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Abstract. The newly developed unifying discontinuous formulation named the correction pro-
cedure via reconstruction (CPR) for conservation laws is extended to solve the Navier-Stokes
equations for 3D mixed grids. In the current development, tetrahedrons and triangular prisms
are considered. The CPR method can unify several popular high order methods including the dis-
continuous Galerkin and the spectral volume methods into a more efficient differential form. By
selecting the solution points to coincide with the flux points, solution reconstruction can be com-
pletely avoided. Accuracy studies confirmed that the optimal order of accuracy can be achieved
with the method. Several benchmark test cases are computed by solving the Euler and compress-
ible Navier-Stokes equations to demonstrate its performance.
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1. Introduction
Advantages of high-order methods are well recognized in the computational fluid dynamics (CFD)
community especially for aeroacoustic noise predictions, vortex dominated flows, large eddy sim-
ulation and direct numerical simulation (DNS) of turbulent flows. Since the truncation error of a
high-order method decreases more rapidly than that of a lower order method when the solution is
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sufficiently smooth, the more stringent the accuracy requirement is, the more efficient a high-order
method becomes in computational cost. For the practical use in industries, lower order (1st or 2nd)
unstructured grid methods are usually employed for the reason of superior geometrical flexibility
and robustness. However, these methods are likely too dissipative to capture small vortex struc-
tures in turbulent flows. Also, as is reported in the Drag Prediction Workshop (DPW), it will be
prohibitively expensive to reach the grid converged solution even in the steady RANS simulation
for a relatively simple configuration due to the slow convergence rate. Increased prediction accu-
racy is often required for many aerodynamic problems with both complex physics and geometry,
such as helicopter blade vortex interactions, flow over high lift devices, and aero-acoustic noise
generated by the landing gear.

In the past decades, there has been significant progress in developing high-order methods ca-
pable of solving the Navier-Stokes (NS) equations on unstructured grids. For compressible flow
computations in aerospace applications, the discontinuous Galerkin (DG) method [1, 2, 4, 5, 7, 28,
30, 42] has attracted intensive interest. One particular feature of the DG method is the discontinu-
ous solution space of high-order approximations for each element, which allows the scheme to be
very flexible in dealing with complex configuration and in accommodating solution based adap-
tations. Other methods assuming element-wise discontinuous solution are staggered-grid (SG)
multi-domain spectral method [20], spectral volume (SV) [12, 14, 24, 39, 43, 46, 47, 48] and spec-
tral difference (SD) [22, 23, 27, 40] methods. Another notable feature that is common among these
methods is the use of one of the Riemann solvers [18, 21, 29, 31, 32] to compute unique fluxes at
element interfaces to incorporate “upwinding” characteristics of wave propagation, similar to the
Godunov type finite volume method [11, 41]. The main difference among these methods lies in
how the governing equations are discretized and the degrees-of-freedom (DOFs) are chosen and
updated. The DG method is based on the weighted residual form. Various types of DG schemes are
derived with different choice of DOFs. Depending on how the DOFs are defined, DG schemes can
be further divided into modal and nodal approaches. The SV method is discretized in the integral
form similar to the finite volume method and the DOFs are always the sub-cell or control volume
(CV) averages. The SG/SD method is based on the differential form without any integration and
the DOFs are chosen as the nodal values within each element. More comprehensive reviews of
these methods are given in [44].

Recently, a novel formulation named correction procedure via reconstruction (CPR) was de-
veloped by Huynh [16, 17] for 1D conservation laws, and extended to simplex and hybrid meshes
by Wang and Gao [45]. The CPR method is based on a nodal differential form, with an element-
wise discontinuous polynomial solution space. The solution polynomial is interpolated from the
solutions at a set of solution points. This formulation has some remarkable properties. The frame-
work is easy to understand, efficient to implement and recovers several known methods such as the
DG, SG or the SV/SD methods. Furthermore, by choosing the solution points to coincide with the
flux points, the reconstruction of solution polynomials to calculate the residual can be completely
avoided. The DG scheme derived through the CPR framework is probably the simplest and most
efficient amongst all DG formulations since explicit integrations are avoided. In a recent study [9],
the CPR method has been extended to the Navier-Stokes equations on 2D mixed meshes. These
successful developments laid a solid foundation for its efficient implementation and demonstration
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on arbitrary grids in 3D.
Hybrid elements such as hex, prism, pyramid and tetrahedron will provide great geometrical

flexibility for practical problems in 3D. In particular, for high Reynolds number flows in aero-
dynamic applications, prismatic cells have the advantages in accuracy and computational cost to
resolve boundary layers near the wall. There have been several attempts to develop the DG method
on arbitrary grid elements. In [33] different types of elements such as hex, prism and pyramid
are projected onto a reference cube using collapsed Cartesian coordinates and hierarchical basis
functions over the cube are used. Luo et.al. [25] presented a different approach based on the
Taylor series expansion at the center of arbitrary element. Gassner et.al. [10] used polymorphic
nodal element in the modal based formulation to reduce the cost of numerical integrations. How-
ever one obvious shortcoming of these formulations is the high computational cost of the surface
and volume integrations coming from the weighted residual formulation. Another difficulty is the
treatment of curvilinear boundary elements. In the CPR method, curvilinear boundary elements
are dealt with the same mapping technique as finite element method (FEM). The Jacobian and met-
rics of the transformation matrix are stored only at the solution points and there is no additional
implementation for a surface or volume integration. The simple formulation of the CPR method
is expected to alleviate the computational costs and facilitate the efficient treatment of curved wall
boundaries.

In the present study, we develop the CPR for solving the Euler and Navier-Stokes equations
on 3D mixed meshes. Tetrahedral and prismatic elements are considered in the present study with
the intention to resolve viscous boundary layer flows efficiently. The remainder of this article is
organized as follows. The basic formulation of the CPR method is described in the next section.
In Section 3, The discretization of the compressible Navier-Stokes equations is derived in the
CPR framework. Subsequently, we discuss how to implement the CPR method efficiently in each
particular element with curvilinear geometry in Section 4. Section 5 presents the computational
results for several benchmark problems, including accuracy studies on mixed unstructured grids.
Conclusions for the present study and possible future works are summarized in Section 6.

2. Review of the Correction Procedure via Reconstruction For-
mulation

We first review the CPR formulation for a hyperbolic conservation law, which is written as

∂Q

∂t
+ ∇⃗ ⋅ F⃗ (Q) = 0, (2.1)

with suitable initial and boundary conditions. Q is the vector of conserved variables, and F⃗ is the
flux vector. Assume that the computational domain is discretized into N non-overlapping elements
{Vi}. The weighted residual form of Eq. (2.1) on element Vi can be derived through multiplying
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Eq. (2.1) by an arbitrary weighting or test function W and integrating over Vi,
∫

Vi

∂Q

∂t
WdV +

∫

∂Vi

WF⃗ (Q) ⋅ n⃗dS −
∫

Vi

∇⃗W ⋅ F⃗ (Q)dV = 0. (2.2)

Let Qℎ
i be an approximate solution to Q on element Vi. We assume that the solution belongs to

the space of polynomials of degree k or less, i.e., Qℎ
i ∈ P k(Vi), within each element without

continuity requirement across element interfaces. Then, we require that the numerical solution Qℎ
i

must satisfy Eq. (2.2), i.e.,
∫

Vi

∂Qℎ
i

∂t
WdV +

∫

∂Vi

WF⃗ (Qℎ
i ) ⋅ n⃗dS −

∫

Vi

∇⃗W ⋅ F⃗ (Qℎ
i )dV = 0. (2.3)

Because the approximated solution is in general discontinuous across element interfaces, the fluxes
at the interfaces are not well defined. To evaluate a unique flux and also to provide element cou-
pling, a common Riemann flux is used to replace the normal flux, i.e.,

F n(Qℎ
i ) ≡ F⃗ (Qℎ

i ) ⋅ n⃗ ≈ F n
com(Q

ℎ
i , Q

ℎ
i+, n⃗), (2.4)

where Qℎ
i+ is the solution from outside of the current element Vi. Thus, Eq. (2.3) becomes

∫

Vi

∂Qℎ
i

∂t
WdV +

∫

∂Vi

WF n
comdS −

∫

Vi

∇⃗W ⋅ F⃗ (Qℎ
i )dV = 0. (2.5)

If the space of W is chosen to be the same as the solution space, Eq. (2.5) is equivalent to the
DG formulation. For the sake of a simpler formulation, we wish to eliminate the test function.
Applying integration by parts to the last term of Eq. (2.5), we obtain

∫

Vi

∂Qℎ
i

∂t
WdV +

∫

Vi

W ∇⃗ ⋅ F⃗ (Qℎ
i )dV +

∫

∂Vi

W
[
F n
com − F n(Qℎ

i )
]
dS = 0. (2.6)

The last term of Eq. (2.6) can be viewed as a penalty term, i.e., penalizing the normal flux dif-
ferences [F n] = F n

com − F n(Qℎ
i ). Let us introduce a “correction field” ±i ∈ P k(Vi), which is

determined from the following relation defining the so-called “lifting operator” for [F n].
∫

Vi

W±idV =

∫

∂Vi

W [F n]dS. (2.7)

Substituting Eq. (2.7) into Eq. (2.6), we obtain
∫

Vi

[
∂Qℎ

i

∂t
+ ∇⃗ ⋅ F⃗ (Qℎ

i ) + ±i

]
WdV = 0. (2.8)

In the present study, in order to simplify the derivation we also approximate the flux divergence by
polynomials of degree k or less. Denote Π(∇⃗ ⋅ F⃗ (Qℎ

i )) a projection of ∇⃗ ⋅ F⃗ (Qℎ
i ) to P k. If W is

selected such that a unique solution exists, Eq. (2.8) is equivalent to

∂Qℎ
i

∂t
+Π

(
∇⃗ ⋅ F⃗ (Qℎ

i )
)
+ ±i = 0. (2.9)
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i.e., Eq. (2.9) is satisfied everywhere in element Vi. With the definition of a correction field, we
have successfully reduced the weighted residual formulation to an equivalent simple differential
form. Even though we need to solve Eq. (2.7) through a volume and surface integral to define the
correction ±i, we can circumvent the numerical quadratures in the DG algorithm which must be
exact for degree 2k + 1 and 2k polynomials for the surface and volume integral.

To find the approximate solution Qℎ
i , let the DOFs be the solution values at a set of points

{r⃗i,j}, named solution points (SPs). Then Eq. (2.9) must hold at the SPs, i.e.,

∂Qℎ
i,j

∂t
+Πj

(
∇⃗ ⋅ F⃗ (Qℎ

i )
)
+ ±i,j = 0, (2.10)

where Πj

(
∇⃗ ⋅ F⃗ (Qℎ

i )
)

denotes the values of Π
(
∇⃗ ⋅ F⃗ (Qℎ

i )
)

at SP j. Once the location of SPs is

defined, Qℎ
i and ±i can be expressed in terms of values at SPs using a Lagrange interpolation, i.e.,

Qℎ
i =

∑
j

LSP
j (r⃗i,j)Q

ℎ
i,j, (2.11)

±i =
∑
j

LSP
j (r⃗i,j) ±i,j, (2.12)

where LSP ∈ P k are the Lagrange polynomials based on the location of SPs.
To compute ±i,j , we approximate (for nonlinear conservation laws) the normal flux difference

[F n] in the RHS of Eq. (2.7) with a degree k polynomial on each interface. The interpolation can
be determined by defining flux points (FPs) as,

[F n]f ≈
∑

l

LFP
l (r⃗f,l) [F

n]f,l, (2.13)

where f is an face index, and l is the FP index, and LFP
l is the Lagrange interpolation polynomial

based on the FPs in a local interface coordinate. Then, if the locations of the solution and flux
points are specified, ±i,j can be uniquely defined by solving the linear system derived from Eq.
(2.7). For simplex elements with straight faces, it can be expressed in the following formula

±i,j =
1

∣Vi∣
∑

f∈∂Vi

∑

l

®j,f,l[F
n]f,lSf , (2.14)

where ®j,f,l are constant coefficients independent of the solution and the shape of the simplex.

Next, we focus on how to compute Πj

(
∇⃗ ⋅ F⃗ (Qℎ

i )
)

. Two approaches are developed in [45].
One is the Lagrange polynomial (LP) approach which approximate the (nonlinear) flux vecter with
degree k interpolation polynomials

F⃗ (Qℎ
i ) ≈

∑
j

LSP
j (r⃗)F⃗ (Qℎ

i,j), (2.15)
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Then, the projection of the flux divergence is computed as

Π
(
∇⃗ ⋅ F⃗ (Qℎ

i )
)
=

∑
j

∇⃗LSP
j ⋅ F⃗ (Qℎ

i,j). (2.16)

In this case, Π
(
∇⃗ ⋅ F⃗ (Qℎ

i )
)

is a degree k − 1 polynomial, which also belongs to P k. Numerical
experiments indicate that there is a slight loss of accuracy with the LP approach, but it is fully
conservative [45]. Another is the chain rule (CR) approach. The divergence of the flux vector can
be computed analytically given the approximate solution using the chain rule, i.e.,

∇⃗ ⋅ F⃗ (Qℎ
i,j) =

∂F⃗ (Qℎ
i,j)

∂Q
⋅ ∇Qℎ

i,j, (2.17)

where ∂F⃗
∂Q

is composed of the flux Jacobian matrices, which can be computed analytically. Then
the projection is approximated by the Lagrange polynomial of degree k using the flux vector di-
vergence at the solution points, i.e.,

Π
(
∇⃗ ⋅ F⃗ (Qℎ

i )
)
≈

∑
j

LSP
j (r⃗)∇⃗ ⋅ F⃗ (Qℎ

i,j). (2.18)

Numerical experiments indicate that the CR approach is much more accurate than the LP approach,
at the expense of full conservation [45].

Substituting Eq. (2.14) into Eq. (2.10) we obtain the following equation

∂Qℎ
i,j

∂t
+Πj

(
∇⃗ ⋅ F⃗ (Qℎ

i )
)
+

1

∣Vi∣
∑

f∈∂Vi

∑

l

®j,f,l[F
n]f,lSf = 0. (2.19)

One can clearly see that this is a collocation-like formulation with penalty-like term that comes
from the element-wise correction polynomial to provide the coupling between elements. It can
be shown that the location of SPs does not affect the numerical scheme for linear conservation
laws [40, 16]. For efficiency, the solution points are always chosen to coincide with the flux
points. Therefore, no data interpolation is needed for flux calculation, which further reduces the
computational cost. Any convergent nodal sets with enough points at the element interface are
good candidates, e.g., those found in [3, 15, 49].

Finally we want to make a remark on the relationship between the CPR formulation and other
methods including DG, SV and SD methods. Starting from the weighted residual form of the
governing equations, different formulations can be derived depending on the weighting function.
For example, a nodal DG formulation is obtained by choosing weighting functions to be Lagrange
polynomials, and a SV formulation is obtained by defining weighting functions as piecewise con-
stant at the sub-cells. As a result, the only difference between those schemes appears in the cor-
rection coefficients. Note that there are certainly differences how to discretize the spatial terms
between the CPR using the DG coefficients (CPR-DG) and the nodal DG FEM. The same is true
for the SV method. Nevertheless, it was numerically confirmed that the CPR-DG or CPR-SV is
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equivalent to the DG or SV method at least for linear conservation laws in [45]. In [45], it was also
shown that the resulting CPR scheme is fully conservative by using the correction coefficients for
the DG, SV and SD scheme if the flux divergence term is evaluated with the LP approach. In this
study, we choose the weighting function to be one of the Lagrange polynomials based on the SPs,
i.e., Eq. (2.9) is identical to the DG formulation.

3. Discretization of the Navier-Stokes Equations

3.1. Governing Equations
The 3D compressible Navier-Stokes equations can be written as a system of partial differential
equations in conservation form:

∂Q

∂t
+ ∇⃗ ⋅

(
F⃗c(Q)− F⃗v(Q, ∇⃗Q)

)
= 0, (3.1)

where Q, F⃗c = (F x
c , F

y
c , F

z
c ) and F⃗v = (F x

v , F
y
v , F

z
v ) denote the conservative state vector, the

inviscid and the viscous flux vectors, respectively, and are given by

Q =

⎛
⎜⎜⎜⎜⎝

½
½u
½v
½w
e

⎞
⎟⎟⎟⎟⎠

, F x
c =

⎛
⎜⎜⎜⎜⎝

½u
½u2 + p
½uv
½uw

(e+ p)u

⎞
⎟⎟⎟⎟⎠

, F y
c =

⎛
⎜⎜⎜⎜⎝

½v
½uv

½v2 + p
½vw

(e+ p)v

⎞
⎟⎟⎟⎟⎠

, F z
c =

⎛
⎜⎜⎜⎜⎝

½w
½uw
½vw

½w2 + p
(e+ p)w

⎞
⎟⎟⎟⎟⎠

. (3.2)

F x
v =

⎛
⎜⎜⎜⎜⎝

0
¿xx
¿xy
¿xz

u¿xx + v¿xy + w¿xz − qx

⎞
⎟⎟⎟⎟⎠

, F y
v =

⎛
⎜⎜⎜⎜⎝

0
¿yx
¿yy
¿yz

u¿yx + v¿yy + w¿yz − qy

⎞
⎟⎟⎟⎟⎠

,

F z
v =

⎛
⎜⎜⎜⎜⎝

0
¿zx
¿zy
¿zz

u¿zx + v¿zy + w¿zz − qz

⎞
⎟⎟⎟⎟⎠

. (3.3)

where ½ is the density, v⃗ = (u, v, w) the velocity vector, p the pressure, e the total energy per unit
volume. The viscous stress tensor can be represented as

¿ = ¹

(
∇⃗v⃗ + (∇⃗v⃗)T − 2

3
(∇⃗ ⋅ v⃗)I

)
. (3.4)

34



T. Haga et al. A High-Order Unifying Discontinuous Formulation on 3D Mixed Grids

where ¹ is the molecular viscosity coefficient, I is the unit tensor. The heat flux is given as

q⃗ = −cp
¹

Pr
∇⃗T. (3.5)

Here, cp is the specific heat capacity at constant pressure and T is the temperature. The Prandtl
number Pr is assumed to be a constant of 0.72 in this study. For a perfect gas, the pressure is
related to the total energy e by

e =
p

° − 1
+

1

2
½
(
u2 + v2 + w2

)
. (3.6)

The specific heat ratio ° is set to be a constant, 1.4 for air. The computations for solving the Euler
equations are performed by omitting the viscous flux.

3.2. CPR Formulation of the Navier-Stokes Equations
In order to discretize the Navier-Stokes equations, we follow a mixed formulation that is commonly
used for the DG method [2, 6]. By introducing a new variable R⃗, Eq. (3.1) is rewritten in a first
order system as

∂Q

∂t
+ ∇⃗ ⋅

(
F⃗c(Q)− F⃗v(Q, R⃗)

)
= 0, (3.7)

R⃗ = ∇⃗Q. (3.8)

According to the CPR formulation by assuming Qℎ
i ∈ P k, R⃗ℎ

i ∈ (P k, P k, P k) on discretized
elements {Vi} , we obtain

∂Qℎ
i,j

∂t
+Πj

(
∇⃗ ⋅ F⃗c(Q

ℎ
i )
)
− Πv

j

(
∇⃗ ⋅ F⃗v(Q

ℎ
i , R⃗

ℎ
i )
)
+

1

∣Vi∣
∑

f∈∂Vi

∑

l

®j,f,l ([F
n
c ]f,l − [F n

v ]f,l)Sf .

(3.9)

R⃗ℎ
i,j = (∇⃗Qℎ

i )j +
1

∣Vi∣
∑

f∈∂Vi

∑

l

®j,f,l[Q]f,ln⃗fSf , (3.10)

where [F n
c ] ≡ F n

c,com − F n
c (Q

ℎ
i , n⃗), [F

n
v ] ≡ F n

v,com − F n
v (Q

ℎ
i , R⃗

ℎ
i , n⃗) and [Q] ≡ Qℎ

com −Qℎ
i .

3.2.1. Inviscid Flux Calculation

We need to discretize the projection of the inviscid flux divergence Πj

(
∇⃗ ⋅ F⃗c(Q

ℎ
i )
)

and the differ-
ence of the normal inviscid flux [F n

c ] in the correction term in Eq. (3.9). To compute the inviscid
flux divergence we employed the CR approach in the present study. The common inviscid flux
F n
c,com can be obtained with any Riemann solver. We used the Roe flux [31] for all the cases.
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3.2.2. Viscous Flux Calculation

In the present study, we employ the BR2 scheme [2] to discretize the viscous flux. In Eq. (3.10),
the common solution Qℎ

com is simply the average of the solutions at both sides of f . The viscous
flux vector at the solution points are evaluated by F⃗v(Q

ℎ
i , R⃗

ℎ
i ). Then the projection of the viscous

flux divergence Πv
j

(
∇⃗ ⋅ F⃗v(Q

ℎ
i , R⃗

ℎ
i )
)

is obtained through the LP approach instead of the CR ap-

proach. In the correction term, the common viscous flux F n
v,com(Q

ℎ
com, ∇⃗Qℎ

com, n⃗) also needs to be
determined. Besides the common solution, we also need to define a common gradient ∇⃗Qℎ

com on
face f . The common gradient at a flux point l on f is evaluated as

∇⃗Qℎ
com

∣∣∣
f,l

=
1

2
(∇⃗Q−

f,l + r⃗−f,l + ∇⃗Q+
f,l + r⃗+f,l), (3.11)

where ∇⃗Q−
f,l and ∇⃗Q+

f,l are the gradients of the solution from the left and right cells. r⃗−f,l and r⃗+f,l
are the local lifting corrections to the gradients only due to the common solution on face f

r⃗±f,l =
1

∣V ±∣
∑
m=1

®l,f,m[Q]f,m (∓n⃗f )Sf , (3.12)

where m is the index for the flux points on f and n⃗f is the unit normal vector directing from left to
right. Note that there is no summation over all faces of the element in Eq. (3.12) in order to assure
that the BR2 scheme maintains a compact face neighbor stencil.

4. Discretization on Mixed Grids with Curved Boundary
It can be observed that Eq. (2.9) is valid for arbitrary types of elements besides triangles and
tetrahedrons. The current development for 3D hybrid meshes accommodates two kinds of element
shapes, i.e., tetrahedron and triangular prism. Other types of element such as hexahedron and
pyramid will be developed in the near future. The use of prismatic cells in addition to tetrahedral
cells has the advantages in both accuracy and computational costs to resolve boundary layers near
solid walls. In order to achieve an efficient implementation, all elements are transformed from
the physical domain (x, y, z) into a corresponding standard element in the computational domain
(», ´, ³) as shown in Fig. 1. Here we consider the transformations for the elements with curved
sides (faces and edges). The discretization for the curved elements is conducted in the same way
as the straight sided elements by applying the CPR formulation in the standard elements. In the
present study, a quadratic triangular face is employed to represent curved wall boundaries. For the
sake of computational efficiency, the quadratic representation is adopted for only one of the faces
of tetrahedra attached to the wall in inviscid flows, and for only two triangular faces of prisms
used in the thin layers of prism cells to assure the quality of the element shape especially in high
Reynolds number flows.
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Based on a set of locations of nodes defining the shape of element, a set of shape functions can
be obtained [50]. Once the shape functions Mi(», ´, ³) are given, the transformation can be written
as ⎡

⎣
x
y
z

⎤
⎦ =

K∑
i=1

Mi(», ´, ³)

⎡
⎣

xi

yi
zi

⎤
⎦ , (4.1)

where K is the number of points used to define the physical element, (xi, yi, zi) are the Cartesian
coordinates of those points. For the transformation given in Eq. (4.1), the Jacobian matrix J takes
the following form

J =
∂(x, y, z)

∂(», ´, ³)
=

⎡
⎣

x» x´ x³

y» y´ y³
z» z´ z³

⎤
⎦ . (4.2)

For a non-singular transformation, its inverse transformation must also exist, and the Jacobian
matrices are related to each other according to

∂(», ´, ³)

∂(x, y, z)
=

⎡
⎣

»x »y »z
´x ´y ´z
³x ³y ³z

⎤
⎦ = J−1. (4.3)

The governing equations in the physical domain are then transformed into the computational do-
main (standard element), and the transformed equations take the following form

∂Q̃

∂t
+

∂F »

∂»
+

∂F ´

∂´
+

∂F ³

∂³
= 0, (4.4)

where
Q̃ = ∣J ∣Q
F » = ∣J ∣(»xF x + »yF

y + »zF
z)

F ´ = ∣J ∣(´xF x + ´yF
y + ´zF

z)

F ³ = ∣J ∣(³xF x + ³yF
y + ³zF

z).

(4.5)

Let S⃗» = ∣J ∣∇⃗», S⃗´ = ∣J ∣∇⃗´ and S⃗³ = ∣J ∣∇⃗³ . Then we have F » = F⃗ ⋅ S⃗», F ´ = F⃗ ⋅ S⃗´ and
F ³ = F⃗ ⋅ S⃗³ . In our implementation, J , S⃗», S⃗´ and S⃗³ are stored at the solution points. Note that
here we consider the Euler equations as the governing equations for brevity’s sake. Extending the
following discretization to the Navier-Stokes equations is straightforward.

4.1. Discretization on a Standard Tetrahedron
On a standard tetrahedron, the CPR formulation in Eq. (2.19) can be rewritten as

∂Q̃ℎ
i,j

∂t
+Πj

(
∇⃗(») ⋅ F⃗ (»)(Q̃ℎ

i )
)
+

1

∣V (»)∣
∑

f∈∂V (»)

∑

l

®j,f,l[F
n,(»)]f,lS

(»)
f = 0, (4.6)
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Figure 1: Transformation of curve boundary tetrahedral and prismatic cells to the standard ele-
ments.

where superscript (») means the variables or operations evaluated on the computational domain.
For example, [F n,(»)] are the normal jumps of the transformed fluxes across the faces of the standard
element. The transformed normal flux can be expressed in terms of the flux in the physical space
as

F n,(»)
∣∣
f,l

= F⃗ (»)
∣∣∣
f,l

⋅ n⃗(»)
∣∣
f

= F⃗
∣∣∣
f,l

⋅ S⃗»

∣∣∣
f,l

n»
∣∣
f
+ F⃗

∣∣∣
f,l

⋅ S⃗´

∣∣∣
f,l

n´∣f + F⃗
∣∣∣
f,l

⋅ S⃗³

∣∣∣
f,l

n³
∣∣
f

= F⃗
∣∣∣
f,l

⋅ S⃗n
∣∣∣
f,l

= F n∣f,l ∣S⃗n∣
∣∣∣
f,l
,

(4.7)

where n⃗(») = (n», n´, n³) is a unit normal vector on a straight face of the standard element, and
S⃗n is a normal vector on a face in the physical space defined as S⃗n = S⃗»n

» + S⃗´n
´ + S⃗³n

³ . Note
that in solving Eq. (4.4), Q̃ = ∣J ∣Q are the solution unknowns, and are assumed to be degree k
polynomials in the computational domain instead of Q. As a result, the derivatives of Q should be
calculated in the following way,

∂Q

∂»
=

1

∣J ∣
(
∂(∣J ∣Q)

∂»
− ∂∣J ∣

∂»
Q

)
,
∂Q

∂´
=

1

∣J ∣
(
∂(∣J ∣Q)

∂´
− ∂∣J ∣

∂´
Q

)
,

∂Q

∂³
=

1

∣J ∣
(
∂(∣J ∣Q)

∂³
− ∂∣J ∣

∂³
Q

)
. (4.8)

In 3D, to construct a complete polynomial of degree k, at least k(k + 1)(k + 2)/3! SPs need
to be chosen. In order to achieve the most efficient implementation, SPs on edges are chosen
to be the Legendre-Gauss Lobatto (LGL) points. For 4th- or higher order schemes, nodes inside
the boundary triangle are chosen from [15]. For 5th- or higher order schemes, nodes inside the
tetrahedron are chosen from [49]. The nodal set of the 4th-order CPR scheme is shown in Fig. 2.
Note that the flux difference at a flux point corrects all solution points as shown in Eq. (4.6).
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4.2. Discretization on Standard Prism
For a standard triangular prism, the solution polynomial can be expressed as a tensor product of a
1D and 2D Lagrange polynomial, i.e.,

Q̃ℎ
i (», ´, ³) =

∑
m

∑
j

Q̃ℎ
i;j,mL

SP
j (», ´)LSP

m (³), (4.9)

where Q̃ℎ
i;j,m are the state variables at the solution point (j,m), with j the index in » − ´ plane

and m the index in ³ direction, LSP
j (», ´) is a 2D Lagrange polynomial in the standard triangle

and LSP
m (³) is a 1D Lagrange polynomial. Figure 3 shows the locations of the solution points

for k = 3. The nodal sets on the edge and the triangle are chosen in the same manner as on the
tetrahedral element.

The CPR formulation for a standard prism is

∂Q̃ℎ
i;j,m

∂t
+Πj,m

(
∇(») ⋅ F⃗ (»)(Q̃ℎ

i )
)

+
1

∣V (»)
Tri∣

∑

f∈∂VTri

∑

l

®j,f,l[F
n,(»)(»f,l, ´f,l, ³m)]S

(»)
f

− [F ³
com(»j, ´j,−1)− F ³(»j, ´j,−1)]g

′
L(³m)

+ [F ³
com(»j, ´j, 1)− F ³(»j, ´j, 1)]g

′
R(³m) = 0,

(4.10)

The correction process is done in a decoupled manner. The third term is the correction of the
flux components in » and ´ directions, which is computed on a plane with fixed ³ = ³m. This
is nothing but the correction used in the 2D CPR method for a triangular element. In Eq. (4.10),
VTri is the area of the standard triangle, Sf the length of the edge f and l the index for flux points
on f . Note that, [F n,(»)(»f,l, ´f,l, ³m)] corrects only the solution points on the triangle with fixed
m instead of all solution points in the element as shown in Fig. 3(a). The last two terms denote
the correction in the ³ direction, which is evaluated with the 1D CPR method [16]. gL and gR
are the correction functions for the left and right end points of the segment. The flux difference
at an end point corrects only the solution points on the segment with fixed j as shown in Fig.
3(b). For prism cells, the number of solution points corrected by a flux point is smaller than the
one for tetrahedral cells due to the decoupled correction procedure. Hence, the method for prisms
is more efficient per DOF than for tetrahedrons. This decoupled procedure also facilitates the
implementation employing different degrees of polynomials in » − ´ and ³ directions to adapt
to flow features. An attempt to employ higher order polynomials in the wall normal direction to
resolve the boundary layer with coarser prism cells is shown in a later section.

In order to simplify the implementation for mixed grids, we assume the polynomial degree k to
be the same for both the tetrahedral and prismatic elements. Furthermore, the flux points along the
element interfaces are required to match each other. In the present implementation, the flux points
are selected to be the LGL points at each edge for all tetrahedral and prismatic elements.
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Figure 2: Solution points in the standard tetrahedral cell for degree k = 3 polynomial (only points
on the visible faces are shown).

5. Numerical Results

5.1. Test Cases for the Euler Equations
5.1.1. Accuracy Study with Vortex Evolution Problem

To assess the order of accuracy of the developed method, the propagation of an isentropic vortex
is computed with successive grid refinement. This is an idealized problem for the Euler equations
in 2D used by Shu [35]. Here we consider simple extension of this problem to the 3D domain
[0, 10] × [0, 10] × [0, 10]. The mean flow is (½, u, v, w, p) = (1, 1, 1, 0, 1). An isotropic vortex
is then added to the mean flow, i.e., with perturbations in u, v and temperature T = p/½, and no
perturbation in entropy S = p/½°:

(±u, ±v, ±w) =
²

2¼
e0.5(1−r̄2)(−ȳ, x̄, 0),

±T = −(° − 1)²2

8°¼2
e1−r̄2 , ±S = 0,

(5.1)

where r̄2 = x̄2 + ȳ2, x̄ = x − 5, ȳ = y − 5, and the vortex strength ² = 5. If the computational
domain is infinitely big, the exact solution of the Euler equations with the above initial condition
is just the passive convection of the isentropic vortex with the mean velocity (1, 1, 0). In the
numerical simulation, we impose the exact solution on the boundaries.

The computations are carried out until t = 2 on two different types of grids, tetrahedral meshes
and prismatic meshes. In generating computational grids, first an equidistant Cartesian grid of
N × N × N cells is generated for the cubic domain and each cell is further divided into six
tetrahedrons or two prisms. Three different grids are employed with N = 10, 20 and 40 for each
type of cell. For the time integration, the 3rd-order Runge-Kutta explicit scheme [34] is used. Even
though the order of accuracy of the temporal scheme is less than the order for the spatial scheme,
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Figure 3: Solution points in the standard prism cell for degree k = 3 polynomial (only points on
the visible faces are shown). (a) shows the correction in the » and ´ derections. (b) shows the
correcgtion in the ³ direction.

if we use a small enough timestep which does not affect the numerical solution, we can still assess
the order of convergence of the spatial operator. In this study, we fixed the timestep to 0.002 for
all polynomial degree k and grids. The timestep corresponds to the CFL number of 0.138 in the
finest prism grid. We confirmed that using a smaller timestep than 0.002 almost did not change the
computed solutions. The L1 and L∞ norms of density error at the solution points are presented
for tetrahedral grids and prismatic grids in Tables 1 and 2, respectively. The CPR-DG method
performs very well on both types of grid, achieving the nearly optimal order of accuracy up to
6th-order in tetrahedral meshes and 4th-order in prismatic meshes.

5.1.2. Subsonic Inviscid Flow over a Sphere

In order to verify the developed Euler solver on a mixed mesh with curved wall boundary, a typical
steady test case of a subsonic flow around a sphere is considered. The freestream Mach number
is M = 0.3. Two computational grids are employed. One is a purely prismatic grid and the
other is a mixed grid shown in Figs. 4(a) and 5(a). The mixed grid is composed of five layers of
prismatic cells around the quarter sphere and isotropic tetrahedral cells for the remaining region.
To preserve the geometry of the sphere well with a relatively coarse mesh, each curved boundary
face is represented with a piecewise quadratic polynomial.

The computed density contours obtained with the 2nd- to 4th-order schemes are shown at
Figs. 4(b)-(d) and Figs. 5(b)-(d). In both grids, the trends of improvement in the solution by
increasing the order of discretization are similar. The computed density contours using the 4th
order scheme appear to be perfectly symmetric without visible numerical dissipation and also quite
smooth across the interface between prismatic and tetrahedral cells. In this case, a block LU-SGS
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Table 1: Test of CPR-DG for vortex propagation problem (tetrahedral grids).
Polynomial degree k Grid size L1 error L1 order L∞ error L∞ order

1
10x10x10x6 5.23e-3 - 9.56e-2 -
20x20x20x6 1.42e-3 1.88 3.57e-2 1.42
40x40x40x6 3.43e-4 2.05 9.76e-3 1.87

2
10x10x10x6 1.68e-3 - 6.06e-2 -
20x20x20x6 2.61e-4 2.69 1.19e-2 2.35
40x40x40x6 3.77e-5 2.79 1.51e-3 2.98

3
10x10x10x6 4.00e-4 - 2.05e-2 -
20x20x20x6 2.44e-5 4.04 1.67e-3 3.62
40x40x40x6 1.33e-6 4.20 1.00e-4 4.06

5
10x10x10x6 5.66e-5 - 2.34e-3 -
20x20x20x6 9.70e-7 5.87 7.78e-5 4.91

Table 2: Test of CPR-DG for vortex propagation problem (prismatic grids).
Polynomial degree k Grid size L1 error L1 order L∞ error L∞ order

1
10x10x10x2 7.37e-3 - 1.34e-1 -
20x20x20x2 2.12e-3 1.80 4.85e-2 1.47
40x40x40x2 5.19e-4 2.03 1.19e-2 2.03

2
10x10x10x2 2.17e-3 - 4.77e-2 -
20x20x20x2 2.67e-4 3.02 8.65e-3 2.46
40x40x40x2 2.88e-5 3.21 1.04e-3 3.06

3
10x10x10x2 4.36e-4 - 1.54e-2 -
20x20x20x2 2.70e-5 4.01 1.43e-3 3.43
40x40x40x2 1.64e-6 4.04 9.38e-5 3.93

implicit scheme [36, 13] was used to obtain steady solutions efficiently, and all the cases converged
to machine zero.

5.2. Test Cases for the Navier-Stokes Equations
5.2.1. Accuracy Study with Couette Flow Problem

A laminar flow between two parallel walls is considered here to verify the discretization of viscous
effects. The distance between the walls is set to H = 10 and the computational domain is chosen
to be the cube of [0, 10]× [0, 10]× [0, 10]. The speed of the moving upper wall (y = 10) in the x
direction is U = 0.3. The temperatures of the lower wall (y = 0) and the upper one are T0 = 0.8
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Figure 4: Prismatic grid and computed density contours for the inviscid flow around a sphere.
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Figure 5: Mixed grid (tetrahedrons and prisms) and computed density contours for the inviscid
flow around a sphere.
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and T1 = 0.85 respectively. The analytical solution for this case is

(u, v, w) = (
y

H
U, 0, 0),

T = T0 +
y

H
(T1 − T0) +

¹U2

2k

y

H

(
1− y

H

)
,

p = p0, ½ =
°p

T
,

(5.2)

where ° is specific heat ratio and k is thermal conductivity. The static pressure is set to p0 = 1/°
and the viscosity of the fluid is assumed to be ¹ = 0.01. The flow variables at boundary faces are
simply fixed to the exact solution.

Three successively refined prism grids are generated with N = 2, 4 and 8 in the same way as in
the vortex propagation case. Each cube is split into two prisms by the plane which is perpendicular
to the y = 0 plane. The error norms for the BR2 formulation are presented in Table 3. The density
is used to evaluate the error. It is shown that nearly optimal order of accuracy is achieved for the
2nd- to 4th-order schemes.

Table 3: Test of CPR-DG (BR2) for Couette flow problem (prismatic grids).
Polynomial degree k Grid size L1 error L1 order L∞ error L∞ order

1
2x2x2x2 5.55e-4 - 2.40e-3 -
4x4x4x2 1.19e-4 2.22 4.00e-4 2.59
8x8x8x2 3.11e-5 1.94 1.16e-4 1.79

2
2x2x2x2 8.17e-6 - 2.09e-5 -
4x4x4x2 1.29e-6 2.67 3.37e-6 2.63
8x8x8x2 1.68e-7 2.94 5.49e-7 2.62

3
2x2x2x2 2.62e-7 - 8.20e-7 -
4x4x4x2 2.03e-8 3.69 5.70e-8 3.85
8x8x8x2 1.39e-9 3.87 4.21e-9 3.76

5.2.2. Laminar Boundary Layer over a Flat Plate

The laminar boundary layer over a flat plate is then computed using the CPR method. The Reynolds
number based on the plate length is Rex = 10, 000 and the freestream Mach number is M = 0.2.
The plate length L is set to 1. The boundary layer thickness at the trailing edge is estimated by
the formula ± = 5L/

√
Rex. The computational domain is selected to be (−2 ≤ x ≤ 1, 0 ≤ y ≤

100±, 0 ≤ z ≤ ±). Note that the domain size in the y-direction is chosen to be large enough not
to affect the results especially in the v-velocity profiles. The freestream values are specified at the
inflow boundary at x = −2 and the top boundary at y = 100±. For the lower boundary at y = 0,
the symmetry conditions are used on the upwind side to the wall (−2 ≤ x ≤ 0) and the adiabatic
wall conditions are imposed on the wall (0 ≤ x ≤ 1). At the outflow boundary at x = 1, only
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static pressure is prescribed. On the side boundaries at z = 0 and ±, the symmetric conditions
are assumed. First, we generated a three dimensional Cartesian mesh. The grid cells are clustered
near the leading edge and the cell sizes are increased geometrically in both x- and y-directions. In
the spanwise z-direction, we generate only one cell. Then we divide each hexahedral cell into two
prisms to obtain a purely prismatic grid.

The computed u and v velocity profiles are compared with the Blasius’s solution in Fig. 6.
The computational grid used for the computations is generated to have 4 cells in the boundary
layer at x = 1.0 and 13 cells along the plate. The solution is apparently getting more accurate
with the increasing of the order of polynomial approximation, and it is more clearly shown in the
comparison of v-profiles. The computed skin friction coefficients on the wall are also plotted at
Fig. 7. The agreement with the Blasius’s solution also becomes better with k-order refinement.

One of the concerning issues when we apply CFD solver to engineering problems is the stiff-
ness arising from using high aspect ratio cells that are clustered near the solid wall to resolve
the boundary layer especially in high Reynolds number flows. Reynolds numbers appearing in
aerospace flow problems usually become ∼ 106 or more, and so even if we make use of an implicit
time integration scheme for numerical simulations, we will likely encounter still small time step
restriction or deteriorated convergence rate. A possible remedy for this problem is employing a
line solver [26, 8]. Here we consider another approach to alleviate the stiffness issue by employing
higher-order prism elements rather than having large number of lower order elements in the bound-
ary layer. Since we use a tensor basis polynomial in prisms, we can use higher order polynomial
only in the normal direction to the wall while using lower order one in the tangential directions to
the wall so as to prevent the unnecessary increase of the computational cost.

Figure 8 shows the computed Mach number by using polynomials of degree 5 in the y-direction
and polynomials of degree 2 in x- and z- directions. The grid has only two cells in the boundary
layer at x = 1.0 and 17 cells along the plate. The numbers of prism cells and DOFs are 728 and
26208 respectively. For comparison, we generated another grid that has more cells in the boundary
(8 cells at x = 1.0) but the same resolution in the x- and z-directions and employed degree 2
polynomials in all directions, resulting 1736 prisms and 31248 DOFs. In Fig. 9, the computed
v-velocity profiles are shown. The computed profiles agree well with each other and also with the
Blasius’s solution. The convergence histories are compared in Fig. 10. For the time integration,
we discretise the temporal derivative using the backward Euler algorithm and employed the block
preconditioned LU-SGS scheme. We used the same timesteps for the two different meshes. To
start with an impulsive condition of the uniform freestream, we set the initial timestep to 0.002
and increased it by multiplying 1.05 after every time step until it reached the prescribed maximum
timestep 0.2. The initial timestep corresponds to the CFL of 3.44 and 4.58 for the grid of 728 cells
and the grid of 1736 cells, respectively. Compared to the computation using the lower order scheme
with the finer grid, employing the higher order scheme with less grid cells gave the reductions of
about 38% and 30% in terms of time steps and CPU times to reach machine zero residual, although
the DOFs are about 16% less.
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(a) (b)

Figure 6: Comparisons of velocity profiles in the boundary layer at x = 0.5. u− and v−profiles in
(a) and (b).

5.2.3. Steady Subsonic Flow over a Sphere at Re=118

A steady viscous flow around a sphere is computed to validate the developed NS solver on a full
3D mixed mesh. The Reynolds number based on the diameter was chosen to be 118 so that we
can compare the obtained results with experimental data [37] and numerical results using the SD
scheme [36, 44]. The Mach number is 0.2535 that is the same value in the reference computations.
The mesh is generated to have five layers of prism cells and isotropic tetrahedral cells for the
remaining region. We plot the cut of the grid on a plane with y = 0 and surface mesh on the sphere
in Fig. 11. The total number of mixed cells is 24334.

The computations were performed using the 3rd- and 4th-order schemes. The computed Mach
number contours and streamlines near wake using the 4th-order CPR scheme are shown in Fig. 12
and Fig. 13, respectively. We confirmed that the computed streamlines and the size of separation
region agree well with both the experimental picture and the numerical results in the references.
Here we only show a comparison of the computed skin friction profiles at the cross section (y = 0)
of the sphere in Fig. 14. The skin friction coefficients computed by the 4th-order CPR scheme
and the 6th-order SD scheme are right on top of each other. The 3rd-order CPR result also agrees
well with other results, though one can see only minor differences between those profiles. The
predicted separation angle using the 4th-order CPR scheme is 123.6 deg (the wind side stagnation
point has an angle of 0), which is identical to the value predicted by the 6th-order SD scheme. In
Fig. 15, the computed drag coefficient by 4th-order CPR is compared to available experimental
data. The agreement is also very good.
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Figure 7: Comparisons of the skin friction coefficient along the plate.

Figure 8: Grid and Mach number contours of
a laminar boundary layer on a flat plate using
degree k = 5 polynomial in the y-direction
(stretched by a factor of 10 in y direction).

Figure 9: Comparison of v−velocity profiles us-
ing different degrees of polynomial and grids.
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(a) (b)

Figure 10: Comparisons of convergence histories using different degrees of polynomial and grids
in terms of time step and cpu time in (a) and (b).

5.2.4. Unteady Subsonic Flow over a Sphere at Re=300

We consider an unsteady flow case over the sphere with radius r = 1 at the Reynolds number of
300 based on the diameter of the sphere. The inflow Mach number is assumed to be 0.3 in this
case. The computational mesh is shown in Fig. 16. To resolve shedding vortices, the mesh is
generated to have finer cells in the wake region. The total number of mixed cells is 54312. Local
grid size around the sphere is ∼ 0.2 and the size in the wake region is ∼ 0.8. In this case, we
employed the 3rd-order TVD Runge-Kutta method for the time integration and computed by the
MPI parallelized code using 8 cores of a cluster machine to reduce the wall clock time.

The computed Q isosurface colored by local Mach number using the 4th-order CPR scheme
is shown in Fig. 17. The obtained plain symmetric wake vortex structure is comparable to the
available experimental and computational results in [10, 19] at least qualitatively. In Fig. 18 we
plot the history of the drag coefficient Cd in terms of non-dimensional time t. The computed drag
coefficient and the oscillating amplitude of drag and the Strouhal number St are shown in Table
4. For comparison, results from Gassner [10] using the 4th-order DG scheme on tetrahedral grid
and from Tomboulides [38] and Johnson and Patel [19] obtained by incompressible simulation, are
shown as well. The results computed by the CPR method reasonably agree with those reference
values.

6. Conclusions
The CPR method is successfully extended to 3D hybrid unstructured meshes using tetrahedral and
prismatic elements. The CPR formulation for tetrahedral elements is directly derived in the same
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Figure 11: Computational grid around a sphere for the steady viscous flow at Re = 118.

Figure 12: Computed pressure (on the sphere)
and Mach number (on y = 0 plane) distributions
using the 4th-order CPR scheme.

Figure 13: Computed streamlines near the wake
region behind the sphere using the 4th-order CPR
scheme.
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Figure 15: Comparison between the computed
drag coefficient using the 4th-order CPR scheme
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Table 4: Comparisons of the averaged drag coefficient, the amplitude of drag and the Strouhal
number.

Method Cd ΔCd St
Present 0.670 0.0032 0.131

Gassner [10] 0.673 0.0031 0.135
Tomboulides [38] 0.671 0.0028 0.136

Johnson & Patel [19] 0.656 0.0035 0.137

manner as for 2D triangular elements and the one for prism is obtained by just a combination of
the 1D and 2D schemes. The resulting scheme needs no explicit integrations and no data recon-
structions. This numerical efficiency is more significant in 3D simulations in comparison to 2D
simulations because numerical complexities involved in high-order quadratures and reconstruc-
tions rapidly increase in 3D.

The developed CPR scheme is verified with grid convergence studies for an inviscid flow and a
viscous flow, indicating that the developed scheme is capable of achieving nearly the optimal order
of accuracy. Then, several validation cases are computed for solving the 3D Euler equations and
the 3D NS equations. The CPR method performs very well to obtain high-order accurate solutions
for all cases. Future studies include extension to adopt hexahedral and pyramidal cells for more
flexible geometry discretizations and hp-adaptation techniques for realizing practical high accurate
CFD simulations.
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(a) Entire grid (b) Grid around the sphere

Figure 16: Computational grid around a sphere for the unsteady viscous flow at Re = 300.
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