in the time-domain code was determined
calculating the discrete Fourier transform of the center cy
in the pulse. Figure 7 shows the amplitude of the fundam
tal, second harmonic and third harmonic along the axis fo
square aperture with amplitude of 220 kPa. We found ex
lent agreement in the predicted amplitude of the harmon
by the KZK code and the Bergen code.

C. Focused rectangular source: Nonlinear
propagation in tissue

In this section results are presented for the propaga
of a nonlinear ultrasound beam through tissue. In particu

FIG. 6. Comparison of off-axis wave forms from a rectangular apertur
z550 mm for~a! x50, y5b, ~b! x5a, y5b, and~c! x5a, y50. There is
generally excellent agreement between the analytical solution and
KZK3D code—the small discrepancies in the edge wave are attributab
the parabolic approximation.
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we wish to investigate the spatial distribution of the fund
mental and second-harmonic signals in tissue for applica
to diagnostic imaging. Tissue harmonic imaging~THI! is
currently implemented on most mid-range and high-e
commercial scanners, and in this mode images are form
from the reflected signals at the second harmonic rather
the fundamental. THI is currently the imaging mode
choice in cardiology where it has been shown to impro
border delineation,39,40 and measurements of hea
function.41 THI also appears to be promising in imagin
other organs in the body, for example, it offers improv
detection of cysts in the breast42 and lesions in the liver43 and
kidney.44

THI is reported to provide enhancement in the spa
resolution of targets~‘‘detail contrast’’!45 which has been at-
tributed to the smaller focal spot,24,39 immunity to aberration
effects generated by near field inhomogeneities,9,24 and non-
linear interaction at interfaces.46 THI is also reported to pro-
vide superior ‘‘contrast resolution’’ as it is less sensitive
clutter.24,39 Clutter refers to received echo signals that a
generated outside the region of interest, for example, re
beration in the near field due to the presence of a fat la
near the skin or scattering by objects in the side-lobes.
investigated possible reasons for the image enhancem
based on the distribution of the spatial distribution of t
fundamental and second harmonic. We also evaluated
effect of source apodization and different tissue absorp
laws on the predictions.

The source was modeled as a rectangular source
dimensions of 15 mm in the scan plane (x axis! and 10 mm
in the elevation plane (y axis!. We modeled the source a
being continuously phased, that is, no individual array e
ments, however, the code is capable of modeling arbitr
conditions. The source was given two different geometri
focal distances:dx580 mm in the scan plane~normally done
by electronic focusing in an imaging system! and dy

550 mm in the elevation plane~normally a fixed focus in an
imaging system! as most imaging is done with different foca
lengths in the scan and elevation planes. The source
uniformly excited with a short pulse@Eq. ~11! with n53
cycles andm54] and a center working frequency of 2 MHz
This wave form is similar to what will be used by a clinic
scanner in THI mode, which uses more cycles than would
used in regular B-scan to improve the spectral purity in
source wave form. The pressure at the source was mod

t

he
to

FIG. 7. Amplitude of the fundamental, second, and third harmonic a
function of propagation distance from a rectangular aperture. The re
from this code compare favorably with those of Bakeret al. ~Ref. 26! for
the same parameters.
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to have an amplitude of 0.5 MPa resulting in a mechan
index ~MI ! in the tissue of approximately 0.7~note this was
based on the peak negative pressure predicted by the s
lation and not from derating the peak pressure obtained f
a simulation through water!.

The tissue was modeled as a homogeneous medium
densityr051050 kg/m3 and sound speedc051540 m/s, and
coefficient of nonlinearityb55. The absorption was as
sumed to obey the following power law:

a5a0S f

f 0
D h

, ~12!

wherea053.4538 Np/m,h51.1, andf 051 MHz ~equiva-
lent to 0.3 dB/cm at 1 MHz!. The time-domain code canno
model such frequency-dependent absorption exactly; h
ever, this behavior can be approximated by using a num
of relaxation processes. In this simulation we used two
laxation processes to model the absorption properties of
tissue, that is, the effective absorption coefficient was

a~ f !5
cR18 ~12 j f !

f 21 f R1
2 1

cR28 ~12 j f !

f 21 f R2
2 1aTV f 2. ~13!

The parameterscR18 , f R1 , cR28 , f R2 , andaTV were chosen to
give a best fit, in a least squares sense, to the absorption
given in Eq.~12! over the frequency band of 100 kHz to 3
MHz. The fminsearch function fromMATLAB ~The Math-
works, Natick, MA! was used to determine the paramet
for the two relaxation processes and the thermoviscous
sorption coefficient. The fitted parameters were: relaxat
frequencies f R15237.0 kHz and f R253.749 MHz; relax-
ation dispersion (c8/c0)R151.399031023 and (c8/c0)R2

51.659731023, and the thermoviscous absorption coef
cient aTV51.625310213 Np/m/Hz2. The comparison of the
power-law absorption and the fit using relaxation proces
is shown in Fig. 8. There is excellent agreement over
frequency band of interest. We note that the relaxation
erator also correctly accounts for dispersion, that is,
Kramers–Kronig relations are satisfied by the absorpt
given in expression in Eq.~13!.47

The dimensionless parameters for this simulation w
N50.6554, GX52.869, GY51.275, A50.0520, D1

50.9133,u158.4377,D251.0835, andu250.5334. The fo-
cusing at the source wasGXS52.869 andGYS52.04. The

FIG. 8. Comparison of absorption curves for: two-relaxation process fit
f 1.1 law ~solid line! and thermoviscous absorptionf 2 ~dashed line!.
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time window was fromtmin5220p to tmax520p with Dt
52p/64, Xmax5Ymax54, andDX5DY50.01. The step size
wasDs51025 for IBFD andDs51022 for CNFD.

In Fig. 9 we present plots of the axial amplitude of th
fundamental and second harmonic in the tissue. In this c
the amplitudes were determined by carrying out a discr
Fourier transform on a five-cycle window around the pul
The solid lines are the predictions forf 1.1 absorption and the
dashed lines forf 2 absorption. The coefficient of thef 2 ab-
sorption law was chosen to yield the same absorption as
f 1.1 law at the fundamental frequency of 2 MHz. The resu
show that the absorption law had little impact on the pred
tion of the fundamental. This is not unexpected as the t
absorption laws match at this frequency. However, there
a substantial difference in the prediction of the second h
monic, in particular the peak amplitude of the second h
monic for thef 2 simulation was reduced by more than 20
and the location of the peak shifted toward the source b
mm. Both of these phenomena are consistent with the
that f 2 absorption will attenuate the second harmonic m
strongly thanf 1.1 absorption. We note that the amplitude
the fundamental in thef 1.1 case was slightly lower in ampli
tude in the focal region which is because the second h
monic has higher amplitude for thef 1.1 case and this resulte
in more efficient transfer of energy from the fundamental
the third and higher harmonics.

Figure 10 shows contour plots of the amplitude of t
fundamental and second harmonic of the pulse in the s
plane. The solid lines are the predictions forf 1.1 absorption
and the dashed lines forf 2 absorption. We see that the of

a

FIG. 9. Simulation of nonlinear propagation in a tissue-like medium. Ax
plots of the amplitude of~a! the fundamental and~b! the second harmonic
The solid line is the result forf 1.1 absorption and the dashed line forf 2

absorption.
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axis distribution of the second harmonic was not as sens
as the on-axis distribution to the use of an incorrect abso
tion. In comparing Figs. 10~a! and 10~b!, we note that the
second-harmonic signal in the scan plane was more spat
confined than the fundamental. The distance to the23 dB
contour was;0.9 mm for the second harmonic and;1.3
mm for the fundamental which could contribute to improv

FIG. 10. Simulation of nonlinear propagation in a tissue-like medium. C
tour plots of the amplitude of~a! the fundamental in the scan (x–z) plane,
~b! the second harmonic in the scan plane,~c! the fundamental in the eleva
tion (y–z) plane, and~d! the second harmonic in the elevation plane. T
reference value was the peak amplitude for each condition. The solid lin
the result forf 1.1 absorption and the dashed line forf 2 absorption.
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e
p-

lly

-

ments in detail resolution on-axis. Further, the220 dB con-
tour of the second harmonic barely extends more than 5
from the axis where as for the fundamental it extends up
10 mm away which means that the second harmonic sho
suffer less from clutter signals due to off-axis scattere
Lastly, in the near field of the transducer the levels of t
second harmonic (;210 dB at z520 mm) are much less
than those of the fundamental (;23 dB atz520 mm) and
therefore the second-harmonic signal should suffer from
clutter in the presence of reverberating layers. Figures 1~c!
and 10~d! show the contour plots in the elevation plane, a
similar features can be observed in these plots. We note
repeating these simulations with a larger gridXmax5Ymax

56 produced no changes to the results, and this indicates
the data were not affected by reflections from the edge of
numerical grid.

Finally, we demonstrate the impact of apodization on
field of the fundamental and second harmonic for propa
tion through tissue~with f 1.1 absorption law!. The source
condition described by Eq.~9! was employed. Figure 11
shows contour plots of the fundamental and the second
monic in the scan plane. Compared to Fig. 10, one obse
that the apodization greatly reduced the amplitude of the s
lodes of the fundamental as expected. The apodization
duced the ‘‘side-lobes’’ of the second-harmonic signal
well. Contour levels are shown down to240 dB and for the
second-harmonic signal the240 dB contour rarely extend
to approximately 6 mm from the axis whereas for the fund
mental the220 dB contour lies around 6 mm off axis an
the 240 dB contours extends mostly beyond the ran

-

is

FIG. 11. Simulation of nonlinear propagation in a tissue-like medium (f 1.1

absorption! with a cosine amplitude shading of the source in the scan pla
Contour plots of~a! the fundamental and~b! the second harmonic in the
scan (x–z) plane.
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shown. The effect of the source apodization on the acou
field in the elevation plane was much less dramatic~data not
shown!, which is consistent with the fact that no apodizati
was implemented in that axis. Therefore, even though
beam pattern of the fundamental signal is improved
apodization, the second harmonic still has a narrower be
~with lower side lobes! and much less near field structu
than the fundamental.

IV. CONCLUSIONS AND DISCUSSION

A time-domain algorithm that solves the KZK equatio
in three spatial dimensions has been described. The c
includes the effects of diffraction, absorption, nonlinear
and relaxation on the propagation of the finite-amplitu
sound beams and is capable of describing the propagatio
arbitrary sound beams in a wide variety of media. The al
rithm used an operator-splitting algorithm to integrate
KZK equation. The 2D diffraction term was solved using
combined IBFD/CNFD method which we found to produ
similar results to the ADI method but at lower computation
cost. Results obtained from the algorithm were in excell
agreement with linear and nonlinear fields from a focus
circular source; and the linear and nonlinear fields of un
cused rectangular sources. We note that the 3D code is c
putationally intensive but can be parallelized very effe
tively. Our simulations were carried out on an IBM pSeri
690 machine with 16 parallel processors; the tissue sim
tions shown in Figs. 10 and 11 each required a total o
CPU-hours and executed in about 0.6 wall-clock hou
which is close to the theoretical minimum of 0.56 wall-clo
hours.

The code was used to simulate the field from a diagn
tic ultrasound scanner. It was observed that the choice
absorption law had a strong effect on the prediction of
second-harmonic field. In comparing the spatial distribut
of the fundamental and second-harmonic fields, we obse
that the second-harmonic field was more sharply focused
that the second harmonic had much lower signal amplit
in the near field. These phenomena were present with b
uniform and apodized sources. Both of these effects coul
contributing factors to the improved imaging ability attri
uted to tissue harmonic imaging. The tighter focus sho
improve detail contrast, in particular by improving the late
resolution. Clutter will be reduced both due to the narrow
beam, which results in lower pressure levels off-axis, a
due to the lower levels in the near-field, which results in le
reverberation.

One effect not modeled with the 3D code at presen
the effect of an inhomogeneous medium. The current mo
can be extended to account for small fluctuations in amb
properties. For variations in sound speed one may ad
small fluctuationc8(x,y,z) that can vary in space to th
background sound speedc0 . Within the ordering frame work
of the KZK equation this introduces one extra term whi
essentially alters the phase to correct for the variation
sound speed.14 If the medium also has small variations in th
density change tor0(x,y,z) then a new term¹p•¹r0 /r0 is
introduced to the full wave equation.48 In the parabolic ap-
J. Acoust. Soc. Am., Vol. 117, No. 1, January 2005 X. Yang and R. O.
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proximation, to leading order, one finds that the density te
reduces to

1

c0r0

]r0

]z

]p

]t8
2

1

r0
S ]r0

]x

]p

]x
1

]r0

]y

]p

]y D . ~14!

Small scale variations in other parameters, i.e., non
earity, absorption, and dispersion, do not introduce ex
terms into the second-order wave equation. For an inho
geneous medium Eq.~1! can be rewritten in the following
form:

]p

]z
5

c0

2 E
2`

t8 S ]2p

]x2 1
]2p

]y2Ddt91
b

2r0c0
3

]p2

]t8
1

d

2c0
3

]2p

]t82

1(
v

cv8

c0
2 E

2`

t8 ]2p

]t92 e2(t82t9)/tvdt91
c8

c0
2

]p

]t

1
1

2r0

]r0

]z
p2

c0

2r0
E

2`

t ]r0

]x

]p

]x
1

]r0

]y

]p

]y
dt.

~15!

The added terms can be incorporated in the current num
cal scheme. The phase-speed term associated with s
speed could be included into the nonlinear term, as
amplitude-independent effect, and calculated using the P
son solution. The transverse density fluctuation could be
corporated into the diffraction term using finite-differences
evaluate the first-order derivatives. The density fluctuation
the axial direction is the only term that requires a new eq
tion to be included into the operator splitting paradigm:

]p

]z
5

1

2r0

]r0

]z
p.

This is an ordinary first-order differential equation that c
be approximated with a finite-difference solution

p~x,y,z1Dz!5p~x,y,z!
2r0~x,y,z1Dz!

r0~x,y,z1Dz!1r0~x,y,z!
.

This corresponds to the plane wave pressure transmis
coefficient for the propagation between two media of diffe
ent densities.

In conclusion the extension of the Texas code to
provides an effective tool for modeling arbitrary finite
amplitude beams. In its current form it can account
propagation of arbitrary beams in a thermoviscous and re
ing fluid. We speculate that it may be advantageous o
frequency domain codes in problems that involve sh
pulsed wave forms, for example, shock wave therapy and
forward propagation problem in ultrasound imaging. T
present formulation can be extended to account for propa
tion in inhomogeneous media.
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