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Abstract: Understanding the behavior of cavitation bubbles driven by ul-
trasonic fields is an important problem in biomedical acoustics. The Keller–
Miksis equation for nonlinear bubble dynamics is combined with the Voigt
model for viscoelastic media. Using experimentally determined values, the
effects of elasticity on bubble oscillations are studied. Inertial cavitation
thresholds are determined using Rmax /R052, and subharmonic emissions are
also estimated. The elasticity increases the threshold pressure for inertial
cavitation, and subharmonic signals are significant only in a certain region of
radii and driving pressures at a given frequency. These results should prove
useful in cavitation detection and bubble-enhanced imaging work.
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1. Introduction

Bubble dynamics models are well established for bubbles in water or simple Newtonian fluids.
With the development of new materials and new techniques, the study of bubble dynamics in
viscoelastic media becomes necessary. The increasing importance of cavitation studies is partly
due to applications in medical ultrasound. For example, the use of bubble-based contrast agents
in diagnostic ultrasound has significantly increased the quality of imaging. In these situations,
the media often exhibit non-Newtonian behavior. Recently, this issue has become more
important due to the development of high-intensity focused ultrasound for therapeutic medicine.
High-intensity sound may induce cavitation in soft tissue, and these microbubbles can have a
huge impact on the distribution of the ultrasound energy. Understanding the behavior of this
cavitation can provide a powerful tool for improving the quality of results of medical ultrasound
in clinics.

The study of these microbubbles involves bubble oscillations in viscoelastic media.
Many researchers have extended the study of bubble dynamics in Newtonian fluids to
viscoelastic fluids.1–7 For the purpose of diagnostic ultrasound, relatively low-intensity sound is
used. At these levels, essentially no cavitation occurs in soft tissue directly,8 and the only source
of microbubbles is by injection of bubble-based contrast agents. However, the use of high-
intensity ultrasound will cause cavitation in soft tissue directly. These bubbles differ from
contrast agent bubbles in that they (1) are free bubbles; and (2) may oscillate nonlinearly
because of the high intensity of the sound field.

Previous models for bubbles in viscoelastic media were based on the Rayleigh–Plesset
equation, which is not entirely appropriate for large-amplitude oscillations. We seek a model
capable of accounting for large-amplitude bubble oscillations while incorporating an
appropriate viscoelastic model. This will allow us to use the limited data available on the
viscoelastic properties of soft tissue at megahertz frequencies. The Keller–Miksis equation has
been shown to be suitable for large-amplitude bubble oscillations.9,10 In this study, we combine
the general form of the Keller–Miksis equation with the Voigt model for viscoelasticity.

The importance of the inertial cavitation threshold has been addressed by many
authors. In a medical context, severe bioeffects, including both thermal and nonthermal effects,
may be induced or exacerbated by inertial cavitation during high-intensity ultrasound
insonations. When inertial cavitation occurs, strong nonlinear acoustic emissions can be
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detected. A sudden change in the emission signals from a bubble is often used to monitor the
occurrence of inertial cavitation in experiments.11

In addition to the familiar second, third, and higher harmonics, bubbles will also
generate subharmonic signals when they oscillate nonlinearly. Therefore, monitoring the
generation of subharmonics also can be used to detect inertial cavitation. Higher frequency
emissions are very easily attenuated, and the signal that needs to be detected may become very
weak. At the same time, the nonlinear propagation of ultrasound will also generate higher
harmonics, and this can be a noise source for higher harmonic detection. Compared to harmonic
detectors, subharmonic detectors have the advantages that the low-frequency signal is less
attenuated in soft tissues, and bubbles are the only sources generating subharmonics in soft
tissue.

Subharmonic signals have been seen in experiments during cavitation events, but
mechanisms for the generation of subharmonics are still not entirely clear. Possible explanations
include that a single bubble will emit subharmonics when it breaks up, or interactions inside a
bubble cloud can emit subharmonics, or chaotic oscillations of a single bubble will generate
subharmonics. In this study, we focus on single-bubble dynamics, and simply predict
subharmonic signals from the chaotic oscillation of a single bubble. The effect of elasticity on
inertial cavitation thresholds and subharmonic emissions will be investigated, providing data
that may be useful for cavitation detection and bubble imaging.

2. Theory and method

The Keller–Miksis equation9,10 can be written in its general form as

S12
Ṙ
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where pa is the pressure at the bubble surface, pI is the pressure at infinity, R is the bubble radius,

Ṙ is the bubble wall velocity, R̈ is the bubble wall acceleration, pg is the gas pressure inside the
bubble, s is the surface tension, PA is the amplitude of driving pressure, p0 is the ambient pres-
sure, trr is the shear stress, r is the radial direction, c is the sound speed in the surrounding
medium, and r is the density of surrounding medium. This equation can account for the com-
pressibility of the surrounding medium to the first order, and it is more suitable than the
Rayleigh–Plesset equation for simulation of large amplitude of bubble oscillations.10 The valid-
ity of this equation is limited to small Mach numbers.

Since soft tissue is viscoelastic material, we need to choose a suitable viscoelastic
model to determine stresses. We choose the Voigt model in this study because (1) it is a simple
linear model; (2) previous work has shown that it is appropriate in the low-megahertz frequency
range; and most importantly (3) some data for soft tissue are available for it.12,13 This choice also
will allow us to compare our predictions with experimental measurements.

We set trr52(Ggrr1mġrr), where grr is the strain, ġrr is the strain rate with ġrr5]u/]r, u
is the velocity, and G is the shear modulus (or rigidity). In near field (near the bubble surface), an

incompressible material assumption can be applied; thus, u5 (R2/r2)Ṙ. The gas inside the bubble
is assumed ideal, and the pressure is estimated by use of a polytropic relation, pg

5pg0(R0 /R)3k, where pg0 is gas pressure in side a bubble at equilibrium, R0 is the bubble equi-
librium radius, and k is the polytropic index.

The resulting equation must be solved numerically for nonlinear oscillations. The fol-
lowing material properties are used in the simulation: p051.013105 Pa, r51000 kg/m3, c
1529-7853/05/6(3)/152/6/$22.506(3), July 2005 © 2005 Acoustical Society of America 152

 ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  129.237.46.99 On: Mon, 30 Nov 2015 16:30:21



Yang et al.: Acoustics Research Letters Online [DOI: 10.1121/1.1897824] Published Online 24 June 2005

153 ARLO

 Redistribution subject to
51500 m/s, and s50.0725 N/m. All these parameters are chosen to be close to the properties of
water. The real properties in soft tissue will be slightly different from these values, but with the
exception of s, the differences generally will be small. The polytropic index k51.4, and the
elasticity and the viscosity are taken as G50, 0.5, 1.0, or 1.5 MPa and m50.005 (blood) or 0.015
(tissue) Pa s. These values are chosen based on previous measurements,12,13 and they cover the
experimental range of the properties of soft tissue. The effects of different viscosities in a New-
tonian medium have been investigated previously.14,15 We will focus on the effects of elasticity
on bubble motion in this study. The chosen range of parameter values will allow us to compare
results from different media. The driving frequencies used are 1 and 3.5 MHz, which are fre-
quently used in HIFU. All the bubble oscillations are solved for 30-cycle exposures.

Several theoretical criteria for the inertial cavitation threshold have appeared in the
literature, such as Tmax55000 K, Rmax /R052, etc. The different criteria will often result in dif-
ferent threshold values. We use Rmax /R052 as the threshold criterion, which generally produces
the lowest threshold for air bubbles in water. The strength of the subharmonic emission from a
single bubble is determined relative to the amplitude of the strongest frequency component,
reflecting signal-to-noise considerations in experimental detection schemes. The relative ampli-
tude is obtained by the following method: first, the R–t curve is obtained, next the radiated

pressure is calculated from psac(r,t)5 (rR/r) (2Ṙ21RR̈), where r is assumed to be a unit constant,
and then frequency components are determined by FFT. The amplitude of the subharmonic is
expressed in decibels relative to the maximum amplitude over all frequency components.

3. Results

3.1 The effect of elasticity on R–t curves

A representative example of the effect of elasticity on bubble response is shown in Fig. 1 for a
1-mm bubble oscillating under a driving pressure of 1 MPa at a frequency of 1 MHz. The vis-
cosity is fixed at 0.015 Pa s, and the elasticity is chosen as either 0.0 or 1.0 MPa. As the curves in
Fig. 1 show, not only is the amplitude of the oscillation much smaller when elasticity is included,
the presence of the elasticity also greatly reduces the nonlinearity of the oscillation. The effect of
elasticity is similarly dramatic for most parameter combinations studied.

Fig. 1. A comparison of radial responses of 1-mm bubbles driven by a 1-MPa, 1-MHz pulse for
G50 (blue line), and G51.0 MPa (red line). The viscosity is fixed at 0.015 Pa s.
1529-7853/05/6(3)/153/6/$22.506(3), July 2005 © 2005 Acoustical Society of America 153

 ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  129.237.46.99 On: Mon, 30 Nov 2015 16:30:21



Yang et al.: Acoustics Research Letters Online [DOI: 10.1121/1.1897824] Published Online 24 June 2005

154 ARLO

 Redistribution subject to
3.2 The effect of elasticity on the inertial cavitation threshold

In Fig. 2(a), predicted thresholds are shown for a driving frequency of 1 MHz, elasticity G50,
0.5, 1.0, and 1.5 MPa and viscosity m50.015 Pa s. The threshold in blood, m50.005 Pa s, is
shown for reference. The figure shows that thresholds generally increase as the elasticity in-
creases. For radii greater than the linear resonance, the threshold curves exhibit structure that
appears to be related to the fractional-order (sub)harmonic resonance minima described
previously.16 The positions of the minima appear to be determined by the elasticity of the sur-
rounding medium.

In Fig. 2(b), inertial cavitation thresholds at a driving frequency of 3.5 MHz are shown.
At this higher frequency, the increase in thresholds at larger bubble radii is much faster than that
at 1 MHz. The same resonance structures can be observed on these threshold curves, the only
difference being that the successive local minima are higher than their predecessors rather than
lower as at 1 MHz. Overall, the threshold values are greater than those at 1 MHz.

The effect of viscosity on thresholds can be observed by comparing the curves for ‘‘
G50 MPa’’ and ‘‘blood’’ (the only difference between these two is the value of viscosity). This
shows that the threshold increases with viscosity, and the curves have less structure at higher
viscosities. In some previous measurements,17 the measured threshold values are higher than
predicted in the absence of elasticity. Those measurement results may be explained by these
simulations.

3.3 The strength of subharmonic emissions

Figure 3 shows subharmonic emissions at a frequency of 1 MHz in a parameter space of driving
pressures and bubble equilibrium radii. Results for G50 and 1.0 MPa with m50.015 Pa s are
shown in Figs. 3(a) and (b), respectively; the result for blood is shown for reference (G50 and
m50.005 Pa s) in Fig. 3(c). We will define a subharmonic signal as ‘‘strong’’ when it is greater
than 230 dB because, above this level, the subharmonic signal can be easily detected by an 8-bit
instrument. As elasticity increases, the strong subharmonic signal region moves towards larger
bubble radii and higher driving pressures. Comparison with Fig. 2(a) shows that the strong sub-
harmonic signal region generally lies above the corresponding inertial cavitation threshold. Spe-
cifically, the inertial threshold coincides with the strong subharmonic emission region better for
lower values of elasticity than for higher values. This result is expected because the subharmonic
signal comes from the chaotic oscillation of a bubble, and chaotic oscillations usually occur
after bubble motion becomes strongly nonlinear. In comparing the map for blood [Fig. 3(c)] and
that for G50 MPa [Fig. 3(a)], we find that the strong subharmonic signal region becomes
smaller when the viscosity increases.

Figure 3(d) shows the same result as that in Fig. 3(b) for G51.0 MPa, but at a driving
frequency of 3.5 MHz. Compared to the results at 1 MHz, the strong subharmonic emission

Fig. 2. Predicted thresholds for inertial cavitation at (a) 1 MHz, and (b) 3.5 MHz.
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region at 3.5 MHz is much smaller and is limited to the small bubble region. This limitation to
the small bubble region probably is related to the higher harmonic resonance structure of these
bubbles. At 3.5 MHz, the bubble resonance size is smaller than that at 1 MHz (3.07 versus 10.67
mm). Again, all regions are above the inertial cavitation thresholds for the corresponding elas-
ticity.

4. Discussion and conclusions

In this paper, the Keller–Miksis equation for nonlinear bubble dynamics was combined with the
linear Voigt model for viscoelasticity. The Voigt model has the advantages of being simple and
having experimental data available for use in predicting bubble responses in tissue. At high
intensities, bubble oscillations are strongly nonlinear. This does not necessarily imply that a
nonlinear viscoelastic model is necessary to describe the bubble motion, but the suitability of
the linear model also remains unclear. Different viscoelastic models certainly will produce
different predictions. The scarce measurement data at megahertz frequencies limit the study of
‘‘correct’’ viscoelastic models. However, the present study yields predictions, and these can be
easily examined experimentally. Therefore, in future work, experiments will be conducted to
verify this model. Once verified, the model also could be used to determine values for the
properties of other materials.

Acknowledgments

The suggestions and support of the Biomedical Acoustic group at NCPA are gratefully
acknowledged. This work was supported by award number DAMD17-02-2-0014, administered

Fig. 3. Subharmonic emissions at a driving frequency of 1 MHz in a parameter space of driving
pressure and bubble equilibrium radius for (a) G50 and m50.015 Pa s; (b) G51.0 and m
50.015 Pa s; (c) blood, G50 and m50.005 Pa s; and (d) at 3.5 MHz for G51.0 and m
50.015 Pa s.
1529-7853/05/6(3)/155/6/$22.506(3), July 2005 © 2005 Acoustical Society of America 155

 ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  129.237.46.99 On: Mon, 30 Nov 2015 16:30:21



Yang et al.: Acoustics Research Letters Online [DOI: 10.1121/1.1897824] Published Online 24 June 2005

156 ARLO

 Redistribution subject to
by the U.S. Army Medical Research Acquisition activity, Fort Detrick, MD. The information
contained herein does not necessarily reflect the position or policy of the U.S. government, and
no official endorsement should be inferred.

References and links
1 H. S. Fogler and J. D. Goddard, ‘‘Collapse of spherical cavities in viscoelastic fluids,’’ Phys. Fluids 13(5), 1135–
1141 (1970).

2 I. Tanasawa and W. J. Yang, ‘‘Dynamic behavior of a gas bubble in viscoelastic liquids,’’ J. Appl. Phys. 41(1),
4526–4531 (1970).

3 A. Shima, T. Tsujino, and H. Nanjo, ‘‘Nonlinear oscillations of gas bubbles in viscoelastic fluids,’’ Ultrasonics 24,
142–147 (1986).

4 C. Kim, ‘‘Collapse of spherical bubbles in Maxwell fluids,’’ J. Non-Newtonian Fluid Mech. 55, 33–58 (1994).
5 V. N. Alekseev and S. A. Rybak, ‘‘The behavior of gas bubbles in insonated biological tissues,’’ Acoust. Phys.
44(3), 243–247 (1998).

6 J. S. Allen and R. A. Roy, ‘‘Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity,’’ J. Acoust.
Soc. Am. 107, 3167–3178 (2000).

7 J. S. Allen and R. A. Roy, ‘‘Dynamics of gas bubbles in viscoelastic fluids. II. Nonlinear viscoelasticity,’’ J. Acoust.
Soc. Am. 108, 1640–1650 (2000).

8 C. C. Church, ‘‘Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound,’’
Ultrasound Med. Biol. 28(10), 1349–1364 (2002).

9 J. B. Keller and M. J. Miksis, ‘‘Bubble oscillations of large amplitude,’’ J. Acoust. Soc. Am. 68, 628–633 (1980).
10 A. Prosperetti and A. Lezzi, ‘‘Bubble dynamics in a compressible liquid. First order theory,’’ J. Fluid Mech. 168,

457–478 (1986).
11 ANSI Technical Report, Bubble Detection and Cavitation Monitoring (American National Standards Institute,

New York, 2002), Document ANSI S1.24 TR-2002.
12 L. A. Frizzell, E. L. Carstensen, and J. F. Dyro, ‘‘Shear properties of mammalian tissues at low megahertz fre-

quencies,’’ J. Acoust. Soc. Am. 60(6), 1409–1411 (1977).
13 E. L. Madsen, H. J. Sathoff, and H. J. Zagzebski, ‘‘Ultrasonic shear wave properties of soft tissues and tissuelike

materials,’’ J. Acoust. Soc. Am. 74(5), 1346–1355 (1983).
14 X. Yang, R. A. Roy, and R. G. Holt, ‘‘Bubble dynamics and size distributions during focused ultrasound in-

sonation,’’ J. Acoust. Soc. Am. 116, 3423–3431 (2004).
15 J. S. Allen, R. A. Roy, and C. C. Church, ‘‘On the role of shear viscosity in mediating inertial cavitation from

short-pulse, megahertz-frequency ultrasound,’’ IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 743–751
(1997).

16 C. C. Church, ‘‘Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies,’’ J.
Acoust. Soc. Am. 83, 2210–2217 (1988).

17 C. K. Holland and R. E. Apfel, ‘‘An improved theory for the prediction of microcavitation thresholds,’’ IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 36, 204–208 (1989).
1529-7853/05/6(3)/156/6/$22.506(3), July 2005 © 2005 Acoustical Society of America 156

 ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  129.237.46.99 On: Mon, 30 Nov 2015 16:30:21


