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Numerical simulation of double-diffusive Marangoni convection

T. L. Bergman

Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712

(Received 29 January 1986; accepted 11 April 1986)

Marangoni convection is important in a variety of physical systems and occurs as a result of
surface tension gradients at a liquid free surface. In general, liquid surface tension varies with
temperature and species concentration in a binary fluid. If the temperature and concentration
distributions make opposing contributions to the overall surface tension gradient at a free surface,
convective motion, as well as heat and mass transfer within the system, is shown to depend on
double-diffusive effects. This situation is analogous to double-diffusive natural convection, in that
convection may occur, even though the overall surface tension difference along the free surface

suggests stagnant fluid conditions.

I. INTRODUCTION

It is well known that buoyancy forces can induce motion
in liquids contained in enclosures with, for example, differ-
entially heated end walls."? However, when a free surface is
present, variations in the liquid surface tension, as a result of
thermal gradients along the free surface, can also induce flu-
id motion.?

The density and surface tension may also vary with the
local species concentration in a binary fluid. As such, buoy-
ancy or surface-tension-driven convection may be induced
by species concentration gradients in binary fluids con-
tained, for example, within an enclosure whose end walls are
maintained at different concentrations.*

Recently, considerable progress has been made in deve-
loping an understanding of natural convection in double-
diffusive systems such as salt-stratified fluid layers heated
from below.> In these systems, the fluid density depends on
local temperatures and concentrations. When the tempera-
ture and concentration distributions make opposing contri-
butions to the vertical density gradient, and when the Lewis
number is not unity, diffusional processes can induce con-
vective motion even though the overall density difference
across the salt-stratified fluid layer is stable.® Since the differ-
ence in thermal and species diffusivities of the binary fluid is
responsible for triggering and/or governing convective mo-
tion in double-diffusive natural convection systems, it may
be anticipated that similar effects can influence convective
motion, as well as heat and mass transfer, in systems driven
by surface tension forces (Marangoni convection).

As a result of the relevance of double-diffusive Maran-
goni convection in various crystal growth techniques,”® sev-
eral studies of Marangoni convection driven by simulta-
neous temperature and species concentration gradients have
been made. A stability analysis has been performed® to iden-
tify key features associated with the onset of convection. The
effect of a surface contaminant on thermally induced Mar-
angoni convection has also been considered.'® However, ad-
ditional features of the double-diffusive Marangoni system
have not been identified. For example, details of the convec-
tive motion within the binary fluid have not been presented
in the previous studies. Temperature and concentration dis-
tributions within the fluid have not been reported. Evalua-
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tion of heat and mass transfer rates has not been considered.
Most importantly, perhaps, an investigation of systems that
may be incorrectly considered to be nonconvecting but, in
fact, undergo convection as a result of double-diffusive ef-
fects, has not been made. As such, the objective of the pres-
ent study is to investigate double-diffusive Marangoni con-
vection in binary fluid systems. Emphasis will be given to
systems where diffusional effects can trigger steady convec-
tion within the fluid.

It should be noted that, in general, buoyancy and Mar-
angoni driven convection will occur simultaneously when
experiments are performed in a gravitational environment.
To focus on Marangoni-induced effects that are not in-
fluenced by buoyancy, experiments must be performed in
drop towers'! or in space orbit.'? Because of the relative dif-
ficulty in performing gravitationless experimentation, inves-
tigation of double-diffusive Marangoni effects will be made
with appropriate analytical techniques.

Il. ANALYSIS

The system under consideration is shown in Fig. 1. A
binary fluid is contained within a two-dimensional cavity of
length L, with a free surface at y = H. The boundary condi-
tions are associated with end walls maintained at 7', C,, and
T,, C,, respectively. The top surface and bottom wall are
adiabatic and impermeable. Buoyancy forces are not consid-
ered in the analysis.

With the prescribed boundary conditions, fluid motion
is driven by surface tension gradients resulting from simulta-
neous temperature and species concentration diffusion along
the free surface. The two driving forces may, in general, aug-
ment or counteract each other. However, to retain the ana-
logy with double-diffusive natural convection, only consi-
deration of the counteracting case will be made. As such,
T,> T, and C, < C, for most binary fluids composed of wa-
ter-soluble organic compounds. '?

To simplify the analysis and focus attention on the im-
portant effects, certain assumptions have been made. First,
the free surface of the liquid has been assumed to be flat, that
is, the free-surface capillary number is approximately zero.'°
Second, with the exception of surface tension, the thermo-
physical properties of the liquid have been assumed to be
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FIG. 1. Schematic of the physical system.

constant. The surface tension is allowed to vary linearly with
the liquid temperature and species concentration. Finally,
the flow has been assumed to be laminar, and the Soret effect
(species transfer resulting from thermal gradients), Dufour
effect (heat transfer resulting from species gradients), and
viscous dissipation have been neglected.

Subject to these assumptions, the governing equations
for the system are the following:

continuity
a a
— (pu) + — (pv) =0, (1
I (pu) P (o
X momentum

gix (puu) + % (puv)

__t9_( ‘9_14) i( f’_u)_éﬁ 2
ax ") T H\F e ) T e 2
y momentum
ad a
— + — (pw
Ew (puv) P (pvv)
(9( av) 8( 8v) JP 3
= —(e—-)+lrg) - = )
w ") TH\Ee) T (
energy
ad ad Jd (k aT d (k oT
—(puT) + — (TN = —|——| + —[——]),
Ox (pul) + dy D Ix (cp c?x) dy (cp 6y)
(4)

and species concentration
a J

— (puC) + — (pvC)
Ix e dy P

a( aC) a( 6C)
-9 (,p9) , 9(,p3). 5)
ax PP a) T 5\ PP g (

The x and p velocities are denoted as u and v. The fluid
density, dynamic viscosity, thermal conductivity, specific
heat, pressure, and binary diffusion coefficient are p, u, &, c,,,
P, and D, respectively. Fluid temperature T and species con-
centration C are described by Egs. (4) and (5).

Hydrodynamic boundary conditions include the no-slip
requirement for » and v at the bottom of the cavity and v at
the cavity end walls.

In general, finite horizontal velocities will exist at the
cavity walls resulting from mass transfer across the fluid
layer, and may be expressed as'*
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_ —DaC/ox
(1-0)
In the present analysis, it is assumed that the binary diffusion
coefficient and concentration gradients at the walls are small
so that the horizontal velocity described by Eq. (6) may be
neglected. As such, the no-slip boundary conditions

(6)

u=v=0/,_ox_zy-0 (7N
apply everywhere except at the free surface, where surface
tension gradients depend on local temperature and species
concentration gradients and induce an effective shear stress
expressed as’®

p e G| T do| 9C
ay y=H aT C ax y=H (9C T a.x
where o is the surface tension of the fluid.

The hydrodynamic boundary condition for the y veloc-
ity component at the free surface is

, (8)

y=H

v|,_x =0. 9
The thermal and concentration boundary conditions are

T= T1|x=0’ T= TZ’x=L’ (10)

ay y=0,y=H

C=C1|x=0’ C=C2|x=L’ (12)

dy y=0,y=H

The governing equations and boundary conditions may
be nondimensionalized to identify the dimensionless param-
eters of the problem. Lengths, velocities, temperature differ-
ences, and concentration differences are scaled by L, (a/L),
(T, — T,),and {C, — C,) respectively. The thermal diffusi-
vity a is defined as & /pc,, . Introduction of these scaling var-
iables into the governing equations and boundary conditions
yields the following dimensionless parameters:

Prandtl number,

Lewis number,
Le =a/D, (15)
thermal Marangoni number,
Jdo
Ma, = —| ATL /ua, 16
T 9T | ¢ 2 (16)
species Marangoni number,
do
Ma. = —| ACL /ua, 17
¢ aclr # (n

and the cavity aspect ratio, H /L. The overall Marangoni
number may be expressed as

Ma = Ma, + Ma, (18)
and is a measure of the relative strengths of surface tension
and viscous forces. Since this study is concerned with dou-
ble-diffusive Marangoni convection, the ratio of thermally-
induced surface tension forces to concentration-induced sur-
face tension forces is useful to consider, and is described by

do/dT |c AT

o= ool e B (19)
30/3C |, AC
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The surface tension ratio is analogous to the density ratio,
R, which is used to describe certain aspects of double-diffu-
sive natural convection.? At the critical value of the surface
tension ratio (R, = - 1), thermal Marangoni effects offset
species Marangoni effects along the free surface. A trivial
solution of the governing equations, in this case, corresponds
to stagnant conditions with u = v = 0 everywhere.

lll. SOLUTION

Solutions of the governing equations were obtained nu-
merically by employing a steady-state version of the
SIMPLER algorithm.® A 24 X 24, geometrically spaced com-
putational grid was used to provide fine grid spacing near the
walls and top surface of the cavity. The size of the finite
difference control volumes was decreased by 10% as y and x
(for x > L /2) were increased. The solution technique was
verified by comparing the predicted heat transfer across a
square, air-filled enclosure with differentially heated end
walls to a benchmark numerical solution.!” Values of the
overall Nusselt number predicted by the SIMPLER algorithm
were within 2% of the benchmark values up to a Rayleigh
number of 10°. Computations were performed for an aspect
ratio of 0.5 to amplify Marangoni effects.

IV. RESULTS

Variations in flow patterns, as well as temperature and
species concentration distributions, can occur as thermal
and species Marangoni effects interact. Figure 2 includes
predicted streamlines, isotherms, and isoconcentration lines
for Ma; = 1000, Le = 100, and Pr = 5. The dimensionless
temperature O is defined as

O=(Ir-T)/(T,—T)), (20)
while the dimensionless species concentration is
y=(C—-C)/(C,—C)). (21)
The dimensionless stream function is calculated from
Y(xy =0) = P(x =0y =0) — -l—f vdx,  (22)
v Jo
1 4
W) =Py =0) + - f udy, (23)
0

with ¢(x = 0,y = 0) set to zero.

The left panel of Fig. 2 shows predicted quantities of
interest for the critical surface tension ratio, R, = — 1. The
right panel shows behavior of the same system, except the
species contribution to the surface tension gradient is ig-
nored, thatis, R, = — .

As evident in Figs. 2(a)-2(c), stagnant conditions do
not exist. Rather, convective conditions are similar to those
which occur for R, = — o« [Figs. 2(d)-2(f)]. The most
discernible difference between Figs. 2(a)-2(c) and Figs.
2(d)-2(f) is the existence of a small, counter-rotating cell in
the upper left corner of the system. The small cell is driven by
the surface species concentration gradient at this location.
Although relatively large concentration gradients also exist
in the upper right corner [Fig. 2(c) ], the temperature distri-
bution [Fig. 2(b) ] indicates an offsetting, large thermal gra-
dient at this location.

A consequence of the secondary convection cell is the
redistribution of the concentration profiles in the upper left
corner of Fig. 2(c). An analogous redistribution of the tem-
perature profile is not as pronounced [Fig. 2(b)] as a result

(d)

|

y/H

y/H

FIG. 2. Predicted streamlines (a),(d),
isotherms (b),(e) and isoconcentration
lines (c¢),(f) for Ma, = 1000,
Le = 100, and Pr = 5. Results are for
R,=—~1 (lefty and R, = —
(right).

y/ H

(0] x/L 1 0
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FIG. 3. Predicted streamlines (a),(d),
isotherms (b),(e) and isoconcentration
lines (c¢),(f), for Ma, = 1000, Le = 10,
and Pr = 5. Results are for R, = — |
(left) and R, = — o (right).

y/H

0 x/L 1

of the large Le associated with the conditions of Fig. 2.

As the Lewis number of the binary fluid is decreased,
species diffusion will become more influential. In fact, as Le
approaches unity, stagnant conditions are predicted to oc-
cur,if R, = — 1. Itis of interest, therefore, to examine how

x/ L 1

the results of Fig. 2 vary as Le becomes smaller. Figure 3
shows predicted streamlines, isotherms, and isoconcentra-
tion lines for Ma, = 1000, Le = 10, and Pr = 5. The left
panel of Fig. 3 includes results for R, = — 1 while the right
panel is associated with R, = — .

FIG. 4. Predicted streamlines (a) and
(d), isotherms (b) and (e) and isocon-
centration lines (¢) and (f) for
Ma, =1000, R, = —2, and Pr=>5.
Results are for Le = 100 (left) and
Le = 10 (right).

0 x/L 1
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A comparison of Fig. 3(a) with Fig. 2(a) indicates that
the species-induced, counter-rotating cell at x =0, y=H
becomes larger and rotates at greater speed as Le decreases.
Whereas the concentration profiles were moderately dis-
placed by double-diffusive Marangoni effects in Fig. 2(c),
they are more noticeably displaced in Fig. 3(c). Because the
Lewis number is smaller in Fig. 3 than in Fig. 2, the tempera-
ture distributions in the upper left corner also indicate a
moderate displacement [Figs. 2(b) and 2(e) ].

The results of Figs. 2 and 3 show that species diffusion
can affect flow conditions in systems which may be incor-
rectly assumed to be stagnant. If species contributions to the
surface tension gradient at y = H are ignored, the resulting
behavior bears similarity to the double-diffusive system
whenR, = — 1.

In most systems R, # — 1. It is of interest, therefore, to
examine predicted system behavior for cases where the over-
all surface tension difference across the free surface is non-
zero. Figure 4 includes predicted behavior when thermally
induced surface tension effects are twice as influential as spe-
cies induced effects, that is, R, = — 2. The predictions cor-
respond to Ma, = 1000 and Pr = 5. The left panel is asso-
ciated with Le = 100 and the right panel with Le = 10.

Streamline [Figs. 4(a) and 4(d)] and isotherm [Figs.
4(b) and 4(e)] distributions are similar. A small counter-
rotating cell is located in the upper left corner, regardless of
the value of Le. The larger, thermally driven cell occupies
most of the system. Differences in the temperature distribu-
tions cannot be distinguished, although the concentration
distributions [Figs. 4(c) and 4(f)] vary as a result of the
difference in thermal and species diffusion rates. As such,
species diffusion effects on convection become less pro-
nounced with increasing R, .

In many systems, for example those associated with
crystal growth,”® convective conditions within the bulk fluid
are important, in that they govern local heat and mass trans-
fer at a solid-liquid interface. In all of the situations consid-
ered so far, a secondary convection cell develops at the upper
left boundary as a result of double-diffusive Marangoni ef-
fects. It may be expected, therefore, that local heat and mass
transfer rates vary significantly, even though convection
within the bulk fluid is not radically altered by species diffu-
sion.

The local Nusselt and Sherwood numbers are a measure
of the dimensionless heat and mass transfer rates and are
defined as'*

Nu=hL/k, Sh=h,L/D (24)

where the local heat and mass transfer coefficients, # and
h,, , are expressed as

P |k 3T /x| _ |D aC /x|
(T,—T) " (C,—C)
The Nu and Sh distributions along x = 0 are presented for
Ma, = 1000, Le = 100, and Pr = 5 in Fig. 5.

Although the counter-rotating cells of Figs. 2(a) and
4(a) are small and do not greatly affect the larger, thermally
driven convection cell, local mass transfer (Sh) is signifi-
cantly altered. This effect is most pronounced at y/H~0.85
and corresponds to decreased local mass transfer, as fluid of

(25)
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FIG. 5. Local Nusselt and Sherwood distributions at x=0 for
Ma, = 1000, Le = 100, and Pr = 5.

relatively small y is collected at the boundary between the
two convection cells. As expected, surface tension effects are
less pronounced at small y/H. These results show that dou-
ble-diffusive Marangoni phenomena should be considered in
systems where local mass transfer determination, or control,
is important.

As a result of the large Le associated with Fig. 5, local
heat transfer variations are not as pronounced as the mass
transfer variations and the qualitative shape of the Nu distri-
bution is retained, regardless of R, . In general, a slightly
smaller Nu occurs along x = 0 as a result of decreased rota-
tional speed of the large convection cell [Figs. 2(a), 2(d),
and 4(a) ] associated with decreasing absolute values of R ,.

The local mass transfer variation evident in Fig. 5 may
lead to a change in the total heat and mass transfer across the
fluid layer. As such, the average (overall) Nusselt and Sher-
wood numbers defined as

— 1 (¥ —
Nu = — Nudy, S
H

y=0

1 rH
= — Shdy, (26)
Hj;zo s

respectively, will depend on double-diffusive Marangoni ef-
fects. The extent of this dependence is shown in Fig. 6 with
Nuand Sh plotted against Le and R, . The thermal Maran-
goni number is 1000 while Pr = 5.

When species contributions to the surface tension gradi-
ent are neglected (R, = — « ), maximum heat and mass
transfer rates occur. Since the flow field is independent of the

FIG. 6. Average Nusselt and Sherwood numbers versus Le and R,,.
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species concentration, Nu is constant. Overall Sherwood
numbers vary from 2.48 at Le = 1 to approximately 18 at
Le = 100.

As the counter-rotating cell is established by double-
diffusive Marangoni considerations, smaller Nu and Sh

occur for all Le. However, as Le increases, Nu and Sh
approach the R, = — « limiting values. These results are
consistent with the qualitative observations of the flow con-
ditions shown in Figs. 2—4.

Perhaps the most interesting behavior illustrated in Fig.
6 is that associated with R, = — 1.1 and — 1.0 near
Le =5. Both Nu and Sh decrease rapidly as Le is de-
creased. This result suggests that stagnant conditions occur
at small, nonzero Le for small absolute values R . Hence, a
critical Le may exist for a system characterized by a given
aspect ratio, May, R,, and Pr, below which stagnant, fluid
conditions occur.

V. CONCLUSIONS

The present study has investigated double-diffusive
Marangoni convection. Results indicate that convection
may occur, even though the overall Marangoni number is
zero. The convection pattern consists of a secondary
counter-rotating cell in the upper corner of the system and
can lead to variations in local and overall heat and mass
transfer rates.

Certain details of system behavior associated with dou-
ble-diffusive Marangoni convection effects have been illus-
trated. The study is, by no means, complete since many ques-
tions remain unanswered. For example, system behavior
associated with fluids of different Pr is not known. Systems
characterized by a different geometry may be influenced by
double-diffusive Marangoni convection to a different extent.
Convective behavior may also vary with the sign of do/dC,
since the concentration boundary conditions would need to

2108 Phys. Fluids, Vol. 29, No. 7, July 1986

be reversed to produce double-diffusive phenomena. Behav-
ior for systems characterized by |R,| <1 is also unknown.
Finally, the interaction of double-diffusive Marangoni and
natural convection has not been addressed. Consideration of
these and other problems may be made in future analyses.
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