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A model for the dynamics of gas bubbles in soft tissue
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Understanding the behavior of cavitation bubbles driven by ultrasonic fields is an important problem
in biomedical acoustics. Keller-Miksis equation, which can account for the large amplitude
oscillations of bubbles, is rederived in this paper and combined with a viscoelastic model to account
for the strain-stress relation. The viscoelastic model used in this study is the Voigt model. It is shown
that only the viscous damping term in the original equation needs to be modified to account for the
effect of elasticity. With experiment determined viscoelastic properties, the effects of elasticity on
bubble oscillations are studied. Specifically, the inertial cavitation thresholds are determined using
Rmax/R0, and subharmonic signals from the emission of an oscillating bubble are estimated. The
results show that the presence of the elasticity increases the threshold pressure for a bubble to
oscillate inertially, and subharmonic signals may only be detectable in certain ranges of radius and
pressure amplitude. These results should be easy to verify experimentally, and they may also be
useful in cavitation detection and bubble-enhanced imaging. © 2005 Acoustical Society of
America. �DOI: 10.1121/1.2118307�

PACS number�s�: 43.35.Wa, 43.80.Sh, 43.35.Ei �FD� Pages: 3595–3606
I. INTRODUCTION

Cavitation phenomena are very complicated due to the
nonlinear oscillations of small bubbles and the interactions
between these bubbles. In most cases, cavitation occurs in
water, which is the most familiar fluid to us, and as a result,
studies of bubble dynamics in water have been undertaken
for over 80 years. Bubble dynamic models are well estab-
lished for bubbles in water or simple Newtonian fluids. With
the development of new materials and new techniques, the
study of bubble dynamics in viscoelastic media becomes
necessary. The increasing interest in cavitation is partly re-
lated to the application of medical ultrasound. For example,
the use of bubble-based contrast agents in diagnostic ultra-
sound has significantly increased the quality of imaging. Re-
cently, this issue has become more important due to the de-
velopment of the high intensity focused ultrasound �HIFU�
for therapeutic medicine. High intensity ultrasound will in-
duce cavitation in soft tissue, and these microbubbles have a
huge impact on the distribution of the ultrasound energy. In
these situations, the surrounding media, i.e., biological tis-
sues, often exhibit non-Newtonian behavior. Understanding
the behavior of cavitation in vivo may provide a powerful
tool to improve the quality of medical ultrasound.

The study of these microbubbles involves bubble oscil-
lations in viscoelastic media. Many researchers have ex-
tended the analysis of bubble dynamics in Newtonian fluids
to non-Newtonian fluids. Fogler and Goddard1 combined the
linear Maxwell model with the Rayleigh-Plesset equation
and examined the collapse of a spherical cavity in a large
body of an incompressible viscoelastic liquid. The bubble
was modeled as a void, and the effect of elasticity was in-
vestigated. Their results showed that the elasticity in the liq-
uid can significantly retard the collapse of a bubble. A three
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parameter linear Oldroyd model was employed by Tanasawa
and Yang2 to study the free oscillation of a gas bubble in
viscoelastic fluids. They investigated the effects of the vis-
cous damping in the presence of elasticity, and found that in
the presence of elasticity, the effect of viscous damping on
bubble collapse is less than that in the pure fluid. Later,
Shima, Tsujina, and Nanjo3 investigated the nonlinear oscil-
lations of gas bubbles in viscoelastic fluids using the model
first derived by Tanasawa and Yang,2 and the effects of re-
laxation time and retardation time were clarified. A fully nu-
merical scheme was developed by Kim4 to investigate col-
lapse of a spherical bubble in a large body of Upper-
Convective Maxwell fluid. He observed that fluid elasticity
accelerated the collapse in the early stage of collapse while
in the later stages it retarded the collapse. His approach was
very computationally intensive. Alekseev and Rybak5 pre-
sented the resonance frequency of gas bubbles in elastic me-
dia. The dispersion equation in a viscoelastic medium was
also derived for bubble clouds in their study. Allen and Roy6

chose the linear Maxwell and Jeffreys models as the liquid
constitutive equation to study bubble oscillations in linear
viscoelastic fluids. After linearization of the original nonlin-
ear differential equation �a Rayleigh-Plesset type equation�,
analytical solutions were obtained and compared with the
Newtonian results. In a later study of nonlinear viscoelastic-
ity, they7 employed the Upper-Convective Maxwell model as
the constitutive equation with the Rayleigh-Plesset equation.
A fully numerical study was conducted to solve the govern-
ing system of equations. The results of the linear and non-
linear viscoelastic approaches were compared. Their results
showed that tissue viscoelasticity may be important for the
potential cavitation bioeffects.

For diagnostic ultrasound examinations, the acoustic in-
tensity is usually insufficient to induce inertial cavitation in
soft tissue directly.8 The only source of microbubbles in soft

tissue would be direct injection of a bubble-based contrast

© 2005 Acoustical Society of America 3595�/3595/12/$22.50

ontent/terms. Download to IP:  129.237.46.99 On: Mon, 30 Nov 2015 16:55:39

https://core.ac.uk/display/213415024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Redistrib
agent, an uncommon procedure. However, the use of higher
intensity ultrasound, e.g., HIFU therapy, will cause cavitation
in soft tissue directly. Different from contrast agent bubbles,
this cavitation involves free bubbles oscillating nonlinearly
because of the high intensity of the sound field. Previous
models for viscoelastic media are all based on the Rayleigh-
Plesset equation, which is not very appropriate for large am-
plitude oscillations. In this work, we seek a model that is
capable of accounting for the potentially large-amplitude os-
cillations of bubbles exposed to HIFU fields. In addition, the
bubble model must incorporate a viscoelastic model consis-
tent with measured tissue properties. Although the data on
viscoelastic properties of soft tissue at megahertz frequencies
are very limited, the linear Voigt model has proven appropri-
ate for the tissues studied;9,10 none of the above-mentioned
models incorporates these experimental results. The Keller-
Miksis equation11 has been shown to be suitable for large
amplitude bubble oscillations.12 In this study, we combine
the general form of the Keller-Miksis equation with the lin-
ear Voigt model for viscoelastic solids to study the dynamics
of bubbles in soft tissue.

The importance of the inertial cavitation threshold has
been addressed by many authors. In a medical context, se-
vere bioeffects, including both thermal and nonthermal ef-
fects, may be induced or exacerbated by inertial cavitation
during high intensity ultrasound insonations. When inertial
cavitation occurs, strong nonlinear acoustic emissions can be
detected. A sudden change in the emission signals from a
bubble is often used to monitor the occurrence of inertial
cavitation in experiments.13,14 In addition to the familiar sec-
ond, third, and higher harmonics, bubbles may also generate
subharmonic signals when they oscillate nonlinearly. There-
fore, monitoring the generation of subharmonics can be used
to detect inertial cavitation. Higher frequency emissions are
very easily attenuated, and the signal that needs to be de-
tected may become very weak. At the same time, the nonlin-
ear propagation of ultrasound will also generate higher har-
monics, and this can be a noise source for higher harmonic
detection. Compared to harmonic detectors, subharmonic de-
tectors have the advantages that the low frequency signal is
less attenuated in soft tissue, and bubbles are the only
sources generating subharmonics in soft tissue.

Subharmonic signals have been seen in experiments dur-
ing cavitation events, but mechanisms for the generation of
subharmonics are still not entirely clear. Possible explana-
tions include that a single bubble will emit subharmonics
when it breaks up, or interactions inside a bubble cloud can
emit subharmonics, or chaotic oscillations of a single bubble
will generate subharmonics. In this study, we focus on single
bubble dynamics, and simply predict subharmonic signals
from the chaotic oscillation of a single bubble. The effect of
elasticity on inertial cavitation thresholds and subharmonic
emissions will be investigated, providing data that may be
useful for cavitation detection and bubble imaging.

II. THEORY AND METHOD

Consider a spherical bubble in an unbounded viscoelas-
tic medium. The equation of continuity has the following

form in a spherical coordinate system,
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where � is the density, vr is the radial velocity, t is time, and
r is the radial axis. Conservation of radial momentum for a
spherically symmetric radial flow yields,15,16
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where p is the pressure in the surrounding medium, and �rr

and ��� are the stresses in the r and � directions, respectively.
The boundary and initial conditions are:

p = pg −
2�

R
+ �rr at r = R ,

p = p� at r = � ,

R = R0, Ṙ = 0 at t = 0,

where pg is the gas pressure inside the bubble, R is the po-
sition of the gas-tissue interface, the dot indicates the time
derivative, R0 is the bubble equilibrium radius, and � is the
surface tension.

To derive the Keller-Miksis equation, which can account
for the compressibility of the surrounding medium to first
order, an asymptotic solution is employed in the near field
and far field.

A. Near field approximation

In the near field �r=O�R��, the effects of compression
and expansion of the bubble are dominant, and the surround-
ing medium may be considered incompressible. From the
Bernoulli integral �momentum equation�, one can find the
solution for the pressure distribution in the internal zone
�near field�,

vr = −
ṘR2

r2 , �3�

pin = pa − �0�RR̈ +
3

2
Ṙ2� +

�0

r
�R2Ṙ�� −

�0

2

R4Ṙ2

r4 + ��rr�R
r

+ 3�
R

r �rr

r
dr , �4�

where pa is the pressure at the bubble surface, R̈ is the
bubble wall acceleration, and � indicates the time derivative.

B. Far field approximation

In the far field �r�R�, the pressure fluctuations and the
density fluctuations are small, and the stress components be-
come negligible, as do the nonlinear convection terms. Ignor-
ing these terms, the governing equation in the far field is
essentially the linear acoustic equation. The solutions for the
linear acoustic equation are

�ex =
1	�1�t −

r� + �2�t +
r�
 , �5�
r c c
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pex = p0 − �0
��ex

�t
, �6�

where p0 is the static pressure, �0 is density at equilibrium, �
is the velocity potential, �1 and �2 characterize the outgoing
and incident acoustic waves, respectively, and c is the sound
speed in the medium.

C. Matching of the solutions

To obtain the equation of the radial motion of bubbles
for a given driving pressure and to take account of compress-
ibility of the surrounding medium, we need to match the
asymptotic solutions in the internal and external zones in the
intermediate zone. For the internal solution, the intermediate
zone is at r→�, and for the external solution, the interme-
diate zone is at r→0. The matching conditions in the inter-
mediate zone are the equality of the volumetric flow and of
the pressure,

4	r2�vr�in��r→� = 4	r2�vr�ex��r→0 �pin�r→� = �pex�r→0. �7�

For the internal solution, shear stresses vanish as r→�.
By matching the solutions we finally get

RR̈ +
3

2
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pa − p0

�
+

1

c
�2�2� + f�� −

�rr��R,t�
�

+
3

�
�

R

� �rr

r
dr , �8�

where f =R2Ṙ, and �2 is the incident wave. Note that the
above equation includes f�, which will cause a third deriva-
tive of R. This was first noticed by Prosperetti et al.12 This
third derivative can be eliminated by assuming that f� /c is
small, and evaluating the f from the above-mentioned equa-
tion. Then the equation becomes

RR̈ +
3

2
R2 =

pa − pI

�
, �9�

where pI is the pressure at infinity, pI= p0−2� /c�2�
+�rr�R , t�−3�R

��rr /rdr. This is the form of classic Rayleigh
equation, indicating that the evaluation of f from this equa-
tion is accurate to leading order. Equation �9� may be rewrit-
ten as

f�

R
−

1

2

f2

R4 =
pa − pI

�
, �10�

then f� is evaluated as

f� = R	 Ṙ2

2
+

pa − pI

�

 , �11�

Substitution of Eq. �11� into Eq. �8� results in the final equa-

tion,
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where �2� /c��2�= PAg�t� is the driving pressure,

pa = pg −
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+ �rr�R,t� , �13�

and
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D. Evaluating stress components

Since stress components will vanish in the far field, we
then only evaluate �rr in the near field, i.e., in an incompress-
ible material. Because soft tissue is viscoelastic, we need to
choose a proper viscoelastic model to determine stresses. We
choose the linear Voigt model for this study because it is a
simple linear model and previous studies have shown that it
is appropriate in the low megahertz frequency range.9,10

More important, some experimental data for soft tissues are
also available for this model.9,10 This also creates the poten-
tial for comparing the resulting predictions with the experi-
mental measurements in vivo.

Because the material is incompressible, �rr=2�G
rr

+�
̇rr�, where 
rr is the strain, 
̇rr is the strain rate with

̇rr=�u /�r, u is the velocity, and G is the shear modulus
�or rigidity�.17 In the near field �near the bubble

surface�, u= �R2 /r2�Ṙ, therefore, 
rr=−�2/3r3��R3−R0
3� and


̇rr=−�2R2 /r3�Ṙ.
Then, we have
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Expanding �pa− pI�, finally we have

pa − pI = pg −
2�

R
− p0 + PAg�t�
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 , �17�
and

X. Yang and C. C. Church: Gas bubbles in soft tissue 3597

ontent/terms. Download to IP:  129.237.46.99 On: Mon, 30 Nov 2015 16:55:39



 Redistrib
d

dt
�pa − pI�

=
d

dt
�pg −

2�

R
− p0 + PAg�t�� +

d

dt	3�
R

� �rr

r
dr


=
dpg

dt
+

2�Ṙ
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Equations �12�, �17�, and �18a� provide the desired formula-
tion describing the dynamics of gas bubbles in soft �i.e.,
viscoelastic� tissue. We note that this equation is actually just
the Keller-Miksis equation with extra terms to account for
the elasticity of soft tissue. The equation accounts for the
compressibility of the surrounding medium to first order, and
thus it is better suited than the Rayleigh-Plesset equation to
simulate large amplitude bubble oscillations. The validity of
this equation is limited to small Mach numbers.12

For the results presented here, the gas inside the bubble
is assumed ideal, allowing the pressure to be estimated by
use of a polytropic relation, pg= pg0�R0 /R�3�, where � is the
polytropic index. In this case, Eq. �18a� may be written as:

d

dt
�pa − pI� = �2�
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− 3�pg� Ṙ
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dg�t�
dt

− 4G
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3Ṙ

R4

− 4��−
Ṙ2

R2 +
R̈

R
� . �18b�

E. Analytical solutions

Although Eq. �12� was specifically to investigate nonlin-
ear bubble activity in tissue, it is instructive to consider the
effects of the various physical parameters on bubble dynam-
ics at low pressure amplitudes. An analytical solution to Eq.
�12� may be obtained by assuming that the pulsation ampli-
tude R0x�t�, is small, making the usual substitutions of Eq.
�19� into Eq. �12�:18

R = R0�1 + x�, U = R0ẋ, U̇ = R0ẍ ,

�19�
R−3� = R0

−3��1 − 3��, etc. ,

and recognizing that the term iR0PAeit /c is to first order
equivalent to the linear expression for the radiated pressure
wave:15,18

Psac =
�R̈R0

�1 −
iR0

c
� , �20�

The resulting equation has the form:

mẍ + bẋ + kx = − PAeit, �21�

where the effective mass, m, total damping, btot, and stiff-
ness, k, are given by

m = �R0
2 +

4�R0 ,

c
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2�
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k = 3�pg0 −
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+ 4G +

2
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Notice that each term is greater than would be found from a
purely linear analysis of a gas bubble in water.18 The effec-
tive mass contains a small additional increment due to the
effect of viscosity. There are two additional damping terms,
one arising from variation in the surface energy of the bubble
�and directed opposite to the other damping terms�, the other
from the rigidity of the surrounding tissue, respectively. The
rigidity of the tissue also contributes to the total stiffness of
the system, as has been noted previously.1–6

Comparison of Eq. �21� with that of a damped harmonic
oscillator:

ẍ + 2�totẋ + 0
2x =

− PA

m
eit, �22�

in which �tot is the total damping constant and 0 is the
natural frequency, allows identification of five compo-
nents �viscous, thermal, acoustic, interfacial, and elastic�
to the total damping, given by

�vis = bvis/2m = 2����R0
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c
� , �23a�
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and the expression for the natural frequency:
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�24�

In this last expression, the contributions of the acoustic and

viscous terms are important only for large bubbles, while the
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elastic term either dominates or is of the same order as the
pressure term except for very small bubbles. Note that if the
acoustic, viscous, and elastic terms are neglected, the well-
known expression for the resonance frequency of a gas
bubble in liquid is recovered.

The scattering cross section may be defined as the ratio
of the total acoustic power scattered by an object at a given
frequency to the incoming acoustic intensity.17 For a spheri-
cal bubble oscillating at low amplitude, the expression for
the scattering cross section is

�S =
4	R0

24

�0
2 − 2�2 + �tot

2 2 . �25�

F. Numerical solutions

To obtain predictions for the nonlinear oscillation of a
bubble in soft tissue, Eq. �12� must be solved numerically.
Results for individual R�t� curves, inertial cavitation thresh-
olds, and subharmonic emissions are presented in the follow-
ing. Determination of the cavitation thresholds requires se-
lection of a threshold criterion. Several criteria for the
inertial cavitation threshold have appeared in literature, e.g.,
Rmax/R0=2,19,20 Tmax=5000 K,21 etc. In this study, we use
Rmax/R0=2 as the threshold criterion. This choice is consis-
tent with the assumption that the air in the bubble expands
and contracts adiabatically since the amplitude R�t� /R0 is
fairly insensitive to the thermodynamic processes within the
bubble.22 For subharmonics, the relative strength of the emis-
sion with respect to that of the strongest frequency compo-
nent emitted by a single bubble is shown. The reason to
choose this relative strength is from consideration of experi-
mental detection. After passing a preamp, whether a fre-
quency component is detectable by a spectral analyzer or not
depends on its strength relative to the strongest component.
A frequency component is only detectable when this relative
number is within the vertical resolution of the instrument.
Otherwise, it will be suppressed as noise. The relative num-
ber is obtained by the following method: first the R-t curve is
obtained, next the radiation pressure is determined by

psac�r,t� =
�R

r
�2Ṙ2 + RR̈� , �26�

where r is assumed to be a unit constant, and then frequency
components are determined by FFT. The amplitude of the
subharmonic is expressed in decibels relative to the maxi-
mum amplitude over all frequency components.

The following material properties are used in the current
simulations: p0=1.01�105 Pa, �=1060 kg/m3, c
=1540 m/s, and �=0.056 N/m �the value for blood as-
sumed by Apfel and Holland19�. These parameters are chosen
to be close to values appropriate to soft tissue. The actual
properties of specific soft tissues may be slightly different
from these values �except for surface tension, which is un-
known�, but the differences will generally be small. The
polytropic index �=1.4, a value appropriate for adiabatic
oscillations of air bubbles. The rigidity and the viscosity of
tissue are assumed to be G=0, 0.5, 1.0, and 1.5 MPa and

�=0.015 Pa s. These values span the range obtained by pre-
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vious measurements,9,10 with the exception of G=0, which is
included for comparison. The effect of viscosity has been
investigated previously for a Newtonian medium. We will
focus on the effects of elasticity on bubble motion in this
study, but to allow easy comparison with previous work, re-
sults for water �G=0, �=0.001� and blood �G=0, �=0.005�
are also presented. The driving frequencies studied are 1 and
3.5 MHz, which are frequently used in HIFU. All the bubble
oscillations are solved for 30 cycles.

III. RESULTS

A. Analytical results

The following results were obtained for the case of air-
filled bubbles in tissues having a modulus of rigidity equal to
0.5, 1.0, or 1.5 MPa �as discussed earlier�. In addition, re-
sults for either water or blood or both are presented for com-
parison. The effects of the surrounding tissue on resonance
frequency, damping, and the scattering cross section for in-
dividual single bubbles will be illustrated in the following.

1. Resonance frequency

The undamped linear resonance frequency for bubbles
larger than 1–2 �m and surrounded by viscoelastic tissue is
dominated by the shear modulus G. For these bubbles, as
shown in Fig. 1, 0, increases approximately as the square
root of G. The bottom curve in Fig. 1, labeled “Water,”
shows the resonance frequency for a free bubble with G=0.
The three curves above it, for tissues with increasing values
of G, demonstrate that the increase in stiffness provided by
the tissue can increase the resonance frequency considerably.
The effect of rigidity is much greater than the effect of sur-
face tension, meaning that a larger bubble will exhibit a
much greater stiffness than a free bubble of equivalent size.
For example, the value of 0, for a 5-�m bubble is about
0.63 MHz, while replacing the water with tissue increases
this value by a factor of 2.4, 3.3, and 4.0 times for the three
rigidities studied here. Because these larger bubbles resonate
at higher frequencies than free bubbles of equivalent size,
they will tend to appear acoustically smaller than they actu-

FIG. 1. Calculated values of linear resonance frequency for free air bubbles
in water �¯� and air bubbles surrounded by tissue having values of
G=1.5 �upper—�, 1.0 �– – –�, and 0.5 MPa �lower—�.
ally are.
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2. Linear damping coefficients

Five sources of damping for bubbles surrounding by vis-
coelastic tissue were identified earlier and quantified by Eq.
�23�. Two of these expressions, for viscous and acoustic
damping, are identical to those given by Prosperetti18 for a
gas bubble in liquid, see Eqs. �23a� and �23c�, respectively.
The expression for thermal damping, Eq. �23b�, differs mark-
edly from those given by either Prosperetti18 or Eller,23

which is not surprising given the assumption of a polytropic
pressure-volume relation for the gas. However, the numerical
values obtained for bubbles smaller than the linear resonance
radius are remarkably similar, often to within a few percent,
of those obtained using more exact theories.18,23 The two
additional damping terms, due to the surface energy of the
bubble and the rigidity of the surrounding tissue, see Eqs.
�23d� and �23e�, respectively, have a form similar to that for
thermal damping, Eq. �23b�. It is worth noting that a combi-
nation of four of the damping terms, Eqs. �23b�–�23e�, is
proportional to the stiffness, and thus also to the resonance
frequency, of the system.

The results of calculations for the damping constants as
a function of radial frequency are shown in Fig. 2 for bubble
radii of 1 and 10 �m, assuming G=1.0 MPa and �
=0.015 Pa s. Because the term for interfacial tension is nega-

FIG. 2. Dimensional linear damping constants vs radial frequency for equi-
librium bubble radii of �a� 10 �m and �b� 1 �m, surrounded by tissue with
G=1.0 MPa and �=0.015 Pa s; resonance radius ���, thermal damping
constant given by Prosperetti—Ref. 25 �¯�.
tive, only its magnitude has been plotted here. In any case,
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the contribution of �int to �tot is quite modest. The figures
have been drawn in such a way as to allow easy comparison
with previous results for free18,23 and encapsulated bubbles.17

Due to the high value of �, the total damping is dominated
by �vis for frequencies less than 0 and R0�10 �m, while
the acoustic term �ac dominates at higher frequencies. The
elastic term becomes increasingly important as R0 increases,
with �el�vis at R0=30 �m. As noted earlier, the expression
for �th differs from those obtained using more exact ap-
proaches. This is reflected in both the shape and the magni-
tude of the curves labeled “Thermal” in Fig. 2, as may be
seen by comparison with the dotted curves labeled “P-Th,”
obtained using the theory of Prosperetti.18 Thus, while �th

��el for all values of R0 when employing the polytropic
assumption �as is done here�, �th would come to dominate
other sources of damping for R0�30 �m and �0 in a
more rigorous treatment of thermal effects.

The results of calculations for damping constants as a
function of radius are given in Fig. 3 for frequencies of 1 and
10 MHz, again assuming G=1.0 MPa and �=0.015 Pa s.
The total damping is dominated by �vis for bubbles smaller
than the linear resonance radius, while �ac dominates at
larger sizes. The contribution of �el is never more than about
20% of �tot, which occurs near the resonance radius at
1 MHz, see Fig. 3�a�. For frequencies above about 1 MHz

FIG. 3. Dimensional linear damping constants vs equilibrium bubble radius
for radial frequencies of �a� 1 MHz and �b� 10 MHz, for air bubbles sur-
rounded by tissue with G=1.0 MPa and �=0.015 Pa s; resonance radius
���, thermal damping constant given by Prosperetti—Ref. 25 �¯�.
and radii less than the resonance size, the values for �th
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calculated using Eq. �23b� and the theory of Prosperetti,18

�dotted curves labeled “P-Th”� agree rather closely, although
the contribution of �th to �tot is not significant. The contri-
bution of �int to �tot is also trivial.

3. Scattering cross section

Calculated values of the linear scattering cross sections
of individual air bubbles, normalized to their respective geo-
metrical cross sections, are given in Fig. 4 for driving fre-
quencies of 1 and 10 MHz. The strong effect of tissue elas-
ticity �i.e., G� is apparent in these results, causing the
resonance peaks to shift to bubble radii two to four times
larger than for the resonance peak in water. Even though they
are larger, the cross sections for bubbles surrounded by tissue
are less, and sometimes much less, than for resonant bubbles
in water. It is also seen that the curves broaden and diminish
as either the rigidity G decreases or the frequency f in-
creases, indicating that bubbles in tissue may be more diffi-
cult to detect acoustically than are bubbles in water at the
same frequency. The cross sections for blood exhibit maxima
at about the same radii as for water, but their magnitudes are
less due to the higher viscosity of that fluid.

B. Numerical results

In this part of the paper, simulation results will be given

FIG. 4. Linear scattering cross sections vs equilibrium bubble radius for
frequencies of �a� 1 MHz and �b� 10 MHz, for air bubbles surrounded by
tissue having values of G=1.5 �right—�, 1.0 �– – –�, and 0.5 MPa �left—�
with �=0.015 Pa s, and for water �¯� and blood �– – –�.
for numerical solutions of Eq. �12�. The effects of elasticity
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on R-t curves will be examined first. Next, initial cavitation
thresholds will be presented for different elasticities and
compared to the result in water. Finally, maps of the strength
of subharmonic signals emitted by oscillating bubbles will
highlight a common way to detect cavitation and will illus-
trate the ranges of bubble radii that may be easily detected
using this method.

1. The effect of elasticity on R„t… curves

Examples of R�t� curves for a 1-�m bubble oscillating
under 1-MHz driving pressures of 1 and 3 MPa are shown in
Figs. 5�a� and 5�b�, respectively. The viscosity is fixed at
0.015 Pa s and the rigidity is chosen as 0 and 1.0 MPa. The
effect of the elasticity is very obvious that it greatly reduces
the amplitude, and hence the nonlinearity, of the oscillation.
At 1 MPa, the amplitude of the oscillation is much smaller
when elasticity is included. When the driving pressure in-
creases to 3 MPa, the amplitude of the oscillation with non-
zero elasticity is still smaller than that with zero elasticity,
but the difference between the two cases is less. This indi-
cates that the effect of elasticity will be less when the driving
pressure is strong. Another feature which is worthy of com-
ment is that for the zero-elasticity case, the bubble oscillation
approaches a steady-state resonance22,24 of order 2 /2, an ex-

FIG. 5. A comparison of radial responses for 1-�m bubbles driven by a
1-MHz pulse at �a� 1 MPa and �b� 3 MPa, for G=0 �thin line�, and
G=1.0 MPa �thick line�; the viscosity was fixed at 0.015 Pa s.
ample of period doubling and an indication of the start of
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chaotic oscillation and very strong nonlinearity. For the
nonzero-elasticity case, no period doubling is observed under
this driving pressure, although the inertial collapses are still
very strong. Clearly, the presence of the elasticity has re-
duced or eliminated some nonlinear components of the
bubble oscillation.

Figure 6 shows examples of R�t� curves for a 1-�m
bubble driven by �a� 1 MPa and �b� 3 MPa at 3.5 MHz.
Similar conclusions as those at 1 MHz can be drawn from
these results. For the same driving pressure and the same size
bubble, the nonlinearity appears to be weaker at the higher
frequency because no period doubling is observed. Figure 7
shows the results for a 5-�m bubble at 1 MHz driven by �a�
1 MPa and �b� 3 MPa. For zero elasticity, bubbles oscillate
with larger amplitudes during the first few cycles than that
for the nonzero-elasticity case. Interestingly, after the initial
state, the presence of the elasticity increases the amplitude of
oscillation in both cases. In Fig. 7�a�, at zero-elasticity, the
bubble oscillation exhibits strong nonlinear behavior by a
decrease at the average radius, and the presence of elasticity
recovers the linear oscillation around the bubble equilibrium
radius. In Fig. 7�b�, although the oscillation amplitude is
smaller at zero-elasticity case, the oscillation itself becomes
chaotic, while it is periodic when elasticity is included. Com-

FIG. 6. A comparison of radial responses for 1-�m bubbles driven by a
3.5-MHz pulse at �a� 1 MPa and �b� 3 MPa, for G=0 �thin line�, and G
=1.0 MPa �thick line�; the viscosity was fixed at 0.015 Pa s.
pared to bubbles of smaller size, a stronger nonlinearity is
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observed, which is indicated by the approach to chaotic os-
cillations. Certainly, the nonlinearity does not always in-
crease when the bubble size increases.

2. The effect of elasticity on the inertial cavitation
threshold

In Fig. 8, predicted inertial cavitation thresholds are
shown for a driving frequency of 1 MHz, G=0, 0.5, 1.0, and
1.5 MPa, and �=0.015 Pa s. The thresholds in water and

FIG. 7. A comparison of radial responses for 5-�m bubbles driven by a
3.5-MHz pulse at �a� 1 MPa and �b� 3 MPa, for G=0 �thin line�, and G
=1.0 MPa �thick line�; the viscosity was fixed at 0.015 Pa s.
FIG. 8. Predicted thresholds for inertial cavitation at 1 MHz.
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blood are also shown in the plot for reference. The effect of
elasticity on the threshold is obvious. Threshold values in-
crease as the elasticity increases, as expected based on the
results for the R�t� curves given earlier. For nonzero elastic-
ity, the thresholds have significant structure that deserves
comment. For example, at G=1.5 MPa, for small bubble
sizes, the threshold value is consistent with the Blake thresh-
old. As the bubble size increases, the threshold value reaches
a minimum value and then slowly rises. At around 4 �m, the
threshold value suddenly drops and then comes back. The
same shape occurs at around 6 �m, and another drop in
threshold occurs around 8 �m. The lowest threshold attained
following each drop is less than the preceding minimum at a
smaller bubble size. Similar structures are observed for the
lower elasticity cases, the only difference being that these
drops occur at different positions. This resonant structure ap-
pears to be related to the fractional-order subharmonic reso-
nance minima described previously.22 The positions of the
minima are determined by the elasticity of the surrounding
medium, shifting to larger radii as G increases.

Figure 9 shows the same thresholds but at a driving
frequency of 3.5 MHz. At this higher frequency, the thresh-
old values are greater than at 1 MHz, and the increase in
thresholds for larger bubble sizes is much faster than that at
1 MHz. The resonant structures appearing in the nonzero-
elasticity cases at 1 MHz are also observed on these thresh-
old curves. The resonance structure differs significantly how-
ever in that the minimum values attained following the drops
in the curves at 3.5 MHz are not less than the immediately
preceding minima.

The effect of viscosity on the threshold can be observed
by comparing the threshold for G=0 MPa and those of blood
and water �the only difference among the three is the value
of viscosity, �=0.015, 0.005, and 0.001 Pa s, respectively�.
In comparing, we conclude that thresholds increase and have
less structure as viscosity increases.

3. The map of the strength of subharmonics

Figure 10 shows subharmonic emissions at a driving fre-
quency of 1 MHz as a function of driving pressure and
bubble equilibrium radius. Results for tissues with G=0, 0.5,

FIG. 9. Predicted thresholds for inertial cavitation at 3.5 MHz.
and 1.0 MPa and �=0.015 Pa s are shown, with the result
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for blood also shown for reference �G=0 MPa, �
=0.005 Pa s�. We will define a subharmonic signal as
“strong” when it is greater than −30 dB because above this
level, the subharmonic signal can be easily detected by an
instrument with an 8-bit dynamic range. From Figs.
10�a�–10�c�, it is seen that as the elasticity increases, the
strong subharmonic signal region moves toward larger
bubble sizes and higher driving pressures. The strong subhar-
monic signal region generally lies above the corresponding
inertial cavitation threshold. For small values of elasticity,
the inertial threshold coincides with the lower boundary of
the strong subharmonic emission region better than does that
for higher elasticity cases. This result is expected because the
subharmonic signal investigated here arises from chaotic
bubble oscillations, and chaotic oscillations usually occur af-
ter the bubble motion becomes strongly nonlinear. In com-
paring the map for blood and that for tissue with G
=0 MPa, we find that the strong subharmonic signal region
becomes smaller when the viscosity increases. The contour
lines on these plots indicate the boundaries between regions
in which the maximum emission occurs at a particular fre-
quency. The results show that all strong subharmonic emis-
sions occur only when the fundamental frequency compo-
nent has the maximum emission level.

Figure 11 shows results for the same cases as in Fig. 10,
but at a driving frequency of 3.5 MHz. As the elasticity in-
creases, the strong subharmonic emission region shrinks and
moves toward higher pressure amplitudes. Significantly per-
haps, the relative signal also seems stronger. Compared to
results at 1 MHz, the strong subharmonic emission region at
3.5 MHz is much smaller and is limited to the small bubble
region. This limitation to the small bubble region probably is
related to the resonance structure of these bubble responses.
At 3.5 MHz, the linear bubble resonance size is smaller than
that at 1 MHz �3.07 vs 10.67 �m�. Again, all strong-
emission regions are above the inertial cavitation thresholds
for the corresponding elasticity, and strong subharmonic
emissions occur only when the fundamental frequency com-
ponent has the maximum emission level.

IV. DISCUSSION AND CONCLUSIONS

In this study, we developed a theoretical model for the
pulsations of gas bubbles in simple linear viscoelastic solids
and presented some potentially useful results for the case of
soft tissues. As pointed out in the text, although the model is
simple, it is consistent with experimental data taken for some
soft tissues. However, at high intensity, bubble oscillations
are strongly nonlinear. Although strong nonlinear oscillations
do not automatically imply that a nonlinear viscoelastic
model is necessary to describe the bubble motion, the suit-
ability of this linear model also remains unclear. As a matter
of fact, there is little evidence that the strain-stress relation in
tissue is not linear. Even though the change in bubble radius
is significant compared to its initial dimension, the overall
strain in the tissue could still be considered small if this
change were compared to the dimension of the soft tissue.
Use of a different viscoelastic model certainly would result

in different predictions, but the sparse measurement data at
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megahertz frequencies limits the study of verified viscoelas-
tic models for soft tissue. Also, the present study provides
predictions that can be examined experimentally. Verification
of this model will be pursued in the future.

Linear analysis of this inherently nonlinear formulation
provided analytical predictions of bubble responses to in-
sonation at low pressure amplitudes. The result for resonance
frequency increases as the modulus of rigidity increases, as
was expected based on previous work.17 The results for
damping constants showed that the viscosity of the tissue
tends to dominate either thermal or elastic damping for
bubbles smaller than 30 �m for frequencies smaller than
the linear resonance size, while acoustic damping predomi-
nates at higher frequencies. It is also expected that thermal
damping would dominate other sources of damping for R0

�30 �m and �0 in a more rigorous treatment of thermal
effects than is given by the polytropic assumption used here.
The peaks in the curves for scattering cross section shift to
larger radii as the rigidity increases due to the increase in

FIG. 10. Subharmonic emissions in dB relative to the peak emission at a driv
radius for three “tissues:” �a� G=0 MPa and �=0.015 Pa s; �b� G=0.5, �=0
indicate the boundaries between regions in which maximum emissions occu
harmonic �solid line�; second harmonic and third harmonic �dashed line�; thir
�dash-dot line�.
resonance frequency, although their magnitudes are less, and
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sometimes much less, than is the case for resonant bubbles in
water. This is consistent with the numerical results used in
producing Figs. 10 and 11.

The effect of elasticity on bubble dynamics was investi-
gated in some detail. Overall, the presence of the elasticity in
a bubble dynamics equation will reduce, sometimes greatly,
the nonlinearity of bubble oscillations. As might be expected,
the inertial cavitation threshold was shown to be greater in
tissue than in liquids such as water or blood, in contrast to
the assumptions underlying the mechanical index.19,25 This
result should prove useful for understanding the prevalence
of potentially damaging inertial cavitation in vivo. This will
be the subject of a later study.

Subharmonic emissions from an oscillating viscoelastic
bubble were also studied. Since soft tissue generally is not
transparent, detecting acoustic emissions is often the best
way to gain information about a bubble. A passive or active
cavitation detector system can easily provide information

requency of 1 MHz as a function of driving pressure and bubble equilibrium
�c� G=1.0, �=0.015; and for �d� blood, G=0, �=0.005. The contour lines
at one frequency component: fundamental �right-most region� and second

monic and fourth harmonic �dotted line�; fourth harmonic and fifth harmonic
ing f
.015;
r only
d har
about bubbles inside soft tissues. When interpreting such re-
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sults however, it will be important to keep in mind that the
sizes of the bubbles detected will be greater than estimated
using linear theory for water.

Shape oscillations and rectified diffusion are not consid-
ered in this study, although they are very important to pre-
dicting the stability and equilibrium size of a bubble.26 Shape
oscillations could also generate larger stresses that could
cause severe mechanical damage to soft tissue. Rectified dif-
fusion will change the equilibrium size of a bubble, and the
bubble motion can thereby be greatly affected. These effects
will be the focus of future studies.
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