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$§1. Introduction.

Among the curves:which play an important and interesting
role in the theory of planme curves are the Hessian and the
Steinerian. The Hessian of 'a curve may be defined .either as
the locus of points which .are double points on first polar
curves of the given curve,'or as the locus of points whose
polar conics with respect to the given curve have double points,
that is, break up. The Steinerian of,g curve may be defined
either as the locus of points whose'first polars with respect
to the given curve have double points, or as the locus of
points which are double points on polar conics. The Steinerian
is clearly the reciprocal of the Hessian.

The order and class of the Hessian of a plane curve are
in general 3(n-2) and 3(n-2)(3n-7); respectively, and of the
Steinerian 3(n-2)2 and 3(n-1)(n-=2), respectively. The order
‘and class of the Hessian of a plane quartic are therefore :in
general ¢ and 30, and of the Steinerian of a plane quartic 22
and 18, respectively?

It is the purpose of this paper to determine the Hessians

.and the Steinerians of particular quartics and to plot these

o e e e e s e

*For the PllUcker characteristics of these curves, see

Hagen, Synopsis der h8heren Hathematik, Bd.2, p.203.
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curves together with the original quartics?®
The .equations of the curves will be given .in homogeneous
cobrdinates, where x=0, y=0, 2=0 are the y-axis, the x-axis,

and the .ideal line,respectively.

§2. Quartics having Triple Points.

A k-tuple on a plane curve is a (k-1)-tuple point on the
first polar of every point in the plane with respect to that
curve'* Therefore, if a quartic bas a triple point, this tri-
ple point is a double point on the first polar of every point
in the plane. Since the Steinerian.is the locus of points
whose first polars have double points, it follows that every
point .in the plane satisfies the Steinerian of a quartic with
a triple point. Therefore a quartic with a triple point has
no definite Steinerian.

The maximum number of double points on a proper curve of
nth degree is 4(n-1)(n-2), Since a R-tuple point .is equivalent
to 4k(k-1) double points, it follows that a plane quartic hav-
ing,a triple point can have no double peints in addition.

A R-tuple point on a plane curve is a (3k-4)-tuple point

*I’'he original quartics will be traced in black, the Hess-
ian in green, and the Steinerian in red.

**cf. Salmon, 4 Treatise on Higher Plane Curves.
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on the Hessian of that curve. A triple point on a plane quar-
‘tic is therefore a quinthple point on its Hessian. Since a

quintuple point is equivalent to ten double points, the Hess-

ian can have no double points .in addition to the quintuple
point.

Every triple point is formed by the simultaneous union of
three double points. Triple points of plane guartics are of
four species according as the tangents at the triple point are

1) all real and distinct,
2): one real and distinct and two real and cocincident,
3) all real and coincident,
4) one real and two.imaginary;
that is, triple points are composed of
1) three crunodes,
2) two crunodes and ane cusp,
3) one crunode and two cusps,
4) one crunode and two acnodes;
respectively?
*Basset, Elementary Treatise on Cubic and Quartic Curves,

pp.102-104.



Y. 18
Fy= (x2+y2)2+ [(a=r)x®+(a+3r)y®lxz = O
This curve has a triple point at (0,0,1), its species de-
pending upon the relative values of r and ¢ , where r is the
radius of an auxiliary circle* and where o is the algebraic
distance of the triple point from the center of this auxilia -
ry circle. For all values of r and a the curve F;=0 is symmet—
rical with respect to y=0.
The .ideal line, z=0, intersects the curve in the points
which satisfy
(x*+y®)* = 0
The curve therefore passed through the two circular points at
infinity and has the .ideal line, 2z=0, as an ordinary tangent
at each of these points. The ideal line is therefore a double
tangent to the given curve'with imaginary points of contact.
Such a quartic will be called a circuiar guartic.
e shall first determine the Hessian of the general curve
and afterwards note its particular characteristics for differ-
ent values of r and a.

The first polar of the point (a,R,y) with respect to F,=0 is

¢ = alax(x2+y?)+2(a~r)x?z+z[(a-r)x%+(a+3r)y?]|

+ Rlay(x2+y2)+2(a+3r)xyz] + ylx[(a-r)x?+(a+3r)y*]|=0

*Wieleitner, Spezielle Ebene Kurven, pp.148-156.
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If =0 has a double point, such a point must satisfy

U

a[4(3x2+y2)+8(a-r)xz] + R[Bxy+2(a+3r)yz]
+ yv[3ka-r)x2+(a+3r)y?] = 0
V = a[8xy+2(a+3r)yz] + R[4(x2+3y2)+2(a+3r)xz]
+ y[2(a+3r)xy] = 0
W = a[3(a~r)x2+(a+3r)y2] + g[2(a+3r)xy] = O

where UJ, V, W are the derivatives of ¢ with respect to x,y,32,
respectively. Eliminating (a,R,y) we have as the locus of the

double points of ¢=0

4(32x2+y®)+8(a-r)xz  8xy+2(a+3r)yz 3(a-r)x?+(a+3r)y?

i
o

H,= 8xy+2(a+2r)yz 4(x2+3y?)+2(a+3r)xz 2(a+3r)xy

3(a-r)x2+(a+3r)y? 2(a+3r)xy 0

Expanding and reducing

Hy= Ax®+Bx%2+Cx*y2+Dx®y2z+Ex®y*+Fxy*2+Gy® = 0O

where
A = g(a~r)?
B = 3(a-r)2(a+3r)
C = 18(a-r)2- 12(a-r)(a+3r) + 8(a+3r)?
D = 2(a-r)(a+3r)?
E = 12(a-r)(a+3r) - 2(a+3r)?
F = - (a*3r)?®

(]
|

= 2(a+3r)?

This equation shows that the Hessian also is symmetrical to y=0.



Al.
if a=0, the general equation, F,;=0, reduces to
F} = (x2+y2)2 - r(x2=-3y%)xz =0

This is the familiar "three-leaved rose) or, "redialar three-.
leaf"* having a triple point of the first species at (0,0,1)
with

x(x2-3y*) = 0
as tangents (Fig.I). The Hessian of F}=0 is
H} = 2x®+3rx®%z+42x*y?-8x2y22-18x2y*-Orxy*z+3y® = 0

It has a quintuple point at the point (©,0,1), and so can have
no other double points. The tangents at the quintuple point

are given by
x(x2-3y?) (x2+y?) = 0;

from which it follows that the quintuple point consists of the
triple point of F3}=0 with the same tangents, and an acnode. The

sixth point of intersection of y0 with the curve is
X = - -3rz

The ideal :line, 2z=0, .intersects thé:?; the points for which
(1) x%+21x4y2-0x2y*+3y°® = 0

*"regelm¥ssig Dreiblatt! cf. Wieleitner, loc. cit.
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Placing~§:=t, this equatioWkeduces to a cubic in. t having one
negative real root and two imaginary roots. All values of §

satisfying (1) are therefore imaginary. The curve thus lies

entirely in finite space.

P

If a=r, the equation F;=0 reduces to
FSm (2%4y%)" » gray’s =0

which is the "even two-leaf"* having a triple point at (0,0,1).

The tangents at this triple point . are

Xyt om0

The triple point therefore belongs to the second species, that
is, it is equivalent to iwoc nodes and one cusp (Fig.II). This
curve, as was seen in the deneral case, is a closed curve and
therefore 'lies entirely within a rectangle whose sides are tan-
gent to the curve and parallel(to x=0 and y=0. The point of
tangency of such a tangent :line parallel to y=0 must satisfy

oF2
(2)- _!__3 fet O**
9x

Hence eliminating x between (2) and F%=0, we obtain the ordi-
¥n"gerades Zweiblatt! cf. Wieleitner, loc.cit.
**Wieleitner, Theorie der Ebenen Aldebraischen Kurven h8h -

eren Ordnung, p.20.






10.
nates of the pointssof horizontal tangency, and in fact the
equations of the horizontal tangents themselves. Similarly,
the abscissas of the points of tangency of the vertical tan-
gents may be obtained by eliminating y between F$=0 and %§:=O.

Thus the vertical tangents are

and the horizontal tangents are
y=0, y= 2+ 3rz

Moreover, x=-rz is a double tangent.

The Hessian of .F'§ is
HY = y?(4x*-x?y2%-2rxy2z+y*) = 0

and is therefore composed of y=0 counted twice and a quartic
‘having a triple point at (0,0,1), the tangents at the triple

point being given by

This triple peint is therefore of the same species as that of

the original curve, F%=0, having in fact, the same tangents.

The points of intersection of H3=0 with the ideal line satisfy
4x4-x2y2+y* = Q

The discriminant of this equation considered as a quadratic

in %; reduces to v=I5. The curve therefore lies entirely in

finite space., Its vertical tangents are
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x=0, x=4§rz

and its horizontal tangents are
y=0, y=.1$/3rz

Of these, x=3z is a double tangent.

As.

if a=-r, the equation, F,;=0, reduces to
F§ = (x%+y2)® .+ 2r(y%=x®*)xz = 0

This curve (Fig.III)’ has a triple point at (0,0,1), the tan-

gents at which are given by
x(y2-x%) = 0

it is therefore of the first species. The vertical and hori-

zontal tandents are

Xm0 oxi= APR 0X

e e

y=1t-2

SN

respectively; moreover

r

X = ==z, y=+=2

are double tangents. F$=0 is called the "even three-leaf"* and

can be obtained by a deformation of the "regular three-leaf"

*nserade Dreiblatt! Wieleitner, loc. cit.
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considered above.
fhe Hessian of F3=0 is
H} = 3x%+3rx®z+19x4y2-2rx®y2z-7x2yt~rxy*z+y® = 0
This has at (0,0,1) a quintuple point, the tangents at which
are given by
x(3x2+y®)(x*-y?) = 0

The quintuple point is thus composed of the triple point of
F$=0 and an acnode. The x-axis meets the Hessian,in addition
to the quintuple point, at the point for which x=%z., $he
points of intersection of the Hessian with the .infinite line

are given by
3x‘+19x‘y’-7x’y‘+y‘ - O

In exactly the same manner as in the case of F3=0 it is found
that this equation can have no real roots. This Hessian, F3=0,

therefore lies entirely in finite space.

A,

If a=-3r, the general equation, Fy=0, reduces to
F4 = (x%+y®)2® - 4rx%z = 0

This curve has a triple point of the third species at (0,0,1),

the tangents at this triple point being given by
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The curve F4=0 (Fig.IV) meets y=0 again at x=4rz. Its vertical

and horizontal tangents are

Xi= 0, ixi= 4r%

+3v3rz

 §

respectively. It is called the "one-lsaf"*

Its Hessian is
Hf = x*(x2+3y%) = 0;

which consists therefore of x=0 counted four times and a peint
ellipse.
B.
Fo= x*+yt-y(x®+y%)z = 0
This curve (Fig.V) has gftriple point of the fourth species

at (0,0,1), the tangents at the triple point being given by
y(x2+y%) = 0

It is symmetrical with respect to x=0. Its vertical and hori-

zontal tangents are

+/2
Y020,  yreak, yoe gy 8

respectively; y = l%fzz being, moreover, a double tahgent.
The first polar of the point (a,R,y) with respect.to this
*"Einblatt? It has historical interest in that it was used

by Kepler to represent the orbit of Mars.
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curve is
a[2x(2x*~yz)] + Rl-x23+4y°-3y22] + y[-y(x2+§2)] = 0

The conditional equations which a point must satisfy for it to

be a double point on this first polar are

U= a[2(6x%~y2)] + R[-2x2] + y[-2xy] = 0O
V = af-2xz] + R[6y(2y-2)] + y[-x%-3y%] = O
W= al-2xy] + R[-x2-3y%] = 0

The equation of the Hessian of F,=0 is therefore

2(6x%-yz).  -2xz -2xy
Hy= -2X% 8y(2y-2z): -x2-3y%| = 0
-2xy -x2-3y%2 0

that is,

Ho= 2x%+12x*y®+x*yz+26x2y*-2x2y22-3y%z = 0
This Hessian has a quintuple point at (0,0,1), with
y(x2-3y®) (x2+y?) =0

as tangents. Hence the guintuple point consists of the tripke

point of F =0 together with a crunode. The infinite line touch-

es Hy=0 at (0,1,0) but does not meet it in any other real points.

Also H,=0 is symmetrical with respect to x=0.
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.C.
Fa= x*+ y®(y-az) = 0

This "Pearl curve"* has a triple point of the third species
.at (0,0,1), the tangents being

y2 =0

it lies entirely in finite space. Its vertical and horizontal

tangents are

L]
&
4
[SV)
X
N

X
y=0, y= az
respectively. The point (0,a,1): is a point of undulation (Fig.VI).

The first polar of («,R,y) is
«[4x®] + R(y?(4y-az)] + y[-ay®] = 0
The conditional egquations in this case are

U= af[12x®) = O

V = R[6y(2y=az)] + y[-3ay?] =0
W= p[-3ay?] = 0
Therefore
12x* 0 0
Ha= | O 8y(2y-az): .-3ay*|.=.0

0 “3ay® 0
or,

H3= [xy2]2 =0

Thus Hg=0 consists of x=0 counted twice and y=0, four times.
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D.
Fo= (x?+y%)2- x2(ax+by)z = O

This curve* has a triple point of the second species at

(0,0,1), the tangents at that point being

x2(ax+by) = 0

but : i A
It lies entirely in finite space,:passes through the .circular

points at infinity, that is, it is a circular quartic(Fig.VII).

The point (a,R,y) has for its first polar

a[4x(x®+y?)-x(3ax+2by)z] + R[4y(x?+y?)-bx*z]
+ y[-x2(ax+by)] = 0

The three conditional equations are

U = a[4(3x2+y2)-2(3ax+by)z] + R[2x(4y-bz)]
+ y[-x(3ax+2by)] = 0
V= a[2x(4y-bz)] + pla(x2+3y2)] + y[-bx?] =0

W= af[-x(3ax+2by)] + R[-bx?®] =0

]

Hence the Hessian is

4(3x2+y®)-2(3ax+by)z 2x(4y-bz) ~x(3ax+2by)

1
o

He= 2x(4y-bz) 4(x2+3y%?) -bx?

-x(3ax+2by) ~bx® 0

et e . o v

*Loria, Spezielle Alsebraische und Transcendente Ebene

Kurven, zweite Auflage, Bd.I,pp.171-172.
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A
that is,
He= x2[2(3a%+b?)x*+ab?x%2+2(9a2-b2?)x2y2+b3x2yz

+24abxy2+8h2y4] = 0

This Hessian is composed of x=0 twice, and a quartic ‘having
(0,0,1) for a triple point of the same species, and having the
same tangents a$ this triple point as F,= 0.

If in F,=0, a is 0, the curve reduses to an "even two-leaf™;

this was considered in 4,.

§3. Quartics with Singularities other than Triple Points.

E.
Fg= (x2-a%z2)y%~ bz*= 0
This curve has a tacnode at (1,0,0) and in addition, two
two distinct points of inflexion on 2z=0, At the point (1,0,0)
y=0 is the tacnodal tangent, while x=+az are the tangents at
the points of inflexion on 2z=0 (Fig.VIII).
The three equations,which must be satisfied if the first

polar of (a,R,y) has a double point, are

U= af2y?] + Rl4xy] =0
(3) 'V = al4xy] + R[2(x%-a%2%)] + y[-4ayz] = 0O
W= R[-4a%yz] + y[-2(a?y®+6b2%)] = O
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Therefore
2y* 4xy 0
He= |4XY 2(x2-a%z?) ~4a%yz =0
0 ~4a%yz -2(a?y2+6bz?)
or

He= y2[a®y?(x2-a22z?) + 2bz®(3x?+a%2%)] = O

H =0 thus consists of y=0 counted twice, and a quartic symmet-—
rical with respect to both x=0, y=0, having at (0,1,0) the
same singularities as Fg=0. This guartic also has a double

point at (1,0,0) with

as tangents. The double point is therefore an acnode. The ver-
p

tical and horizontal tangents are

x = + az (which are inflexional ésymptotes)
y= 4+ V2 az
respectively.

The equation of the Steinerian is obtained by eliminating
X, ¥, 2 from equations (3).The equationa (3) are, however, not
sufficient for this purpose. It is shown by Salmon* that a
system of values which satisfies a set of equations also sat-

—— o v < o

*cf. Salmon, Kodern Higher Algebra, 4th ed., p.84.
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isfies the Jacobian of the set; moreover, that, if the equations
are of the same degree, the system of values will also satisfy
the derivatives of the Jamobian with respect to each of the
variables. The derivatives with respect to x,y,2z of the Jacob-
ian of (3) give six equations from which x? y? 22 xy, xz, yz
.can be eliminated.

The Ja@obian is

| By Rx+ay 0
J = [Rx+ay ax—alyz -a®(yy+Rz) =0
0  ~a*(yy+fz) -(a®Ry+6byz)|.
that is,
J = a,x2y+ax2z+b,xy?+d,xyz+b,y2+bay2z+c,yz? = 0
where
a,= a*p(p-aty®): dy= 2Ry(3ba-a*R)
as= GbR%y by,= a%a®p
be= a®ap? bs= Bba%y + a*R2?y
ca= a*R(-a®R2+8by?)
Hence |
0 2a 0 48 0 0
2p 0 ~2a?p 4o 0 —-4a®y
0 -2a%y -12by 0 0 -4a%R
0 aZap? 0 2a%R(R2-a%y2?) 12bR%y 2Ry (3ba—a*R)!

a®R(R2-a?y?) 3aa®@ a?f(-a?R+3by?) 2a%ap? 2Ry(3ba-a*R) 2y(6ba®+a*p?)|.

6bR2y  Bbaly+a‘f?y O 2Ry (3ba~a*p) 0 2a%R(-a?R2+6by?)|
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Expanding and reducing

Ss= R*y2(243b%a*y?+8la*b2a®Ry2+30a’ba R4~
-6a‘b(a‘+17b)a262Y2 +54aob2a2Y4+2azoa?5

+8a*®baR®y2-18a*%bafy*+2a® (a*-8b)R*y2?] = 0

Sg therefore breaks up into R=0 four times, y=0 twice, and a

sextic having a biflecnode at (0,0,1) with
=0, 3bx~ g%y =D

as inflexional tangents.The y—akis is an ordinary tangent to
the curve at the ideal point (0,1,0). The sextic also has a

tacnode at (1,0,0) with z=0 as the tacnodal tangent.
F.

Fe= x* ¢ .a%(y%x%)2%= 0
This curve is symmetrical with respect to both x=0, y=0,

and has a biflecnode a¢ (0,0,1) with the tangents
(x2-y%) = 0

If the upper sign is used im F =0, the curve is closed and has
a tacnode at the ideal point (0,1,0). This is the familiar "Lem-
‘niscate of Gerono" (Fig.IX). If the lower is used, the result-
ing curve is the lemniscate, rotated 909 with its intercepts on
x=0 infinitely large. This curve also has a tacnode at (0,1,0)

(Fig.X). We shall call this a "deformed Lemniscate of Gerono!



Fly.IX
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The conditional equations are

J = a[6x?3a%2?] + y[g2a%xz] = 0
(3): V = p[22?] + y[22y2] = 0
W = afg2xz] + R[+2yz] + y[3x22y2] = O

The Hessian is

6x*za’z® 0 52a®xz
He= 0 +3* #2y3 [ =0

F2X3 +2yz  Fx2+y?|

that is,
H,= z’[2x’(x’#3y’)' + a’z’(x’-y’)'] =0
It is interesteng to note that if the upper sign is here used,
He consists of the infinite twice and a gquartic of the same
kind as Fg=0 using its lower sign, that is, a "deformed Len-
niscate of Gerono. If the lower sign in H, is used, H, con-
sists of the infinite twice and a quartic of the same kind as
Fg=0 using its upper sign, thatl is, a "Lemniscate of Gerono"
The Jacobian is |
J = y(Ba2+a?y?)x%z + Bay®xy? + BaRyxyz + a(BR2:a®y?)xz?

< aﬂYSsz k3 aﬂeyayzi + aaY(aa_pa)zs =z 0

Eliminating x,y,z from this and (4) we obtain
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60. O :a’m O q:a2Y O
0 0 R 0 0 A
TY 2y 0 0 3a R
S.: = 0
0 Bay? a(6R*ra®y®) O y(6a*ra®y®) 3apy
0 0 safpy? 2ay?  3apy Fa®y®
y(B8a2+a?y?) za?y® +3a?y(a?-f2) afy a(BR?ra®y?) za®Ry?|.

which reduces to

Se= a?y*[a2(32a%a?y2;27R*~36a%R2%y2) + da*y*(«a®-f%)] = 0O

Thus S, is composed of a=0 twice, y=0 four times, and a sextic
symmetrical with respect to both a=0, R=0. If the upper sign

is used, the sextic has a biflecnode at (0,0,1), a tacnode at
(0,1,0) with a=0 as the tacnodal tangent, and another tacnode
at (1,0,0) with y=0 as the tacnodal tangent. This sextic,there-
fore differs from a"deformed Lemniscate of Gerono", only in
that at (0,1,0) the tacnodal tangent tangent is a=0 instead of
z=0. The sextic also has an additional tacnode at (1,0,0). Ke
shall also call this a "deformed lemniscate? The lower sign

gives a sextic consisting of a lemniscate together with a tac-

node (0,1,0) having x=0 as the tacnodal tangent, and another

tacnode at (1,0,0) having 2=0 as the tacnodal tangent. These

results may be tabulated as follows:,

[4=0 Hy O Ss=0
Aincati (F1T 20 aud o defoimed cocti| <'(*2 0 anid & duf. Lown unth, Theonedrtsoy
Bef fom. (5] 2°=0 and 0 Rawuiscate |«'(120 amd a lom urth dreneds ot Goo)




G.
F, = y* = x2(x2+22) = 0

This may be written

F,= [y? + vxz(x®+22)][y? - vxz(x%+2%)] = O

It is at once seen that this curve consists of two parabolic
branches, one of which is entirely imaginary, while the other
has points of undulation at (0,0,1) and (1,0,0) with x=0 and
z=0Q as tangents, respectively (Fig.XI).

The conditional equations are

U= a[-8x2] + y[-3(x2+22)] =0
(5) V= gl12y2] =0
W= a[-3(x2+22)] + y[-6xz] =0

he Hessiian reduces to

3

H,= [y(x2-22)]2%2= 0
The Jacobian is
Jom Ry (@i Nxtast) = 9

Eliminating x,y,z between the Jacobian and (5)

-3y ¢ -3y C ~-6a 0
0 12R 0 0 0 0
L 0 -3 0 -8y 0: e
i 0 0 0 2R (y2-a2®) 0 0
R(y2-a2) 0 -R(y*-a®) 0 0 0
0 0 0 0 0 =28(y2-a?)
or,

S,= [R(a*-y*)]*= 0






33.
H.
Fe= y®(az-y) - a®*x%2z2=
This curve is a unifolium having its points of inflexion
at (+£,%,1). It has a cusp at (0,0,1) with x40 as a cuspidal
tangent. The vertical and horizontal tangents are

e
x=C, x = ¢+ 16 v3az

y = az

respectively. This curve also has a tacnode at (1,0,0) with
the ideal line, z=0:, as the tacnodal tangent (Fig.XII).

The Hessian reduces to
He= yz2[4x%(az-2y) - y®] = 0
which breaks up into y=0, the ideal line twice, and a cubic
curve. The cubic factor is a "Cissoid of Diocles" symmetrical
with respect to x=0 and having y=éz as its asymptote.
The Jaccbian is
J = 2[(4p-ay)y-aRz] (y2x2+ayxz+a®z?) + 3R¥yy2z = 0
The Steinerian reduces to
Se= a*y*(4p-ay)?[a* (4p-ay)®+ 12ap%y] =0

The quartic factor is a curve having a cusp at (0,0,1) and a

parabolic branch symmetrical to x=0. This cusp and parabolic
branch lie entirely in the lower half of the plane. The curve

z as tacnodal tangent.

N W)

also has a tacnode at infinity with y =
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)
Fo= x* + yz(x%-yz) = 0

Solving for y, we have

2

y= o (1+v5)
2%

Hence the curve has one tacnode at (0,0,1) and another at

The conditional equations are

U

a[2(6x2+yz)] + R[2xz] + yl[2xy] =0
v

a[2xz] + R[-222] + y[x*-4yz] = 0

]

a[2xy] + R{x2-4,2] +y[-2y%] =0
The Hessian therefore reduces to

Hy= 3x%-17x*yz+24x2y2%z?+4y%z® = O
]

The Hessian therefore has a parabolic branch lying entirely in

the lower half of the plane; - is symmetrical with respect to x=0;-

and has gwo triple points of the third species, one at (0,0,1),

and one at (0,1,0), with y=0 and z=0 as tangents, respectively.

Each of these tangents has six-point contact with the curve,

The Jacobian is

J = a xd+a x®yragx®a+boxy®ed,xyz+c xz%+b, y2+b 32z

tcayz®+c,y2® = 0

where
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a,= 2a(fy-6a2) cg= —48ap*

ap= y(49a2-2@y): by= -4y?

as= P (49a%-2Ry) L oo o
bg= -48ay* ca= 2R (-a®-4RY)
dy= 2a(a*-20RY) c,= —-4p°

The Steinerian is

12¢ 0 Riciay . @ 2a
Vi o) -2@ 0 20 -4y
R e ]

2
©
0
1]
(&)

PSR R T

TG T R e Y

which reduces to

Se

%2R3y* (247204 +5760a2R2+221248a2Ry-720R3y-2881R 2y 2)=0

It thus consists of the linear factors, a=0 twice, =0 three
times, y=C three times and a quartic symmetrical with respect
to «=0, baving, in the upper half of the plane, a parabolic
branch, and in the lower half, a peculiar finite branch some
what similar to the "Cocked Hat'* The Steinerian, therefore,
‘has a tacnode at (0,0,1).

*For a discussion of the Cocked Hat, see Loria, loc.cit.,

B.151.



Addenda,

The cases A; to A, inclusive — &2 - are, as has been seen,
special cases of F,=0. The relationship between the curves
which arise in the different cases, and their connection with

the auxiliary circle is shown in Figure XIV. below.




