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ABSTRACT 

 The main focus of hydrogel technology is on hydrogels in their crosslinked form. 

Although hydrogels are promising materials for cartilage tissue engineering, the clinical 

translation of these materials are hindered because they lack the ability to be molded into 

a defect site by a surgeon due to hydrogel precursors being liquid solutions that are prone 

to leaking from the implantation site during placement. Therefore, the current thesis work 

focuses on the hydrogels in their precursor form prior to crosslinking and describes the 

development of creating hydrogel pastes that have the potential to be clinically translatable. 

The current thesis first developed a platform hydrogel paste composed of methacrylated 

hyaluronic acid (MeHA), which is a more traditional hydrogel material, and hyaluronic 

acid nanoparticles. The hyaluronic acid nanoparticles were shown to impart a yield stress 

on the hydrogel precursors, allowing the precursors to be molded and shaped prior to 

crosslinking. Furthermore, the mixtures containing hyaluronic acid nanoparticles were able 

to be crosslinked and further characterized as solids and they could encapsulate bone 

marrow-derived stem cells that remained viable. The next major focus of the thesis was 

tailoring the platform system for cartilage tissue specifically, by gradually replacing each 

of the two components of the platform system with naturally derived cartilage extracellular 

matrix, to create a chondroinductive material. Devitalized (DVC) and decellularized 

cartilage (DCC) particles were found to impart paste-like behavior in MeHA gels, where 

DVC significantly upregulated chondrogenic gene expression. DCC that was solubilized 

and methacrylated (MeSDCC) was created and crosslinked, which formed hydrogels with 

a compressive modulus in the range of native cartilage tissue. Finally, DVC particles mixed 
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in with solubilized and methacrylated DVC created pastes that significantly upregulated 

chondrogenic gene expression compared to gels without DVC particles. The important next 

steps will be to further evaluate these MeSDVC and DVC particle pastes in an in vivo 

model, and further explore whether decellularization of the tissue is necessary. Ultimately, 

this thesis successfully developed a hydrogel paste that is inherently chondroinductive and 

promising for future cartilage tissue engineering applications.          
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CHAPTER 1: INTRODUCTION TO THESIS 

 The overall objective of thesis was to develop a mechanically dynamic, “paste-like” 

hydrogel material that could retain its molded or extruded shape, would “set” after 

placement and withstand mechanical loading, and would be inherently chondroinductive. 

The overall progression was to first develop a platform hydrogel paste system and then 

tailor it specifically for cartilage tissue engineering. This platform system entailed a two 

component system that was mixed together (Figure 1.1): one component was comprised of 

particles that provided the paste-like rheological properties, and the other component was 

a photocrosslinkable linear polymer that, after crosslinking, provided the mechanical 

integrity needed to withstand mechanical loading. The two components were then replaced 

one by one to create a chondroinductive paste. Therefore, characterization and progression 

of this hydrogel paste design incorporated the following three specific aims (Figure 1.2): 

(1) characterize methacrylated hyaluronic acid (MeHA) and hyaluronic acid nanoparticle 

pastes with modulated rheological properties, (2) engineer and refine MeHA pastes 

incorporating decellularized (DCC) and devitalized cartilage (DVC) and evaluate 

chondroinductivity in vitro, and (3) Characterize solubilized and methacrylated DCC 

(MeSDCC) and solubilized and methacrylated DVC (MeSDVC) and evaluate 

chondroinductivity of DVC pastes in vitro.   

 The first aim was to develop a platform technology to create hydrogel pastes that 

were capable of encapsulating rat bone marrow-derived stem cells that remained viable. 

The second aim was to replace the hyaluronic acid nanoparticles with chondroinductive 

materials, DCC and DVC, and compare and evaluate these materials in vitro. The third aim 
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first characterized hydrogels composed only of MeSDCC and evaluated them for their 

biomechanics and for their chondroinductive potential, comparing them to methacrylated 

gelatin. The final part of the third aim was to evaluate MeSDVC and DVC particle pastes 

for their chondroinductive potential in vitro. The chapters that follow reflect the 

chronological progression of these aims, and the organization of these chapters is as 

follows:   

 Chapter 2 provides a background of the structural and functional characteristics of 

hard-soft tissue interfaces and then contains a thorough literature review on the two main 

types of nanomaterials emerging in interfacial tissue engineering strategies: nanoparticles 

and nanofibers. Additionally, the chapter provides approaches used to employ these 

nanomaterials in interfacial constructs. Although the current thesis work did not evaluate 

the hydrogel pastes as interfacial constructs, Chapter 2 addresses the entire thesis as it 

provided valuable insight on the development of materials that would be successful in 

cartilage tissue engineering strategies and it addresses the first aim by providing reasoning 

for using nanomaterials for cartilage tissue engineering. 

 Chapter 3 addresses the first aim of developing a platform hydrogel paste system. 

MeHA was mixed with hyaluronic acid nanoparticles and linear hyaluronic acid in various 

formulations, where the solutions were evaluated for their yield stress prior to crosslinking. 

Additionally, the solutions were crosslinked and characterized as solids for swelling, 

mechanical compression, and cell viability after encapsulation. This chapter therefore 

provided the foundation for the rest of the current thesis, as it validated the two-component 

hydrogel system as effectively producing hydrogel pastes. 



 3 

 Chapter 4 addresses the second aim, by introducing DCC and DVC particles as a 

means to achieve yield stress in hydrogel precursors. DCC and DVC particles were mixed 

with MeHA in various formulations, evaluated for their yield stress, and were then 

crosslinked, where the compressive modulus, swelling, gene expression, and histology 

were compared and evaluated for chondroinductive potential in vitro. Therefore, the results 

of this chapter were crucial in designing the final portion of the third aim, where it was 

decided to focus on the use of DVC rather than DCC.  

 Chapter 5 addresses the first part of the third aim, i.e., characterizing MeSDCC 

hydrogels, and provides insight on the use of this newly developed material for future work. 

MeSDCC gels were fabricated and encapsulated with cells and were then evaluated for 

their compressive modulus, swelling, and chondroinductivity in vitro, where the MeSDCC 

gels were compared alongside methacrylated gelatin (GelMA) gels. The results of this 

chapter affirmed that MeSDCC is a potential promising material for cartilage tissue 

engineering and therefore, methacrylated extracellular matrix was chosen to be further 

evaluated in Chapter 6. 

 Chapter 6 further addresses aim 3 by evaluating chondroinductive pastes composed 

of MeSDVC and DVC. DVC was chosen from the results based on aim 2, and various 

formulations of DVC particles mixed with MeSDVC were evaluated for a yield stress prior 

to crosslinking, and after crosslinking, the compressive modulus, swelling, and 

chondroinductivity of these formulations were analyzed in vitro. The findings of this 

chapter further validated the use of the two-component hydrogel paste system and provided 



 4 

evidence that hydrogel pastes composed entirely of cartilage ECM have potential for 

cartilage tissue engineering.   

 Chapter 7 addresses the concluding remarks of this current thesis. It summarizes 

the key findings and then describes and presents comparisons made among and between 

all three aims. Finally, recommendations are made regarding future work with these 

materials.   

 Overall, the work conducted in this current thesis proposed a potential solution to 

overcome the major drawback of traditional hydrogels, which is leaking from the defect 

site after implantation. Hydrogels are promising materials for treating arthritis. Current 

clinical treatments for arthritis include autologous chondrocyte implantation, mosiacplasty, 

and microfracture. Other treatments available are products such as Zimmer’s DeNovo® 

product, which is composed of living, human juvenile cartilage. However, not only do these 

treatments involve high risk of donor site morbidity and/or the need for multiple surgeries, 

or require living donated cartilage, of which availability of donors is a concern, but they 

all still lack the ability to regenerate fully functional cartilage tissue. Although many 

promising improvements are being made in hydrogel technology for cartilage regeneration, 

without the potential for clinical translation, it will be difficult for these advancements to 

reach commercialization. Therefore, although the work in this current thesis did not 

encompass regenerating the entire osteochondral interface, it did provide the mindset of 

clinical translation for hydrogel advancements, and it provided for the first time a 

foundation for a potential hydrogel solution that is paste-like and chondroinductive to 

regenerate damaged cartilage tissue.    



 5 

CHAPTER 2: NANOMATERIALS FOR HARD-SOFT TISSUE INTERFACES
* 

 

 

ABSTRACT 

The field of interfacial tissue engineering is striving to restore the structural and 

functional characteristics of hard-soft tissue interfaces, which include osteochondral and 

bone-tendon/ligament interfaces. This chapter first discusses the structural and functional 

characteristics of these interfaces and then describes the two main types of nanomaterials 

emerging in interfacial tissue engineering strategies: nanoparticles and nanofibers. 

Additionally, the chapter discusses approaches used to employ these nanomaterials in 

interfacial constructs.  

 

INTRODUCTION 

Engineering of interfacial tissues is emerging as one of the grandest challenges of 

tissue engineering. This emergence is in part because of the complexity of the interface 

itself, but additionally because interfacial tissues are in high clinical demand. Hard-soft 

tissue interfaces (e.g., bone-cartilage, bone-tendon, bone-ligament), which are the focus of 

this chapter, are especially prone to injury. Considering the bone-tendon/ligament interface 

alone, repair methods using grafts are not necessarily focused on regenerating the tissue 

interface, which can lead to compromised graft function and poor long-term clinical 

outcome.82, 89 Therefore, the field of interfacial tissue engineering is striving to restore the 

                                                

*Published as Beck E.C. and Detamore M.S., “Nanomaterials for hard-soft tissue interfaces,” Chapter 13 in: 

Nanomaterials in Tissue Engineering: Characterization, Fabrication and Applications, eds. Gaharwar AK, 

Sant S, Hancock MJ, Hacking SA. Woodhead Publishing, Philadelphia, PA, pages 363 – 386, 2013. 
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structural and functional characteristics of the interface itself to form a seamless transition 

from hard-soft tissues. 

The structural and functional characteristics of the interfaces of bone-cartilage, and 

bone-tendon/ligament will be described here. These characteristics are highly complex 

because the interface is responsible for the transfer of mechanical loads between two 

dissimilar and heterogeneous tissues.89, 149 Therefore, the physiology and function of each 

interface must be understood prior to designing interfacial constructs. The bone-cartilage 

interface, known as the osteochondral interface, unites hyaline cartilage with subchondral 

bone and is the most extensively studied interface in tissue engineering. Cartilage can be 

further divided into three zones (Figure 2.1). The superficial zone at the articular surface is 

characterized by flattened chondrocytes and thin collagen II fibrils that run parallel to the 

joint surface.138 The middle zone contains more rounded chondrocytes and slightly larger 

and less parallel collagen II fibers.99 The deep zone contains chondrocytes and collagen II 

fibrils that run perpendicular to the articular surface.138 Underlying the three cartilage zones 

is a wavy tidemark that marks the beginning of the calcified cartilage zone, which extends 

the collagen fibrils from the deep zone to the subchondral bone. Finally, the subchondral 

bone is composed of primarily collagen I and hydroxyapatite crystals.154 The subchondral 

bone is secured to the calcified cartilage by interdigitation at the interface of these two 

zones. In addition to providing a secure attachment, this interdigitation reduces stress 

concentrations at the bone-cartilage interface to allow for efficient transfer of mechanical 

loading.82 
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Although osteochondral constructs are more widely explored in interfacial tissue 

engineering, the bone-tendon/ligament interfaces are gaining attention as well. Tendons 

transfer loads from muscle to bone, while ligaments link bone to bone and help ensure joint 

stability.86 The insertions of tendons and ligaments to bones can vary drastically, but they 

can generally be classified as direct or indirect.86 Direct insertions are characterized by four 

transition zones (Figure 2.1). The first zone is fibrous connective tissue that contains 

fibroblasts with aligned collagen fibrils. These collagen fibrils extend to the next zone, the 

uncalcified fibrocartilage zone, which contains larger collagen fibrils that are less parallel 

than the previous region. A wavy tidemark separates the uncalcified fibrocartilage zone 

from the calcified cartilage zone. Finally, interdigitation secures the calcified cartilage zone 

to the fourth zone, which is the underlying bone.7 Indirect insertions do not contain the 

fibrocartilage zones, but instead the tendon is directly secured to the bone through 

Sharpey’s fibers, which are collagen fibers that extend directly into the underlying bone.86 

Primarily, tissue engineering strategies to regenerate osteochondral and bone-

tendon/ligament interfacial tissues are stratified in nature. These stratified designs are 

considered “graded” designs, as they combine two or more distinct layers that aim to hone 

in on the characteristics of the various interfacial zones. More recently, continuously 

graded approaches have been considered, where instead of containing discrete layers, the 

constructs provide a more gradual tissue interface transition, similar to the native interface 

itself.27 These interfacial tissue engineering approaches and strategies have been 

thoroughly reviewed in the literature,24, 27, 45, 75, 82-84, 89, 90, 98, 112, 117, 118, 124, 154, 160 however 

the quest for the best approach continues. 
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  An emerging trend in interfacial tissue engineering is the incorporation of 

nanomaterials in the interfacial design. Prior to 2009, few publications existed that 

incorporated nanomaterials for interfacial constructs. However, the number of publications 

in this area continues to increase steadily each year, with just over five publications in 2009 

alone and doubling to more than ten publications in 2011 alone. Additionally, the number 

of publications in this area so far for 2012 are on a similar pace to that of 2011, emphasizing 

that nanomaterials are rapidly gaining attention and generating interest in the field of 

interfacial tissue engineering. Nanomaterials are typically classified as materials that are 

1-100 nm in size, although many groups consider materials smaller than 1 μm to be 

nanoscale. Nanomaterials can take many forms, including nanoparticles, nanofibers, 

nanocrystals, nanorods, nanotubes, etc. In a relatively short period, nanomaterials have 

exhibited extraordinary potential to advance medical therapies. In the field of tissue 

engineering, nanomaterials have become of growing interest recently because the 

extracellular matrices of tissues are composed of hierarchically nanostructured materials 

that can regulate cellular functions such as differentiation, morphogenesis, adhesion, 

proliferation, and migration.137 Thus, nanomaterials have the potential to advance current 

strategies for interfacial tissue engineering.  

The following sections review the two nanomaterial components currently being 

used in hard-soft tissue engineering: nanoparticles and nanofibers. In addition, a section is 

included that discusses strategies incorporating nanomaterials in hard-soft tissue interfaces. 

Although this text is organized by nanomaterial component, because of overlap in 

nanomaterial use in some strategies, the tables are arranged by interface type. Table 2.1 
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provides the nanomaterials employed in osteochondral strategies and Table 2.2 provides 

the nanomaterials used in bone-tendon/ligament strategies.  

 

NANOPARTICLES 

Recent interfacial tissue engineering constructs have incorporated nanoparticles of 

various types of materials. Because all hard-soft tissues include bone, it is not surprising 

that the majority of nanoparticles used in interfacial tissue engineering constructs are 

ceramic. Not only are ceramics part of the native extracellular matrix (ECM) of bone, they 

can additionally increase the mechanical strength, biocompatibility, and osteoconductivity 

of tissue engineered scaffolds.21, 31 In the following sections, we will discuss interfacial 

constructs that incorporate ceramic nanoparticles of hydroxyapatite (HAp), the most 

commonly incorporated ceramic nanoparticle, β-tricalcium phosphate (β-TCP), and other 

mineral-based materials. Although most of the nanoparticle materials in the following 

sections are mineral-based, newly emerging nanoparticle materials, including magnetic 

and fluorescent nanoparticles, will be discussed in the following sections. 

 

Hydroxyapatite (HAp) Nanoparticles 

It is well known that the nanostructure of bone, including HAp, plays an important 

role in the overall mechanical properties of bone.106 HAp nanocrystals constitute 

approximately 70% of native bone matrix.58 These HAp nanocrystals are roughly 50 nm 

long, 25 nm wide, and 2-5 nm thick.56, 107 One method used in interfacial tissue engineering 

is to directly incorporate synthetic HAp in the constructs.18, 19, 62, 91, 102, 113, 152 Samavedi et 
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al.113 fabricated a continuously graded mesh by co-electrospinning nano-

HAp/polycaprolactone (PCL) with poly(ester urethane). This approach for the bone-

ligament/tendon interface resulted in a continuous mineral gradient as well as a gradient in 

tensile moduli throughout the scaffold.113 Mohan et al.91 additionally constructed a 

continuous mineral gradient for the osteochondral interface by incorporating nano-HAp 

into poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres. The gradient was formed by 

filling a mold with opposing types of microspheres, PLGA with or without nano-HAp, and 

microspheres loaded with transforming growth factor-β1 for chondrogenesis. Scaffolds 

containing both mineral and signal gradients were found to promote the greatest extent of 

regeneration.91 Another group used a bi-layered approach, composed of a poly vinyl 

alcohol (PVA)/gelatin/nano-HAp layer and a polyamide6 layer.102 Osteogenically induced 

bone marrow stem cells (BMSCs) were seeded onto the HAp layer and chondrogenically 

induced BMSCs were seeded onto the polyamide6 layer, and the constructs were implanted 

intramuscularly. After 12 weeks, the layers retained the corresponding osteogenic and 

chondrogenic gene expression.102 Other groups have used non-stratified nanocomposites 

that have shown promise for osteochondral tissue engineering. These nanocomposites 

incorporated HAp and synthetic polymers, including PLGA152 and poly(1,8-octanediol-co-

citrate) (POC).18, 19 Xue et al.152 implanted PLGA constructs containing HAp into rat 

osteochondral defects and observed superior osteochondral regeneration in the scaffolds 

incorporating HAp compared to PLGA control scaffolds.  

In addition to solely incorporating nano-HAp, some groups compared both HAp 

microparticle and nanoparticle incorporation.19, 62 For bone tissue engineering, a debate 
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currently exists on the use of HAp microparticles versus nanoparticles.143 In comparison to 

microparticles, nanoparticles are hypothesized to better mimic the native bone environment 

and enhance osteogenic differentiation.96 However, drawbacks of nanoparticles include 

reduced scaffold porosity and particle aggregation.143 In interfacial tissue engineering, this 

microscale versus nanoscale debate exists as well. Chung et al.19 directly compared HAp 

microcomposites versus nanocomposites and found that nanocomposites displayed the 

highest strength and stiffness and allowed for more trabecular bone formation at the 

implant-tissue interface. However, Khanarian et al.62 compared HAp microparticle and 

nanoparticle incorporation in agarose gels and found superior mechanical properties and 

matrix production with HAp microparticles relative to HAp nanoparticles. These studies 

suggest the need for further research and characterization of microscale and nanoscale 

interfacial constructs.  

Not all studies that incorporate HAp used synthetic HAp. An newer alternative 

technique to incorporate HAp is by inducing the nucleation and growth of HAp crystals.159 

This approach mimics native HAp deposition by the use of simulated body fluid (SBF), 

which is a solution that contains the approximate concentrations of ions found in vivo. 

Scaffolds can be soaked in this solution and HAp crystals are directly nucleated on the 

surface, where the size of HAp crystals can be regulated by the amount of soak time.123 In 

native bone, HAp is deposited on collagen I fibers, and the size and orientation of the 

deposited HAp crystals are regulated by the collagen fibers.106 Although this nucleation 

technique may be used for bone tissue engineering,158 several interfacial tissue engineering 

studies tried to directly mimic this native mineralization by allowing collagen I nanofibers 
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to soak in SBF.39, 65-69, 77, 130, 131 Tampieri et al.131 developed a tri-layered osteochondral 

scaffold, which consisted of a biomineralized collagen layer to mimic native subchondral 

bone, an intermediate layer composed of collagen and less mineral, and an upper layer 

composed of hyaluronic acid and collagen to mimic the articular cartilage. These constructs 

were implanted subcutaneously in mice for 8 weeks and the layers of the construct were 

found to selectively support osteogenesis or chondrogenesis.131 From the same group, Kon 

et al.67 studied a similar tri-layered scaffold in sheep, except the cartilaginous layer lacked 

hyaluronic acid. Blank scaffolds and scaffolds seeded with autologous chondrocytes were 

implanted in sheep osteochondral defects. The extent of regeneration in the seeded 

constructs was similar to that of the blank scaffolds, suggesting the scaffold induced local 

cellular infiltration in vivo.67 This scaffold has even been further tested in horses and in 

human clinical trials.66, 68, 69 In another study, Liu et al.77 created a continuous gradient of 

HAp on a collagen construct by a controlled diffusion-precipitate method that allowed 

calcium and phosphate solutions to diffuse into the construct via opposing gradients. This 

resulted in a calcium rich and a calcium depleted side, where nano-HAp precipitation was 

the most prominent in the interior of the scaffold.77 

HAp nucleation has additionally been performed on PCL74, 97, 113 and poly(D,L-

lactide) (PDLLA).157, 162 Li et al.74 created a continuously graded HAp scaffold by locally 

varying the immersion time of PCL nanofibers in SBF. The PCL scaffold was placed in a 

tilted position in a glass beaker and a mineral solution was fed into the beaker at a constant 

rate. Thus, because the scaffold region at the bottom of the beaker was exposed to SBF for 

a longer period, there was more HAp deposition at the bottom than in the scaffold region 
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at the top of the beaker. After seeding with mouse preosteoblasts for 3 days in vitro, the 

cell density within the scaffold was found to increase with increasing mineral content along 

the mineral gradient.74 HAp has additionally been nucleated onto scaffoldless 

osteochondral constructs, which were composed of ECM directly secreted by 

mesenchymal stem cells (MSCs).87 HAp was deposited onto the constructs with an 

alternate soaking process with calcium and phosphate solutions. Scaffolds containing HAp 

exhibited accelerated osteoinduction in vivo as compared to scaffolds without HAp.87 

 

β-Tricalcium Phosphate (TCP) Nanoparticles 

In addition to being osteoconductive and biocompatible, β-TCP has received great 

attention from the interfacial and bone tissue engineering communities due to its tunable 

bioresorption rates.100 Erisken et al.34 recently created a functionally graded β-TCP 

scaffold via a hybrid twin-screw extrusion/electrospinning (TSEE) process for 

osteochondral interfaces. This process allowed the time-dependent feeding of β-TCP 

nanoparticles and PCL solution resulting in a continuous gradation of β-TCP in an 

electrospun nanofibrous mesh. The same group further tested the scaffold for its linear 

viscoelastic and compressive properties by testing scaffolds seeded with mouse 

preosteoblasts and unseeded scaffolds.35 They found that the viscoelastic and 

biomechanical properties increased (i.e., became closer to the native osteochondral 

interface) by increasing the culture period. Another group fabricated a multilayer scaffold 

that employed β-TCP, in which the scaffold contained a bone phase, a cartilage phase, and 

a transition phase in between. The bone phase was created by ceramic stereolithography 
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and the cartilage phase, consisting of collagen I, was added to the bone phase by gel casting. 

In addition, the gel casting method was proposed to aid in the reduction of delamination 

between bone and cartilage layers.8 

 

Other Mineral Nanoparticles 

Although the primary mineral components used in tissue engineering are 

hydroxyapatite and β-TCP, other mineral nanomaterial components such as amorphous 

calcium phosphate and β-glycerophosphate (β-GP) have been incorporated into interfacial 

constructs.36, 47, 48, 103 Harley et al.47 developed a layered scaffold with a continuous 

interface via a liquid-phase cosynthesis technique. The bone phase was composed of a 

mineralized type I collagen/chondroitin sulfate and the cartilage phase was composed of 

unmineralized collagen II/chondroitin sulfate. The layers were then allowed to diffuse, 

creating a graded interface.47 Erisken et al.36 used the previously described TSEE process 

to create scaffolds with opposing gradients of insulin and β-GP. The scaffolds were seeded 

with human adipose-derived stromal cells and it was found that the cells differentiated 

selectively towards chondrogenic or osteogenic lineages depending upon the location in 

the scaffold.36 As an alternative electrospinning technique, Ramalingham et al.103 used a 

two-spinnerette approach to create a scaffold of continuously graded amorphous calcium 

phosphate nanoparticles. The spinnerettes were set 2.5 cm apart oriented vertically above 

a spinning mandrel, where each spinnerette was connected to a syringe loaded with either 

PCL or PCL with calcium phosphate nanoparticles. Preosteoblast cells were seeded onto 
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the constructs for 7 days and it was observed that cell adhesion and proliferation increased 

as the calcium phosphate concentration increased along length of scaffold.103 

 Emerging Nanoparticle Materials 

Although most nanoparticle materials used in interfacial tissue engineering are 

mineral-based, it is important to consider the potential benefits of other nanoparticle 

materials as well. Some emerging nanoparticle materials in interfacial tissue engineering 

are magnetic,46, 130 fluorescent,72 or silver.97 Grogan et al.46 fabricated a graded scaffold by 

mixing alginate hydrogels with cells labeled with magnetic iron-oxide nanoparticles and 

exposing the cells to varying external magnetic fields. The resulting scaffold produced a 

scaffold with varying cellular orientations that closely mimicked that of the osteochondral 

interface.46 Lee et al.72 developed another interesting use for fluorescent nanoparticles in 

interfacial tissue engineering. They created an in vivo cell tracking system to monitor the 

migration of mesenchymal stem cells in osteochondral defects.72 Nirmala et al.97 

introduced the use of silver nanoparticles for osteochondral constructs. They incorporated 

hydroxyapatite and silver nanoparticles in PCL electrospun nanofibers and then submerged 

the constructs in SBF to allow for further mineralization. Incorporating the silver 

nanoparticles resulted in superior mechanical properties and apatite deposition.97 

Additionally, silver nanoparticles are known for their antimicrobial properties, providing a 

further advantage of silver nanoparticle incorporation.125 
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Summary of Nanoparticles 

Overall, nanoparticle use in interfacial tissue engineering is primarily focused on 

the incorporation of natural materials like hydroxyapatite and β-TCP. The most common 

methods utilize the nucleation of hydroxyapatite onto collagen scaffolds, which closely 

mimics the natural mineral deposition in vivo. In general, scaffolds incorporating nano-

HAp and other mineral gradients appear to result in superior interface mechanical 

properties as well as enhance the selective cellular response within the constructs. Although 

there is some debate on whether nanoscale or microscale minerals are superior for 

interfacial constructs, nanomaterials certainly show promise for the field. Additionally, 

further developments in the newly emerging nanoparticle materials have the potential to 

advance the interfacial tissue engineering field. These emerging nanomaterials provide new 

methods to produce gradient scaffolds (e.g., using magnetic fields) and fluorescent 

nanoparticles additionally provide a new method to evaluate the constructs in vivo.  

 

NANOFIBERS 

Nanofibers are another promising nanomaterial used in interfacial tissue 

engineering due to their high surface-to-volume ratio and their ability to mimic the fibrous 

organization of the ECM.118 Nanofibers possess unique mechanical properties whereby the 

tensile modulus, shear modulus, and tensile strength have shown the capacity to increase 

as the diameter of the nanofiber decreases.16, 153 These properties are especially useful to 

the bone-tendon/ligament interface, where the native mechanical loading transitions from 

primarily compressive in bone to tensile loading. Three common methods to produce 
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nanofibers are self-assembly, electrospinning, and phase separation. Additionally, the 

materials that constitute these nanofibers in interfacial tissue engineering are primarily 

collagen and synthetic polymers. Thus, the following sections will discuss the collagen and 

synthetic nanofibers for interfacial tissue applications and each section will discuss how 

the materials are incorporated. 

 

Collagen Nanofibers 

As the most common bodily protein, accounting for 30% of all proteins in the body, 

and giving rise to the structural support and tensile strength of the native ECM,61 collagen 

is the most commonly employed nanofibrous material in interfacial tissue engineering. 

Collagen I is the most prevalent type of collagen in bone, while collagen II is more 

prevalent in hyaline cartilage. However, collagen I is primarily the only type of collagen 

currently being incorporated into interfacial constructs. Additionally, all publications 

currently employing collagen I nanofibers into their interfacial constructs use collagen self-

assembly to create the nanofibers.12, 39, 65-69, 130, 131 Cheng et al.12 encapsulated rabbit MSCs 

into collagen microspheres that were fabricated out of self-assembled collagen I 

nanofibers. The encapsulated microspheres were then either chondrogenically or 

osteogenically induced and the microspheres were brought together to form three layers, a 

chondrogenic and osteogenic layer, and an intermediate layer in between containing 

undifferentiated MSCs in collagen microspheres. Compared to biphasic control scaffolds 

that did not contain an intermediate layer, the triphasic scaffolds successfully formed a 

calcified cartilage layer.12 As previously mentioned in the HAp nanoparticle section, the 
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other group incorporating collagen nanofibers via self-assembly developed a tri-layered 

osteochondral scaffold, which consisted of a biomineralized collagen layer to mimic native 

subchondral bone, an intermediate layer composed of collagen and less mineral, and an 

upper layer composed of hyaluronic acid and collagen to mimic the articular cartilage.131 

This group went on to study a similar tri-layered scaffold in sheep, horses, and even in 

human clinical trials.66-69 

Synthetic Nanofibers 

Although natural material incorporation more closely mimics the native ECM of 

tissues, due to the ability to control degradation and tune mechanical properties,139 

synthetic nanofibers have additionally received a lot of attention in interfacial tissue 

engineering. Primarily synthetic nanofibers are made via electrospinning, however one 

interfacial tissue engineering strategy used phase separation to make nanofibers.132 

Through this phase separation technique, Tan et al.132 created nanofibrous scaffolds out of 

poly(l-lactic acid) (PLLA). The PLLA scaffolds supported the differentiation of human 

bone marrow stem cells along osteogenic or chondrogenic lineages when exposed to the 

respective growth signals.132  

As previously described, several studies have incorporated synthetic nanofibers 

with mineral-based nanoparticles, where the fibers were electrospun PCL, PLGA, or 

PDLLA.34-36, 74, 97, 103, 113, 157 Other electrospun interfacial constructs incorporate only the 

synthetic nanofiber itself.78, 126, 151 Xie et al.151 fabricated a unique “aligned-to-random” 

oriented nanofibrous scaffold by specifically designing a collector with varying electric 

fields. These scaffolds were created to mimic the change in collagen fiber orientation in 
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the bone-tendon insertion site. Tendon fibroblasts cultured on these scaffolds were 

observed to be aligned in the aligned fiber portion and were oriented more randomly in the 

random fiber portion. Although collagen II was not observed on any portion of the scaffolds 

after 7 days of culture, collagen I deposition was oriented in the direction of the nanofibers 

in the aligned portion of the scaffold and was randomly distributed in the random 

portion.151 Aside from electrospinning and phase separation, Liu et al.78 fabricated 

nanofibrous hollow microspheres via self-assembled star-shaped PLLA. These 

microspheres were designed to be injectable for cartilage and osteochondral defects, mimic 

the nanoscale topography of native ECM, and they were designed to be highly porous. In 

comparison to solid microspheres composed of the same material, the nanofibrous 

microspheres supported a significantly larger amount of cartilage regeneration in an ectopic 

model.78 

Alternative synthetic materials that have emerged are carbon nanofibers and 

nanorods.108 Rodrigues et al.136 tested both pure polyvinyl alcohol (PVA) hydrogels and 

carbon-reinforced hydrogels in osteochondral defects. The reinforced gels contained either 

carbon nanofibers or carbon nanorods. These carbon nanomaterials are desirable because 

they are light weight and possess high stiffness and axial strength.136 After 12 weeks of 

implantation, the carbon nanofiber-reinforced PVA accumulated the most calcium and 

phosphorus suggesting carbon nanofibers may have potential for treating osteochondral 

defects.108 
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Summary of Nanofibers 

Although self-assembled collagen fibers are the most commonly employed 

nanofiber for interfacial tissue engineering applications, other promising synthetic 

nanofiber materials are being explored, including carbon nanofibers. The unique 

mechanical properties as well as the ability to mimic the native ECM of interfacial tissues 

make these materials highly desirable for interfacial constructs. Specifically, 

electrospinning has been successfully used to spatially control the alignment of nanofibers, 

which resulted in a gradation in cellular alignment and ECM secretion. Overall, it appears 

nanofibers are used primarily in conjunction with nanoparticles and are used as a tool to 

create gradients in mineral content. Thus, nanofiber use may create gradients in mechanical 

properties and cellular responses that mimic native tissue interfaces. 

 

STRATEGIES INCORPORATING NANOMATERIALS IN HARD-SOFT 

TISSUE INTERFACES 
 

Though it is certainly important to consider types of nanomaterials to be used in 

interfacial tissue engineering, it is essential to consider the overall interfacial strategy used 

that employs these materials. As stated in the introduction, interfacial tissue engineering 

strategies as a whole are primarily stratified in nature. This trend certainly remains evident 

(Tables 2.1 and 2.2) in strategies that employ nanomaterials, where the majority of the 

strategies are stratified (i.e. biphasic or triphasic) or homogeneous (i.e. nanocomposite). 

The stratified approaches more closely mimic the native tissue components and/or 

structure, however, they may risk delamination between phases. The use of homogeneous 

constructs reduces the risk of delamination,47, 152 although homogeneous approaches lack 
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to regenerate the structural/functional anisotropy that exists in tissue interfaces. 

Consequently, continuous interfaces have received recent attention in the literature as they 

provide a more seamless transition between tissues.27 Continuous interfaces that employ 

nanomaterials are certainly a minority (Tables 2.1 and 2.2) as compared to the stratified 

and homogeneous approaches, although continuous approaches are more common in bone-

tendon/ligament interfaces. Interestingly, the main continuous approaches involve 

electrospinning techniques. However, Detamore and Berkland et al.28-30, 91, 122 have created 

continuous interfaces by loading a mold with opposing gradients of osteogenic and 

chondrogenic microspheres. Additionally, strategies that incorporate a continuous or 

stratified design primarily create a gradient of ceramic components. However, other 

gradient approaches exist, including gradients in fiber151 and cellular46 alignment. 

 

CONCLUSION AND FUTURE DIRECTIONS 

As the field of interfacial tissue engineering progresses, the underlying goal 

remains, which is to regenerate a structural and functional interface that transitions between 

two dissimilar tissues. This chapter has provided an overview of the structural and 

functional characteristics of the most widely explored tissue interfaces, specifically the 

osteochondral and bone-tendon/ligament interfaces. However, tissue engineering studies 

of other tissue interfaces (e.g., muscle-tendon interface) are beginning to emerge as well.71 

Highlighted in this chapter is the burgeoning integration of nanomaterial use in 

interfacial tissue engineering strategies. The nanomaterials currently being used in 

interfacial applications are nanoparticles and nanofibers. Interestingly, the most common 
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nanomaterials used in interfacial strategies are mineral-based nanoparticles and collagen 

nanofibers, which are components found in the native interfaces. This use of raw materials 

further emphasizes the potential of using raw materials in tissue engineering strategies.26 

However, nanomaterial use in general provides many benefits to interfacial strategies, 

including superior mechanical properties of the interface, and providing a more biomimetic 

environment.  

In addition to the type of nanomaterial employed, the overall strategy to regenerate 

the interface is crucial as well. As previously mentioned, interfacial strategies that employ 

nanomaterials are primarily stratified or homogeneous, although continuous gradient 

approaches are gaining attention in the field. Furthermore, it is important to note that 

although these strategies are defined as osteochondral or bone-tendon/ligament strategies, 

approaches from either interface can be tailored for the design of a desired interface. 

Because interface structure and function are both crucial entities for successful 

regeneration of interfaces, future successful interfacial designs will likely incorporate a 

strategy that mimics the gradient of natural interface as well as incorporate the nanoscale 

components of the interface. Thus, continuous gradients that incorporate gradients of 

minerals, collagen, and/or other nanoscale elements may become the next generation of 

interfacial designs. 
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CHAPTER 3: ENABLING SURGICAL PLACEMENT OF HYDROGELS 

THROUGH ACHIEVING PASTE-LIKE RHEOLOGICAL BEHAVIOR IN 

HYDROGEL PRECURSOR SOLUTIONS
† 

 

 

ABSTRACT 

 Hydrogels are a promising class of materials for tissue regeneration, but they lack 

the ability to be molded into a defect site by a surgeon because hydrogel precursors are 

liquid solutions that are prone to leaking during placement. Therefore, although the main 

focus of hydrogel technology and developments are on hydrogels in their crosslinked form, 

our primary focus is on improving the fluid behavior of hydrogel precursor solutions. In 

this work, we introduce a method to achieve paste-like hydrogel precursor solutions by 

combining hyaluronic acid nanoparticles with traditional crosslinked hyaluronic acid 

hydrogels. Prior to crosslinking, the samples underwent rheological testing to assess yield 

stress and recovery using linear hyaluronic acid as a control. The experimental groups 

containing nanoparticles were the only solutions that exhibited a yield stress, 

demonstrating that the nanoparticulate rather than the linear form of hyaluronic acid was 

necessary to achieve paste-like behavior. Furthermore, the gels were photocrosslinked and 

further characterized as solids, where it was demonstrated that the inclusion of 

nanoparticles did not adversely affect the compressive modulus and that encapsulated bone 

marrow-derived mesenchymal stem cells remained viable. Overall, this nanoparticle-based 

approach provides a platform hydrogel system that exhibits a yield stress prior to 

                                                

†Published as Beck E.C., Lohman B.L., Tabakh D.B., Kieweg S.L., Gehrke S.H., Berkland C.J., and 

Detamore M.S., Enabling Surgical Placement of Hydrogels Through Achieving Paste-Like Rheological 

Behavior in Hydrogel Precursor Solutions, Annals of Biomedical Engineering, 1-8, 2015 (PMC4540702). 
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crosslinking, and can then be crosslinked into a hydrogel that is capable of encapsulating 

cells that remain viable. This behavior may hold significant impact for hydrogel 

applications where a paste-like behavior is desired in the hydrogel precursor solution. 

 

INTRODUCTION 

Hydrogels are a promising class of tissue regenerative materials because of their 

high water content, 3D structure, tunable mechanical properties, and their ability to be 

delivered in a minimally invasive manner.9, 23, 33 However, hydrogels lack the ability to be 

molded into a defect site by a surgeon because hydrogel precursors are liquid solutions that 

are prone to leaking after placement,110, 135 which confounds their ability to be used by 

surgeons in the clinic. Therefore, although the main focus of hydrogel technology and 

developments are on hydrogels in their crosslinked form, our primary focus is on the fluid 

behavior of hydrogel precursor solutions (i.e., the fluid behavior of the hydrogel prior to 

crosslinking). As an alternative to traditional hydrogels, colloidal gels are mechanically 

dynamic paste-like materials that can be easily molded into place and will ‘set’ after 

placement.147 Colloidal gels attain their cohesiveness through disruptable particle 

interactions and our research group has shown that these gels can successfully fill tissue 

defects, deliver bioactive signals, and promote new tissue formation in non-load bearing 

cranial defect applications.25, 144-146 Our recent work has shown that colloidal gels with 

shear-thinning rheological behavior can be made out of solutions of hyaluronic acid (HA) 

nanoparticles.37 These HA-based colloidal gels have the ability to fully recover after 

compression to high strains and after physically destroying and reassembling the gel, which 
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may be attractive for applications such as for cartilage regeneration.37 However, 

preliminary work demonstrated that these colloidal gels do not retain their integrity over 

time in culture. Therefore, we have created a platform system that combines the HA 

colloidal gels systems with traditional crosslinked HA hydrogels to form a hydrogel 

suitable for load-bearing applications that is paste-like prior to crosslinking for effective 

delivery in situ. Although other systems, including dermal fillers, employ HA particles 

with traditional crosslinked HA hydrogels,51-55, 111, 134 or use alternate means to induce a set 

strength in injectable materials,32, 81 our HA nanoparticles (HAnp) are fabricated with a 

specific molecular weight (MW) designed to achieve paste-like rheological behavior and a 

yield stress and they have never before been encapsulated within crosslinked HA 

hydrogels.37 This yield stress is especially desirable to enable a surgeon to mold the 

material into the defect site without the concern that the material will flow or leak from the 

defect, which is the main concern for traditional hydrogel precursor solutions. The HAnp 

will additionally allow the surgeon to mold the hydrogel precursor solution to obtain 

appropriate contouring of the defect site, which in some cases may not be possible with 

traditional hydrogel precursor solutions. Therefore, combining these HAnp with traditional 

crosslinked HA hydrogels may allow the material to be implanted in situ with appropriate 

placement and contouring, and the precursor solution can then be crosslinked to form a 

more rigid structure. Thus, the primary objective of this work was to characterize the 

rheological behavior of HAnp-incorporated hydrogel precursor solutions. An additional 

objective was to ensure that HAnp did not negatively influence the mechanics or 

cytocompatibility of the hydrogel after crosslinking.  
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MATERIALS AND METHODS 

Materials  

Unless otherwise stated, all materials were purchased from Sigma-Aldrich (St. 

Louis, MO). EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride) was 

purchased from Thermo Scientific (Rockford, IL). HA (16 kDa and 1 MDa) was purchased 

from Lifecore Biomedical (Chaska, MN). All cell culture materials were purchased from 

Invitrogen (Grand Island, NY). 

 

Synthesis and Characterization of Methacrylated HA (MeHA) and HAnp 

MeHA was prepared by reacting HA (MW 1 MDa) with 20-fold molar excess 

glycidyl methacrylate (e.g., 20 mol glycidyl methacrylate per 1 mol HA monomer) in the 

presence of 20-fold molar excess triethylamine and tetrabutyl ammonium bromide for 12 

days stirring in a 50:50 water:acetone solution at 200 rpm. MeHA was then dialyzed against 

deionized (DI) water for 2 days and was then frozen and lyophilized. The degree of 

methacrylation was analyzed with 1H NMR (Avance AV-III 500, Bruker) by calculating 

the ratio of the relative peak area of methacrylate protons to methyl protons.63 HAnp were 

prepared using carbodiimide crosslinking chemistry using EDC with adipic acid 

dihydrazide (AAD) as the crosslinker.37 Briefly, 300 mg HA (16 kDa) was dissolved in 

120 mL DI water in a 500 mL round flask stirring at 300 rpm. Then, 200 mL acetone was 

added to the flask and stirred for 15 min. AAD (60 mg) was dissolved in 1 mL DI water 

and added to the flask for 10 min. Similarly, 140 mg EDC was dissolved in 1 mL DI water 

and added to the flask for 20 min. Another 200mL acetone was then added to the flask and 
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the reaction was allowed to stir for 3 hours. The solution was then dialyzed against DI 

water for 2 days and the particles were frozen and lyophilized. Repeated batches of HAnp 

were fabricated in this manner and combined for later testing. Particle size was measured 

using a ZetaPALS dynamic light scattering instrument (Brookhaven, USA). Particle 

morphology was examined with Scanning Transmission Electron Microscopy (STEM) 

images using a FEI Technai G2 transmission electron microscope at 200 kV.  

 

Preparation of Colloidal Gels 

Gels were made by mixing varying weight percents of HA (i.e., MeHA and HAnp) 

in 0.01M phosphate buffered saline (PBS) containing 0.05% (w/v) Irgacure (I-2959) 

photoinitiator (e.g., 15% HAnp = 15 mg HAnp in 100 µL PBS). Additionally, linear HA 

(HAlin) at 16 kDa (i.e., the same MW used to make the HAnp) was mixed with MeHA as 

a control to discern whether yield stress differences were due to the HA being in the 

nanoparticulate form or due to the mere addition of extra HA.  

 

Rheological Testing 

Prior to crosslinking the hydrogels, the shear stress of the precursor solutions (n=5) 

were measured over a shear rate sweep of 1-100 s-1 using an AR-2000 rheometer (TA 

Instruments, New Castle, DE) equipped with a 20 mm diameter plate at 37 °C at a gap of 

500 µm. Preliminary work suggested that a 15% HAnp solution was sufficient to obtain a 

yield stress, and 4% MeHA was chosen because it was at the reconstitution limit of MeHA. 

Formulations tested were 4% MeHA, 15% HAlin, 4% MeHA + 15% HAlin, 30% HAlin, 
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4% MeHA + 30% HAlin, 15% HAnp, 4% MeHA + 15% HAnp, 30% HAnp, and 4% 

MeHA + 30% HAnp. The yield stresses of solutions were calculated using a three 

parameter fitting technique in MATLAB (MathWorks, Natick, MA) to fit the data to the 

Herschel-Bulkley equation (Equation 3.1), where  is the shear stress, is the yield stress, 

 is the consistency index,  is the shear rate, and n is the flow behavior index. 

 
n (Equation 3.1) 

Oscillatory tests were performed first by doing a stress sweep at 1 Hz to determine 

the linear viscoelastic region of the solutions. Solutions (n=5) were then exposed to three 

phases of oscillatory shearing at 1 Hz: 5 minutes at a constant shear stress of 10 Pa (i.e., 

within the linear viscoelastic region of the pseudoplastic solutions), a disruption phase 

lasting 30 seconds at a constant shear stress of 1000 Pa (i.e., sheared above the yield stress), 

and another 5 minutes at a constant shear stress of 10 Pa.  

 

Characterization of Crosslinked Hydrogels 

Gel solutions of experimental groups containing 4% MeHA were placed in a 2 mm 

thick mold between glass slides and exposed to 312 nm UV light at 3.0 mW/cm2 

(Spectrolinker XL-100; Spectronics Corp.) for 15 min on each side. Gels were cut using a 

3 mm biopsy punch. To calculate the swelling degree, gels were swollen in PBS for 24 

hours and then weighed and lyophilized (n=6). The dry weight was recorded after 

lyophilization and the swelling ratio (Q) was calculated as the ratio of total wet mass to dry 

mass. To obtain the compressive modulus, gels were swollen in PBS for 24 hours or two 

weeks (n=6) and were compressed using a RSA-III dynamic mechanical analyzer (TA 
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Instruments) at a rate of 0.005 mm/s until mechanical failure and the elastic modulus was 

calculated as the slope under the linear portion of the stress-strain curve. 

 

Cell Viability 

Rat Bone Marrow-Derived Mesenchymal Stem Cells (rBMSCs) were harvested 

from the femurs of male Sprague-Dawley rats (200-250g) following an approved 

University of Kansas IACUC protocol. The rBMSCs were cultured in monolayer until 

passage 4 for cell seeding. Media consisted of low glucose Dulbecco’s Modified Eagle’s 

Medium, 10% Qualified Fetal Bovine Serum, 1% Antibiotic-Antimycotic and was replaced 

every other day throughout culture. For encapsulation, cells were suspended in the 

photoinitiator solution at a cell density of 10 million cells mL-1 and then mixed with either 

4% MeHA or 4% MeHA + 15% HAnp. Hydrogels were then fabricated using the same 

previously described technique to make acellular gels. After 4 weeks of culture, the gels 

were stained with live/dead reagent (2 mM calcein AM, 4 mM ethidium homo-dimer-1; 

Molecular Probes), incubated for 20 min, and then analyzed using fluorescence microscopy 

on a Zeiss Axio Observer A1 (Carl Zeiss, Oberkochen, Germany). 

 

Statistics 

SPSS statistical software was used to compare experimental groups using a single-

factor ANOVA followed by a Tukey’s post hoc test, where p ≤ 0.05 was considered 

significant. In addition, SPSS was used to construct standard box plots to eliminate outliers 

for compression testing. After outlier removal, n=5-6 samples for statistical analysis.  
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RESULTS 

Macroscopic Observation of Hydrogel Formulations 

When HAnp (average diameter = 246 nm) were mixed with MeHA (degree of 

methacrylation = 21%), non-Newtonian paste-like behavior with shape-retention were 

observed (Figure 3.1A-C). In contrast, solutions composed of pure MeHA or MeHA 

solutions containing HAlin did not exhibit this behavior, and instead exhibited Newtonian 

or zero yield stress pseudoplastic behavior. STEM images of HAnp confirmed the 

formation of nanoparticles (Figure 3.1D). 

 

Yield Stress Evaluation of Hydrogel Formulations Prior to Crosslinking 

The experimental groups containing HAnp were the only solutions that exhibited a 

yield stress (Figure 3.2A-C). Although the yield stress of the 15% HAnp gels was 177 ± 

31 Pa (average ± standard deviation), this yield stress was not found to be significantly 

different from the linear HA groups. However, solutions that contained unreacted HAlin 

polymer instead of HAnp did not exhibit a yield stress even though they were fit to 

Equation 3.1. The combination of 4% MeHA with 15% HAnp produced a synergistic 

effect, increasing the yield stress of the HAnp by a factor of 3.4 with the addition of the 

MeHA (p < 0.001). 

 

Rheological Recovery of Hydrogel Formulations Prior to Crosslinking 

The storage modulus of solutions lacking HAnp was negligible (i.e., all storage 

moduli were less than 20 Pa), but the storage modulus increased with increasing HAnp 
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concentration (Figure 3.2D). Specifically, compared to the storage modulus of 4% MeHA, 

the storage moduli of 4% MeHA increased 380- and 770- fold with the addition of either 

15% HAnp or 30% HAnp, respectively (p<0.001). Recovery was assessed by the restoring 

of the original storage modulus after the disruption phase. All samples containing HAnp 

recovered their original storage moduli within 5 min of disruption.  

 

Mechanical Analysis of Gels After Crosslinking 

After characterizing the rheological behavior of the gels prior to crosslinking in 

their precursor solution form, the gels were crosslinked with ultraviolet (UV) light and 

further characterized as solids. Preliminary tests revealed that crosslinked MeHA was 

necessary to obtain gels with stable integrity over time in a 37oC saline environment, 

therefore only gels containing MeHA were characterized after crosslinking. It should first 

be noted that gels containing 4% MeHA and either 15% HAlin or 30% HAlin were tested 

to compare with the associated HAnp gels, however, the mixtures containing 30% HAlin 

remained as solutions after crosslinking, rendering it impossible to cut gels for further 

testing, so the 30% HAlin mixtures were therefore discarded from further analysis. 

Although the addition of HAnp concentration resulted in at least a 5-fold increase in the 

compressive modulus compared to 4% MeHA gels, the increase was not significant. 

However, the addition of HAnp did significantly decrease the swelling degree after one 

day of swelling from 57 for 4% MeHA gels to 25 and 19 with the addition of 15% HAnp 

and 30% HAnp, respectively (p<0.001) (Figure 3.3A-B). After 14 days of swelling, the 
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compressive moduli of the MeHA + HAnp gels decreased to a range where they were not 

significantly different from that of 4% MeHA gels after one day of swelling. 

 

Cell Viability of Cells Encapsulated within Crosslinked Gel Networks 

Due to autofluorescence of the HAnp gels, live/dead quantification could not be 

performed. However, after 4 weeks, rBMSCs encapsulated in the MeHA and HAnp 

networks were viable as indicated by green fluorescence and minimal cell death (i.e., red 

fluorescence) was observed (Figure 3.3C-D).  

 

DISCUSSION  

In this work, we have introduced a method to overcome one of the major drawbacks 

of using hydrogels in the clinic (i.e., leaking from the defect site) by modifying traditional 

crosslinked hydrogels with the inclusion of HAnp. The combination of MeHA mixed with 

HAnp resulted in a hydrogel that exhibited ‘paste-like’ rheological behavior in its precursor 

solution. Although the underlying mechanism for the resulting paste-like behavior 

associated with the inclusion of HAnp is currently unknown, it has been hypothesized to 

be a result of dangling HA chains on the surface of the HAnp.38 These dangling chains are 

hypothesized to cause physical entanglements between individual HAnp and 

entanglements between HAnp and MeHA. The goal of this current experimental work was 

to first characterize the rheological effect of adding our unique HAnp to MeHA and 

therefore, further research is necessary to understand the mechanism for the induced paste-

like behavior of incorporating HAnp into hydrogel precursor solutions. 
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This desired paste-like behavior is attributed to the yield stress. The yield stress 

denotes the threshold where the solution transitions between an elastic solid and a 

pseudoplastic liquid, and it is desirable because it will prevent the hydrogel from flowing 

away from the site of interest. In a surgical context, this translates to allowing appropriate 

shaping and contouring to the defect site of interest. Yield stresses of up to 62 Pa have been 

previously reported for HA-based solutions,101 but this yield stress may not be sufficient 

for topical application. In the current study, we demonstrated the ability to obtain solutions 

with yield stresses over 700 Pa. For context, the yield stresses for common paste-like 

materials, such as toothpaste, are approximately 200 Pa. Because the only solutions 

exhibiting a yield stress were solutions that incorporated HAnp, the yield stress was 

attributed to the HA being in the nanoparticulate form, as the addition of HA that was the 

same MW but was linear instead of in nanoparticle form was insufficient for achieving a 

yield stress. Furthermore, the combination of 4% MeHA with 15% HAnp produced a 

synergistic effect upon the yield stress. It should be noted that the 4% MeHA with 15% 

HAnp solution is a 19% overall concentration compared to the 15% HAnp solution, but 

this small increase in concentration is not assumed to account for the 3.4-fold increase in 

yield stress when 4% MeHA and 15% HAnp were combined. Additionally, preliminary 

work using a lower MW MeHA (16 kDa) did not result in this synergistic effect seen with 

the 1 MDa MeHA,4 suggesting the synergistic effect is MW dependent. Results suggest a 

desirable yield stress can be obtained for various applications by modulating the 

concentration of HAnp and the concentration and MW of MeHA, and future work will 

focus on creating a model to predict the yield stress based on these components. 
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In addition to exhibiting a yield stress, it is desirable for injectable materials to be 

able to recover rapidly after shearing.93 All samples containing HAnp recovered their 

original storage moduli within 5 min of disruption. Additionally, in contrast to the yield 

stress, which was dependent upon the presence of MeHA and concentration of HAnp, the 

storage modulus was dependent only on the concentration of HAnp, regardless of the 

presence of MeHA. Overall, because HAnp gels exhibit a yield stress and recover rapidly, 

including HAnp in a gel network may allow for precise molding without the risk of material 

leaking from an implantation site (Figure 3.4), making these gels suitable for a variety of 

topical and minimally invasive applications. 

After appropriate shaping and contouring of these hydrogel pastes, it is important 

for the pastes to set up to form a rigid hydrogel network, thus emphasizing the importance 

of incorporating MeHA in the gel precursor solutions. Although the HAnp-incorporated 

solutions exhibited the desirable yield stress and recovery after shearing, HAnp networks 

alone disintegrated rapidly in solution without the addition of MeHA. Therefore, we further 

characterized our MeHA-containing experimental groups as solids after photocrosslinking. 

The standard deviations of the compressive moduli for gels containing 15% HAlin were 

much larger than that of the other gels, including gels containing 15% or higher HAnp, 

which suggests that the mechanical properties of MeHA gels are better controlled with HA 

when it is in the nanoparticle form rather than in the linear form. Although the incorporation 

of HAnp did not have a significant effect on the compressive modulus after 1 day of 

swelling, after 14 days of swelling, the compressive moduli of the HAnp gels decreased to 

a range where they were not significant from that of 4% MeHA gels after one day of 
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swelling. This decrease in the mean values of moduli for the HAnp groups may alert us to 

the possibility that the HAnp network may be short-lived, although it should be noted that 

the 4% MeHA gels were disintegrated at two weeks, while the presence of HAnp kept the 

gels intact. In these particular gels, the HAnp are only physically entrapped in the system, 

so it is possible that chemically crosslinking the HAnp into the system may preserve and 

increase the mechanical properties if desirable. Furthermore, although the HAnp network 

may be short lived, the entire purpose of adding these HAnp into traditional hydrogel 

precursor solutions is to allow for the precursor solution to achieve paste-like rheological 

behavior, which is only necessary up until the point of crosslinking the solution. After 

crosslinking, the paste-like rheology is irrelevant to the network, given that we have shown 

we do not significantly alter the mechanical properties of the HAnp-incorporated hydrogels 

in their final crosslinked form.     

Finally, rBMSCs encapsulated in these HAnp networks were viable at 4 weeks, 

which suggests that minimal cytotoxicity is feasible for HAnp-incorporated networks. 

Furthermore, the 4% MeHA gels with cells remained integrated at 4 weeks, suggesting that 

the inclusion of cells may be beneficial to the network given the disintegration of acellular 

4% MeHA gels within 2 weeks, although it is unknown at this time whether cells were 

maintaining this network through attachments to the material or through ECM secretion. 

Although it does appear that there was some cell death in the HAnp networks, due to 

autofluorescence, the extent of cellular death could not be quantified. However, the goal of 

cell encapsulation for this study was to show that cells could remain viable in these 

networks, and future work will in addition consider biochemical content and gene 
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expression of encapsulated cells to further characterize cellular viability and performance. 

Additionally, because it is likely that these materials will be crosslinked in situ, future in 

vivo work with these materials will evaluate the toxicity of UV light to surrounding tissues. 

However, UV photocrosslinking has already been successfully performed in situ without 

toxicity concerns associated with UV light.95      

 

CONCLUSION 

Overall, the present work provides a platform hydrogel system that exhibits a yield 

stress prior to crosslinking, can recover its network rapidly, and can then be crosslinked 

into a more rigid hydrogel that is capable of encapsulating cells that remain viable. This 

behavior holds significant impact for any application of a hydrogel where a paste-like 

behavior is desired for its precursor solution, including but not limited to healthcare 

applications. As an example, for applications that cannot tolerate a liquid draining away 

from an irregularly shaped defect, or spilling from any kind of container at an angle to the 

direction of gravity, a Herschel-Bulkley or ‘paste-like’ rheology enables placement of the 

material prior to crosslinking. The yield stress in this platform system can be tailored by 

modulating the HAnp and MeHA MW and concentration. Furthermore, the MW of MeHA 

can be adjusted to result in crosslinked hydrogels of desirable mechanical properties, or 

alternately the HAnp can be crosslinked into the system. Additionally, the current study 

employed this system comprised of HA, however this platform hydrogel technology may 

perhaps be fabricated from other various polymers or biopolymers to suit a variety of 
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applications where a paste-like material is desirable over a low-viscosity hydrogel 

precursor solution. 
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CHAPTER 4: CHONDROINDUCTION FROM NATURALLY-DERIVED 

CARTILAGE MATRIX: A COMPARISON BETWEEN DEVITALIZED AND 

DECELLULARIZED CARTILAGE ENCAPSULATED IN HYDROGEL PASTES
‡ 

 

ABSTRACT 

Hydrogel precursors are liquid solutions that are prone to leaking after surgical 

placement. This problem was overcome by incorporating either decellularized cartilage 

(DCC) or devitalized cartilage (DVC) microparticles into traditional photocrosslinkable 

hydrogel precursors in an effort to achieve a paste-like hydrogel precursor. DCC and DVC 

were selected specifically for their potential to induce chondrogenesis of stem cells, given 

that materials that are chondroinductive on their own without growth factors are a 

revolutionary goal in orthopedic medicine. We hypothesized that DVC, lacking the 

additional chemical processing steps in DCC to remove cell content, would lead to a more 

chondroinductive hydrogel with rat bone marrow-derived mesenchymal stem cells. 

Hydrogels composed of methacrylated hyaluronic acid and either DCC or DVC 

microparticles were tested with and without exposure to transforming growth factor (TGF)-

β3 over a 6 week culture period, where swelling, mechanical analysis, and gene expression 

were observed. For collagen II, Sox-9, and aggrecan expression, MeHA precursors 

containing DVC consistently outperformed the DCC-containing groups, even when the 

DCC groups were exposed to TGF-β3. DVC consistently outperformed all TGF-β3-exposed 
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Berkland C.J., and Detamore M.S., Chondroinduction from Naturally-Derived Cartilage Matrix: A 

Comparison Between Devitalized and Decellularized Cartilage Encapsulated in Hydrogel Pastes, 

Biomaterials, 2015. 
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groups in aggrecan and collagen II gene expression as well. Additionally, when the same 

concentrations of MeHA with DCC or DVC microparticles were evaluated for yield stress, 

the yield stress with the DVC microparticles was 2.7 times greater. Furthermore, the only 

MeHA-containing group that exhibited shape retention was the group containing DVC 

microparticles. DVC appeared to be superior to DCC in both chondroinductivity and 

rheological performance of hydrogel precursors, and therefore DVC microparticles may 

hold translational potential for cartilage regeneration. 

 

INTRODUCTION 

Traditional hydrogels are a promising class of regenerative materials for cartilage 

regeneration, but they lack the ability to be molded into a defect site by a surgeon because 

hydrogel precursors are liquid solutions that are prone to leaking after placement.110, 135 To 

overcome this drawback, we recently introduced a method to achieve paste-like hydrogel 

precursor solutions by combining hyaluronic acid nanoparticles with traditional 

crosslinked hyaluronic acid hydrogels, where the paste-like behavior was induced by the 

presence of the hyaluronic acid nanoparticles.5 These hyaluronic acid formulations were 

then crosslinked to form a rigid traditional hydrogel structure. In an effort to introduce 

bioactivity to the material, in the current study we substituted the hyaluronic acid 

nanoparticles for particles made from naturally derived cartilage extracellular matrix 

(ECM). 

 ECM-based materials are attractive for regenerative medicine because of their 

ability to potentially aid in stem cell recruitment, infiltration, and differentiation without 
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supplementing with additional biological factors.6, 10, 104 These ECM materials can be 

obtained from cell-derived matrices secreted during in vitro culture or from native tissue,6, 

11, 13, 22, 116, 156 and they have either been decellularized to remove cellular components and 

nucleic acids or they have been devitalized to kill but not necessarily remove cells within 

the matrix.129 We and other groups have already established that cartilage matrix has 

chondroinductive potential,11, 15, 41, 73, 115, 128 and we recently were the first to compare the 

chondroinductive potential of devitalized cartilage (DVC) with decellularized cartilage 

(DCC) in pellet culture,128 where we observed that rat bone marrow stem cells (rBMSCs) 

exposed to DCC outperformed those cells exposed to DVC or TGF-β3 in 

chondroinductivity.128 However, gene expression was only observed over a period of 7 

days and was only monitored for cells in pellet culture and not within a 3D scaffold.  

 Although it is widely emphasized that for ECM-based tissues in general, improper 

decellularization can result in detrimental inflammatory responses and hinder tissue 

regeneration,59 cartilage matrix is uniquely immunoprivileged in part because cartilage 

matrix is so dense that it protects chondrocytes from T and natural killer cells that are 

released in graft rejection.105 Regarding immune response of allogeneic cartilage matrix, 

the success of Zimmer’s DeNovo® product supports the potential for DVC, as DeNovo® 

relies on juvenile human cartilage donation with living chondrocytes. Therefore, for some 

cartilage tissue applications, this success with a technology that includes cells brings up 

the question of whether or not decellularization is even necessary. Although the goal of 

decellularization is to remove all of the cells without destroying the structure and 

composition of the ECM, all decellularization processes inevitably cause some disruption 
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to the matrix architecture, orientation, and surface landscape,60 which may ultimately limit 

or hinder the chondroinductive potential of the matrix, especially if the decellularization 

removes or alters the bioactive molecules that are responsible inducing chondrogenesis.  

 Therefore, because the long-term chondroinductive potential of DCC and DVC has 

yet to be explored, the objective of this current work was to compare the chondroinductivity 

of DVC versus DCC in MeHA hydrogel pastes for 6 weeks in vitro. Additionally, another 

objective was to observe how DVC and DCC affected the rheology of the hydrogel 

precursors. We hypothesized that a paste-like material composed of DVC would induce 

superior chondrogenesis compared to DCC and compared to hydrogels exposed to TGF-β3 

or the combination of DCC and TGF-β3 over the 6 week period. 

 

MATERIALS AND METHODS 

Synthesis and Characterization of Methacrylated Hyaluronic Acid (MeHA) 

MeHA was prepared by reacting hyaluronic acid (MW 1 MDa, Lifecore 

Biomedical, Chaska, MN) with 20 fold molar excess glycidyl methacrylate (Sigma-

Aldrich, St. Louis, MO) in the presence of triethylamine and tetrabutyl ammonium bromide 

(Sigma-Aldrich) in a 50:50 water:acetone mixture stirring at 200 rpm for 12 days. MeHA 

was then dialyzed against deionized (DI) water for two days and then frozen at -80 °C and 

lyophilized. The degree of methacrylation was determined using 1H NMR (Avance AV-III 

500, Bruker) by calculating the ratio of the relative peak area of methacrylate protons to 

methyl protons.63 
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Tissue Retrieval, Devitalization, and Decellularization  

 Ten porcine knees obtained from Berkshire hogs (castrated males that were 

approximately 7-8 months old and 120 kg) were purchased from a local abattoir 

(Bichelmeyer Meats, Kansas City, KS). Articular cartilage from both the knee and hip 

joints was carefully removed and collected with a scalpel. The cartilage was rinsed twice 

in DI water and stored at -20 ºC. After freezing overnight, the cartilage was thawed and 

then coarsely cryoground with dry ice pellets using a cryogenic tissue grinder (BioSpec 

Products, Bartlesville, OK). The dry ice was allowed to sublime overnight in the freezer 

and at this point all of the cartilage was devitalized due to undergoing the freeze/thaw 

processes. Some of the DVC was saved for the study and the rest was processed to make 

DCC. To decellularize the cartilage, the coarse ground cartilage was packed into dialysis 

tubing (3500 MWCO) and decellularized using an adapted version of our previously 

established method using osmotic shock, detergent, and enzymatic washes.20 The packets 

were placed in a hypertonic salt solution (HSS) overnight at room temperature under gentle 

agitation (70 rpm). The packets were then subjected to 220 rpm agitation with two 

reciprocating washes, encompassing triton X-100 (0.01% v/v) followed with HSS, to 

permeabilize intact cellular membranes. The tissue was then treated overnight with 

benzonase (0.0625 KU ml-1) at 37 ºC and then the tissue was treated with sodium-

lauroylsarcosine (NLS, 1% v/v) overnight to further lyse cells and denature cellular 

proteins. After NLS exposure, the tissue was washed with ethanol (40% v/v) at 50 rpm and 

then was subjected to organic exchange resins to extract the organic solvents at 65 rpm. 

The tissue was then washed in saline-mannitol solution at 50 rpm followed by two hours 
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of rinsing with DI water at 220 rpm. The tissue was then removed from the packets and 

was then frozen and lyophilized. Both the DVC and DCC were then further cryoground 

into a fine powder with a freezer-mill (SPEX SamplePrep, Metuchen, NJ) and then 

lyophilized. The DCC and DVC powders were filtered using a 45 µm mesh (ThermoFisher 

Scientific, Waltham, MA) to remove large particles and then frozen until use.  

 

Scanning Electron Microscopy 

 DCC and DVC microparticles were sputter coated with gold and imaged with a 

Versa 3D Dual Beam (FEI, Hillsboro, OR) to observe their surface morphology and size. 

 

Rat Bone Marrow Stem Cell Harvest and Culture 

Rat bone marrow stem cells (rBMSCs) were harvested from the femurs of three 

male Sprague-Dawley rats (200-250 g) following an approved IACUC protocol at the 

University of Kansas. The rBMSCs were first harvested in minimum essential medium-α 

(MEM-α, ThermoFisher) with 10% fetal bovine serum (FBS, MSC qualified, 

ThermoFisher) and 1% antibiotic-antimycotic (ThermoFisher) and then cultured in this 

medium for 1 week to ensure no mycotic contamination from harvesting. The rBMSCs 

were then cultured in MEM-α supplemented with 10% FBS and 1% 

penicillin/streptomycin (ThermoFisher) until the cells reached passage 4 for cell 

encapsulation into the hydrogels. 
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Description of Experimental Groups 

 The four formulations tested for the cell-based analyses using crosslinked 

hydrogels were 3% (by weight) MeHA, 3% MeHA + 5% DCC, 3% MeHA + 10% DCC, 

and 3% MeHA + 10% DVC. Because native extracellular matrix is incorporated into the 

pastes, acellular formulations of the same four groups were prepared and analyzed with the 

cellular groups to quantify the acellular biochemical content and to analyze the effect of 

cells encapsulated in the networks. The 10% concentration was chosen for DCC and DVC 

because it was the percentage that yielded a moderate yield stress (e.g., 100 Pa) without 

affecting the ability to crosslink the paste when exposed to UV light. Both the MeHA and 

MeHA + 10% DCC groups were tested with and without exposure to 10 ng/mL human 

transforming growth factor-β3 (TGF-β3, PeproTech Inc., Rocky Hill, NJ). For the 

rheological testing prior to crosslinking, additional groups of 2.5% DCC, 5% DCC, and 

10% DCC, all of which did not contain MeHA, were tested. DCC and DVC alone cannot 

be crosslinked into a hydrogel network, which is why these three DCC groups were only 

tested rheologically. 

 

Preparation of Hydrogel Pastes, Cell Encapsulation, and Hydrogel Culture 

Conditions 

 Hydrogel pastes were made first by measuring out the desired weight percents of 

MeHA, DVC, or DCC into a mini-centrifuge tube. All materials for cellular analyses were 

then sterilized with ethylene oxide prior to use and were handled under sterile conditions 

thereafter. All gels were mixed in two stages (e.g., in photoinitiator solution overnight and 

then more photoinitiator or cell suspension the day of testing) because some of the samples 
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required mixing with cells and the time it took for MeHA to dissolve to ensure mixture 

homogeneity (i.e., overnight) was deemed too long for adequate cell survival. Therefore, 

cell mixtures were added the next day after the MeHA was given a chance to dissolve in 

half of the final solution. For acellular rheological testing, sterile 0.01M PBS containing 

0.05% (w/v) Irgacure (I-2959) photoinitiator was added until the concentration of MeHA 

and DCC was twice the desired concentration. The samples were mixed, centrifuged, and 

placed in 4 ºC overnight to allow time for the MeHA to dissolve. Prior to testing, more 

photoinitiator solution was added until the desired concentration was reached and the 

samples were again mixed and centrifuged to remove air bubbles. For example, to make a 

3% MeHA solution, 12 mg MeHA and 200 µL photoinitiator solution were mixed and 

allowed to dissolve overnight and then another 200 µL photoinitiator solution was added 

to make the final concentration at 3% MeHA. For cellular testing, the samples were mixed 

with 0.1% (w/v) Irgacure photoinitiator in PBS until the concentration of MeHA and DCC 

was twice the desired final concentration, and then the solutions were centrifuged and 

stored at 4 ºC overnight. Passage 4 rBMSCs were then suspended at 20 million cells/mL 

in incomplete chondrogenic medium consisting of high glucose DMEM (ThermoFisher) 

with 4.5 g/L D-glucose supplemented with 10% FBS, 1% non-essential amino acids, 1% 

sodium pyruvate, 50 μg/mL ascorbic acid, and 0.25 mg/mL penicillin/streptomycin. This 

cell solution was then added to the hydrogel paste solutions until the desired concentration 

of MeHA and DCC or DVC was reached and the final cell concentration and photoinitiator 

concentrations were 10 million cells/mL and 0.05%, respectively. The solutions were then 

either tested rheologically or crosslinked with UV light and further characterized as solids. 
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For gels undergoing crosslinking, hydrogel precursor pastes were loaded into 2 mm thick 

molds between glass slides and exposed to 312 nm UV light at 3.0 mW/cm2 in a UV 

crosslinker (Spectrolinker XL-100, Spectronics Corporation, Westbury, NY) for 2.5 min 

on each side. Each gel was then cut using a 4 mm biopsy punch and placed in one well of 

a 24 well, non-tissue culture-treated plate (Corning Incorporated, Corning, NY). Each gel 

was exposed to 1 mL of incomplete chondrogenic medium or 1 mL of complete 

chondrogenic medium, which consisted of incomplete chondrogenic medium plus 0.1 

mg/mL dexamethasone and 10 ng/mL TGF-β3. The medium was replaced every other day 

throughout the 6 weeks of culture. 

 

Rheological Testing of Hydrogel Precursors 

 Prior to crosslinking the hydrogels, the precursor solutions were loaded into a 3 mL 

syringe and extruded onto a glass slide to macroscopically observe shape retention. The 

gels were extruded in a wavy line appearance to observe whether the formulations 

maintained their shape after crosslinking. 

Using an AR-2000 rheometer (TA instruments, New Castle, DE), the oscillatory 

shear stress of the precursor solutions (n=5) was measured over an oscillatory shear stress 

sweep of 1-600 Pa at 37 ºC, where the rheometer was equipped with a 20 mm diameter 

roughened plate and a roughened Peltier plate cover using a gap of 500 µm. Frozen 

rBMSCs that were thawed and cultured to passage 4 were used to make cellular samples 

for rheological testing. The pastes were then created as previously mentioned for in vitro 

culture. The yield stress was interpolated from the oscillatory stress at which the storage 
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(G’) and loss (G’’) modulus crossed.142 An oscillatory shear stress sweep of 0.1-10 Pa was 

performed to assess the linear viscoelastic region of the solutions to determine the value of 

the storage modulus of each solution. 

  

Mechanical Testing of Crosslinked Hydrogels  

 The gels were allowed to swell to equilibrium for 1 day in either complete or 

incomplete chondrogenic medium and mechanical testing was performed at 1 day and 6 

weeks. The geometric mean diameter of the gels were first determined using forceps and a 

stereomicroscope (20x magnification) and the height of each gel was measured directly 

with a RSA-III dynamic mechanical analyzer (DMA, TA instruments, New Castle, DE). 

The gels (n=5) were compressed on the DMA at a rate of 0.01 mm/s until mechanical 

failure and the modulus was calculated as the slope under the linear portion of the stress-

strain curve (i.e., 0-10% strain).  

 

Swelling Degree and Volume 

 To calculate the swelling degree, the swollen gels (swollen to equilibrium) were 

weighed after 1 day of swelling and then frozen and lyophilized. The dry weight was 

recorded after lyophilization and the swelling degree was calculated as the ratio of total 

wet mass to dry mass. The volume of the gels was recorded at 1 day and after 6 weeks of 

culture and was calculated from the diameter and height of the gels recorded during 

mechanical testing.  
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Biochemical Content Analysis 

 The biochemical content of the MeHA, DVC, and DCC and the biochemical 

content of the gels at 1 day, 3 weeks, and 6 weeks were quantified (n=5). The gels were 

digested overnight in a 1.5 mL papain mixture consisting of 125 mg/mL papain from 

papaya latex), 5 mM N-acetyl cysteine, 5 mM EDTA, and 100 mM potassium phosphate 

buffered saline at 65 ºC. Because some gels remained undigested, the remaining undigested 

gels were removed from the digestion medium and redigested overnight at 37 ºC in 0.5 mL 

hyaluronidase (Sigma-Aldrich, at a concentration of 500 U/mL) in 0.1M PBS. Then 1 mL 

of fresh papain mixture was added to the hyaluronidase solution and allowed to digest 

overnight at 65 ºC. Both the first and second digestion solutions were stored at -20 ºC. Prior 

to biochemical analysis, all digestion solutions were allowed to thaw to room temperature 

and then vortexed and centrifuged at 10,000 rpm for 10 min to pellet fragments of 

polymers. The supernatant was then used to quantify biochemical contents. According to 

manufacturer instructions and using a Cytation 5 Cell-Imaging Multi-Mode reader (Bio-

Tek, Winooski, VT), DNA content was quantified with the PicoGreen assay (Molecular 

Probes, Eugene, OR), glycosaminoglycan (GAG) content was determined with the 

dimethylmethylene (DMMB) assay (Biocolor, Newtownabby, Northern Ireland) using a 

chondroitin sulfate standard, and hydroxyproline content was quantified with a 

hydroxyproline detection kit (Sigma-Aldrich). To obtain the total biochemical content for 

each gel, each of the two digestions for each gel was quantified and later added together. 

GAG and hydroxyproline contents were not normalized to DNA and are rather shown in 

total because of the gels’ inherent initial DNA contents.  
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Gene Expression Analysis 

 RNA was isolated and purified using Qiagen QIAshredders and an RNeasy Kit 

(Valencia, CA) according to the manufacturer’s guidelines (n=6). A high capacity cDNA 

reverse transcription kit (Applied Biosystems, Foster City, CA) was used to convert 

isolated RNA into cDNA. Real-time quantitative polymerase chain reaction (qPCR) was 

performed using a RealPlex MasterCycler (Eppendorf, Hauppauge, NY) and using 

TaqMan gene expression assays from Applied Biosystems for Sox-9 (Rn01751070_m1), 

aggrecan (Rn00573424_m1), collagens type I (Rn01463848_m1) and II 

(Rn01637087_m1), and GAPDH (Rn01775763_g1). The 2-ΔΔCt method was used to 

quantify relative expression levels for each gene where the MeHA gels at day 1 were 

designated as the calibrator group and GAPDH expression was used as the endogenous 

control.80 Last, RNA from DVC and DCC (i.e., no rBMSCs) was isolated, converted to 

DNA, and then PCR was performed with the same previously mentioned TaqMan assays, 

where it was confirmed that all gene expression observed in the study was due to rBMSCs. 

 

Histological Analysis 

 Gels at 1 day and cellular gels at 6 weeks were fixed in 10% formalin for 15 min 

and then embedded in Optimal Temperature Cutting (OCT) medium (TissueTek, Torrance, 

CA) overnight at 37 °C, frozen at -20 °C, and were sectioned at a thickness of 10 µm using 

a cryostat (Microm HM-550 OMP, Vista, CA). The sections were stained with the standard 

Hematoxylin and Eosin (H&E) stain, which stains the nuclei purple and the cytoplasm, 
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connective tissues, and other extracellular substances red or pink. The sections were stained 

with the standard Safranin-O/Fast Green stain, which stains negatively charged GAGs 

orange. The sections were stained immunohistochemically using primary antibodies that 

target both rat and porcine tissues for collagen I (ThermoFisher, NB600408, 1:200 

dilution), collagen II (Abcam, ab34712, 1:200 dilution), and aggrecan (ThermoFisher, 

MA3-16888, 1:100 dilution). Prior to primary antibody incubation, the slides were fixed in 

chilled acetone (-20 °C), treated with proteinase K (Abcam), and exposed to 0.3% 

hydrogen peroxide (Abcam) to suppress endogenous peroxidase activity. Sections were 

blocked with serum according to the Vectastain ABC kit (Vector Laboratories, 

Burlingame, CA) following the manufacturer’s instructions and then incubated with 

primary antibody. Following incubation with the primary antibodies, the sections were 

exposed to biotinylated secondary antibodies (horse anti-rabbit or mouse) and ABC reagent 

according to the manufacturer's protocol. The antibodies were visualized using the 

ImmPact DAB peroxidase substrate (Vector), rinsed in DI water, counter stained with 

VECTOR hematoxylin QS stain, and then dehydrated and mounted. Negative controls 

consisted of substituting primary antibody exposure with exposure to a rabbit IgG isotype 

control (for collagen I and II, Abcam, ab27478) at an antibody concentration calculated to 

be the same used for the corresponding antibodies and omitting the primary antibody for 

aggrecan.   
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Statistical Analysis 

GraphPad Prism 6 statistical software (GraphPad Software, Inc., La Jolla, CA) was 

used to compare experimental groups using a one-factor ANOVA (for analyses with one 

time point) or a two-factor ANOVA (for analyses with two or more time points) followed 

by a Sidak’s post hoc test (for two-way ANOVAs with two time points only) or a Tukey’s 

post hoc test (for all other ANOVAs), where p ≤ 0.05 was considered significant. In 

addition, standard box plots were constructed to eliminate outliers. All quantitative results 

are reported as mean ± standard deviation within text or as mean + standard deviation 

within figures.  

 

RESULTS 

Characterization of MeHA, DVC, and DCC Microparticles 

 Analyzing the ratio of the relative peak area of methacrylate protons to methyl 

protons of MeHA revealed the MeHA had a 1.2% degree of methacrylation and the DNA 

and hydroxyproline contents were determined to be 9.2 ± 3.7 ng DNA/mg MeHA and 0.74 

± 0.14 µg hydroxyproline/mg MeHA, respectively (Figure 4.1A-C). Because the GAG 

assay only detects sulfated GAGs, and hyaluronic acid is a non-sulfated GAG, the GAG 

content of MeHA was not detected. The DNA, GAG, and hydroxyproline contents of DVC 

were determined to be 1151 ± 51 ng DNA/mg dry DVC, 252 ± 16 µg GAG/mg dry DVC, 

and 56.1 ± 3.9 µg hydroxyproline/mg dry DVC, respectively (Figure 4.1A-C). Following 

decellularization and cryogrinding to create DCC powder, there was a 44% reduction in 

DNA, a 23% reduction in GAG, and a 23% reduction in hydroxyproline (p<0.05) (Figure 
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4.1A-C). In prior work it was established that no significant reduction in biochemical 

content were observed between native cartilage and cartilage that was cryoground,128 so 

the prior mentioned reductions are in reference to DVC powder.  

 SEM imaging revealed that DVC and DCC microparticles were approximately 45 

µm in diameter or smaller and were noted to be heterogeneous in size and morphology 

(Figure 4.1D). The DCC microparticles were observed to have smoother surfaces overall 

in comparison to the DVC microparticles (Figure 4.1D). Under higher magnification, 

observing the surface morphology revealed a grain-like appearance to the surface of the 

DCC microparticles that was not observed on the DVC microparticles (Figure 4.1D).  

 

Macroscopic Observation and Rheological Testing of Hydrogel Precursor Pastes 

 Macroscopic observation of hydrogel precursor formulations revealed non-

Newtonian and paste-like behavior in precursors containing at least 5% DCC (Figure 4.2). 

Shape retention after extrusion through a 3 mL syringe, which was indicated by the fluid 

retaining the diameter of the syringe orifice after extrusion and after crosslinking, was 

noted in the 10% DCC and MeHA + DVC acellular groups (Figure 4.2). The remaining 

solutions spread out to 2-3 times the diameter of the syringe orifice. All formulations 

containing MeHA were able to be crosslinked to maintain extrusion shape.  

 Solutions exhibiting a measurable yield stress were the 10% DCC, MeHA + 10% 

DCC, and MeHA + DVC formulations (Figure 4.3A). The 10% DCC had a yield stress of 

143 ± 33 Pa, while adding MeHA to 10% DCC reduced the yield stress to 92 ± 88 Pa, 

although the reduction was not significant. The yield stress of the MeHA + DVC group 
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was 2.7 and 1.7 times greater than that of the MeHA + 10% DCC and 10% DCC groups, 

respectively (p<0.05) (Figure 4.3A). 

 All of the groups exhibited viscoelastic behavior, as indicated by a measurable 

storage modulus. However, the storage modulus of the MeHA + DVC group was 

significantly higher than all of the other groups at 1240 ± 520 Pa, which was 58, 2.4, 2.6, 

and 8.8 times higher than the MeHA + 5% DCC, 10% DCC, MeHA + 10% DCC, and the 

cellular MeHA + 10% DCC cellular groups, respectively, which were the groups that had 

a storage modulus greater than 20 Pa (p<0.05) (Figure 4.3B). 

  

Mechanical Testing of Crosslinked Hydrogels 

 One day after crosslinking, all of the groups except for the acellular MeHA group 

had a compressive modulus significantly higher than that of the MeHA group (p<0.05), 

which had a compressive modulus of 1.94 ± 0.13 kPa (Figure 4.4). The compressive 

modulus of the MeHA + DVC group was 6.82 ± 0.79 kPa (Figure 4.4), which was 3.5, 2.2, 

and 1.8 times larger than the MeHA, MeHA + 5% DCC, and MeHA + 10% DCC groups, 

respectively (p<0.05). Furthermore, the modulus of the MeHA + DVC group was 2.3 and 

1.7 times larger than that of the MeHA + TGF-β3 and MeHA + 10% DCC + TGF-β3 groups, 

respectively. Finally, the moduli of the MeHA + DVC and MeHA + TGF-β3 groups were 

1.7 and 1.6 times respectively larger than their acellular controls (p<0.05).  

 At 6 weeks, the MeHA + 5% DCC acellular group, both cellular groups composed 

of MeHA + 10% DCC, and the DVC groups had at least 4 times larger compressive moduli 

than that of the MeHA group, which had a compressive modulus of 0.31 ± 0.13 kPa 
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(p<0.05). The MeHA + DVC group had a compressive modulus of 2.964 ± 0.056 kPa, 

which was 9.1 times larger than that of the MeHA group (p<0.05), but was not significantly 

different from the MeHA + 10% DCC + TGF-β3 group. The modulus of the MeHA + 10% 

DCC + TGF-β3 group was 2.55 ± 0.39 kPa, which was 2 times larger than its acellular 

control (p<0.05). The MeHA + DVC acellular group had a compressive modulus of 2.40 

± 0.44 kPa, which was 1.9 times larger than that of the MeHA + 10% DCC group (p<0.05) 

(Figure 4.4).  

 Over the 6 week culture period, all of the groups had a significant reduction in their 

compressive moduli (p<0.05). However, while the acellular MeHA, MeHA, and MeHA + 

TGF-β3 groups experienced 90%, 83%, and 73% respective reductions in their compressive 

moduli over the culture period (p<0.05), all of the other groups experienced less than 65% 

reductions in their respective compressive moduli (p<0.05). At 6 weeks, the compressive 

modulus of the MeHA + 10% DCC + TGF-β3 was 37% less than its original value at 1 day 

(p<0.05), while the modulus of its respective acellular group was 64% less than its original 

value (p<0.05) (Figure 4.4). 

 

Swelling and Volume Analysis of Crosslinked Hydrogel Pastes 

After swelling to equilibrium for 24 hours, the swelling degree of the MeHA group 

was 34 ± 13 (Figure 5A). The only groups that had significantly smaller swelling degrees 

were the MeHA + 10% DCC acellular group and the MeHA + DVC acellular and cellular 

groups, which had swelling degrees of 17.9 ± 3.1, 15.6 ± 1.3, and 13.27 ± 0.88, respectively 

(p<0.05) (Figure 4.5A). 
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At 1 day after crosslinking, none of the gel volumes deviated significantly from the 

MeHA group, which had a volume of 40.5 ± 2.7 µL (p<0.05) (Figure 4.5B). However, at 

6 weeks after crosslinking, the MeHA group had a volume of 82.7 ± 11.6 µL. The volumes 

of the MeHA + 5% DCC, MeHA + 10% DCC, and MeHA + DVC were 26%, 31.5%, and 

43% lower than that of the MeHA group, respectively (p<0.05) (Figure 5B). In addition, 

the volume of the MeHA + TGF-β3 group was 20.5% and 21.2% lower than that of the 

MeHA acellular and cellular groups, respectively (p<0.05). The DVC group was not 

significantly different from the MeHA + 10% DCC + TGF-β3 group, but the volume of the 

MeHA + 10% DCC + TGF-β3 group was 31% less and 20% less than the MeHA + TGF-

β3 and the MeHA + 10% DCC groups, respectively.   

Over the 6 week culture period, the volumes of all gels, with the exception of the 

MeHA + 10% DCC + TGF-β3 and the acellular MeHA + DVC groups, increased 

significantly (p<0.05). The volume of the MeHA group increased by 2.1 times compared 

to its original volume, while the volumes of the MeHA + TGF-β3, the MeHA + 5% DCC, 

and the MeHA + 10% DCC groups only increased by 49%, 47%, and 45%, respectively 

(p<0.05) (Figure 4.5B).  

 

Biochemical Content of Crosslinked Hydrogels 

All of the cellular groups had significantly higher DNA contents than their 

respective acellular groups at all time points (p<0.05). At one day after crosslinking, the 

MeHA + 10% DCC group had 570 ± 130 ng DNA per gel, and the only gels with a 

significantly different DNA content from this group were the MeHA + 10% DCC + TGF-
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β3 and MeHA + DVC groups, which had DNA contents 45% and 82% higher per gel, 

respectively (p<0.05) (Figure 4.6A). There was no significant difference between the 

MeHA + 10% DCC + TGF-β3 and MeHA + DVC groups, however. At 3 weeks after 

crosslinking, the MeHA + DVC group had a DNA content of 386 ± 73 ng DNA per gel, 

which was 36%, 49%, and 35% less than the MeHA + TGF-β3, MeHA + 5% DCC, and 

MeHA + 10% DCC + TGF-β3 groups, respectively (p<0.05) (Figure 4.6A). There was no 

significant difference between the MeHA + DVC group and the MeHA + 10% DCC group, 

however. After 6 weeks of culture, the MeHA + 5% DCC group contained 1.8 times more 

DNA than the MeHA + 10% DCC group (p<0.05) (Figure 4.6A). However, no other 

cellular groups were significantly different from the MeHA + 10% DCC group. Over the 

course of the 6 week culture period, all of the cellular groups had a significant reduction in 

DNA content (p<0.05), where the DNA content in the MeHA, MeHA + TGF-β3, MeHA + 

5% DCC, MeHA + 10% DCC, MeHA + 10% DCC + TGF-β3, and MeHA + DVC groups 

reduced by 45%, 31%, 16%, 43%, 38%, and 55% compared to their original DNA contents, 

respectively (p<0.05). The acellular groups did not have any significant reduction in DNA 

content over the culture period (Figure 4.6A).  

All of the groups with DCC and DVC had significantly higher initial GAG contents 

at day 1 than that of the MeHA group (p<0.05), which had a GAG content of 15.5 ± 4.6 µg 

GAG per gel. Compared to the MeHA group, the GAG contents of the MeHA + 5% DCC, 

MeHA + 10% DCC, and MeHA + DVC groups were 4.9, 6.3, 6.7, and 12.9 times larger, 

respectively (Figure 4.6B). At day 1, the GAG content of the MeHA + DVC group was 

16.6% higher than its respective acellular group (p<0.05). Furthermore, the GAG content 
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of the MeHA + DVC group was 15, 2.1, and 1.9 times larger than the MeHA + TGF-β3, 

MeHA + 10% DCC, and the MeHA + 10% DCC + TGF-β3 groups, respectively. At 3 

weeks, all of the groups with DCC and DVC contained significantly larger GAG contents 

than the MeHA group (p<0.05), which had a GAG content of 12.5 ± 4.6 µg GAG per gel. 

The GAG contents of the MeHA + 5% DCC, MeHA + 10% DCC, and MeHA + DVC 

groups were 3.2, 4, 3.6, and 4.1 times larger than that of MeHA, respectively (Figure 4.6B). 

In addition, the GAG content of the MeHA + DVC group was 52% less than its respective 

acellular control (p<0.05). Furthermore, there were no significant differences among the 

MeHA + DVC, the MeHA + 10% DCC + TGF-β3, and the MeHA + 10% DCC groups. At 

6 weeks, again all of the groups with DCC and DVC contained significantly larger GAG 

contents than the MeHA group (p<0.05), which had a GAG content of 1.7 ± 1.2 µg GAG 

per gel. Compared to the MeHA group, the GAG content of the MeHA + 5% DCC, MeHA 

+ 10% DCC, and MeHA + DVC groups were 17, 24, 20, and 29 times larger, respectively 

(Figure 4.6B). The GAG content of the MeHA + DVC group was 48% less than its 

respective acellular control (p<0.05), but there were no significant differences among the 

MeHA + DVC, the MeHA + 10% DCC + TGF-β3, and the MeHA + 10% DCC groups. 

Over the 6 week culture period, all of the groups with DCC and DVC had significant 

reductions in GAG content, where the GAG contents of the MeHA + 5% DCC acellular 

and cellular groups, the MeHA + 10% DCC acellular, cellular, and TGF-β3-exposed 

groups, and the acellular and cellular MeHA + DVC groups, reduced by 54%, 62%, 69%, 

58%, 66%, 44%, and 75%, respectively.  
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Furthermore, all of the groups with DCC and DVC had significantly higher initial 

hydroxyproline contents at day 1 than that of the MeHA group (p<0.05), which had a 

hydroxyproline content of 2.57 ± 0.23 µg hydroxyproline per gel. Compared to the MeHA 

group, the hydroxyproline contents of the MeHA + 5% DCC, MeHA + 10% DCC, and 

MeHA + DVC groups were 15, 32, 34, and 43 times larger, respectively (Figure 4.6C). At 

day 1, the hydroxyproline content of the MeHA + DVC group was 1.3 times higher than 

that of the MeHA + 10% DCC group (p<0.05). Additionally, the MeHA + 10% DCC group 

contained 2.1 times the amount of hydroxyproline of the MeHA + 5% DCC group (p<0.05). 

At 3 weeks, all of the DCC and DVC groups contained significantly larger hydroxyproline 

contents than the MeHA group (p<0.05), which contained 1.90 ± 0.40 µg hydroxyproline 

per gel. Compared to the MeHA group, the hydroxyproline contents of the MeHA + 5% 

DCC, MeHA + 10% DCC, and MeHA + DVC groups were 16, 36, 33, and 29 times larger, 

respectively (Figure 4.6C). In addition, the hydroxyproline content of the MeHA + DVC 

group was 27.4% less than its respective acellular control (p<0.05) and the MeHA + 10% 

DCC group contained 2.2 times the amount of hydroxyproline found in the MeHA + 5% 

DCC group (p<0.05). However, there were no significant differences among the MeHA + 

DVC, the MeHA + 10% DCC, and the MeHA + 10% DCC + TGF-β3 groups. At 6 weeks, 

again all of the groups with DCC and DVC contained significantly larger hydroxyproline 

contents than that of the MeHA group (p<0.05), which contained 1.64 ± 0.24 µg 

hydroxyproline per gel. Compared to the MeHA group, the hydroxyproline contents of the 

MeHA + 5% DCC, MeHA + 10% DCC, and MeHA + DVC groups were 21, 49, 34, and 

38 times larger, respectively (Figure 4.6C). The hydroxyproline content of the MeHA + 
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10% DCC group was 2.4 and 1.5 times larger than the MeHA + 5% DCC and MeHA + 

10% DCC + TGF-β3 groups, respectively (p<0.05). However, there was no significant 

difference between the MeHA + DVC and the MeHA + 10% DCC + TGF-β3 groups. Over 

the 6 week culture period, the groups that did not have a significant reduction in 

hydroxyproline content were all three MeHA groups, both MeHA + 5% DCC groups, and 

the MeHA + 10% DCC group. The hydroxyproline content of the MeHA + DVC group 

reduced to 56% of its original content over the 6 weeks (p<0.05).  

 

Gene Expression 

Throughout the entire culture period, the MeHA + 5% DCC and MeHA + 10% 

DCC groups never expressed collagen II. At 1 day, the rest of the groups did not have any 

significant differences. At 1 week, the MeHA + TGF-β3 group did not express collagen II, 

and there were no significant differences in expression between the remaining groups. At 

2 weeks, the only groups expressing collagen II were the MeHA + 10% DCC + TGF-β3 

and the MeHA + DVC groups, although the difference between them was not significant. 

At 3 weeks and 6 weeks, the only group expressing collagen II was the MeHA + DVC 

group, which had a relative collagen II expression that was 180 and 320 times larger than 

the calibrator group (i.e., MeHA group at day 1), respectively (p<0.05) (Figure 4.7A).  

At 1 day, the DCC containing groups had at least 98% less collagen I expression 

than the MeHA group (p<0.05) (Figure 4.7B). By 2 weeks, the relative collagen I 

expression of MeHA + DVC increased to 304 times the MeHA group value. However, that 

expression significantly decreased by 86% at 3 weeks, but was still 99 times larger than 
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the relative expression of the MeHA group. Although the collagen I expression reduced 

significantly from 1 day to 1 week for both the cellular and acellular MeHA groups 

(p<0.05), the collagen I expression for these and all groups but the MeHA + DVC groups 

remained steady the rest of the 6 weeks.  

The MeHA + TGF-β3 and MeHA + DVC groups had significantly higher Sox-9 

expression than the groups containing DCC from 1 day to 3 weeks, where the relative 

expression was 2 and 1.3 times the MeHA group, respectively at day 1, and was 3.7 and 3 

times larger than the MeHA group at 3 weeks (p<0.05) (Figure 4.7C). At 6 weeks, the DVC 

group had significantly higher Sox-9 expression than all other groups, where its expression 

was 4.4 and 109 times higher than the MeHA + TGF-β3 and the MeHA + 10% DCC + 

TGF-β3 groups, respectively (p<0.05). 

At day 1, the relative aggrecan expression of the DCC containing groups was 

significantly lower than the MeHA group, whereas the relative expression of MeHA + 

DVC group was 2 times higher than the MeHA group (p<0.05) (Figure 4.7D). Over the 

culture period, both the cellular and acellular MeHA groups significantly reduced their 

aggrecan expression, however the MeHA + DVC group remained significantly higher than 

MeHA and all DCC groups over the 6 weeks (p<0.05). Additionally, the MeHA + DVC 

group’s relative aggrecan expression was 2, 17, 22, 34, and 410 times higher than that of 

MeHA at 1 day, 1 week, 2 weeks, 3 weeks, and 6 weeks, respectively (p<0.05). Lastly, the 

relative aggrecan expression of the MeHA + DVC group at 6 weeks was 80 and 585 times 

higher than that of the MeHA + TGF-β3 and the MeHA + 10% DCC + TGF-β3 groups, 

respectively.   
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Histological Evaluation 

 Saf-O staining did not reveal an increase in Saf-O staining intensity over the culture 

period. However, at 6 weeks, some nodular Saf-O staining was noted in the MeHA + TGF-

β3 group (Figure 4.8). All DCC and DVC containing groups stained for collagen II; 

however, no changes were noted in the location and intensity of collagen II staining over 

the culture period (Figure 4.8). Collagen I staining was noted again in all of the DCC and 

DVC containing groups. However, the intensity of collagen I staining decreased over the 

culture period for the MeHA + 5% DCC and MeHA + 10% DCC groups (Figure 4.8). The 

intensity of the collagen I staining appeared to increase slightly for the MeHA + DVC 

group. This slight increase in intensity was noted near and within the DVC microparticles. 

Aggrecan staining was noted in all DCC and DVC containing groups, where notably the 

aggrecan staining became more intense near the DCC and DVC microparticles in the 

MeHA + 10% DCC + TGF-β3 and MeHA + DVC groups over the culture period (Figure 

4.8).  

 

DISCUSSION 

 We have introduced not only a method to overcome the drawbacks of implanting 

hydrogels in situ (i.e., leaking from the defect site), but in addition, we have introduced a 

method to induce chondrogenesis of cells encapsulated within the networks. Previous 

studies have explored the chondrogenic potential of DCC and DVC.13, 14, 92, 109, 155, 161 Cheng 

et al.14 reported using a porous cartilage matrix composed of homogenized and then 
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lyophilized DVC matrix, of which chondrogenesis was observed even without growth 

factor supplementation. However, these matrices succumbed to cell-mediated contraction, 

but when the matrices were further crosslinked with genipin, they found the materials did 

not exhibit contraction and were chondroinductive.13 The same group infiltrated cartilage 

matrix with woven poly(ε-caprolactone) and observed cartilaginous matrix production.92 

Zheng et al.161 reported using DCC to create nanofibrous ECM scaffolds that induced MSC 

chondrogenesis. Our group was the first to explore the short-term chondrogenic potential 

of DCC versus DVC.128 However, for the first time in this current study, not only were 

DVC and DCC compared for their long-term chondrogenic potential, they were evaluated 

for their ability to exhibit a yield stress in hydrogel precursor solutions. In this current 

study, chondrogenesis was induced through incorporating native cartilage ECM into the 

MeHA/cartilage matrix gel networks, which furthermore resulted in the paste-like behavior 

and yield stress that was observed prior to crosslinking. The yield stress denotes the 

threshold where a solution transitions between an elastic solid and a pseudoplastic liquid, 

and exhibiting a yield stress is crucial because it will prevent the hydrogel precursor from 

flowing away, keeping the material at the site of interest until crosslinking. In a surgical 

context, a material that exhibits a yield stress would allow a surgeon to appropriately shape 

and contour the material to the defect site before crosslinking it in place. The paste-like 

precursor solutions were able to obtain yield stresses of over 200 Pa with MeHA mixed 

with DVC microparticles. For context, the yield stress for a common paste-like material 

such as toothpaste is approximately 200 Pa. However, we did not achieve toothpaste 

consistency with the incorporation of DCC microparticles although we still did note that 
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these materials did have a yield stress. Although at this point without further testing, it is 

uncertain why the DCC microparticles did not impart as high of a yield stress on the pastes 

as the DVC microparticles, the SEM images revealed subtle differences between the DCC 

and DVC, which may provide clues to understanding the observed rheological differences. 

A grain-like appearance was noted only on the DCC and that the DCC microparticles had 

in general, smoother surfaces than the DVC microparticles. Because it is known that 

decellularization can result in changes in matrix architecture and surface ligand 

landscape,60 it is possible that these entities were altered in the decellularization process, 

and thus the decellularization process may have played a role in the reduction of yield stress 

that we observed. It was noted that the yield stress of DCC microparticles alone was higher 

than the yield stress of MeHA combined with the DCC, and this reduction in yield stress 

when MeHA and particles were combined differs from what was noted in previous work, 

where a 3.4-fold increase was observed in the yield stress of hyaluronic acid nanoparticles 

combined with MeHA in comparison to the nanoparticles alone, where the MeHA alone 

had no measurable yield stress.5 That work suggested that the hyaluronic acid nanoparticles 

had some physical or chemical interactions with the MeHA in addition to the interactions 

with the other nanoparticles, whereas in the current study, the interactions between 

particles and MeHA were likely negligible. Of concern is that when rBMSCs were mixed 

in with the DCC group, the precursor had no measurable yield stress, although it still 

exhibited some viscoelastic behavior, evident by its measurable storage modulus and 

macroscopically observed non-Newtonian behavior. Last, although it was not performed 

in the current study, future quantification of syringeability would be of value.   
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 In addition to DVC having superior rheological properties, the DVC invoked 

superior chondroinductivity in comparison to DCC microparticles. For collagen II, Sox-9, 

and aggrecan expression, the MeHA + DVC group repeatedly outperformed the DCC 

containing groups, even when the DCC groups were exposed to TGF-β3. Interestingly, we 

only performed a mild decellularization by removing only 44% of the initial DNA, 23% of 

the initial GAG, and 23% of the initial hydroxyproline and even though the initial 

biochemical contents were not drastically altered, the cellular response to these materials 

was severely affected. The current finding of DVC outperforming DCC in 

chondroinduction is in contradiction to our previously reported increase in 

chondroinductivity of DCC over DVC,128 but we hypothesize the differences between the 

previous and current study is that currently, rBMSCs were encapsulated within a 3D 

scaffold rather than studied in pellet culture, and the long term gene expression over a 6 

week period rather than only 1 week as in the prior study was observed. Moreover, under 

biochemical and histological analysis, other than a slight increase in aggrecan staining near 

the cartilage microparticles over the 6 week culture period, significant tissue synthesis 

overall was not observed, which suggests that although the cells may have been 

chondroinduced, they were not actively secreting large amounts of cartilage matrix. 

However, it is possible that some of the matrix was being remodeled, so a net increase in 

the amount of staining could not be observed even though matrix secretion might have 

been present. Ultimately, without further testing, it still remains unclear as to whether 

decellularization is necessary for cartilage tissue engineering.  
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 The question of whether or not decellularization is needed is complex and will 

depend upon each application of cartilage ECM. It has been established that cells exposed 

to a target ECM will more easily differentiate toward the target tissue,44, 121 where one of 

the reasons for this ECM specific differentiation may be because native ECM may have 

the potential to retain the growth factors that will steer the differentiation toward the 

specific target tissue.6 Decellularizing cartilage ECM may not only alter the matrix 

architecture, but it may furthermore remove some of these important growth factors, 

affecting the bioactivity of the cartilage ECM. Furthermore, altering the architecture may 

hinder growth factor retention. For example, proteoglycans, specifically aggrecan in 

cartilage matrix, are well known for how they affect the mechanical properties of tissues 

and found extensively in native cartilage matrix, are thought to be a reservoir of several 

growth factors,17, 57 and thus, the preservation of these proteoglycans may be crucial to 

successful tissue regeneration. Therefore, although we are still at the beginning stages of 

determining the appropriate ECM processing protocol for cartilage tissue, it may prove to 

be ideal to use unaltered, non-decellularized cartilage tissue for certain applications. 

Applications such as cell-derived matrix, where cartilage ECM can be grown from a 

patient’s own cells,129 would not need to be decellularized since the tissue source would be 

autogenous. Additionally, through the successful use of allograft cartilage as evidenced by 

the success of current allograft products like Zimmer’s DeNovo®, if the cartilage tissue 

would be used for articular cartilage applications, it may not need to be decellularized.  

However, on the opposing side of whether or not to decellularize cartilage tissue 

are cases where cartilage is being used for bone regeneration via endochondral ossification. 
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In these applications where the cartilage will be more exposed to host immunogenic cells,42 

decellularization may be necessary. Additionally, decellularization may be necessary for 

cartilage derived from xenogeneic sources. In the current study, we used porcine cartilage 

as proof of concept for comparing DCC to DVC. However, ultimately it may or may not 

be desired to use xenograft sources for future work. Using xenografts comes with its own 

challenges, such as the need to remove the alpha-Gal epitope, a carbohydrate found within 

xenograft ECM that is known to cause graft failure if not successfully removed.129   

 Although graft failure can be caused through biochemical entities, it is possible for 

graft failure to occur biomechanically. For this reason, we tested the mechanical and 

swelling properties of DCC and DVC-incorporated hydrogel networks after crosslinking. 

Native cartilage is approximately 80% water, which equates to a swelling degree of 

approximately 5, and has an elastic compressive modulus ranging from 240-1000 kPa.2, 76, 

85 However, it must be noted that the biomechanical properties can vary depending on 

parameters such as the method of testing, the strain rate of testing, and cartilage zone 

depth.49 In this work, the swelling degree was significantly lowered from over 30 to 

between 10 and 20 by incorporating 10% DCC or DVC. For tissue engineering, it is neither 

desired for scaffold constructs to swell from the defect site, nor is it desirable for the 

constructs to shrink within the defect site, because in both instances it can cause 

disintegration of the scaffold with host tissue, and thus may hinder cartilage regeneration.13 

In the current study, it was noted that the inclusion of DVC resulted in the gels retaining 

their original volumes throughout culture. However, it was noted that the elastic 

compressive moduli obtained in the current study (ranging from approximately 2 to 8 kPa 
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at day 1) were nowhere near that of native cartilage. Including DCC and DVC with MeHA 

significantly increased the compressive modulus and encapsulation of DVC and cells 

together significantly increased the compressive modulus. Therefore, in the current study, 

although incorporating DVC and DCC may prove to be beneficial for tissue engineering, 

to ultimately obtain mechanical properties to that of native cartilage ECM, it may be 

necessary to increase the degree of methacrylation or to change the photocrosslinkable 

polymer to a polymer that has an inherently higher compressive modulus.114  

   

 

CONCLUSION 

 ECM-based materials are gaining widespread attention in the regenerative 

medicine field and they continue to show great promise toward cartilage regeneration 

applications. In the current study, cartilage matrix microparticles not only induced cells to 

differentiate toward a chondrogenic lineage, but they concurrently provided the hydrogel 

precursor solutions with a yield stress (i.e., paste-like consistency), which translates to a 

tremendous advantage for material placement in clinical applications. Additionally, 

although significant emphasis has been placed on the necessity to decellularize ECM 

components that are used in regenerative medicine products, we challenged that paradigm 

by providing the first direct comparison of the long-term bioactivity of DCC and DVC and 

thereby demonstrating that DVC may be superior in promoting chondrogenesis over DCC. 

Moreover, DVC consistently outperformed all TGF-β3-exposed groups in aggrecan and 

collagen II gene expression, which may present significant advantages in cost and 
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regulatory approval of chondroinductive strategies for cartilage regeneration.127 Certainly 

future work will need to address improving the mechanical properties and overall matrix 

production, where in vivo studies will be paramount, because immunogenicity as well as 

how biomechanical stimulation of DCC and DVC may affect chondroinductivity and 

therefore, hyaline-like cartilage regeneration can be tested. Furthermore, the 

reproducibility and shelf life of these materials must be tested since the heterogeneity of 

cartilage matrix and differences in the quality of cartilage ECM from one hog to another 

may vary and may affect the ability to reproduce similar particles every time. Overall, the 

results of this study suggest that devitalized cartilage may be a promising chondroinductive 

material for some cartilage tissue engineering strategies. 
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CHAPTER 5: APPROACHING THE COMPRESSIVE MODULUS OF 

ARTICULAR CARTILAGE WITH A DECELLULARIZED CARTILAGE-BASED 

HYDROGEL
§ 

 

ABSTRACT 

ECM-based materials are appealing for tissue engineering strategies because they 

may promote stem cell recruitment, cell infiltration, and cell differentiation without the 

need to supplement with additional biological factors. Cartilage ECM has recently shown 

potential to be chondroinductive, particularly in a hydrogel-based system, which may be 

revolutionary in orthopedic medicine. However, hydrogels composed of natural materials 

are often mechanically inferior to synthetic materials, which is a major limitation for load-

bearing tissue applications. The objective was therefore to create an unprecedented 

hydrogel composed entirely of native cartilage ECM that was both mechanically more 

similar to native cartilage tissue and capable of inducing chondrogenesis. Porcine cartilage 

was decellularized, solubilized, and then methacrylated and UV photocrosslinked to create 

methacrylated solubilized decellularized cartilage (MeSDCC) gels. Methacrylated gelatin 

(GelMA) was employed as a control for both biomechanics and bioactivity. Rat bone 

marrow-derived mesenchymal stem cells were encapsulated in these networks, which were 

cultured in vitro for 6 weeks, where chondrogenic gene expression, the compressive 

modulus, swelling, and histology were analyzed. One day after crosslinking, the elastic 

compressive modulus of the 20% MeSDCC gels was 1070 ± 150 kPa. Most notably, the 

                                                

§To be submitted as Beck E.C., Barragan M., Tadros M.H., Gehrke S.H., and Detamore M.S., Approaching 

the Compressive Modulus of Articular Cartilage With a Decellularized Cartilage-Based Hydrogel, 

Biomaterials, 2015. 
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stress strain profile of the 20% MeSDCC gels fell within the 95% confidence interval range 

of native porcine cartilage. Additionally, MeSDCC gels significantly upregulated 

chondrogenic genes compared to GelMA as early as day 1 and supported extensive matrix 

synthesis as observed histologically. Given that these gels approached the mechanics of 

native cartilage tissue, supported matrix synthesis, and induced chondrogenic gene 

expression, MeSDCC hydrogels may be promising materials for cartilage tissue 

engineering applications. Future efforts will focus on improving fracture mechanics as well 

to benefit overall biomechanical performance. 

 

INTRODUCTION 

 Arthritis is one of the leading causes of disability among US adults.94 Some of the 

current clinical treatments include autologous chondrocyte implantation, mosiacplasty, and 

microfracture.3, 50 However, not only do these treatments involve high risk of donor site 

morbidity and/or the need for multiple surgeries, these treatments still lack the ability to 

regenerate fully functional cartilage tissue.13, 64, 127 Tissue engineering approaches are 

therefore striving to fully regenerate cartilage tissue by utilizing a bioactive and 

bioresorbable construct that provides the necessary cues to facilitate cell growth, 

differentiation, and tissue integration, while providing the mechanical integrity and support 

to allow the tissue to sustain its load bearing function.50 

 Hydrogels have several advantages in cartilage tissue engineering, which include 

ease of formation, the ability to fine tune mechanical properties, the ability to encapsulate 

cells, and vast array of conjugation options for degradability, bioactivity, etc.9, 23, 33 
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Hydrogels can be made from both synthetic (e.g., polyethylene glycol) and natural 

materials (e.g., collagen, gelatin), where both have their own inherent advantages and 

disadvantages. Synthetic materials have the advantage of the ability to more readily control 

the composition and mechanical properties of the hydrogel compared to hydrogels 

composed of natural materials, but natural materials have the additional advantage of 

providing biochemical cues and signals to facilitate cell attachment, growth, and 

differentiation.148  

 One such natural material that is gaining attention in tissue engineering approaches 

is naturally derived extracellular matrix.129 ECM materials can either be obtained from cell-

derived matrices that are secreted during in vitro culture or they can be derived directly 

from native tissue,6, 11, 13, 22, 116, 156 and often they have been decellularized to remove 

cellular components and nucleic acids that may have the potential to cause an adverse 

immunological response.129 We and other groups have already established that 

decellularized cartilage has chondroinductive potential,11, 15, 41, 73, 115, 128 and we recently 

reported the chondroinductive potential of decellularized cartilage (DCC) in pellet 

culture,128 where we observed increased chondroinductivity of rat bone marrow stem cells 

(rBMSCs) exposed to DCC as compared to those cells only exposed to TGF-β3.
128  

 Therefore, in this study we endeavored to create a material that was entirely 

composed of DCC to potentially make the material inherently chondroinductive, and we 

furthermore endeavored to design a material would have the mechanical properties 

necessary to be load-bearing. Several studies have made gels entirely out of ECM by first 

solubilizing the ECM, where the solubilized matrix would form a gel at body 
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temperature.40, 41, 43, 120 One group even utilized solubilized cartilage matrix gels for drug 

delivery, where they noted that the gel maintained enough structural integrity under 

physiological conditions to be a stable drug depot.70 We tried using solubilized cartilage 

hydrogels, but the gels that formed were too compliant and left opportunity for 

improvement for load-bearing applications. Methods of crosslinking unsolubilized 

cartilage have been reported, including crosslinking cartilage ECM with genipin, 

dehydrothermal treatment, ultraviolet irradiation, and carbodiimide chemistry.13, 109 Using 

these methods, cartilage scaffolds were able to be crosslinked and maintained some 

mechanical integrity throughout culture where cell mediated contraction was able to be 

controlled depending on the method of crosslinking. However, the authors of these 

previous studies noted that the constructs would require additional reinforcements to attain 

functional biomechanical properties and additionally, a sole ECM content of 10% was used 

to make the gels. In the current study, we sought to overcome this limitation through 

solubilizing and further crosslinking cartilage tissue. The rationale for solubilizing the 

cartilage tissue was to provide more control over mechanical properties through the ability 

to more finely tune the solid content of the hydrogel. Furthermore, solubilizing the cartilage 

may free up more reactive sites for crosslinking on the cartilage ECM, which may help 

reinforce the biomechanical properties of the solubilized cartilage once it is crosslinked. 

Therefore, based on our experience of functionalizing GAGs such as hyaluronic acid and 

chondroitin sulfate with glycidyl methacrylate,5, 63 which allows the hydrogel to be formed 

through photocrosslinking, we decided to methacrylate solubilized, decellularized cartilage 

ECM. Earlier in 2015, one pioneering study reported methacrylating solubilized cartilage 
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matrix to make photocrosslinkable hydrogels, demonstrating for the first time that native 

tissues can be crosslinked to form hydrogels.141 However, in that study, the solubilized 

cartilage matrix was mixed with methacrylated gelatin (GelMA) and the biomechanics of 

the hydrogels, evaluated via the compressive modulus, still fell short of native cartilage 

tissue. Garrigues et al.41 cleverly reinforced solubilized cartilage ECM through combining 

it with poly(ε-caprolactone) and then electrospinning it into a scaffold. However, the 

Young’s moduli of the cartilage-containing electrospun scaffolds were approximately 10 

kPa, which again fall short of the biomechanics of native cartilage tissue. In this current 

study, the goal was to create the first hydrogel entirely composed of solubilized cartilage 

ECM without additional reinforcements. We hypothesized that this MeSDCC hydrogel 

would have a compressive modulus comparable to native cartilage and would be 

chondroinductive. Therefore, solubilized cartilage hydrogels were photocrosslinked and 

their mechanics as well as chondroinductive potential were analyzed.     

 

METHODS AND MATERIALS 

Tissue Retrieval, Devitalization, and Decellularization  

 Ten porcine knees obtained from Berkshire hogs (castrated males that were 

approximately 7-8 months old and 120 kg) were purchased from a local abattoir 

(Bichelmeyer Meats, Kansas City, KS). Articular cartilage from the knee and hip joints 

was carefully removed and collected using scalpels. The cartilage was then rinsed twice in 

DI water and stored at -20 ºC. After freezing overnight, the cartilage was thawed and then 

coarsely ground with dry ice using a cryogenic tissue grinder (BioSpec Products, 
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Bartlesville, OK). Coarse grinding was performed to reduce diffusion distances during the 

decellularization process. The dry ice was then allowed to evaporate overnight in the 

freezer, at which point the cartilage was referred to as devitalized cartilage (DVC),129 and 

then the DVC was packed into dialysis tubing (3500 MWCO) and decellularized using an 

adapted version of our previously established method using osmotic shock, detergent, and 

enzymatic washes.20 The packets were placed under gentle agitation (70 rpm) in a 

hypertonic salt solution (HSS) overnight at room temperature. The packets were then 

subjected to 220 rpm agitation with two reciprocating washes of triton X-100 (0.01% v/v) 

followed with HSS to permeabilize intact cellular membranes. The tissue was then treated 

overnight with benzonase (0.0625 KU ml-1) at 37 ºC and then with sodium-lauroylsarcosine 

(NLS, 1% v/v) overnight to further lyse cells and denature cellular proteins. After NLS 

exposure, the tissue was washed with ethanol (40% v/v) at 50 rpm and then was subjected 

to organic exchange resins at 65 rpm to extract the organic solvents. The tissue was then 

washed in saline-mannitol solution at 50 rpm followed by two hours of rinsing with DI 

water at 220 rpm. The tissue was then removed from the packets and was then frozen and 

lyophilized. The cartilage was then cryoground into a fine powder with a freezer-mill 

(SPEX SamplePrep, Metuchen, NJ) and was lyophilized overnight. The decellularized 

cartilage powder was then filtered using a 45 µm mesh (ThermoFisher Scientific, Waltham, 

MA) to remove large particles and then frozen until use. 
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Synthesis and Characterization of MeSDCC and GelMA 

DCC powder was first solubilized using an adapted protocol from a previously 

reported method.119 DCC powder was first mixed in 0.1M HCl at a concentration of 10mg 

DCC per 1 mL HCl. Pepsin was then added at a concentration of 1mg/mL and the solution 

was stirred at 200 rpm for 2 days at room temperature. The solution was then brought back 

to physiological pH, verified with litmus paper, by adding 1M NaOH. The solubilized DCC 

powder (SDCC) was then centrifuged at 10,000 x g for 3 min and the supernatant was 

frozen and lyophilized and used to make methacrylated SDCC (MeSDCC).  

MeSDCC was prepared by reacting SDCC with 20 fold molar excess glycidyl 

methacrylate (Sigma-Aldrich, St. Louis, MO) in the presence of trimethylamine and 

tetrabutyl ammonium bromide (Sigma-Aldrich). The reaction solution was a 1:3 

acetone:water mixture, which was stirred at 200 rpm at a concentration of 1 g SDCC for 

every 150 mL solution. The molar excess was approximated based on reacting one glycidyl 

methacrylate group to every monomer present in the solution and with the assumption that 

all monomers were hyaluronic acid. The reaction continued stirring for 6 days, the 

MeSDCC was then precipitated in excess acetone, dialyzed for 2 days in DI water, and 

then lyophilized. Methacrylated gelatin (GelMA) was made with the same protocol used 

to make MeSDCC, except Type A gelatin from porcine skin (Sigma-Aldrich) was used in 

the reaction instead of SDCC. Methacrylation was confirmed using 1H NMR (Avance AV-

III 500, Bruker). 
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Rat Bone Marrow Stem Cell Harvest and Culture 

Rat bone marrow stems cells (rBMSCs) were harvested from both femurs of five 

male Sprague-Dawley rats (200-250 g) following an approved University of Kansas 

IACUC protocol (AUS #175-08). The rBMSCs were first harvested in minimum essential 

medium-α (MEM-α, ThermoFisher) supplemented with 10% fetal bovine serum (FBS, 

MSC qualified, ThermoFisher) and 1% antibiotic-antimycotic (anti-anti, ThermoFisher) 

and were then cultured in this medium for one week to ensure no mycotic contamination 

from harvesting. After 1 week of culture, the anti-anti was substituted for 1% 

penicillin/streptomycin (ThermoFisher) and the cells were cultured in this medium until 

they reached passage 4 for cell encapsulation into the hydrogels. 

 

Description of Experimental Groups 

 Formulations tested in the 6 week culture were both cellular and acellular 

formulations of 10% GelMA, 10% MeSDCC, and 20% MeSDCC (w/v). In addition, 

acellular GelMA was tested at a concentration of 20% under mechanical compression and 

swelling at day 1. Acellular formulations were prepared and analyzed with the cellular 

groups to quantify the acellular biochemical content and to analyze the effect of cells 

encapsulated in the networks. A concentration of 10% for GelMA and MeSDCC was 

chosen as it was a concentration previously reported in literature, and it was verified in our 

preliminary studies by evaluation of a wide range of concentrations.141 A concentration of 

20% was chosen as that is the approximate concentration of dry mass in native cartilage 

matrix.85 



 77 

 

Preparation of Hydrogels, Cell Encapsulation, and Hydrogel Culture Conditions 

 Hydrogels were made by first measuring out the desired weight percents of either 

GelMA or MeSDCC into a 50 mL centrifuge tube. The tubes with the weighed materials 

were then sterilized with ethylene oxide prior to use and from then on were handled under 

sterile conditions. All gels were mixed in two stages (e.g., in photoinitiator solution 

overnight and then more photoinitiator or cell suspension the day of testing). This two-

stage mixing process was used because some of the samples required mixing with cells and 

the time it took for MeSDCC to dissolve to ensure mixture homogeneity (i.e., overnight) 

was deemed too long for adequate cell survival. Therefore, cell suspensions were added 

the next day after the MeSDCC was given a chance to dissolve in half of the final solution. 

For acellular testing, the first stage of mixing involved adding sterile 0.01 M PBS 

containing 0.05% (w/v) Irgacure (I-2959) photoinitiator until the concentration of 

MeSDCC or GelMA was twice the desired concentration. The acellular samples were then 

mixed, centrifuged at 3000 rpm, and stored at 4 ºC overnight to allow time for the MeSDCC 

to dissolve. Prior to testing, more photoinitiator solution was added to the acellular samples 

until the desired concentration was reached. The samples were then mixed again and 

centrifuged to remove air bubbles. For example, to make a 10% MeSDCC solution, 40 mg 

MeSDCC and 200 µL photoinitiator solution were mixed and allowed to dissolve 

overnight, and then another 200 µL photoinitiator solution was added to make the final 

concentration at 10% MeSDCC. For cellular testing, the first stage of mixing involved 

adding 0.1% (w/v) Irgacure photoinitiator in PBS until the concentration of MeSDCC or 
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GelMA was twice the desired final concentration, and then the solutions were centrifuged 

and stored at 4 ºC overnight. Passage 4 rBMSCs were then suspended at 10 million 

cells/mL in incomplete chondrogenic medium consisting of high glucose DMEM 

(ThermoFisher) with 4.5 g/L D-glucose supplemented with 10% FBS, 1% non-essential 

amino acids, 1% sodium pyruvate, 50 μg/mL ascorbic acid, and 0.25 mg/mL 

penicillin/streptomycin. We refer to incomplete chondrogenic medium as medium that did 

not contain growth factors. The cell suspension in incomplete chondrogenic medium was 

then added to the cellular samples until the desired concentration of MeSDCC or GelMA 

was reached and the final cell concentration and photoinitiator concentration was 5 million 

cells/mL and 0.05%, respectively. Both cellular and acellular solutions were then loaded 

into 2 mm thick molds between glass slides and exposed to 312 nm UV light at 3.0 mW/cm2 

in a UV crosslinker (Spectrolinker XL-100, Spectronics Corporation, Westbury, NY) for 

2.5 min on each side. Each gel was then cut using a 4mm biopsy punch and placed in one 

well of a 24 well, non-tissue culture-treated plate (Corning Incorporated, Corning, NY). 

Each gel was exposed to 1 mL of incomplete chondrogenic medium, which was replaced 

every other day throughout the 6 weeks of culture. 

 

Mechanical Testing of Crosslinked Hydrogels and Native Cartilage 

 The gels were allowed to swell to equilibrium for 24 hours in incomplete 

chondrogenic medium and mechanical testing was performed at 1 day and 6 weeks. The 

geometric mean diameter of the gels was first determined using forceps and a 

stereomicroscope (20x magnification) and the height of each gel was measured directly 
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with a RSA-III dynamic mechanical analyzer (DMA, TA instruments, New Castle, DE). 

The gels (n=5) were compressed until mechanical failure at a rate of 0.01 mm/s (i.e., 0.6% 

strain/s) until and the compressive modulus was calculated as the slope of the linear portion 

of the stress-strain curve (i.e., 4-10% strain).  

To compare the compressive modulus to that of native porcine cartilage, cylindrical 

samples of native articular cartilage obtained from the load-bearing region of the femoral 

head of the same porcine tissue harvested to make MeSDCC, were cut to the same height 

as the gel samples using scalpels and were then cut to the appropriate diameter using a 4 

mm biopsy punch. Methacrylated hyaluronic acid (MeHA) gels were tested on the DMA 

as a control. MeHA was prepared by reacting hyaluronic acid (MW 1 MDa, Lifecore 

Biomedical, Chaska, MN) with 20 fold molar excess glycidyl methacrylate (Sigma-

Aldrich) in the presence of triethylamine and tetrabutyl ammonium bromide (Sigma-

Aldrich) in a 50:50 water:acetone mixture stirring at 200rpm for 12 days. MeHA was then 

dialyzed against deionized (DI) water for two days and was frozen and lyophilized. The 

degree of methacrylation was determined to be 1.2% using 1H NMR (Avance AV-III 500, 

Bruker) by calculating the ratio of the relative peak area of methacrylate protons to methyl 

protons.63 MeHA was mixed to a 3% concentration using the same two step procedure as 

described prior and samples were cut using a 4 mm biopsy punch and were allowed to 

swell to equilibrium for 24 hours before testing on the DMA.  
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Swelling Degree and Volume 

 Gels were swollen to equilibrium for 24 hours and the swollen weight was recorded. 

The gels were then frozen and lyophilized. The dry weight was then recorded and the 

swelling degree was calculated as the ratio of total wet mass to dry mass. Gel volume was 

calculated at 1 day and 6 weeks from the diameter and height of the gels that were recorded 

during mechanical testing. 

 

Biochemical Content Analysis 

 The biochemical content of the initial DVC, DCC, SDCC, MeSDCC, and GelMA 

materials as well as the biochemical content of the gels at 1 day, 3 weeks, and 6 weeks of 

culture were quantified (n=5). The materials and gels were digested in a 1.5 mL papain 

mixture consisting of 125 mg/mL papain from papaya latex), 5 mM N-acetyl cysteine, 5 

mM EDTA, and 100 mM potassium phosphate buffered saline at 65 ºC overnight. The 

digestion solutions were stored at -20 ºC until further testing. Prior to biochemical analysis, 

all digestion solutions were allowed to thaw to room temperature and then vortexed and 

centrifuged at 10,000 rpm for 10 min to pellet polymer fragments and the supernatant was 

then used to quantify biochemical contents. Using a Cytation 5 Cell-Imaging Multi-Mode 

reader (Bio-Tek, Winooski, VT), the DNA content was quantified with the PicoGreen 

assay (Molecular Probes, Eugene, OR), the glycosaminoglycan (GAG) content was 

analyzed with the dimethylmethylene (DMMB) assay (Biocolor, Newtownabby, Northern 

Ireland), and hydroxyproline content was determined with a hydroxyproline detection kit 

(Sigma-Aldrich), all according to the manufacturer’s instructions. GAG and 
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hydroxyproline contents were not normalized to DNA and are rather shown in total because 

of the gels’ inherent initial GAG and hydroxyproline contents. 

 

Gene Expression Analysis 

 Using Qiagen QIAshredders and an RNeasy Kit (Valencia, CA) according to the 

manufacturer’s guidelines, RNA was isolated and purified (n=6). The isolated RNA was 

converted into cDNA using a high capacity cDNA reverse transcription kit (Applied 

Biosystems, Foster City, CA). Real-time quantitative polymerase chain reaction (qPCR) 

was performed using a RealPlex MasterCycler (Eppendorf, Hauppauge, NY) and TaqMan 

gene expression assays from Applied Biosystems, which included Sox-9 

(Rn01751070_m1), aggrecan (Rn00573424_m1), collagens type I (Rn01463848_m1) and 

II (Rn01637087_m1), and GAPDH (Rn01775763_g1). The 2-ΔΔCt method was used to 

quantify relative expression levels for each gene where the 10% GelMA gels at day 1 were 

designated as the calibrator group and GAPDH expression was used as the endogenous 

control.80 Finally, RNA from DVC and DCC only (i.e., no rBMSCs) was isolated, 

converted to DNA, and then PCR was performed with the same previously mentioned 

TaqMan assays, where it was confirmed that all gene expression observed in the study was 

that of the rBMSCs. 

 

Histological Analysis 

 Both cellular and acellular gels at day 1 and cellular gels from 6 weeks were 

analyzed histologically. These gels were first fixed in 10% formalin for 15 min, were 
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embedded in Optimal Temperature Cutting (OCT) medium (TissueTek, Torrance, CA) 

overnight at 37 °C, and were then frozen at -20 °C. Sections were cut at a thickness of 10 

µm using a cryostat (Micron HM-550 OMP, Vista, CA). The sections were then stained 

with the standard Hematoxylin and Eosin (H&E) stain, which stains the cytoplasm, 

connective tissues, and other extracellular substances red or pink and stains the nuclei 

purple. The sections were stained for GAGs with the standard Safranin-O/Fast Green (Saf-

O) stain, where the GAGs stain orange in color. Lastly, the sections were stained 

immunohistochemically using primary antibodies that target both rat and porcine tissues 

for collagen I (ThermoFisher, NB600408, 1:200 dilution), collagen II (Abcam, ab34712, 

1:200 dilution), and aggrecan (ThermoFisher, MA3-16888, 1:100 dilution). Prior to 

primary antibody incubation, the slides were first fixed in chilled acetone (-20 °C) and then 

treated with proteinase K (Abcam). The slides were then exposed to 0.3% hydrogen 

peroxide (Abcam) to suppress endogenous peroxidase activity. The sections were then 

blocked with serum according to the manufacturer’s instructions in the Vectastain ABC kit 

(Vector Laboratories, Burlingame, CA) and were then incubated with primary antibody. 

Then the sections were exposed to biotinylated secondary antibodies (horse anti-rabbit and 

mouse) and ABC reagent according to manufacturer protocol. The antibodies were 

visualized using the ImmPact DAB peroxidase substrate (Vector), and then the sections 

were rinsed in DI water, counter stained with VECTOR hematoxylin QS stain, and then 

dehydrated and mounted. Exposure to a rabbit IgG isotype control (for collagen I and II, 

Abcam, ab27478) at an antibody concentration calculated to be the same used for the 
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corresponding antibodies or omitting the primary antibody (for aggrecan) was used as the 

negative control. 

 

Statistical Analysis 

Statistics were performed on GraphPad Prism 6 statistical software (GraphPad 

Software, Inc., La Jolla, CA). A one-factor ANOVA was used for analyses with one time 

point and a two-factor ANOVA was used for analyses with two or more time points. Both 

ANOVAs were followed by either a Sidak’s post hoc test (for two-way ANOVAs with two 

time points only) or a Tukey’s post hoc test (for all other ANOVAs), where p ≤ 0.05 was 

considered significant. In addition, outliers were eliminated by constructing standard box 

plots. All quantitative results are reported as mean ± standard deviation within the text or 

as mean + standard deviation within the figures. Select significant differences between 

groups are highlighted in the Results section, with complete statistically significant 

differences reported in the figures.  

 

RESULTS 

Characterization of Initial DVC, DCC, MeSDCC, and GelMA DNA and Matrix 

Content 

 

Success of the methacrylation procedure for both MeSDCC and GelMA was 

confirmed via 1H NMR by the emergence of methacrylate peaks between 5 and 6.5 ppm 

(Figure 5.1A-B). The success of the methacrylation procedure was further confirmed with 

the formation of crosslinked GelMA and MeSDCC gels (Figure 5.1C). The DNA, GAG, 
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and hydroxyproline contents of DVC were determined to be 1151 ± 51 ng DNA/mg dry 

DVC, 252 ± 17 µg GAG/mg dry DVC, and 56.1 ± 3.9 µg hydroxyproline/mg dry DVC, 

respectively (Figure 5.2). Following decellularization and cryogrinding, there was a 44% 

reduction in DNA, a 23% reduction in GAG, and a 23% reduction in hydroxyproline 

(p<0.05) (Figure 5.2). After solubilizing and after methacrylating, the DNA content further 

reduced to 4% and 1.7% of that of the original DVC DNA content, respectively (p<0.05), 

although there were no significant reductions in GAG content through the solubilization 

and methacrylation procedure. Following solubilization, the hydroxyproline content was 

reduced by 25% compared to DCC, and then increased by 59% after the methacrylation 

procedure compared to SDCC (p<0.05). The DNA, GAG, and hydroxyproline contents of 

GelMA were 10.10 ± 0.81 ng DNA/mg dry GelMA, 8 ± 15 µg GAG/mg dry GelMA, and 

71.9 ± 1.0 µg hydroxyproline/mg dry GelMA, respectively (Figure 5.2).  

 

Mechanical Testing of Crosslinked Hydrogels 

One day after crosslinking, the compressive modulus of the 10% GelMA was 55 ± 

10 kPa, whereas that of the 10% MeSDCC and 20% MeSDCC groups were 5.3 and 20 

times larger, respectively (p<0.05) (Figure 5.3A). Furthermore, the compressive modulus 

of the 20% MeSDCC group was 3.7 times larger than that of the 10% MeSDCC group 

(p<0.05). In addition, the modulus of the 20% MeSDCC acellular group was 2.3 and 3.4 

times larger than that of the 10% MeSDCC and 20% GelMA acellular groups, respectively 

(p<0.05).  
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 Six weeks after crosslinking, the compressive modulus of the 20% MeSDCC group 

was 560 ± 310 kPa, which was 7.4 and 3.0 times larger than that of the 10% GelMA and 

10% MeSDCC groups, respectively (p<0.05) (Figure 5.3A).  

Over the 6 weeks of culture, the only groups that significantly deviated from their 

original compressive modulus were the 20% MeSDCC groups, where the modulus of the 

20% MeSDCC acellular and cellular groups reduced by 30% and 48%, respectively 

(p<0.05) (Figure 5.3A). Additionally, the modulus of the 10% GelMA group increased by 

37% over the 6 week culture period, although the increase was not significant.  

The stress-strain profiles of native porcine cartilage samples were compared with 

that of the 20% MeSDCC, 20% GelMA acellular, and 3% MeHA groups, where the 95% 

confidence intervals were compared at each level of strain tested. The only stress-strain 

profile that fell within the 95% confidence interval of the native porcine cartilage was that 

of the 20% MeSDCC group until it began to fracture at 7.5% strain (Figure 5.3B).  

 

Swelling and Volume Analysis  

 The only group that had a significantly different swelling degree than 10% GelMA, 

which had a swelling degree of 8.6 ± 1.2 after swelling to equilibrium, was the 10% 

MeSDCC acellular group, which had a swelling degree 56% higher than that of 10% 

GelMA (p<0.05) (Figure 5.4A). In addition, all 20% GelMA and MeSDCC groups had 

between 15% and 38% lower swelling degrees than that of the 10% MeSDCC cellular and 

acellular groups, where the swelling degrees of 20% GelMA, 20% MeSDCC acellular and 
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20% MeSDCC groups were 34%, 19%, and 15% lower than 10% MeSDCC (p<0.05) 

(Figure 5.4A).  

 At one day after crosslinking and swelling to equilibrium, the gel volumes of the 

20% GelMA and all MeSDCC gels were significantly higher than that of 10% GelMA 

(p<0.05) (Figure 5.4B). The 10% MeSDCC group had a volume of 20.24 ± 0.47 µL, while 

the 20% MeSDCC group had a volume 9.6% greater. These 10% and 20% MeSDCC 

groups in turn had volumes that were 17% and 29% higher than that of 10% GelMA, 

respectively (p<0.05).  

 At 6 weeks after crosslinking, the volume of the 20% MeSDCC group was 21.8 ± 

1.2 µL, which was 14% and 9.3% higher than that of 10% MeSDCC and 10% GelMA, 

respectively (p<0.05) (Figure 5.4B). In addition, the volume of the 20% MeSDCC group 

was 92% of its acellular control (p<0.05).  

 Over the course of the 6 weeks, the only group that had a significant change in 

volume was the 10% MeSDCC acellular group, which experienced an 11% reduction in 

volume (p<0.05).  

  

Biochemical Content Analysis 

As expected, all cellular groups had significantly higher DNA contents than their 

respective acellular groups at all time points (p<0.05) (Figure 5.6A). At 1 day after 

hydrogel formation, the 10% GelMA group contained 650 ± 160 ng DNA per gel, and the 

only gel with a significantly different DNA content was the 20% MeSDCC group, which 

had 21% more DNA per gel (p<0.05) (Figure 5.5A). At 3 weeks after crosslinking, the 
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20% MeSDCC group had a DNA content of 833 ± 88 ng DNA per gel, which was 3.2 and 

1.7 times higher than that of the 10% GelMA and 10% MeSDCC groups, respectively 

(p<0.05) (Figure 5.5A). After 6 weeks of culture, the 20% MeSDCC group contained 660 

± 80 ng DNA per gel, which was 2.1 and 1.3 times higher than that of the 10% GelMA and 

10% MeSDCC groups, respectively (p<0.05) (Figure 5.5A). Over the course of the 6 week 

culture period, all cellular groups had a significant reduction in DNA content (p<0.05), 

where the DNA content in the 10% GelMA, 10% MeSDCC, and 20% MeSDCC groups 

reduced by 51%, 30%, and 16%, respectively (p<0.05). The acellular groups did not have 

any significant reduction in DNA content over the culture period (Figure 5.5A).  

Throughout the culture period, there was no detectable level of GAG in the 10% 

GelMA group (Figure 5.5B). At 1 day after crosslinking, the GAG content of the 10% 

MeSDCC group was 74 ± 23 µg GAG per gel, and the GAG content of the 20% MeSDCC 

group was 92% higher (p<0.05) (Figure 5.5B). At 3 weeks, the GAG content of the 10% 

MeSDCC group was 22.3 ± 7.6 µg GAG per gel, which was not significantly different 

from the 20% MeSDCC group (Figure 5.5B). In addition, the GAG content of the 20% 

MeSDCC group was 55% less than its respective acellular control (p<0.05). At 6 weeks, 

the GAG content of the 10% MeSDCC group was 23.7 ± 9.2 µg GAG per gel, and the 

GAG content of the 20% MeSDCC group was 4.1 times larger (p<0.05). In addition, the 

GAG content of the 10% MeSDCC group was 68% less than that of its respective acellular 

control (p<0.05). Over the 6 week culture period, both the 10% MeSDCC group and the 

20% MeSDCC groups experienced 68% and 32% reductions in GAG content, respectively 

(p<0.05) (Figure 5.5B).  
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Finally, at 1 day, the initial hydroxyproline content of 10% GelMA was 108 ± 11 

µg hydroxyproline per gel, where that of the 20% MeSDCC group was 66% higher 

(p<0.05) (Figure 5.5C). At 3 weeks, the 10% GelMA group contained 111 ± 19 µg 

hydroxyproline per gel, which was 53% higher than that of the 10% MeSDCC group and 

22% lower than that of the 20% MeSDCC group (p<0.05). Furthermore, the 20% MeSDCC 

group contained 95% more hydroxyproline than that of the 10% MeSDCC group (p<0.05). 

At 6 weeks, the hydroxyproline content of the 10% GelMA group was 118 ± 17 µg per gel, 

which was 44% higher than that of the 10% MeSDCC group (p<0.05). Furthermore, the 

hydroxyproline content of the 20% MeSDCC group was 80% higher than that of the 10% 

MeSDCC group (p<0.05). Over the 6 week culture period, the only group that experienced 

a significant loss in hydroxyproline was the 20% MeSDCC group, where the 

hydroxyproline loss was 18% (p<0.05) (Figure 5.5C). 

 

Gene Expression Analysis  

 At 1 day after crosslinking, the relative Sox-9 expression of 10% MeSDCC and 

20% MeSDCC were 8.5 and 3.4 times larger than that of 10% GelMA (p<0.05) (Figure 

5.6A). The relative Sox-9 expression of the 10% MeSDCC group was 2.5 times larger than 

that of the 20% MeSDCC group (p<0.05). At 1 week, the relative Sox-9 expression of the 

10% GelMA group was 2.6 times larger than that of the 20% MeSDCC group (p<0.05). 

For the rest of the study, there were no significant differences in Sox-9 expression among 

groups within each time point. From 1 day to 1 week, the relative Sox-9 expression of the 

10% GelMA group increased by a factor of 2.5 (p<0.05), but then decreased by 54% from 
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1 week to 2 weeks (p<0.05), and did not change significantly thereafter. From 1 day to 1 

week, the relative Sox-9 expression of the 10% MeSDCC group decreased by 69% 

(p<0.05), and then further decreased by 80% from 1 week to 2 weeks (p<0.05). The relative 

Sox-9 expression of the 10% MeSDCC group did not change significantly after 2 weeks. 

Last, the relative Sox-9 expression of the 20% MeSDCC group decreased by 72% from 1 

day to 1 week (p<0.05) and did not change significantly thereafter (Figure 5.6A). 

 The relative aggrecan expression of 10% MeSDCC and 20% MeSDCC were 6.5 

and 2.8 times higher than that of 10% GelMA, respectively at 1 day (p<0.05) (Figure 5.6B). 

There were no significant differences among groups at each time point thereafter. By 1 

week, the relative aggrecan expressions of 10% GelMA, 10% MeSDCC, and 20% 

MeSDCC were reduced by 85%, 96%, and 89%, respectively, compared to their expression 

levels at 1 day (p<0.05), and there were no significantly different changes in expression 

thereafter.  

 The 10% MeSDCC and 20% MeSDCC groups had 8.1 and 2.9 fold higher relative 

collagen II expressions at 1 day (p<0.05), and by 1 week, the relative aggrecan expression 

of the 10% MeSDCC group was 2.7 times higher than that of 10% GelMA (p<0.05). 

Furthermore, at one week, the relative collagen II expression of the 10% MeSDCC group 

was 2.7 times higher than that of the 20% MeSDCC group. There were no significant 

differences among groups at each time point thereafter and collagen II expression was not 

detected at all at 6 weeks (Figure 5.6C). Over the culture period, there were no significant 

changes in collagen II expression for the 10% GelMA group, but the relative collagen II 

expression of the 10% MeSDCC group decreased by 73% from 1 day to 1 week (p<0.05), 
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and then it did not change significantly thereafter. The relative collagen II expression of 

the 20% MeSDCC group decreased by 81% from 1 day to 1 week (p<0.05), was not 

detectable at 2 weeks, but was detectable at 3 weeks, although the expression level at 3 

weeks was not significantly different from the expression level detected at 1 week (Figure 

5.6C). 

 The relative collagen I expressions of the 10% MeSDCC and 20% MeSDCC groups 

were 23% and 67% lower than that of the 10% GelMA group at day 1, respectively 

(p<0.05) (Figure 5.6D). There were no significant differences among groups observed 

thereafter within each time point in the culture period. From 1 day to 1 week, the relative 

collagen expression levels of the 10% GelMA, 10% MeSDCC, and 20% MeSDCC groups 

decreased by 94%, 93%, and 72%, respectively (p<0.05), and did not change significantly 

thereafter (Figure 5.6D). 

 

Histological Analysis 

H&E staining revealed regions of tissue growth within the 10% MeSDCC and 20% 

MeSDCC groups at 6 weeks. Saf-O did not stain for GAGs in any of the 10% GelMA 

stains; however, an increase in Saf-O staining intensity was notably observed over the 6 

week culture period in the 10% and 20% MeSDCC groups, particularly in the regions 

surrounding rBMSCs (Figure 5.7). All MeSDCC groups stained for collagen II, although 

no increase in collagen II staining intensity was observed for those groups. However, the 

10% GelMA group had an increase in collagen II staining intensity over the culture period 

(Figure 5.7). Collagen I staining was noted in the 10% GelMA group, although there were 
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no significant changes in staining over the culture period and minimal collagen I staining 

was observed in the other groups (Figure 5.7). Finally, the 10% GelMA and the 20% 

MeSDCC groups had a slight increase in aggrecan staining over the culture period (Figure 

5.7).   

 

DISCUSSION 

 In the current study, we were the first to create hydrogels derived entirely from 

solubilized cartilage ECM and test their chondroinductivity. ECM-based materials are 

attractive for tissue engineering strategies because they can potentially aid in stem cell 

recruitment, cell infiltration, and cell differentiation without supplementing with additional 

biological factors.6, 10, 104 However, one of the major limitations of using natural polymers 

in hydrogels is their reduced mechanical integrity.133 While native human articular 

cartilage has an elastic compressive modulus ranging from 240-1000 kPa,2, 76, 85 the 

compressive modulus of hydrogels composed of natural materials are typically an order of 

magnitude less than native cartilage tissue.133 However, it must be noted that 

biomechanical properties of cartilage can vary depending on parameters such as the method 

of testing, the strain rate of testing, and cartilage zone depth.49 Although certainly other 

mechanical properties have been explored and analyzed in cartilage tissue engineering, 

including the aggregate modulus, hydraulic permeability, and fracture stress,133, 150 in the 

current study the compressive modulus and the overall stress-strain profile of the gel 

constructs were the primary emphases. Gels composed entirely of crosslinked solubilized 

cartilage matrix were created that had a compressive modulus in the same range of values 
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reported for native cartilage. The 20% MeSDCC gels had a compressive modulus of 1070 

± 150 kPa after one day of culture, which was more than 3 fold higher than that of the 20% 

GelMA acellular group. Furthermore, when the 95% confidence intervals of the stress 

strain profiles of the 20% MeSDCC gels were compared to native porcine cartilage, it was 

found that the stress strain profile of the 20% MeSDCC gels actually fell within the 

confidence interval of native cartilage, and they were the only gels to do so. Although the 

20% gels fractured early at 7.5% strain, the fact that they fell within the stress strain profile 

of native cartilage tissue was promising. Clinically, these results could potentially translate 

to a surgeon being able to inject the paste into a cartilage defect and then crosslink the paste 

into a gel, allowing the patient to walk after the procedure. Certainly the early fracture 

stress needs to be addressed, however.150 Modifications to the hydrogel may be made such 

as increasing the solid content or methacrylation efficiency, to improve the fracture stress. 

At this stage, due to not knowing the exact biochemical content of MeSDCC, the degree 

of methacrylation could not be calculated through the NMR spectra, so this is one limitation 

of using MeSDCC as a hydrogel material. However, the ability to modulate the mechanical 

properties through the solid content is a tremendous advantage compared to crosslinking 

cartilage particles, where the solid content would be confined due to particles only 

crosslinking in the vicinity of other particles.  

 The mechanical properties of MeSDCC hydrogels may be able to be improved 

through mechanical stimuli in vivo, as mechanical stimulation alone is known to induce 

chondrogenesis.140 Therefore, once the material is implanted in vivo, there could be less of 

a decrease in the compressive modulus long-term like what was observed after 6 weeks of 
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in vitro culture in the current study. However, superior matrix synthesis was observed in 

the MeSDCC gels over the GelMA gels even in vitro via hematoxylin and eosin staining 

and Saf-O staining, even though the biochemical content analysis did not show an increase 

in the amount of matrix produced. This could be due to the cells assisting in the 

biodegradation and remodeling of the ECM, whereby even though some matrix is being 

lost, new matrix is simultaneously being formed. Low overall matrix production is 

consistent with findings from Visser et al.;141 however, they observed an increase in 

collagen I expression when exposed to MeSDCC as opposed to the current study, where a 

decrease in collagen I expression was noted while exposed to MeSDCC in reference to 

GelMA gels.  

Compared to GelMA gels, a significant increase in collagen II, Sox-9, and aggrecan 

expression was observed in the MeSDCC gels. Although a significant reduction in all 

chondrogenic gene expression was noted after 1 day, this reduction does not necessarily 

mean aggrecan and collagen II synthesis stopped. GelMA is widely used in the field of 

tissue engineering for its low cost, its abundant cell adhesion sites, and for its ability to 

support chondrocyte differentiation.114, 141 Therefore, it is possible that all gels had 

sufficient cartilage ECM production and the low chondrogenic gene expression levels were 

low only in reference to GelMA at day 1, the calibrator group. Through collagen II IHC 

analysis for example, the GelMA gels were noted to have an increase in collagen II staining 

at 6 weeks compared to day 1, even though the collagen II expression after 1 day was 

significantly reduced. Because the MeSDCC gels contained so much collagen II initially, 

it was difficult to discern any new collagen II production, but at least the relative level of 
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collagen II staining remained the same throughout culture. It must be noted that an increase 

in matrix synthesis and an increase in chondrogenic gene expression at day 1 was observed 

without any growth factor supplementation. ECM-based materials, like these MeSDCC 

hydrogels, are attractive for regenerative medicine because of their ability to potentially 

aid in stem cell recruitment, infiltration, and differentiation without supplementing with 

additional biological factors.6, 10, 104, 129 The ability to cause some differentiation shows 

great promise in using these materials for cartilage tissue engineering and may even make 

these gels more economical than using other natural materials such as hyaluronic acid or 

gelatin.127  

Of note was the limited removal of DNA in a mild decellularization process, which 

may need to be addressed in future work if it is deemed that a higher degree of 

decellularization is required for successful cartilage regeneration in vivo. However, non-

decellularized products, such as Zimmer’s DeNovo® product, rely on the 

immunoprivileged environment and so far there have been no reports to the best of our 

knowledge of allograft rejection or disease transmission even though the product is 

composed of living allogeneic cells. Additionally, although the DeNovo® product is 

composed of human juvenile cartilage, it has been observed to create hyaline-like cartilage 

in goats, where no T-cell-mediated response was noted.1 Furthermore, even though the 

decellularization process in the current study only removed 44% of the DNA, the DNA 

content of the SDCC and MeSDCC was reduced to 4% and 1.7% of that of the original 

DVC DNA content, respectively (p<0.05). At this stage, it is unknown whether the 

solubilization and methacrylation process were removing DNA, or if the DNA was 
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modified to a degree where the PicoGreen assay could no longer detect the DNA. Due to 

the low pH and pepsin exposure during the solubilization process, the DNA would likely 

be denatured to a single-stranded state and would in addition, be hydrolyzed and further 

degraded.88 Furthermore, the dialysis step after methacrylation would likely remove these 

degraded DNA segments and low molecular weight nucleotides and amino acids, leaving 

behind higher molecular weight methacrylated GAGs and collagen. Future work will 

certainly need to address how solubilization and methacrylation affect cartilage DNA and 

other biochemical contents and how they affect the retained growth factors. However, 

depending on the application of MeSDCC gels, decellularization may not even be 

necessary.  

In addition to mechanics and gene expression, the swelling and volume of the 

materials were analyzed throughout culture. One major concern of using hydrogels for 

tissue engineering is cell-mediated contraction of the gel construct throughout culture.13, 

141 Contraction of gels can cause disintegration with host tissue, which could potentially 

hinder successful cartilage regeneration and may even dislodge the hydrogel from the 

defect site. In the current study, however, the only gels that had a significant reduction in 

volume were the 20% MeSDCC gels, where the gels only reduced in volume by 2%, which 

is unlikely a concern for cartilage tissue engineering applications. In addition to volume, 

the swelling of the materials is important as well due to a drastic increase in swelling after 

surgical placement is undesirable. The swelling degree was significantly lowered by 

increasing the amount of material in the hydrogels from 10% to 20%, which is to be 

expected since additional material would increase the solid content.  
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CONCLUSION 

 We created crosslinkable hydrogels composed entirely of native cartilage ECM. 

The cartilage was first solubilized and then methacrylated to create photocrosslinkable 

gels. Compared to the traditional GelMA hydrogels, these MeSDCC gels supported 

rBMSC growth, ECM production, caused significant upregulation of chondrogenic genes 

at 1 day after crosslinking, and remarkably, the mechanics of the MeSDCC gels were 

characteristically similar to that of native porcine cartilage until their failure. The 

concentration of MeSDCC was found to affect chondroinduction and mechanical 

properties, where the 20% MeSDCC gels were superior in mechanical performance and 

promoting ECM synthesis, while the 10% MeSDCC gels were superior in 

chondroinduction. Future work will address improving the fracture mechanics, and 

chondrogenesis and immune compatibility in vivo. In the current study, we have shown 

that MeSDCC may prove to be a promising biomaterial for cartilage tissue engineering 

applications.  
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CHAPTER 6: CHONDROINDUCTIVE HYDROGEL PASTES COMPOSED OF 

NATURALLY DERIVED DEVITALIZED CARTILAGE
** 

 

ABSTRACT 

Hydrogels have several advantages for cartilage tissue engineering, but hydrogel 

precursors are liquid solutions that are prone to leaking from the defect site once implanted 

in vivo. In prior work, we addressed this drawback by adding hyaluronic acid nanoparticles 

to traditional photocrosslinkable polymers to induce paste-like behavior in hydrogel 

precursors, and the hydrogel precursors could then be crosslinked to form rigid hydrogel 

networks. In the current study, the objective was not only to create a hydrogel precursor 

that exhibited a yield stress, but to additionally create a chondroinductive biomaterial for 

cartilage tissue engineering applications. Given that cartilage extracellular matrix (ECM) 

has recently become known for its chondroinductive potential, devitalized cartilage ECM 

(DVC) were mixed with DVC that had been solubilized and methacrylated (MeSDVC) as 

a new two-component hydrogel precursor solution. Precursors composed of 10% 

MeSDVC and 10% MeSDVC with 10% DVC were evaluated rheologically and then 

photocrosslinked and further characterized as solids. The crosslinked gels contained 

encapsulated rat bone marrow stem cells (rBMSCs) and were cultured in vitro for 6 weeks 

in incomplete chondrogenic medium (i.e., no growth factors), where the MeSDVC + DVC 

gels were exposed to both incomplete and complete (i.e., addition of TGF-β3) chondrogenic 

                                                

**To be submitted as Beck E.C., Barragan M., Tadros M.H., Kieweg, S.L., and Detamore M.S., 

Chondroinductive Hydrogel Pastes Composed of Naturally Derived Devitalized Cartilage, Annals of 

Biomedical Engineering, 2015. 
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media. The compressive modulus, gene expression, biochemical content, swelling, and 

histology of the gels were analyzed. Prior to crosslinking, non-Newtonian behavior was 

observed in all hydrogel precursors and a yield stress of over 1800 Pa was observed when 

MeSDVC and DVC particles were combined. The DVC-containing gels repeatedly 

outperformed the MeSDVC-only group in chondrogenic gene expression, especially at 6 

weeks, where the relative collagen II expression of the DVC-containing groups with and 

without TGF-β3 exposure was 40 and 78 fold higher, respectively, than that of MeSDVC 

alone. Of translational relevance, DVC-containing groups did not have any significant cell-

mediated contraction, while the MeSDVC gels contracted 18% over the culture period. 

Future work will address the combinations of DVC and MeSDVC that yield mechanics 

closer to that of native cartilage tissue and will test for chondrogenesis in vivo. Overall, 

these two cartilage-derived components are promising materials for cartilage tissue 

engineering applications.    

 

INTRODUCTION 

Hydrogels have several advantages for cartilage tissue engineering, including the 

ease of formation, the ability to encapsulate cells, and the ability to fine tune mechanical 

properties.9, 23, 33 Although hydrogels are promising materials for cartilage regeneration, 

they cannot be molded into a defect site by a surgeon because hydrogel precursors are 

liquid solutions that are prone to leaking after placement.110, 135 To address this drawback, 

we recently published a method to achieve paste-like hydrogel precursor solutions by 

combining hyaluronic acid nanoparticles with traditional crosslinked hyaluronic acid 
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hydrogels, known as methacrylated hyaluronic acid (MeHA).5 This paste-like behavior was 

induced by incorporating hyaluronic acid nanoparticles,5 where the MeHA mixed with 

hyaluronic acid nanoparticles were together referred to as hydrogel pastes prior to 

crosslinking. The hydrogel pastes were then crosslinked to form a rigid traditional hydrogel 

structure. In this current study, in an effort to introduce bioactivity to the hydrogel itself, 

the two components of the hydrogel paste, both the MeHA and nanoparticles were 

substituted with components made from naturally derived cartilage extracellular matrix 

(ECM). 

Materials derived from ECM are attractive for regenerative medicine because they 

may promote stem cell recruitment, infiltration, and differentiation without the need to 

supplement with additional biological factors.6, 10, 104 We and other groups have recently 

established that cartilage ECM has chondroinductive potential,11, 15, 41, 73, 115, 128 where we 

observed that rat bone marrow stem cells (rBMSCs) exposed to cartilage ECM 

outperformed those cells exposed to TGF-β3 in chondroinductivity.128 ECM materials in 

general can be obtained from cell-derived matrices, which are ECM materials secreted 

during in vitro culture, or they can be obtained from native tissue.6, 11, 13, 22, 116, 156 

Additionally, ECM materials are generally either decellularized to remove cellular 

components and nucleic acids or they are devitalized to kill but not necessarily remove 

cells within the matrix.129  

Decellularization processes are known to inevitably cause some disruption to the 

matrix architecture, orientation, and surface landscape.60 Therefore, in this current work, 

only unaltered DVC was studied. The objective was to create a hydrogel paste that was 
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entirely derived from DVC that was capable of inducing chondrogenesis. Prior studies have 

made traditional hydrogels entirely out of ECM by first solubilizing the ECM, and the 

solubilized matrix could then form a gel at body temperature.40, 41, 43, 120 One group even 

used solubilized cartilage matrix as a depot for delivering drugs, where the gel maintained 

enough structural integrity under physiological conditions to sufficiently deliver bioactive 

molecules.70 When we tried using this thermoresponsive method to create solubilized 

cartilage hydrogels, the gels that formed were too compliant and left opportunity for 

improvement for load-bearing applications, so methods to further crosslink the cartilage 

were desired. The crosslinking of unsolubilized cartilage has been reported, including 

crosslinking cartilage ECM with genipin, dehydrothermal treatment, ultraviolet irradiation, 

or carbodiimide chemistry.13, 109 Using these methods, cartilage scaffolds were crosslinked 

and maintained some mechanical integrity throughout culture. Furthermore, cell mediated 

contraction was able to be controlled depending on the method of crosslinking. However, 

the authors noted that the constructs would need added reinforcements to achieve 

functional biomechanical properties. In the current study, these added reinforcements were 

attained by first solubilizing and then further crosslinking the cartilage tissue. Solubilizing 

the cartilage tissue allows for more fine-tuning of mechanical properties through allowing 

the control of the solid content of the hydrogel. Furthermore, solubilizing cartilage can 

remove particles that may cause premature gel fracture and it may open up more reactive 

sites on the cartilage ECM for crosslinking, which may help reinforce the ECM-based gels 

once they are crosslinked.  
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Therefore, with prior experience with functionalizing GAGs, such as hyaluronic 

acid and chondroitin sulfate with glycidyl methacrylate,5, 63 which allows 

photocrosslinking of the hydrogel material, in the current study, the solubilized cartilage 

ECM was methacrylated. One pioneering study recently reported methacrylating 

solubilized cartilage matrix to make photocrosslinkable hydrogels, and they demonstrated 

for the first time that native tissues can be crosslinked forming hydrogels.141 However, in 

that study, the solubilized cartilage matrix was reinforced with methacrylated gelatin 

(GelMA). In another study, solubilized cartilage ECM was cleverly reinforced by 

combining it with poly(ε-caprolactone) and then electrospinning it into a scaffold,41 

although the biomechanics of the scaffolds in that study still fell short of that of native 

cartilage tissue. The purpose of the current study was to create, for the first time, a hydrogel 

entirely composed of cartilage ECM without the use of GelMA and to additionally mix the 

methacrylated cartilage ECM with particles to give the hydrogel precursor a yield stress 

before crosslinking. We hypothesized that the hydrogel precursors containing DVC 

particles would exhibit a yield stress, and would be more chondroinductive than that of the 

methacrylated cartilage alone.  

 

METHODS AND MATERIALS 

Tissue Retrieval, Devitalization, and Cryogrinding  

 Twenty porcine knees were purchased from a local abattoir (Bichelmeyer Meats, 

Kansas City, KS). The knees came from Berkshire hogs, which were castrated males that 

were approximately 7-8 months old and 120 kg in weight. Articular cartilage from both the 



 102 

knee and hip joints was carefully removed and collected using scalpels and was then rinsed 

twice in deionized (DI) water and stored at -20 ºC. After freezing overnight, the cartilage 

was thawed, mixed with dry ice and coarsely ground using a cryogenic tissue grinder 

(BioSpec Products, Bartlesville, OK). The dry ice was allowed to evaporate overnight in 

the freezer, where the cartilage was then referred to as devitalized cartilage (DVC), and 

then the DVC was lyophilized. The DVC was then cryoground into a fine powder using a 

freezer-mill (SPEX SamplePrep, Metuchen, NJ) and was lyophilized again overnight. The 

DVC powder was then filtered using a 106 µm mesh (ThermoFisher Scientific, Waltham, 

MA) to remove large particles and then frozen until use. 

 

Synthesis and Characterization of MeSDVC 

DVC powder was first solubilized using an adapted protocol from our previously 

reported method.119 First, DVC powder was mixed in 0.1M HCl at a concentration of 10 

mg DVC per 1 mL HCl. Pepsin was then added to the solution at a concentration of 1 

mg/mL. The mixture was then stirred at 200 rpm at room temperature. After 2 days of 

stirring, the solution was then brought back to physiological pH by adding 1M NaOH. This 

solubilized DVC powder (SDVC) was then centrifuged at 10,000 x g for 3 min to pellet 

any unsolubilized particulates and the supernatant was frozen and lyophilized and later 

used to make methacrylated SDVC (MeSDVC).  

MeSDVC was created by reacting SDVC with 20 fold molar excess glycidyl 

methacrylate (Sigma-Aldrich, St. Louis, MO) in the presence of trimethylamine and 

tetrabutyl ammonium bromide (Sigma-Aldrich) in a 1:3 acetone:water mixture at a 
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concentration of 1 g SDVC for every 150 mL solution. This solution was then stirred at 

200 rpm for 6 days. The molar excess was approximated based on reacting one glycidyl 

methacrylate group to every monomer present in the solution and with the assumption that 

all monomers were hyaluronic acid. After 6 days, the MeSDVC was then precipitated in 

excess acetone, was dialyzed for 2 days in DI water, and then was lyophilized. Successful 

methacrylation was confirmed using 1H NMR (Avance AV-III 500, Bruker). 

 

Rat Bone Marrow Stem Cell Harvest and Culture 

Following an approved IACUC protocol at the University of Kansas (AUS #175-

08), rat bone marrow stems cells (rBMSCs) were harvested from the femurs of two male 

Sprague-Dawley rats (200-250 g). The rBMSCs were first cultured for one week in 

minimum essential medium-α (MEM-α, ThermoFisher) supplemented with 10% fetal 

bovine serum (FBS, MSC qualified, ThermoFisher) and 1% antibiotic-antimycotic (anti-

anti, ThermoFisher) to ensure no mycotic contamination from harvesting. After 1 week of 

culture, the anti-anti was substituted for 1% penicillin/streptomycin (ThermoFisher), in 

which the cells were then cultured until they reached passage 4 for cell encapsulation into 

the hydrogels. 

 

Description of Experimental Groups 

 Both acellular and cellular crosslinked formulations of 10% MeSDVC and 10% 

MeSDVC 10% DVC (w/v) were tested for 6 weeks in vitro along with one cellular group 

composed of 10% MeSDVC 10% DVC that was exposed to 10 ng/mL human transforming 
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growth factor-β3 (TGF-β3, PeproTech Inc., Rocky Hill, NJ). In addition, one acellular 

group composed of 20% MeSDVC was tested at day 1 after crosslinking. The acellular 

formulations were analyzed along with the cellular groups to quantify the acellular 

biochemical content and to analyze the effect of cells encapsulated in the networks. Ten 

percent MeSDVC was chosen as it was a concentration previously reported in literature for 

methacrylated gelatin (GelMA) gels.141 A concentration of 20% MeSDVC was chosen as 

that is the approximate concentration of dry mass in native cartilage matrix.85 Prior to 

crosslinking, the aforementioned cellular and acellular groups (except the growth factor 

group) and additional groups of 5% DVC and 10% DVC were tested rheologically. 

However, DVC alone cannot be crosslinked into a hydrogel network, which is why these 

two DVC groups were only tested rheologically.  

 

Preparation of Hydrogel Pastes, Cell Encapsulation, and Hydrogel Culture 

Conditions 

 

 Hydrogel pastes were created by first measuring the desired weight percents of 

MeSDVC and DVC in a mini-centrifuge tube. All materials used for future cell 

encapsulation were then sterilized with ethylene oxide prior to use and were handled under 

sterile conditions thereafter. The pastes were mixed in two stages (e.g., in photoinitiator 

solution overnight and then more photoinitiator solution or cell suspension the day of 

testing) due to the longer time it took for MeSDVC to dissolve (i.e., overnight) to ensure 

mixture homogeneity. This length of time was deemed too long for adequate cell survival 

for the groups incorporating cells. Therefore, cell mixtures were added the day after the 

MeSDVC was mixed and given a chance to dissolve in half of the final solution. For 
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rheological testing of acellular groups, two stages of mixing was performed to maintain the 

same mixing process for both cellular and acellular groups. Sterile 0.01M PBS containing 

0.05% (w/v) Irgacure (I-2959) photoinitiator was added to the acellular groups until the 

concentration of MeSDVC and DVC was twice the desired concentration. The samples 

were then mixed, centrifuged at 3000 rpm, and stored at 4 ºC overnight to allow the 

MeSDVC to adequately dissolve. Prior to rheological testing, more photoinitiator solution 

was added until the desired final concentration of materials was reached. The samples were 

then again mixed and centrifuged to remove air bubbles. For example, to make a 10% 

MeSDVC solution, 40 mg MeSDVC and 200 µL photoinitiator solution were mixed and 

allowed to fully dissolve overnight and then another 200 µL photoinitiator solution was 

added to make the final concentration at 10% MeSDVC the following day. For cellular 

testing, the samples were first mixed with 0.1% (w/v) Irgacure photoinitiator in PBS until 

the concentration of MeSDVC and DVC was twice the desired final concentration, and 

then the solutions were centrifuged and stored at 4 °C overnight just like the acellular 

groups. The following day however, passage 4 rBMSCs were then suspended at 20 million 

cells/mL in incomplete chondrogenic medium consisting of high glucose DMEM 

(ThermoFisher) with 4.5 g/L D-glucose supplemented with 10% FBS, 1% non-essential 

amino acids, 1% sodium pyruvate, 50 μg/mL ascorbic acid, and 0.25 mg/mL 

penicillin/streptomycin. This cell suspension was then added to the hydrogel paste 

solutions until the desired concentration of MeSDVC and DVC was reached and the final 

cell concentration and photoinitiator concentration were 10 million cells/mL and 0.05%, 

respectively. These solutions were then either tested rheologically or they were crosslinked 
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with UV light and further characterized as solids. For pastes undergoing crosslinking, the 

paste solutions were loaded into 2 mm thick molds between glass slides and exposed to 

312 nm UV light at 3.0 mW/cm2 in a UV crosslinker (Spectrolinker XL-100, Spectronics 

Corporation, Westbury, NY) for 2.5 min on each side for a total of 5 min. Using a 4 mm 

biopsy punch, each gel was cut and placed in one well of a 24 well, non-tissue culture-

treated plate (Corning Incorporated, Corning, NY). Each gel was then exposed to 1 mL of 

incomplete chondrogenic medium or 1 mL of complete chondrogenic medium, which 

consisted of incomplete chondrogenic medium and 0.1 mg/mL dexamethasone and 10 

ng/mL TGF-β3. The medium was replaced every other day throughout the 6 week study. 

 

Rheological Testing of Hydrogel Precursors 

 Prior to crosslinking the hydrogel precursor pastes, the precursor solutions were 

shaped into spheres to demonstrate their shaping capabilities, and they were then loaded 

into a 3 mL syringe and extruded onto a glass slide to macroscopically observe shape 

retention. The gels were extruded in a wavy line appearance to observe whether the 

formulations could maintain shaping after crosslinking. 

The oscillatory shear stress of the precursor solutions (n=5) was measured over an 

oscillatory shear stress sweep of 1-2500 Pa at 37 °C using an AR-2000 rheometer (TA 

instruments, New Castle, DE) and a gap of 500 µm. The rheometer was equipped with a 

20 mm diameter roughened plate and a roughened Peltier plate cover. Frozen rBMSCs that 

were thawed and cultured to passage 4 were used to make the cellular samples for 

rheological testing. The pastes for rheological testing were created as previously mentioned 
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for the in vitro culture. The yield stress was interpolated from the point at which the storage 

(G’) and loss (G’’) modulus crossed.142 Additionally, an oscillatory shear stress sweep of 

0.1-10 Pa was performed to assess the linear viscoelastic region of the hydrogel precursors 

to determine the storage modulus of each solution. 

 

Mechanical Testing of Crosslinked Hydrogels  

 After swelling to equilibrium for 24 hours in either complete or incomplete 

chondrogenic medium, mechanical testing was performed. In addition, the groups in the 6 

week study were tested at 6 weeks as well. First, the geometric mean diameter of the gels 

was determined using forceps and a stereomicroscope (20x magnification) and then the 

height of each gel was measured directly using a RSA-III dynamic mechanical analyzer 

(DMA, TA instruments, New Castle, DE). The gels (n=5) were then compressed at a rate 

of 0.01 mm/s until mechanical failure. The compressive modulus was calculated as the 

slope of the linear portion of the stress-strain curve (i.e., 5-15% strain). 

 

Swelling Degree and Volume 

 Gels that were swollen to equilibrium were weighed 1 day after crosslinking and 

were then frozen and lyophilized (n=5). The dry weight was then recorded and the swelling 

degree was calculated as the ratio of total wet mass to dry mass. From the diameter and 

height readings recorded during mechanical testing, the volume of each gel (n=5) was 

calculated at 1 day and after 6 weeks of culture. 
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Biochemical Content Analysis 

 The biochemical content of the starting materials, which include MeSDVC, SDVC, 

and DVC, and the biochemical content of the gels at 1 day, 3 weeks, and 6 weeks were 

quantified (n=5). The gels were each digested overnight in a 1.5 mL papain mixture 

consisting of 125 mg/mL papain from papaya latex), 5 mM N-acetyl cysteine, 5 mM 

EDTA, and 100 mM potassium phosphate buffered saline at 65 °C. The digested solutions 

were then frozen and stored at -20 °C. Prior to biochemical analyses, all digested gel 

solutions were thawed to room temperature and then vortexed and centrifuged at 10,000 

rpm for 10 min to pellet fragments of polymers. The supernatant was then used to quantify 

DNA, GAG, and hydroxyproline contents. Using a Cytation 5 Cell-Imaging Multi-Mode 

reader (Bio-Tek, Winooski, VT) and according to manufacturer instructions, the DNA 

content was quantified with the PicoGreen assay (Molecular Probes, Eugene, OR), the 

glycosaminoglycan (GAG) content was determined with the dimethylmethylene blue 

(DMMB) assay (Biocolor, Newtownabby, Northern Ireland), and the hydroxyproline 

content was quantified using a hydroxyproline detection kit (Sigma-Aldrich). Neither the 

GAG or hydroxyproline contents were normalized to DNA and instead are shown in total 

because of the gels’ inherent initial DNA contents (i.e., true normalization to DNA content 

of seeded cells is not possible).  

 

Gene Expression Analysis 

 RNA was isolated and purified using Qiagen QIAshredders followed by an RNeasy 

Kit (Valencia, CA) according to manufacturer guidelines (n=6). Isolated RNA was 
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converted into cDNA using a high capacity cDNA reverse transcription kit (Applied 

Biosystems, Foster City, CA). Real-time quantitative polymerase chain reaction (qPCR) 

was performed using a RealPlex MasterCycler (Eppendorf, Hauppauge, NY) and TaqMan 

gene expression assays from Applied Biosystems for Sox-9 (Rn01751070_m1), aggrecan 

(Rn00573424_m1), collagens type I (Rn01463848_m1) and II (Rn01637087_m1), and 

GAPDH (Rn01775763_g1). Relative gene expression levels for each gene were calculated 

using the 2-ΔΔCt method where the 10% MeSDVC gels at day 1 were designated as the 

calibrator group and GAPDH expression was used as the endogenous control.80 Last, RNA 

from DVC only (i.e., no rBMSCs) was isolated, converted to DNA, and then PCR was 

performed with the same previously mentioned TaqMan assays, where it was confirmed 

that all gene expression observed in the study was that of the rBMSCs. 

 

Histological Analysis 

 Cellular gels from day 1 and 6 weeks were fixed in 10% formalin for 15 min and 

then embedded in Optimal Temperature Cutting (OCT) medium (TissueTek, Torrance, 

CA) overnight at 37 °C. Then the gels were frozen at -20 °C and were sectioned at a 

thickness of 10 µm using a cryostat (Micron HM-550 OMP, Vista, CA). The sections were 

then stained with the standard Hematoxylin and Eosin (H&E) stain, which stains the 

cytoplasm, connective tissues, and other extracellular substances red or pink and the nuclei 

purple. In addition, sections were stained with the standard Safranin-O/Fast Green (Saf-O) 

stain, which stains negatively charged GAGs orange. Last, the sections were stained 

immunologically using primary antibodies that target both rat and porcine tissues for 
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collagen I (ThermoFisher, NB600408, 1:200 dilution), collagen II (Abcam, ab34712, 1:200 

dilution), and aggrecan (ThermoFisher, MA3-16888, 1:100 dilution). The slides were first 

fixed in chilled acetone (-20 °C), treated with proteinase K (Abcam), and exposed to 0.3% 

hydrogen peroxide to suppress endogenous peroxidase activity. Then the sections were 

blocked with serum according to the Vectastain ABC kit (Vector Laboratories, 

Burlingame, CA) following the manufacturer’s instructions and were then incubated with 

primary antibody. Following primary antibody incubation, the sections were exposed to 

biotinylated secondary antibodies (horse anti-rabbit and mouse) and ABC reagent 

according to the manufacturer protocol. Antibodies were visualized using the ImmPact 

DAB peroxidase substrate (Vector). The sections were then rinsed in DI water, counter 

stained with VECTOR hematoxylin QS stain, and then were dehydrated and mounted. 

Negative controls consisted of omitting the primary antibody (for aggrecan) or substituting 

with a rabbit IgG isotype control (for collagen I and II, Abcam, ab27478) at an antibody 

concentration calculated to be the same used for the corresponding antibodies.  

 

Statistical Analysis 

Using GraphPad Prism 6 statistical software (GraphPad Software, Inc., La Jolla, 

CA), experimental groups were compared using a one-factor ANOVA (for analyses with 

one time point) or a two-factor ANOVA (for analyses with two or more time points) 

followed by either a Sidak’s post hoc test (for two-way ANOVAs with two time points 

only) or a Tukey’s post hoc test (for all other ANOVAs), where p ≤ 0.05 was considered 

significant. Standard box plots were constructed to eliminate outliers. All quantitative 
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results are reported as mean ± standard deviation within the text or as mean + standard 

deviation within the figures. Furthermore, unless otherwise stated, all groups discussed in 

the Results section are cell-encapsulated. 

 

RESULTS 

Characterization of MeSDVC, SDVC, and DVC particles 

 Success of the methacrylation procedure MeSDVC was confirmed via 1H NMR by 

the emergence of methacrylate peaks between 5 and 6.5 ppm (Figure 6.1). The DNA 

content of the DVC particles was 1170 ± 68 ng DNA per mg dry DVC, where the SDVC 

and MeSDVC had DNA contents that were 92% and 97% less than DVC, respectively 

(p<0.05) (Figure 6.2A). The GAG content of the DVC particles was 380 ± 57 µg GAG per 

mg dry DVC, and the SDVC and MeSDVC had GAG contents that were 44% and 41% 

less than that of DVC, respectively (p<0.05) (Figure 6.2B). Last, the hydroxyproline 

content of DVC was 48.60 ± 0.58 µg hydroxyproline per mg dry DVC, where the 

hydroxyproline content of SDVC was 26% lower than that of DVC (p<0.05) (Figure 6.2C). 

The hydroxyproline content of MeSDVC was not significantly different from that of DVC, 

but was 41% higher than that of SDVC (p<0.05).   

 

Macroscopic Observation and Rheological Testing of Hydrogel Precursors 

 Macroscopic observation of hydrogel precursors revealed non-Newtonian and 

paste-like behavior in all precursors (Figure 6.3). Furthermore, all solutions except the 5% 

DVC and 10% DVC groups were able to be shaped and molded into a sphere, where it was 



 112 

noted that the pastes incorporating particles were easier to shape and manipulate because 

the solutions containing only MeSDVC were sticky. Shape retention after extrusion 

through a 3 mL syringe was indicated by the fluids that retained the diameter of the syringe 

orifice. All pastes exhibited shape retention except the 5% DVC group, which spread out 

over 2 times the diameter of the syringe orifice. Furthermore, all formulations containing 

MeSDVC were able to be crosslinked to maintain extrusion shape (Figure 6.3).  

 Additionally, all solutions exhibited a yield stress (Figure 6.4A). The yield stress 

of 10% MeSDVC acellular group was 725 ± 55 Pa, where the difference in yield stress 

compared to its respective cellular group was not significant. The 5% DVC and 10% DVC 

groups had yield stresses that were 96% and 92% lower, respectively, than that of 10% 

MeSDVC (p<0.05), while the MeSDVC + DVC acellular group had a yield stress that was 

94% higher than that of 10% MeSDVC (p<0.05) (Figure 6.4A). Furthermore, when cells 

were mixed into the MeSDVC + DVC group, the yield stress was not significantly different 

from the acellular group, but it was 62% higher than that of the 20% MeSDVC acellular 

group (p<0.05). 

 All solutions exhibited viscoelastic behavior, which was indicated by a measurable 

storage modulus, although the storage modulus of the 5% DVC was the lowest at 1.33 ± 

0.80 Pa (Figure 6.4B). The storage modulus of the 10% MeSDVC acellular group was 773 

± 84 Pa. The only groups that were significantly different from the 10% MeSDVC acellular 

group were the acellular and cellular MeSDVC + DVC groups, where their storage moduli 

were 5.7 and 7.2 times higher than that of the 10% MeSDVC acellular group, respectively 
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(p<0.05). Last, the storage modulus of the MeSDVC + DVC cellular group was 2 times 

higher than that of the 20% MeSDVC acellular group (p<0.05).  

 

Mechanical Testing of Crosslinked Hydrogel Pastes 

One day after crosslinking, the compressive modulus of the 10% MeSDVC 

acellular group was 135 ± 37 kPa (Figure 6.5). None of the groups were significantly 

different from the 10% MeSDVC acellular group except the 20% MeSDVC acellular 

group, which had a modulus of 675 ± 130 kPa (p<0.05).  

 Six weeks after crosslinking, the compressive modulus of the 10% MeSDVC 

acellular group was 32 ± 12 kPa, although there were no significant differences compared 

to other groups (Figure 6.5). However, over the 6 weeks of culture, while most of the 

groups did not deviate significantly from their original compressive modulus, the 

compressive modulus of the 10% MeSDVC acellular and cellular groups reduced by 77% 

and 86%, respectively (p<0.05).   

 

Swelling and Volume Analysis of Crosslinked Hydrogel Pastes 

 The only group that had a significantly lower swelling degree than that of the 10% 

MeSDVC group, which had a swelling degree of 10.5 ± 3.5 after swelling to equilibrium, 

was the 20% MeSDVC acellular group, where its swelling degree was 36% lower than that 

of the 10% MeSDVC group (p<0.05) (Figure 6.6A).  

 At one day after crosslinking and swelling to equilibrium, the gel volume of the 

10% MeSDVC group was 19.26 ± 0.54 µL, where the volumes of the MeSDVC + DVC 
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cellular, acellular, and TGF-β3 exposed groups were 17%, 20%, and 17% higher, 

respectively (p<0.05) (Figure 6.6B). Furthermore, the volume of the MeSDVC + DVC 

group was 22.6 ± 1.7 µL and it was not significant from its respective acellular and growth 

factor exposed group.  

 At 6 weeks after crosslinking, again all three of the MeSDVC + DVC groups had 

significantly higher volumes than that of the 10% MeSDVC group (p<0.05) (Figure 6.6B). 

The volume of the 10% MeSDVC group was 15.8 ± 2.1 µL, while the volume of the cellular 

MeSDVC + DVC group was 36% larger (p<0.05).  

 Over the course of 6 weeks, the only groups that had a significant change in volume 

were the 10% MeSDVC acellular and cellular groups, where they each decreased in 

volume by 27% and 18%, respectively (p<0.05) (Figure 6.6B). The volumes of all three 

MeSDVC + DVC groups remained constant throughout the 6 week study.  

 

Biochemical Content of Crosslinked Hydrogel Pastes 

All cellular groups had significantly higher DNA contents than their respective 

acellular groups at all time points (p<0.05) (Figure 6.7A). At 1 day after crosslinking, the 

10% MeSDVC group contained 680 ± 170 ng DNA per gel, and both the MeSDVC + DVC 

cellular and growth factor exposed groups contained 26% and 28% more DNA, 

respectively, (p<0.05). At 3 weeks after crosslinking, the 10% MeSDVC group had a DNA 

content of 386 ± 37 ng DNA per gel, which was not significantly different from any of the 

other cellular groups (Figure 6.7A). After 6 weeks of culture, the 10% MeSDVC group 

contained 241 ± 18 ng DNA per gel, which was 42% lower than the DNA content of the 
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MeSDVC + DVC + TGF-β3 group (p<0.05) (Figure 6.7A). Over the course of the 6 week 

culture period, all cellular groups had a significant reduction in DNA content (p<0.05), 

where after 3 weeks the DNA content in the 10% MeSDVC, MeSDVC + DVC, and the 

MeSDVC + DVC + TGF-β3 groups decreased by 43%, 43%, and 49%, respectively 

(p<0.05). By 6 weeks, the DNA contents of the 10% MeSDVC and MeSDVC + DVC 

groups were significantly lower than their 3 week values, where their total reductions in 

DNA over the entire culture period was 65% and 72%, respectively (p<0.05). There was 

not a significant reduction in DNA content for the growth factor exposed group after 3 

weeks. Finally, the acellular groups did not have any significant reduction in DNA content 

over the culture period (Figure 6.7A).  

At one day after crosslinking, the GAG content of the 10% MeSDVC group was 

86 ± 15 µg GAG per gel, where that of the MeSDVC + DVC group was 3.9 fold higher 

(p<0.05) (Figure 6.7B). Additionally, the MeSDVC + DVC and the TGF-β3 exposed 

groups contained 45% and 27% more GAG than their acellular control (p<0.05). At 3 

weeks, the GAG content of the 10% MeSDVC was 40.7 ± 2.5 µg GAG per gel, whereas 

that of the MeSDVC + DVC group was 4.7 fold higher (p<0.05) (Figure 6.7B). At 6 weeks, 

the GAG content of the 10% MeSDVC group was 25.2 ± 3.0 µg GAG per gel, whereas 

that of the MeSDVC + DVC group was 3.7 fold higher (p<0.05). In addition, the GAG 

content of the MeSDVC + DVC + TGF-β3 group was 75% larger than that of the MeSDVC 

+ DVC group (p<0.05). From day 1 to 3 weeks, the GAG contents of the 10% MeSDVC, 

the MeSDVC + DVC, and the MeSDVC + DVC + TGF-β3 group decreased by 53%, 43%, 

and 26%, respectively (p<0.05). By 6 weeks, the GAG contents of the MeSDVC + DVC 
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and the MeSDVC + DVC + TGF-β3 groups decreased by 72% and 44%, respectively, 

compared to their original GAG contents (p<0.05).   

Finally, at day 1, the initial hydroxyproline content of the 10% MeSDVC group 

was 66.4 ± 2.8 µg hydroxyproline per gel, whereas that of the MeSDVC + DVC group was 

2.7 fold higher (p<0.05) (Figure 6.7C). At 3 weeks, the MeSDVC + DVC group contained 

144 ± 21 µg hydroxyproline per gel, which was 2 times higher than that of the 10% 

MeSDVC group and 22% lower than that of the MeSDVC + DVC + TGF-β3 group 

(p<0.05). At 6 weeks, the hydroxyproline content of the MeSDVC + DVC group was 114 

± 11 µg hydroxyproline per gel, which was 89% higher than that of the 10% MeSDVC 

group and 28% lower than that of the MeSDVC + DVC + TGF-β3 group (p<0.05). The 

only group that experienced a loss in hydroxyproline content from day 1 to 3 weeks was 

the MeSDVC + DVC group, where at 3 weeks the hydroxyproline content was 81% of its 

original content at day 1 (p<0.05). By 6 weeks, all three of the DVC-incorporating groups 

experienced a significant loss in hydroxyproline, where the hydroxyproline contents for 

the MeSDVC + DVC and the MeSDVC + DVC + TGF-β3 groups were 64% and 95% of 

their original contents at day 1 (p<0.05).  

 

Gene Expression Analysis 

At 1 day after crosslinking, the relative Sox-9 expression of 10% MeSDVC was 9.4 

times larger than that of the MeSDVC + DVC group (p<0.05) (Figure 6.8A). Furthermore, 

growth factor exposure had no significant effect on Sox-9 expression compared to the 

MeSDVC + DVC group. At 1 week, the relative Sox-9 expression of the 10% MeSDVC 
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group was 73% larger than that of the TGF-β3 exposed group (p<0.05). At 2 weeks, the 

relative Sox-9 expression of the MeSDVC + DVC group was 89% larger than that of the 

10% MeSDVC group and 37% smaller than that of the TGF-β3 exposed group (p<0.05). 

At 3 weeks, the relative Sox-9 expression of the MeSDVC + DVC group was 5.2 fold 

higher than that of the 10% MeSDVC group (p<0.05). At 6 weeks, the relative Sox-9 

expression of the MeSDVC + DVC group was 15 and 5.6 times larger than that of the 10% 

MeSDVC and the TGF-β3 exposed groups, respectively (p<0.05) (Figure 6.8A). From 1 

day to 3 weeks, the relative Sox-9 expression of the 10% MeSDVC group decreased by 

82% (p<0.05), but did not change significantly thereafter. From 1 day to 1 week, the 

relative Sox-9 expression of the MeSDVC + DVC group increased by a factor of 6.6 

(p<0.05), and did not change significantly thereafter. Finally, the relative Sox-9 expression 

of the MeSDVC + DVC + TGF-β3 group increased by a factor of 6.6 from 1 day to 1 week 

(p<0.05), increased by a factor of 2.9 from 1 week to 2 weeks (p<0.05), decreased by 54% 

from 2 weeks to 3 weeks (p<0.05), and then decreased again by 87% from 3 weeks to 6 

weeks (p<0.05) (Figure 6.8A). 

 The relative aggrecan expression of 10% MeSDVC was 42 times higher than that 

of the MeSDVC + DVC group at day 1 (p<0.05) (Figure 6.8B). There were no significant 

differences among groups at 1 week. At 2 weeks, the relative aggrecan expression of the 

MeSDVC + DVC group was 2.8 times higher than that of 10% MeSDVC and 41% lower 

than that of the TGF-β3 exposed group (p<0.05). At 3 weeks, the relative aggrecan 

expression of the MeSDVC + DVC group was 8.6 times higher than that of the 10% 

MeSDVC group (p<0.05). At 6 weeks, there was no detectable aggrecan expression in the 
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TGF-β3 exposed group. However, the relative aggrecan expression of the MeSDVC + DVC 

group was 53 times higher than that of the 10% MeSDVC group (p<0.05). From day 1 to 

1 week, the relative aggrecan expression of the 10% MeSDVC group decreased by 94% 

(p<0.05), and did not change significantly thereafter. The relative aggrecan expression of 

the MeSDVC + DVC group increased by a factor of 3.3 from 1 day to 1 week (p<0.05), 

and did not change significantly thereafter. Last, from 1 day to 2 weeks, the relative 

aggrecan expression of the MeSDVC + DVC + TGF-β3 group increased by a factor of 5.9 

(p<0.05), and then decreased by 45% from 2 weeks to 3 weeks (p<0.05) (Figure 6.8B).   

 There were no significant differences between groups for collagen II expression 

from day 1 through 6 weeks (Figure 6.8C). Additionally, there was no detectable collagen 

II expression in the DVC-incorporated groups at 2 and 3 weeks, and there was no detectable 

collagen II expression in the 10% MeSDVC group at week 3. However, at 6 weeks, the 

relative collagen II expressions of the MeSDVC + DVC and the TGF-β3 exposed groups 

were 78 and 40 fold higher than that of the 10% MeSDVC group, respectively (p<0.05). 

Due to many groups not having detectable collagen II expression throughout the culture 

period, for observing differences within groups throughout the culture period, only 

differences from day 1 to 6 weeks were reported here. From 1 day to 6 weeks, the relative 

collagen II expression for 10% MeSDVC did not change significantly. However, the 

relative collagen II expression for the MeSDVC + DVC and the MeSDVC + DVC + TGF-

β3 groups increased by a factor of 131.1 and 92.9, respectively (p<0.05) (Figure 6.8C).  

 The relative collagen I expression of the 10% MeSDVC group at 1 day was 17.9 

fold higher than that of the MeSDVC + DVC group (p<0.05) (Figure 6.8D). The relative 
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collagen I expression of the 10% MeSDVC group was 84% and 92% less than that of the 

MeSDVC + DVC group at 1 week and 2 weeks, respectively (p<0.05). At 3 weeks and at 

6 weeks, there were no significant differences among groups. From 1 day to 1 week, the 

relative collagen I expression of the 10% MeSDVC group decreased by 98% (p<0.05) and 

did not change significantly thereafter. Finally, the relative collagen I expression level for 

the DVC-incorporating groups did not change significantly throughout the culture period 

(Figure 6.8D).  

 

Histological and Immunohistochemical Evaluation 

At 6 weeks, there were no discernable changes in any of the constructs other than 

the DVC-containing groups appeared to have a decreased cell density compared to their 

respective cell densities at day 1. However, throughout culture, the cells remained evenly 

distributed. Saf-O stained MeSDVC and DVC particles a dark red/orange color and the 

staining intensity of the DVC particles appeared to fade over the 6 weeks in culture (Figure 

6.9). All groups stained for collagen II, where the collagen II staining for the DVC-

incorporated groups was slightly darker at 6 weeks compared to 1 week (Figure 6.9). The 

10% MeSDVC group had a slight increase in collagen I staining over the culture period, 

whereas the DVC-incorporating groups had a slight decrease in collagen I staining (Figure 

6.9). The MeSDVC + DVC group had the least amount of collagen I staining at 6 weeks. 

Aggrecan staining revealed a slight increase in aggrecan deposition in the 10% MeSDVC 

gels over the 6 week culture period (Figure 6.9). Additionally, the MeSDVC + DVC group 

had an increase in aggrecan staining over the course of the 6 weeks (Figure 6.9). Finally, 
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no discernable changes in aggrecan staining was observed at 6 weeks for the MeSDVC + 

DVC + TGF-β3 group compared to its aggrecan staining at day 1 (Figure 6.9).  

 

DISCUSSION 

To the best of our knowledge, we were the first group to create a covalently 

crosslinked hydrogel composed entirely of cartilage ECM and we are the first to 

additionally add cartilage matrix particles to give the hydrogel precursor a yield stress 

before crosslinking. Although the major focuses of hydrogel technologies are on hydrogels 

in their crosslinked form, our group additionally focuses on the fluid behavior of the 

hydrogel precursor solutions by fabricating colloidal gels instead, which are dynamically 

paste-like materials prior to crosslinking that can be molded into place and will ‘set’ after 

placement.147 Colloidal gels are cohesive through disruptable particle interactions, we have 

previously shown that these gels are capable of successfully filling tissue defects, 

delivering bioactive signals, and promoting new tissue formation in non-load bearing 

cranial defect applications.25, 144-146 Preliminary work demonstrated that these colloidal gels 

did not retain their integrity over time in culture and recently, we published a method to 

combine colloidal gel systems with traditional crosslinked hyaluronic acid hydrogels to 

form a hydrogel suitable for load-bearing applications that exhibits a yield stress prior to 

crosslinking.5 This yield stress, the threshold level where a solution transitions from an 

elastic solid to a pseudoplastic liquid, is crucial as it will enable a surgeon to mold and 

shape the material into the defect site without the concern that the material will flow or 
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leak from the defect, which is a major concern for traditional hydrogel precursor 

solutions.110, 135  

In prior work from our group, only the colloidal solutions employing particulates 

were observed to exhibit a yield stress,5 and therefore in the current study, it was 

hypothesized that particulates would be necessary to achieve a paste-like precursor 

solution. All samples tested in the current study, including the non-particulate samples 

composed of MeSDVC, were noted to have a yield stress. Ten percent MeSDVC alone had 

a yield stress of over 700 Pa, and when it was combined with 10% DVC particles, which 

had a yield stress of only 58 Pa, the combined materials had a yield stress of over 1800 Pa. 

This synergistic effect was similarly noted in prior work,5 which suggests that there may 

be some physical or chemical interactions between DVC and MeSDVC. For context, 

toothpaste, a common paste-like material, has a yield stress of approximately 200 Pa. 

Additionally, when cells were mixed in with the materials, the cells did not significantly 

affect the yield stress value, which is advantageous because these materials can be mixed 

with cells if necessary in a surgical context and would still allow for appropriate shaping 

and contouring. Although the MeSDVC + DVC precursor solutions are easily molded, 

shaped, and extruded through a syringe, there may be applications where the yield stress 

may need to be reduced. In this case, the concentrations of MeSDVC and DVC can be 

altered. Furthermore, future quantification of syringeability would be of value.  

This is not the first time yield stress has been reported in hydrogel precursors for 

tissue engineering purposes. One group used a dual component, “dock-and-lock”, self-

assembling gelation mechanism to create shear-thinning, self-healing, and injectable 
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hydrogels.81 Elder et al.32 reported a method to modify the viscosity of hyaluronic acid 

hydrogel precursors by attaching peptides that self-assemble into β-sheets onto the 

hyaluronic acid. Although methods to induce yield stress in hydrogel precursor solutions 

have been reported, to the best of our knowledge, this current study is the first example of 

inducing yield stress in hydrogel precursors with ECM-based materials. 

ECM-materials were used in the current study to not only impart a yield stress on 

the materials, but to further make the material inherently chondroinductive. A few other 

groups have recently reported the chondroinductivity of cartilage ECM.11, 15, 41, 73, 115, 128 

For example, Cheng et al.14 developed a porous cartilage matrix composed of homogenized 

and then lyophilized cartilage matrix, which induced chondrogenic differentiation even 

without growth factor supplementation. However, these matrices contracted in vitro, so the 

cartilage matrix was then further crosslinked with genipin and found the crosslinking 

degree affected matrix synthesis and cell-mediated contraction. Although at a 0.05% 

genipin concentration, they found that the materials did not exhibit contraction and were 

chondroinductive.13 Rowland et al.109 further studied the crosslinking of these matrices, 

where it was reported that the crosslinking method affected the chondrogenesis and matrix 

synthesis of MSCs. Visser et al.141 solubilized cartilage ECM and functionalized it with 

methacrylate groups, and demonstrated for the first time that hydrogels could be formed 

from ECM materials. However, these materials were not found to significantly affect the 

chondrogenic differentiation of MSCs. In the current study, compared to MeSDVC alone, 

an upregulation of Sox-9 and aggrecan was noted at two weeks when rBMSCs were 

exposed to DVC particles, with or without TGF-β3 supplementation. Furthermore, at 6 
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weeks, the DVC particle groups with and without TGF-β3 had a relative collagen II 

expression that was 40 and 78 fold higher, respectively, than that of MeSDVC alone 

(p<0.05). Additionally, collagen II expression of the DVC particle groups significantly 

increased over the culture period, whereas the relative collagen II expression of the 

MeSDVC group alone did not change. Although a significant increase was not observed in 

matrix production of the cells either histologically or through biochemical analysis, which 

could be a result of simultaneous bioabsorption and remodeling of the ECM, a slight 

increase in collagen II staining was observed in the DVC particle groups, in agreement 

with the gene expression data. A slight increase in aggrecan staining was noted in the 10% 

MeSDVC group, and this group was noted to have a significantly higher aggrecan gene 

expression than the other groups at day 1. Although the TGF-β3 group had no discernable 

changes in aggrecan staining over the 6 weeks, it had the highest aggrecan gene expression 

at 2 weeks. Even though at weeks 1 and 2, the relative collagen I expression in the DVC 

particle groups was higher, at day 1, the relative collagen I expression in the DVC particle 

groups was significantly lower. Furthermore, collagen I staining actually increased slightly 

in the MeSDVC group over the culture period, while it decreased in the DVC particle 

groups. Overall, the gene expression and histological data pointed toward the DVC 

particles as an important component for upregulating chondrogenic genes, even though the 

particles are not necessary for inducing a yield stress in these MeSDVC and DVC systems.  

 Not only are the particles likely necessary for chondrogenesis, but they are 

successful in reducing hydrogel contraction. Hydrogel contraction is a major concern for 

tissue engineering because it can cause disintegration with host tissue, which could 
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potentially hinder successful cartilage regeneration and may even dislodge the hydrogel 

from the defect site.13, 141 In prior work, Guilak and colleagues observed how the 

crosslinking degree and method of crosslinking affected gel contraction.13, 109 However, in 

the current study, we observed that the inclusion of particles affected gel contraction and 

swelling. In the current study, gels composed only of MeSDVC contracted by 18% over 

the culture period, but the gels containing DVC particles did not have a significant change 

in volume.  

 Another important feature for hydrogels in cartilage tissue engineering is their 

ability to withstand mechanical loading and one major disadvantage of using natural 

materials is their decreased mechanical integrity.133 The compressive modulus of hydrogels 

composed of natural materials are typically an order of magnitude less than that of native 

cartilage tissue,133 which has a compressive elastic modulus ranging from 240-1000 kPa.2 

However, the biomechanical properties of cartilage can vary depending on parameters such 

as the method of testing, the cartilage zone depth, and the strain rate of testing.49 In the 

study performed by Visser et al.,141 the solubilized cartilage matrix was reinforced with 

methacrylated gelatin (GelMA); however, the biomechanics of the hydrogels, evaluated 

via the compressive modulus, still fell short of native cartilage tissue. Another group used 

poly(ε-caprolactone) to reinforce solubilized cartilage ECM by combining them and then 

electrospinning them into a scaffold.41 However, the Young’s moduli of these scaffolds 

were only approximately 10 kPa. In the current study, although we only observed 

compressive moduli in the range from 70-170 kPa for all of the 10% MeSDVC and 

MeSDVC + DVC groups, we did observe a compressive modulus of approximately 675 
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kPa in the acellular 20% MeSDVC group, which is on the same order of magnitude as 

native articular cartilage. Because there was such a difference in the modulus from 20% 

MeSDVC to MeSDVC + DVC even though both gels had a solids content of 20%, future 

work will be necessary to determine ratios of DVC particles and MeSDVC that still allow 

for sufficient chondrogenesis and reduced contraction, while maintaining the appropriate 

biomechanics. Furthermore, it is possible that once these materials are implanted in vivo, 

the biomechanical stimulation may help increase matrix synthesis and improve the 

mechanical properties.140   

 Even though DVC particles may hinder the biomechanical performance and are 

not necessarily needed to induce a yield stress if using MeSDVC as a hydrogel material, 

we have still demonstrated that the particles are likely contributing to enhanced 

chondrogenesis and the elimination of hydrogel contraction. Because the DVC particles 

contain mostly unaltered cartilage ECM, other than the DVC particles are cryoground, they 

may retain more of the bioactivity of the cartilage matrix than MeSDVC since MeSDVC 

is altered cartilage ECM, where it contained 97% less DNA and 41% fewer GAGs than 

DVC. Proteoglycans, specifically aggrecan in cartilage matrix, are found extensively in 

native cartilage matrix and are thought to be a reservoir of several growth factors.17, 57 It 

can therefore be hypothesized that some of the growth factors inducing chondrogenesis 

within cartilage ECM may have been altered or removed in the processing of MeSDVC 

are retained in DVC.  

Of interest is that the processing of MeSDVC appears to have removed much of the 

DNA content. It is uncertain at this time whether or not the DNA was altered and unable 
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to be detected via the PicoGreen assay, or if the MeSDVC process actually decellularizes 

the tissue as well and future work will certainly need to address this issue. The low pH 

exposure during the solubilization process would likely denature the DNA to a single-

stranded state, and would in addition hydrolyze and further degrade the DNA.88 

Furthermore, the dialysis step after methacrylation would likely remove these degraded 

DNA segments and low molecular weight nucleotides and amino acids, leaving behind 

higher molecular weight methacrylated GAGs and collagen. Furthermore, a recent study 

found that pepsin, although previously known to only digest protein, is in addition, capable 

of digesting nucleic acids.79 These results are consistent with our findings since there was 

no mass loss during the solubilization/pepsin digestion process. Therefore, future work will 

certainly need to address what immunological effects may occur by digesting tissues in 

pepsin. Currently, it is unknown whether decellularizing of cartilage tissue is necessary or 

to what exact degree cells must be removed to enable the material to be implanted in vivo 

without an adverse immunological response. For example, Zimmer’s DeNovo® product, 

which is composed of living, allogeneic human cells, has no reports of allograft rejection 

or disease transmission and it has been observed to create hyaline-like cartilage in goats, 

where no T-cell-mediated response was noted.1 Therefore, because cartilage tissue may be 

immunoprivileged for osteoarthritis applications, and because decellularization can result 

in changes in matrix architecture and surface ligand landscape,60 decellularization may not 

even be necessary for some cartilage tissue engineering applications.  

In addition, it must be noted that the inclusion of cells may or may not be necessary 

for future clinical application of these materials. It is possible that a cell source could come 
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from the subchondral bone if microfracture is performed prior to implanting the acellular 

pastes. Therefore, future work will also consider the ability of cells to migrate into and 

remodel the pastes to determine whether or not cell encapsulation is necessary.  

 

CONCLUSION 

In this current study, we created a potentially chondroinductive hydrogel that is 

entirely composed of cartilage-derived ECM and we have shown that by mixing in DVC 

particles, we can modulate the yield stress of the hydrogel precursors and prevent 

contraction after crosslinking. Furthermore, these two-component gels induced 

chondrogenic gene expression after 2 weeks compared to MeSDVC gels alone, and they 

had reduced cell-mediated contraction. Future work will address combinations of DVC and 

MeSDVC components that yield mechanics closer to that of native tissue and will further 

address tissue integration and regeneration in vivo. Ultimately, the combination of these 

two cartilage-derived components is promising for cartilage tissue engineering 

applications. 
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CHAPTER 7: CONCLUSION 

 Hydrogels are a promising class of tissue regenerative materials for several reasons, 

including their high water content, 3D structure, and tunable mechanical properties.9, 23, 33 

However, hydrogels in their precursor form (i.e., prior to crosslinking) are traditionally 

liquid solutions that lack a yield stress. The crux, therefore, of hydrogel technology for in 

situ implantation, is creating a hydrogel precursor that is capable of remaining within the 

defect site.110, 135 As an alternative to traditional hydrogels, predecessors to this current 

thesis developed a new type of tissue engineering scaffold called a colloidal gel, which is 

a mechanically dynamic paste-like material that can be easily molded into place and will 

‘set’ after placement.147 It was found that these gels, composed of oppositely charged 

PLGA nanoparticles, could successfully fill tissue defects, deliver bioactive signals, and 

promote new tissue formation in non-load bearing cranial defect applications.25, 144-146 A 

more recent predecessor found colloidal gels could be made out of solutions of hyaluronic 

acid (HA) nanoparticles.37 These HA-based colloidal gels exhibited shear-thinning 

rheological behavior and had the ability to fully recover after compression to high strains 

even after physically destroying and reassembling the gel, which made them attractive for 

applications such as for cartilage regeneration.37 Therefore, the work in the current thesis 

started with these HA-based colloidal gels and the primary objective was to develop a 

mechanically dynamic, “paste-like” hydrogel material that could retain its molded or 

extruded shape, would “set” after placement, and could withstand mechanical loading. 

Preliminary work with the HA-based colloidal gels demonstrated that they did not retain 

their integrity over time in culture, and therefore, although they were mechanically 
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dynamic, at their current state, they could be improved for cartilage tissue engineering 

applications.  

 When the HA nanoparticles were mixed with methacrylated hyaluronic acid 

(MeHA), a more traditional photocrosslinkable hydrogel material, the solutions exhibited 

a yield stress prior to crosslinking. Furthermore, it was found that if MeHA and linear HA 

(made with the same MW as the HA nanoparticles) were mixed, the solutions lacked a 

yield stress, which demonstrated that the nanoparticulate form of HA was necessary to 

achieve the paste-like behavior, although at this stage, the underlying mechanism causing 

this paste-like behavior is still unknown. Additionally, unlike the gels consisting of only 

HA nanoparticles that were previously found to disintegrate in vitro, the gels consisting of 

HA nanoparticles and MeHA were able to be photocrosslinked into mechanically stable 

hydrogels that could encapsulate cells that remained viable. However, gels were found to 

be mechanically weak after crosslinking in comparison to native articular cartilage tissue. 

Around the completion of this first study, our research group started working with cartilage 

extracellular matrix (ECM), as it was in the beginning stages of being explored as a 

chondroinductive material.11, 15, 41, 73, 115 Therefore, the new objective of this current thesis 

became to improve the mechanics of the two-component hydrogel system after 

crosslinking so the hydrogels could withstand loads similar to that of native articular 

cartilage. Furthermore, the objective was to make the hydrogel chondroinductive by 

incorporating cartilage ECM, and ensure that the paste-like consistency prior to 

crosslinking was preserved. 
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 The first new edition of the hydrogel two-component system in the current thesis 

replaced the HA nanoparticles with cartilage ECM microparticles. Furthermore, both 

devitalized (DVC) and decellularized (DCC) cartilage microparticles were tested in these 

hydrogel pastes to determine if decellularization affects long-term chondroinductivity. It is 

widely emphasized in the literature that improper decellularization of ECM-based tissues 

can result in detrimental inflammatory responses and ultimately hinder tissue 

regeneration.59 However, cartilage ECM may be uniquely immunoprivileged in part 

because the ECM is so dense that it protects chondrocytes from T and natural killer cells 

that are released in graft rejection.105 Therefore, the goal of this study was to compare the 

chondroinductive potential of DVC and DCC, especially since decellularization processes 

inevitably cause some disruption to the matrix architecture, orientation, and surface 

landscape,60 which may ultimately limit or hinder the chondroinductive potential of the 

matrix. When DCC and DVC particles were mixed with MeHA, chondrogenic gene 

expression analysis found that the MeHA precursors containing DVC consistently 

outperformed the DCC-containing groups, even when compared to the groups exposed to 

TGF-β3. Additionally, MeHA solutions containing DVC exhibited a higher yield stress 

compared to that of MeHA and DCC precursors. Overall, DVC appeared to be superior to 

DCC in both chondroinductivity and rheological performance of hydrogel precursors, 

which is contradictory to a prior study from our group that reported rat bone marrow stem 

cells (rBMSCs) exposed to DCC outperformed those cells exposed to DVC or TGF-β3 in 

chondroinductivity.128 However, it is hypothesized that the differences observed between 

this prior study, Sutherland et al.,128 and the current thesis was a result of the scaffold 
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formulation since the current thesis evaluated rBMSCs encapsulated within a 3D hydrogel 

scaffold, whereas the Sutherland et al.128 study was a pellet culture. Furthermore, 

Sutherland et al.128 only evaluated short term gene expression over 1 week, while the 

current thesis observed the long term gene expression over 6 weeks. The current thesis 

work is the only long-term evaluation of DVC and DCC and although the long-term gene 

expression of cells exposed to DVC emphasizes that DVC may be superior in 

chondroinductivity in vitro, in vivo studies will be crucial to evaluate this concept further. 

In vivo studies will be able to not only compare chondroinductive potential, but will 

additionally be able to compare the immunological responses to these materials. Although 

in vivo studies are indeed suggested to study further the chondroinductive potential of DCC 

and DVC, the current thesis work did evaluate the materials implanted in a human cadaver. 

A hydrogel paste, consisting of MeHA and DCC, was implanted in a defect created in a 

human cadaver elbow joint and then were UV crosslinked in situ. The gels were able to be 

successfully molded into the defect and after crosslinking, the joint was able to be 

articulated without dislodging the gel (Figure 7.1), which suggested that these pastes 

indeed had potential for cartilage tissue engineering applications.  

 Because MeHA mixed with DCC still produced gels that were mechanically weak 

compared to native cartilage, it was then sought out to incorporate a crosslinkable material 

that would more closely match the mechanics of native cartilage tissue and be 

chondroinductive simultaneously. Therefore, the goal was to make a hydrogel out of 

cartilage ECM. Several studies had reported making gels out of ECM by first solubilizing 

the ECM, where the solubilized matrix would form a gel at body temperature.40, 41, 43, 120 
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Therefore, in this current thesis it was hypothesized that an in situ-gelling material may not 

only be chondroinductive, but it would additionally eliminate the need for 

photocrosslinking, a process which can be detrimental to cells and nearby tissues. 

However, preliminary testing in the current thesis determined that the gels that formed were 

compliant without further UV crosslinking, which left opportunity to improve the gels for 

load-bearing applications and it was decided to methacrylate the solubilized cartilage 

ECM, making photocrosslinkable MeSDCC (Methacrylated Solubilized Decellularized 

Cartilage). The elastic compressive modulus of the gels containing 20% MeSDCC were 

1070 ± 150 kPa, which is similar to that reported for native articular cartilage. Furthermore, 

it was found that the stress-strain profiles of the 20% MeSDCC gels fell within the 95% 

confidence interval range for native porcine cartilage tissue. In addition, the MeSDCC gels 

significantly upregulated chondrogenic gene expression compared to a more traditionally 

used material, methacrylated gelatin. Finally, the MeSDCC gels supported extensive 

matrix synthesis. However, although the MeSDCC gels appeared to be more 

chondroinductive than methacrylated gelatin, it was noted that the chondrogenic potential 

could be improved. Specifically, it was noted in the study that there was no detectable 

levels of collagen II gene expression at 6 weeks and that aggrecan expression levels 

decreased over the culture period.     

 Given that in the current thesis it was found that DVC particles may be superior in 

promoting chondrogenesis to DCC particles, and because DVC particles induced 

significant collagen II expression long-term, in the final study of this current thesis, the 

DVC particles were mixed with methacrylated and solubilized DVC (MeSDVC), in an 
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attempt to create a hydrogel paste that could be crosslinked to form a gel that exhibited 

similar biomechanics to native cartilage tissue and could induce chondrogenesis. Prior to 

crosslinking, the MeSDVC and MeSDVC + DVC particle gels were found to exhibit a 

yield stress. However, the gels containing DVC repeatedly outperformed the MeSDVC 

group in chondrogenic gene expression and did not have any cell-mediated contraction, 

which is a phenomenon observed in the MeSDVC gels and is detrimental for hydrogels 

because it can hinder tissue regeneration and integration. Although the compressive moduli 

of the DVC-containing groups were much less than that of native cartilage and the 20% 

MeSDCC gels from work earlier on in this current thesis, overall, this two-component 

system has been shown to be chondroinductive, and mechanically, is a vast improvement 

over the HA-based hydrogels at the beginning of this thesis.  

 Because the compressive modulus of the MeSDVC + DVC gels were found to be 

much lower than that of the 20% MeSDCC and native cartilage, future work should 

definitely consider improving the overall mechanical performance of the MeSDVC + DVC 

gels. Interestingly, the compressive modulus of the 20% MeSDVC gels in aim 3 was found 

to be lower than that of 20% MeSDCC gels from aim 2 and overall the stress strain profiles 

were observed to be significantly different from each other (Figure 7.2). This difference 

could be due to a number of reasons although the exact reason for the difference is unknown 

at this time and would need further work to fully understand the cause. However, the 

difference could be due to one or a combination of the following reasons: (1) MeSDCC 

and MeSDVC were made from materials of the same breed of pig, and have similar 

biochemical contents, but they were made in different batches, so it is possible that there 
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could be some batch-to-batch variation in the methacrylation process, (2) even though we 

tried to control for the same breed of pig, there could be variations within the same breed 

of pigs since the MeSDCC was made from a completely separate batch of pigs than the 

MeSDVC was, and (3), because the decellularization process is known to cause changes in 

ECM, it is possible that something was changed through decellularization that ultimately 

affected the mechanics of the MeSDCC gels. However, the MeSDVC gels did not fracture 

early like the MeSDCC gels (Figure 7.2) and therefore, perhaps they would be more 

beneficial for future work. Because the compressive modulus of the 20% MeSDVC group 

was within the range of reported values for native articular cartilage, future work could 

explore varying the ratios of MeSDVC and DVC to obtain gels that more closely mimic 

native cartilage mechanically, while still being able to take advantage of the 

chondroinductive properties of DVC microparticles. Specifically, since MeSDVC alone 

already has a yield stress, the amount of DVC in the solutions may be able to be reduced 

such that there is still an associated chondrogenic response, but the mechanical properties 

are improved.   

 From the results of the current thesis, DVC is still considered to be necessary in the 

hydrogel pastes due to its superior chondroinductive properties compared to DCC and 

compared to methacrylated cartilage ECM alone. Because all three of my 6 week in vitro 

studies were performed similarly with the same kind of cells, and because each of the gels 

was tested against a GAPDH control, the PCR between studies can be compared and 

evaluated with the 2-ΔΔCt method to approximate differences observed among groups of 

different experiments. Overall, although the 10% MeSDCC gels had significantly higher 
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aggrecan and Sox-9 expression at day 1 compared to the other groups, high levels of 

collagen II gene expression are only observed for the DVC-containing groups (Figure 7.3).  

 Therefore, in terms of deciding whether to use MeSDCC and MeSDVC, the 

mechanics as well as the chondroinductive properties must be considered. MeSDCC had 

more chondroinductive potential early on and did have a compressive modulus similar to 

that of native cartilage, and the DVC-containing gels, although weaker than the MeSDCC, 

were the only groups to induce collagen II expression. Therefore, in considering the next 

steps for the work in this current thesis, testing DVC in comparison to DCC in vivo should 

be held paramount. In vivo studies will help discern whether there is any immunological 

response to DVC and furthermore, they will ultimately be able to discern which of the two 

materials is superior in inducing chondrogenesis. After DVC and DCC are compared, it 

can then be decided how to incorporate either MeSDVC or MeSDCC. If MeSDCC is 

chosen to be pursued, the early fracture stress will need to be addressed and if MeSDVC is 

chosen to be pursued, the biomechanics will need to be improved upon. However, overall, 

the work of this current thesis has shown that a two component system is the most 

successful in creating a hydrogel precursor that is paste-like prior to crosslinking, and after 

crosslinking, can withstand native cartilage tissue loading, retain its original volume 

throughout culture, and is chondroinductive. Specifically, the MeSDVC/MeSDCC 

component has been shown to be initially chondroinductive while enabling the pastes to be 

crosslinked and withstand native cartilage tissue loading, while the DVC particles have 

been shown to be crucial for long-term chondrogenesis and gel volume retention. 

Therefore, the results of this current thesis suggest the combination of MeSDVC/MeSDCC 
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with DVC particles is the most promising for future work. This two-component hydrogel 

paste has been taken from an idea to providing promising results and producing numerous 

new avenues for research to consider for cartilage tissue engineering applications. 

Furthermore, this two-component hydrogel paste could be applied for other tissue 

engineering applications as well that cannot tolerate a liquid draining away from an 

irregularly shaped defect and this application does not necessarily need to apply to 

cartilage. The two components could be made from any tissue of interest, whether its bone, 

cartilage, muscle, skin, etc., and the two-components could be fabricated using similar 

methods as to what is reported in the current thesis. Therefore, this current thesis lays the 

foundation for an endless opportunity of future hydrogel research in the tissue engineering 

field.  

         

   

  

  

  



 137 

REFERENCES 
 
1Adkisson H. D., J. A. Martin, R. L. Amendola, C. Milliman, K. A. Mauch, A. B. Katwal, 

M. Seyedin, A. Amendola, P. R. Streeter, and J. A. Buckwalter. The potential of 

human allogeneic juvenile chondrocytes for restoration of articular cartilage. The 

American journal of sports medicine. 38:1324-1333, 2010. 

2Armstrong C. and V. Mow. Variations in the intrinsic mechanical properties of human 

articular cartilage with age, degeneration, and water content. The Journal of Bone 

& Joint Surgery. 64:88-94, 1982. 

3Athanasiou K. A. D., Eric M.; DuRaine, Grayson D.; Hu, Jerry C.; A. Hari Reddi. 

Articular Cartilage. Boca Raton, FL: CRC Press. 2013. 

4Beck E., C. Berkland, S. Gehrke, and M. Detamore. Novel Hyaluronic Acid 

Nanocomposite Hydrogel for Cartilage Tissue Engineering: Utilizing Yield Stress 

for Ease of Implantation. in ASME 2013 Summer Bioengineering Conference. 

2013: American Society of Mechanical Engineers. 

5Beck E. C., B. L. Lohman, D. B. Tabakh, S. L. Kieweg, S. H. Gehrke, C. J. Berkland, and 

M. S. Detamore. Enabling Surgical Placement of Hydrogels Through Achieving 

Paste-Like Rheological Behavior in Hydrogel Precursor Solutions. Annals of 

biomedical engineering.1-8, 2015. 

6Benders K., P. van Weeren, S. Badylak, D. Saris, W. Dhert, and J. Malda. Extracellular 

matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 31:169-

176, 2013. 

7Benjamin M. and J. Ralphs. Fibrocartilage in tendons and ligaments—an adaptation to 

compressive load. Journal of anatomy. 193:481-494, 1998. 

8Bian W., D. Li, Q. Lian, X. Li, W. Zhang, K. Wang, and Z. Jin. Fabrication of a bio-

inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic 

stereolithography and gel casting for osteochondral tissue engineering. Rapid 

Prototyping Journal. 18:68-80, 2012. 

9Brigham M., A. Bick, E. Lo, A. Bendali, J. Burdick, and A. Khademhosseini. 

Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic 

acid semi-interpenetrating networks. Tissue Eng Part A. 15:1645-1653, 2009. 

10Burdick J. A., R. L. Mauck, J. H. Gorman, 3rd, and R. C. Gorman. Acellular biomaterials: 

an evolving alternative to cell-based therapies. Sci Transl Med. 5:176ps4, 2013. 



 138 

11Cha M., S. Do, G. Park, P. Du, K.-C. Han, D. Han, and K. Park. Induction of re-

differentiation of passaged rat chondrocytes using a naturally obtained extracellular 

matrix microenvironment. Tissue Eng Part A. 19:978-988, 2013. 

12Cheng H., K. D. K. Luk, K. Cheung, and B. P. Chan. In vitro generation of an 

osteochondral interface from mesenchymal stem cell–collagen microspheres. 

Biomaterials. 32:1526-1535, 2011. 

13Cheng N.-C., B. Estes, T.-H. Young, and F. Guilak. Genipin-crosslinked cartilage-

derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. 

Tissue Eng Part A. 19:484-496, 2013. 

14Cheng N.-C., B. T. Estes, H. A. Awad, and F. Guilak. Chondrogenic differentiation of 

adipose-derived adult stem cells by a porous scaffold derived from native articular 

cartilage extracellular matrix. Tissue Engineering Part A. 15:231-241, 2008. 

15Cheng N.-C., B. T. Estes, T.-H. Young, and F. Guilak. Engineered cartilage using 

primary chondrocytes cultured in a porous cartilage-derived matrix. Regenerative 

medicine. 6:81-93, 2011. 

16Chew S. Y., T. C. Hufnagel, C. T. Lim, and K. W. Leong. Mechanical properties of single 

electrospun drug-encapsulated nanofibres. Nanotechnology. 17:3880, 2006. 

17Chun S. Y., G. J. Lim, T. G. Kwon, E. K. Kwak, B. W. Kim, A. Atala, and J. J. Yoo. 

Identification and characterization of bioactive factors in bladder submucosa 

matrix. Biomaterials. 28:4251-4256, 2007. 

18Chung E. J., P. Kodali, W. Laskin, J. L. Koh, and G. A. Ameer. Long-term in vivo 

response to citric acid-based nanocomposites for orthopaedic tissue engineering. 

Journal of Materials Science: Materials in Medicine.1-8, 2011. 

19Chung E. J., H. Qiu, P. Kodali, S. Yang, S. M. Sprague, J. Hwong, J. Koh, and G. A. 

Ameer. Early tissue response to citric acid–based micro‐and nanocomposites. 

Journal of Biomedical Materials Research Part A. 96:29-37, 2011. 

20Converse G., M. Armstrong, R. Quinn, E. Buse, M. Cromwell, S. Moriarty, G. Lofland, 

S. Hilbert, and R. Hopkins. Effects of cryopreservation, decellularization and novel 

extracellular matrix conditioning on the quasi-static and time-dependent properties 

of the pulmonary valve leaflet. Acta Biomaterialia. 8:2722-2729, 2012. 

21Cool S., B. Kenny, A. Wu, V. Nurcombe, M. Trau, A. Cassady, and L. Grøndahl. Poly 

(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) composite biomaterials for bone tissue 

regeneration: In vitro performance assessed by osteoblast proliferation, osteoclast 

adhesion and resorption, and macrophage proinflammatory response. Journal of 

Biomedical Materials Research Part A. 82:599-610, 2007. 



 139 

22Decaris M., B. Binder, M. Soicher, A. Bhat, and J. Leach. Cell-derived matrix coatings 

for polymeric scaffolds. Tissue Eng Part A. 18:2148-2157, 2012. 

23DeKosky B., N. Dormer, G. Ingavle, C. Roatch, J. Lomakin, M. Detamore, and S. 

Gehrke. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating 

network hydrogels for cartilage tissue engineering. Tissue engineering. Part C, 

Methods. 16:1533-1542, 2010. 

24Deng M., R. James, C. Laurencin, and S. Kumbar. Nanostructured Polymeric Scaffolds 

for Orthopaedic Regenerative Engineering. NanoBioscience, IEEE Transactions 

on.1-1, 2011. 

25Dennis S., M. Detamore, S. Kieweg, and C. Berkland. Mapping Glycosaminoglycan-

Hydroxyapatite Colloidal Gels as Potential Tissue Defect Fillers. Langmuir : the 

ACS journal of surfaces and colloids. 2014. 

26Detamore M. S. and A. N. Renth. Leveraging “Raw Materials” as Building Blocks and 

Bioactive Signals in Regenerative Medicine. Tissue Engineering. 2012. 

27Dormer N. H., C. J. Berkland, and M. S. Detamore. Emerging techniques in stratified 

designs and continuous gradients for tissue engineering of interfaces. Annals of 

biomedical engineering. 38:2121-2141, 2010. 

28Dormer N. H., K. Busaidy, C. J. Berkland, and M. S. Detamore. Osteochondral Interface 

Regeneration of Rabbit Mandibular Condyle With Bioactive Signal Gradients. 

Journal of Oral and Maxillofacial Surgery. 2011. 

29Dormer N. H., M. Singh, L. Wang, C. J. Berkland, and M. S. Detamore. Osteochondral 

interface tissue engineering using macroscopic gradients of bioactive signals. 

Annals of biomedical engineering. 38:2167-2182, 2010. 

30Dormer N. H., M. Singh, L. Zhao, N. Mohan, C. J. Berkland, and M. S. Detamore. 

Osteochondral interface regeneration of the rabbit knee with macroscopic gradients 

of bioactive signals. Journal of Biomedical Materials Research Part A. 2012. 

31Dorozhkin S. V. Bioceramics of calcium orthophosphates. Biomaterials. 31:1465-1485, 

2010. 

32Elder A., N. Dangelo, S. Kim, and N. Washburn. Conjugation of β-sheet peptides to 

modify the rheological properties of hyaluronic acid. Biomacromolecules. 12:2610-

2616, 2011. 

33Elisseeff J., C. Puleo, F. Yang, and B. Sharma. Advances in skeletal tissue engineering 

with hydrogels. Orthodontics & craniofacial research. 8:150-161, 2005. 



 140 

34Erisken C., D. M. Kalyon, and H. Wang. Functionally graded electrospun 

polycaprolactone and β-tricalcium phosphate nanocomposites for tissue 

engineering applications. Biomaterials. 29:4065-4073, 2008. 

35Erisken C., D. M. Kalyon, and H. Wang. Viscoelastic and biomechanical properties of 

osteochondral tissue constructs generated from graded polycaprolactone and beta-

tricalcium phosphate composites. Journal of biomechanical engineering. 

132:091013, 2010. 

36Erisken C., D. M. Kalyon, H. Wang, C. Ornek-Ballanco, and J. Xu. Osteochondral tissue 

formation through adipose-derived stromal cell differentiation on biomimetic 

polycaprolactone nanofibrous scaffolds with graded insulin and Beta-

glycerophosphate concentrations. Tissue Eng Part A. 17:1239-52, 2011. 

37Fakhari A., Q. Phan, and C. Berkland. Hyaluronic acid colloidal gels as self-assembling 

elastic biomaterials. Journal of biomedical materials research. Part B, Applied 

biomaterials. 2013. 

38Fakhari A., Q. Phan, S. Thakkar, C. Middaugh, and C. Berkland. Hyaluronic acid 

nanoparticles titrate the viscoelastic properties of viscosupplements. Langmuir : the 

ACS journal of surfaces and colloids. 29:5123-5131, 2013. 

39Filardo G., E. Kon, M. Delcogliano, G. Giordano, T. Bonanzinga, M. Marcacci, and S. 

Zaffagnini. Novel Nano-composite Multilayered Biomaterial for the Treatment of 

Patellofemoral Cartilage Lesions. Patellofemoral Pain, Instabilty, and Arthritis: 

Clinical Presentation, Imaging, and Treatment. 12:255, 2010. 

40Freytes D. O., J. Martin, S. S. Velankar, A. S. Lee, and S. F. Badylak. Preparation and 

rheological characterization of a gel form of the porcine urinary bladder matrix. 

Biomaterials. 29:1630-1637, 2008. 

41Garrigues N. W., D. Little, J. Sanchez‐Adams, D. S. Ruch, and F. Guilak. Electrospun 

cartilage‐derived matrix scaffolds for cartilage tissue engineering. Journal of 

Biomedical Materials Research Part A. 2014. 

42Gawlitta D., K. E. Benders, J. Visser, A. S. van der Sar, D. H. Kempen, L. F. Theyse, J. 

Malda, and W. J. Dhert. Decellularized cartilage-derived matrix as substrate for 

endochondral bone regeneration. Tissue Engineering Part A. 21:694-703, 2014. 

43Gershlak J. R., J. I. Resnikoff, K. E. Sullivan, C. Williams, R. M. Wang, and L. D. Black. 

Mesenchymal stem cells ability to generate traction stress in response to substrate 

stiffness is modulated by the changing extracellular matrix composition of the heart 

during development. Biochemical and biophysical research communications. 

439:161-166, 2013. 



 141 

44Gong J., O. Sagiv, H. Cai, S. H. Tsang, and L. V. Del Priore. Effects of extracellular 

matrix and neighboring cells on induction of human embryonic stem cells into 

retinal or retinal pigment epithelial progenitors. Experimental eye research. 

86:957-965, 2008. 

45Grayson W. L., P. H. G. Chao, D. Marolt, D. L. Kaplan, and G. Vunjak-Novakovic. 

Engineering custom-designed osteochondral tissue grafts. Trends in biotechnology. 

26:181-189, 2008. 

46Grogan S. P., C. Pauli, P. Chen, J. Du, C. B. Chung, S. D. Kong, C. W. Colwell Jr, M. 

Lotz, S. Jin, and D. D'Lima. In situ tissue engineering using magnetically guided 

3D cell patterning. Tissue Engineering. 2012. 

47Harley B. A., A. K. Lynn, Z. Wissner‐Gross, W. Bonfield, I. V. Yannas, and L. J. Gibson. 

Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds 

with continuous interfaces. Journal of Biomedical Materials Research Part A. 

92:1078-1093, 2010. 

48Harley B. A., A. K. Lynn, Z. Wissner‐Gross, W. Bonfield, I. V. Yannas, and L. J. Gibson. 

Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized 

collagen–glycosaminoglycan scaffold. Journal of Biomedical Materials Research 

Part A. 92:1066-1077, 2010. 

49Huang C.-Y., A. Stankiewicz, G. A. Ateshian, and V. C. Mow. Anisotropy, 

inhomogeneity, and tension–compression nonlinearity of human glenohumeral 

cartilage in finite deformation. Journal of biomechanics. 38:799-809, 2005. 

50Hunziker E. Articular cartilage repair: basic science and clinical progress. A review of 

the current status and prospects. Osteoarthritis and cartilage. 10:432-463, 2002. 

51Jha A., R. Hule, T. Jiao, S. Teller, R. Clifton, R. Duncan, D. Pochan, and X. Jia. Structural 

Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly 

Cross-Linked Networks. Macromolecules. 42:537-546, 2009. 

52Jha A., M. Malik, M. Farach-Carson, R. Duncan, and X. Jia. Hierarchically structured, 

hyaluronic acid-based hydrogel matrices via the covalent integration of microgels 

into macroscopic networks. Soft matter. 6:5045-5055, 2010. 

53Jha A., X. Xu, R. Duncan, and X. Jia. Controlling the adhesion and differentiation of 

mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. 

Biomaterials. 32:2466-2478, 2011. 

54Jia X. and K. Kiick. Hybrid multicomponent hydrogels for tissue engineering. 

Macromolecular bioscience. 9:140-156, 2009. 



 142 

55Jia X., Y. Yeo, R. Clifton, T. Jiao, D. Kohane, J. Kobler, S. Zeitels, and R. Langer. 

Hyaluronic acid-based microgels and microgel networks for vocal fold 

regeneration. Biomacromolecules. 7:3336-3344, 2006. 

56Johansen E. and H. F. Parks. Electron Microscopic Observations on the Three-

Dimensional Morphology of Apatite Crystallites of Human Dentine and Bone'. The 

Journal of biophysical and biochemical cytology. 7:743-746, 1960. 

57Kanematsu A., S. Yamamoto, M. Ozeki, T. Noguchi, I. Kanatani, O. Ogawa, and Y. 

Tabata. Collagenous matrices as release carriers of exogenous growth factors. 

Biomaterials. 25:4513-4520, 2004. 

58Kaplan F., W. Hayes, T. Keaveny, A. Boskey, T. Einhorn, and J. Iannotti. Form and 

function of bone. Orthopaedic Basic Science.127-185, 1994. 

59Keane T. J., R. Londono, N. J. Turner, and S. F. Badylak. Consequences of ineffective 

decellularization of biologic scaffolds on the host response. Biomaterials. 33:1771-

1781, 2012. 

60Keane T. J., I. T. Swinehart, and S. F. Badylak. Methods of tissue decellularization used 

for preparation of biologic scaffolds and in vivo relevance. Methods. 2015. 

61Kew S., J. Gwynne, D. Enea, M. Abu-Rub, A. Pandit, D. Zeugolis, R. Brooks, N. 

Rushton, S. Best, and R. Cameron. Regeneration and repair of tendon and ligament 

tissue using collagen fibre biomaterials. Acta Biomaterialia. 2011. 

62Khanarian N. T., N. M. Haney, R. A. Burga, and H. H. Lu. A functional agarose-

hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials. 

2012. 

63Khanlari A., M. S. Detamore, and S. H. Gehrke. Increasing Cross-Linking Efficiency of 

Methacrylated Chondroitin Sulfate Hydrogels by Copolymerization with Oligo 

(Ethylene Glycol) Diacrylates. Macromolecules. 46:9609-9617, 2013. 

64Kheir E., T. Stapleton, D. Shaw, Z. Jin, J. Fisher, and E. Ingham. Development and 

characterization of an acellular porcine cartilage bone matrix for use in tissue 

engineering. Journal of biomedical materials research Part A. 99:283-294, 2011. 

65Kon E., M. Delcogliano, G. Filardo, G. Altadonna, and M. Marcacci. Novel nano-

composite multi-layered biomaterial for the treatment of multifocal degenerative 

cartilage lesions. Knee Surgery, Sports Traumatology, Arthroscopy. 17:1312-1315, 

2009. 



 143 

66Kon E., M. Delcogliano, G. Filardo, M. Busacca, A. Di Martino, and M. Marcacci. Novel 

Nano-composite Multilayered Biomaterial for Osteochondral Regeneration. The 

American journal of sports medicine. 39:1180-1190, 2011. 

67Kon E., M. Delcogliano, G. Filardo, M. Fini, G. Giavaresi, S. Francioli, I. Martin, D. 

Pressato, E. Arcangeli, and R. Quarto. Orderly osteochondral regeneration in a 

sheep model using a novel nano‐composite multilayered biomaterial. Journal of 

Orthopaedic Research. 28:116-124, 2010. 

68Kon E., M. Delcogliano, G. Filardo, D. Pressato, M. Busacca, B. Grigolo, G. Desando, 

and M. Marcacci. A novel nano-composite multi-layered biomaterial for treatment 

of osteochondral lesions: technique note and an early stability pilot clinical trial. 

Injury. 41:693-701, 2010. 

69Kon E., A. Mutini, E. Arcangeli, M. Delcogliano, G. Filardo, N. Nicoli Aldini, D. 

Pressato, R. Quarto, S. Zaffagnini, and M. Marcacci. Novel nanostructured scaffold 

for osteochondral regeneration: pilot study in horses. Journal of tissue engineering 

and regenerative medicine. 4:300-308, 2010. 

70Kwon J. S., S. M. Yoon, S. W. Shim, J. H. Park, K. J. Min, H. J. Oh, J. H. Kim, Y. J. 

Kim, J. J. Yoon, and B. H. Choi. Injectable extracellular matrix hydrogel developed 

using porcine articular cartilage. International journal of pharmaceutics. 454:183-

191, 2013. 

71Ladd M. R., S. J. Lee, J. D. Stitzel, A. Atala, and J. J. Yoo. Co-electrospun dual 

scaffolding system with potential for muscle–tendon junction tissue engineering. 

Biomaterials. 32:1549-1559, 2011. 

72Lee J. M., B. S. Kim, H. Lee, and G. I. Im. In Vivo Tracking of Mesechymal Stem Cells 

Using Fluorescent Nanoparticles in an Osteochondral Repair Model. Molecular 

Therapy. 2012. 

73Levorson E., O. Hu, P. Mountziaris, F. Kasper, and A. Mikos. Cell-derived 

polymer/extracellular matrix composite scaffolds for cartilage regeneration, part 2: 

construct devitalization and determination of chondroinductive capacity. Tissue 

engineering. Part C, Methods. 20:358-372, 2014. 

74Li X., J. Xie, J. Lipner, X. Yuan, S. Thomopoulos, and Y. Xia. Nanofiber scaffolds with 

gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano 

letters. 9:2763-2768, 2009. 

75Lim J. and J. Temenoff. Tendon and ligament tissue engineering: Restoring 

tendon/ligament and its interfaces. Fundamentals of Tissue Engineering and 

Regenerative Medicine. 20:255, 2009. 



 144 

76Little C. J., N. K. Bawolin, and X. Chen. Mechanical properties of natural cartilage and 

tissue-engineered constructs. Tissue Engineering Part B: Reviews. 17:213-227, 

2011. 

77Liu C., Z. Han, and J. Czernuszka. Gradient collagen/nanohydroxyapatite composite 

scaffold: Development and characterization. Acta Biomaterialia. 5:661-669, 2009. 

78Liu X., X. Jin, and P. X. Ma. Nanofibrous hollow microspheres self-assembled from star-

shaped polymers as injectable cell carriers for knee repair. Nature Materials. 

10:398-406, 2011. 

79Liu Y., Y. Zhang, P. Dong, R. An, C. Xue, Y. Ge, L. Wei, and X. Liang. Digestion of 

Nucleic Acids Starts in the Stomach. Scientific reports. 5, 2015. 

80Livak K. J. and T. D. Schmittgen. Analysis of relative gene expression data using real-

time quantitative PCR and the 2− ΔΔCT method. methods. 25:402-408, 2001. 

81Lu H., M. Charati, I. Kim, and J. Burdick. Injectable shear-thinning hydrogels engineered 

with a self-assembling Dock-and-Lock mechanism. Biomaterials. 33:2145-2153, 

2012. 

82Lu H. and J. Jiang. Interface Tissue Engineeringand the Formulation of Multiple-Tissue 

Systems. Tissue Engineering I.91-111, 2006. 

83Lu H. H. and J. P. Spalazzi. Biomimetic stratified scaffold design for ligament-to-bone 

interface tissue engineering. Combinatorial Chemistry &# 38; High Throughput 

Screening. 12:589-597, 2009. 

84Lu H. H., S. D. Subramony, M. K. Boushell, and X. Zhang. Tissue engineering strategies 

for the regeneration of orthopedic interfaces. Annals of biomedical engineering. 

38:2142-2154, 2010. 

85Mansour J. M. Biomechanics of cartilage. Kinesiology: the mechanics and 

pathomechanics of human movement.66-79, 2003. 

86Martin R. B., D. B. Burr, and N. A. Sharkey. Skeletal tissue mechanics: Springer Verlag. 

1998. 

87Matsusaki M., K. Kadowaki, K. Tateishi, C. Higuchi, W. Ando, D. A. Hart, Y. Tanaka, 

Y. Take, M. Akashi, and H. Yoshikawa. Scaffold-Free Tissue-Engineered 

Construct–Hydroxyapatite Composites Generated by an Alternate Soaking 

Process: Potential for Repair of Bone Defects. Tissue Engineering Part A. 15:55-

63, 2008. 



 145 

88McLennan A., A. Bates, P. Turner, and M. White. BIOS Instant Notes in Molecular 

Biology: Taylor & Francis. 2012. 

89Mikos A. G., S. W. Herring, P. Ochareon, J. Elisseeff, H. H. Lu, R. Kandel, F. J. Schoen, 

M. Toner, D. Mooney, and A. Atala. Engineering complex tissues. Tissue 

Engineering. 12:3307-3339, 2006. 

90Moffat K. L., I. Wang, S. A. Rodeo, and H. H. Lu. Orthopedic interface tissue engineering 

for the biological fixation of soft tissue grafts. Clinics in sports medicine. 28:157-

176, 2009. 

91Mohan N., N. H. Dormer, K. L. Caldwell, V. H. Key, C. J. Berkland, and M. S. Detamore. 

Continuous gradients of material composition and growth factors for effective 

regeneration of the osteochondral interface. Tissue Engineering Part A. 17:2845-

2855, 2011. 

92Moutos F. T., B. T. Estes, and F. Guilak. Multifunctional hybrid three-dimensionally 

woven scaffolds for cartilage tissue engineering. Macromol Biosci. 10:1355-64, 

2010. 

93Murat G., D. L. Hoang, and A. B. Jason. Shear-thinning hydrogels for biomedical 

applications. Soft matter. 8, 2012. 

94Murphy L. and C. G. Helmick. The impact of osteoarthritis in the United States: a 

population-health perspective. AJN The American Journal of Nursing. 112:S13-

S19, 2012. 

95Nettles D. L., T. P. Vail, M. T. Morgan, M. W. Grinstaff, and L. A. Setton. 

Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Annals of 

biomedical engineering. 32:391-397, 2004. 

96Ngiam M., L. Nguyen, S. Liao, C. Chan, and S. Ramakrishna. Biomimetic nanostructured 

materials: Potential regulators for osteogenesis. Ann. Acad. Med. Singap. 40:213-

220, 2011. 

97Nirmala R., K. T. Nam, D. K. Park, B. Woo-il, R. Navamathavan, and H. Y. Kim. 

Structural, thermal, mechanical and bioactivity evaluation of silver-loaded bovine 

bone hydroxyapatite grafted poly (ε-caprolactone) nanofibers via electrospinning. 

Surface and Coatings Technology. 205:174-181, 2010. 

98Panseri S., A. Russo, C. Cunha, A. Bondi, A. Di Martino, S. Patella, and E. Kon. 

Osteochondral tissue engineering approaches for articular cartilage and 

subchondral bone regeneration. Knee Surgery, Sports Traumatology, 

Arthroscopy.1-10, 2011. 



 146 

99Poole A. R., T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty. 

Composition and structure of articular cartilage: a template for tissue repair. 

Clinical orthopaedics and related research. 391:S26, 2001. 

100Porter J. R., T. T. Ruckh, and K. C. Popat. Bone tissue engineering: a review in bone 

biomimetics and drug delivery strategies. Biotechnology progress. 25:1539-1560, 

2009. 

101Prata J., T. Barth, S. Bencherif, and N. Washburn. Complex fluids based on 

methacrylated hyaluronic acid. Biomacromolecules. 11:769-775, 2010. 

102Qu D., J. Li, Y. Li, A. Khadka, Y. Zuo, H. Wang, Y. Liu, and L. Cheng. Ectopic 

osteochondral formation of biomimetic porous PVA‐n‐HA/PA6 bilayered scaffold 

and BMSCs construct in rabbit. Journal of Biomedical Materials Research Part B: 

Applied Biomaterials. 96:9-15, 2011. 

103Ramalingam M., M. F. Young, V. Thomas, L. Sun, L. C. Chow, C. K. Tison, K. 

Chatterjee, W. C. Miles, and C. G. Simon Jr. Nanofiber scaffold gradients for 

interfacial tissue engineering. Journal of Biomaterials Applications. 2012. 

104Renth A. N. and M. S. Detamore. Leveraging "raw materials" as building blocks and 

bioactive signals in regenerative medicine. Tissue Eng Part B Rev. 18:341-62, 

2012. 

105Revell C. M. and K. A. Athanasiou. Success rates and immunologic responses of 

autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. 

Tissue Engineering Part B: Reviews. 15:1-15, 2008. 

106Rho J. Y., L. Kuhn-Spearing, and P. Zioupos. Mechanical properties and the hierarchical 

structure of bone. Medical engineering & physics. 20:92-102, 1998. 

107Robinson R. A. An electron-microscopic study of the crystalline inorganic component 

of bone and its relationship to the organic matrix. The Journal of Bone and Joint 

Surgery (American). 34:389-476, 1952. 

108Rodrigues A. A., N. A. Batista, V. P. Bavaresco, V. Baranauskas, H. J. Ceragioli, A. C. 

Peterlevitz, J. R. L. Mariolani, M. H. A. Santana, and W. D. Belangero. In vivo 

evaluation of hydrogels of polyvinyl alcohol with and without carbon nanoparticles 

for osteochondral repair. Carbon. 2012. 

109Rowland C., D. Lennon, A. Caplan, and F. Guilak. The effects of crosslinking of 

scaffolds engineered from cartilage ECM on the chondrogenic differentiation of 

MSCs. Biomaterials. 34:5802-5812, 2013. 



 147 

110Rughani R. V., M. C. Branco, D. J. Pochan, and J. P. Schneider. De novo design of a 

shear-thin recoverable peptide-based hydrogel capable of intrafibrillar 

photopolymerization. Macromolecules. 43:7924-7930, 2010. 

111Sahiner N., A. Jha, D. Nguyen, and X. Jia. Fabrication and characterization of cross-

linkable hydrogel particles based on hyaluronic acid: potential application in vocal 

fold regeneration. Journal of biomaterials science. Polymer edition. 19:223-243, 

2008. 

112Sahoo S., T. K. H. Teh, P. He, S. L. Toh, and J. C. H. Goh. Interface Tissue Engineering: 

Next Phase in Musculoskeletal Tissue Repair. Annals of the Academy of Medicine-

Singapore. 40:245, 2011. 

113Samavedi S., C. Olsen Horton, S. A. Guelcher, A. S. Goldstein, and A. R. Whittington. 

Fabrication of a model continuously graded co-electrospun mesh for regeneration 

of the ligament-bone interface. Acta Biomaterialia. 2011. 

114Schuurman W., P. A. Levett, M. W. Pot, P. R. van Weeren, W. J. Dhert, D. W. 

Hutmacher, F. P. Melchels, T. J. Klein, and J. Malda. Gelatin‐Methacrylamide 

Hydrogels as Potential Biomaterials for Fabrication of Tissue‐Engineered Cartilage 

Constructs. Macromolecular bioscience. 13:551-561, 2013. 

115Schwarz S., A. F. Elsaesser, L. Koerber, E. Goldberg‐Bockhorn, A. M. Seitz, C. 

Bermueller, L. Dürselen, A. Ignatius, R. Breiter, and N. Rotter. Processed 

xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects 

on chondrocyte differentiation and function. Journal of tissue engineering and 

regenerative medicine. 2012. 

116Schwarz S., L. Koerber, A. F. Elsaesser, E. Goldberg-Bockhorn, A. M. Seitz, L. 

Durselen, A. Ignatius, P. Walther, R. Breiter, and N. Rotter. Decellularized 

cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. 

Tissue Eng Part A. 18:2195-209, 2012. 

117Seidi A. and M. Ramalingam. Impact of Gradient Biomaterials on Interface Tissue 

Engineering. Journal of Biomaterials and Tissue Engineering. 2:89-99, 2012. 

118Seidi A., M. Ramalingam, I. Elloumi-Hannachi, S. Ostrovidov, and A. Khademhosseini. 

Gradient biomaterials for soft-to-hard interface tissue engineering. Acta 

Biomaterialia. 2011. 

119Seif-Naraghi S. B., D. Horn, P. J. Schup-Magoffin, and K. L. Christman. Injectable 

extracellular matrix derived hydrogel provides a platform for enhanced retention 

and delivery of a heparin-binding growth factor. Acta biomaterialia. 8:3695-3703, 

2012. 



 148 

120Seif-Naraghi S. B., M. A. Salvatore, P. J. Schup-Magoffin, D. P. Hu, and K. L. 

Christman. Design and characterization of an injectable pericardial matrix gel: a 

potentially autologous scaffold for cardiac tissue engineering. Tissue Engineering 

Part A. 16:2017-2027, 2010. 

121Sellaro T. L., A. K. Ravindra, D. B. Stolz, and S. F. Badylak. Maintenance of hepatic 

sinusoidal endothelial cell phenotype in vitro using organ-specific extracellular 

matrix scaffolds. Tissue engineering. 13:2301-2310, 2007. 

122Singh M., N. Dormer, J. R. Salash, J. M. Christian, D. S. Moore, C. Berkland, and M. S. 

Detamore. Three‐dimensional macroscopic scaffolds with a gradient in stiffness for 

functional regeneration of interfacial tissues. Journal of Biomedical Materials 

Research Part A. 94:870-876, 2010. 

123Smith I. O. and P. X. Ma. Biomimetic Scaffolds in Tissue Engineering. Tissue 

Engineering.31-39, 2011. 

124Smith L., Y. Xia, L. M. Galatz, G. M. Genin, and S. Thomopoulos. Tissue Engineering 

Strategies for the Tendon/Ligament-to-Bone Insertion. Connective Tissue 

Research. 2011. 

125Sondi I. and B. Salopek-Sondi. Silver nanoparticles as antimicrobial agent: a case study 

on< i> E. coli</i> as a model for Gram-negative bacteria. Journal of colloid and 

interface science. 275:177-182, 2004. 

126Spalazzi J. P., M. C. Vyner, M. T. Jacobs, K. L. Moffat, and H. H. Lu. Mechanoactive 

scaffold induces tendon remodeling and expression of fibrocartilage markers. 

Clinical Orthopaedics and Related Research®. 466:1938-1948, 2008. 

127Sridharan B., B. Sharma, and M. S. Detamore. A Roadmap to Commercialization of 

Cartilage Therapy in the United States of America. Tissue Engineering. 2015. 

128Sutherland A. J., E. C. Beck, S. C. Dennis, G. L. Converse, R. A. Hopkins, C. J. 

Berkland, and M. S. Detamore. Decellularized Cartilage May Be a 

Chondroinductive Material for Osteochondral Tissue Engineering. 2015. 

129Sutherland A. J., G. L. Converse, R. A. Hopkins, and M. S. Detamore. The bioactivity 

of cartilage extracellular matrix in articular cartilage regeneration. Advanced 

healthcare materials. 4:29-39, 2015. 

130Tampieri A., E. Landi, F. Valentini, M. Sandri, T. D’Alessandro, V. Dediu, and M. 

Marcacci. A conceptually new type of bio-hybrid scaffold for bone regeneration. 

Nanotechnology. 22:015104, 2011. 



 149 

131Tampieri A., M. Sandri, E. Landi, D. Pressato, S. Francioli, R. Quarto, and I. Martin. 

Design of graded biomimetic osteochondral composite scaffolds. Biomaterials. 

29:3539-3546, 2008. 

132Tan H., C. Chu, K. Payne, and K. Marra. Injectable in situ forming biodegradable 

chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. 

Biomaterials. 30:2499-2506, 2009. 

133Tatman P. D., W. Gerull, S. Sweeney-Easter, J. I. Davis, D.-H. Kim, and A. Gee. Multi-

scale Biofabrication of Articular Cartilage: Bioinspired and Biomimetic 

Approaches. Tissue Engineering. 2015. 

134Tezel A. and G. H. Fredrickson. The science of hyaluronic acid dermal fillers. Journal 

of Cosmetic and Laser Therapy. 10:35-42, 2008. 

135Todd R. H. and S. K. Daniel. Hydrogels in drug delivery: Progress and challenges. 

Polymer. 49, 2008. 

136Treacy M., T. Ebbesen, and J. Gibson. Exceptionally high Young's modulus observed 

for individual carbon nanotubes. 1996. 

137Tsang K. Y., M. C. H. Cheung, D. Chan, and K. S. E. Cheah. The developmental roles 

of the extracellular matrix: beyond structure to regulation. Cell and tissue research. 

339:93-110, 2010. 

138Ulrich-Vinther M., M. D. Maloney, E. M. Schwarz, R. Rosier, and R. J. O’Keefe. 

Articular cartilage biology. Journal of the American Academy of Orthopaedic 

Surgeons. 11:421-430, 2003. 

139Vavken P., U. Meyer, T. Meyer, J. Handschel, and H. Wiesman. Tissue engineering of 

ligaments and tendons. Fundamentals of Tissue Engineering and Regenerative 

Medicine.317-327, 2009. 

140Villanueva I., C. A. Weigel, and S. J. Bryant. Cell–matrix interactions and dynamic 

mechanical loading influence chondrocyte gene expression and bioactivity in PEG-

RGD hydrogels. Acta biomaterialia. 5:2832-2846, 2009. 

141Visser J., P. A. Levett, N. C. te Moller, J. Besems, K. W. Boere, M. H. van Rijen, J. C. 

de Grauw, W. J. Dhert, P. R. van Weeren, and J. Malda. Crosslinkable Hydrogels 

Derived from Cartilage, Meniscus, and Tendon Tissue. Tissue Engineering Part A. 

21:1195-1206, 2015. 

142Wan Y. S., S. Wei-Heng, and A. A. Ilhan. Elastic and Yield Behavior of Strongly 

Flocculated Colloids. Journal of the American Ceramic Society. 82, 2004. 



 150 

143Wang H., S. C. G. Leeuwenburgh, Y. Li, and J. A. Jansen. The Use of Micro-and 

Nanospheres as Functional Components for Bone Tissue Regeneration. Tissue 

Engineering Part B: Reviews. 2011. 

144Wang Q., Z. Gu, S. Jamal, M. S. Detamore, and C. Berkland. Hybrid Hydroxyapatite 

Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering. 

Tissue Engineering Part A. 19:2586-2593, 2013. 

145Wang Q., S. Jamal, M. Detamore, and C. Berkland. PLGA-chitosan/PLGA-alginate 

nanoparticle blends as biodegradable colloidal gels for seeding human umbilical 

cord mesenchymal stem cells. Journal of biomedical materials research. Part A. 

96:520-527, 2011. 

146Wang Q., J. Wang, Q. Lu, M. Detamore, and C. Berkland. Injectable PLGA based 

colloidal gels for zero-order dexamethasone release in cranial defects. 

Biomaterials. 2010. 

147Wang Q., L. Wang, M. S. Detamore, and C. Berkland. Biodegradable colloidal gels as 

moldable tissue engineering scaffolds. Advanced Materials. 20:236-239, 2008. 

148Weiss P., A. Fatimi, J. Guicheux, and C. Vinatier. "Hydrogels for Cartilage Tissue 

Engineering," in Biomedical Applications of Hydrogels Handbook. 2010, Springer. 

247-268. 

149Woo S., M. Gomez, Y. Seguchi, C. Endo, and W. Akeson. Measurement of mechanical 

properties of ligament substance from a bone‐ligament‐bone preparation. Journal 

of Orthopaedic Research. 1:22-29, 1983. 

150Xiao Y., E. A. Friis, S. H. Gehrke, and M. S. Detamore. Mechanical testing of hydrogels 

in cartilage tissue engineering: beyond the compressive modulus. Tissue Eng Part 

B Rev. 19:403-12, 2013. 

151Xie J., X. Li, J. Lipner, C. N. Manning, A. G. Schwartz, S. Thomopoulos, and Y. Xia. 

“Aligned-to-random” nanofiber scaffolds for mimicking the structure of the 

tendon-to-bone insertion site. Nanoscale. 2:923-926, 2010. 

152Xue D., Q. Zheng, C. Zong, Q. Li, H. Li, S. Qian, B. Zhang, L. Yu, and Z. Pan. 

Osteochondral repair using porous poly (lactide‐co‐glycolide)/nano‐hydroxyapatite 

hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. 

Journal of Biomedical Materials Research Part A. 94:259-270, 2010. 

153Yang L., C. F. C. Fitié, K. O. Van Der Werf, M. L. Bennink, P. J. Dijkstra, and J. Feijen. 

Mechanical properties of single electrospun collagen type I fibers. Biomaterials. 

29:955-962, 2008. 



 151 

154Yang P. J. and J. S. Temenoff. Engineering orthopedic tissue interfaces. Tissue 

Engineering Part B: Reviews. 15:127-141, 2009. 

155Yang Q., J. Peng, S. Lu, Q. Guo, B. Zhao, L. Zhang, and A. Wang. Evaluation of an 

extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair 

of a large articular high-load-bearing osteochondral defect in a canine model. 

Chinese Medical Journal. 124:3930-3938, 2011. 

156Yang Z., Y. Shi, X. Wei, J. He, S. Yang, G. Dickson, J. Tang, J. Xiang, C. Song, and G. 

Li. Fabrication and repair of cartilage defects with a novel acellular cartilage matrix 

scaffold. Tissue Eng Part C Methods. 16:865-76, 2010. 

157Yunos D., Z. Ahmad, V. Salih, and A. Boccaccini. Stratified scaffolds for osteochondral 

tissue engineering applications: Electrospun PDLLA nanofibre coated Bioglass®-

derived foams. Journal of Biomaterials Applications. 2011. 

158Zhang Q., V. N. Mochalin, I. Neitzel, K. Hazeli, J. Niu, A. Kontsos, J. G. Zhou, P. I. 

Lelkes, and Y. Gogotsi. Mechanical properties and biomineralization of 

multifunctional nanodiamond-PLLA composites for bone tissue engineering. 

Biomaterials. 2012. 

159Zhang R. and P. X. Ma. Porous poly (L-lactic acid)/apatite composites created by 

biomimetic process. 1999. 

160Zhang X., D. Bogdanowicz, C. Erisken, N. M. Lee, and H. H. Lu. Biomimetic scaffold 

design for functional and integrative tendon repair. Journal of Shoulder and Elbow 

Surgery. 21:266-277, 2012. 

161Zheng X., S. Lu, W. Zhang, S. Liu, J. Huang, and Q. Guo. Mesenchymal stem cells on 

a decellularized cartilage matrix for cartilage tissue engineering. Biotechnology and 

Bioprocess Engineering. 16:593-602, 2011. 

162Zou B., Y. Liu, X. Luo, F. Chen, X. Guo, and X. Li. Electrospun fibrous scaffolds with 

continuous gradations in mineral contents and biological cues for manipulating 

cellular behaviors. Acta Biomaterialia. 2012. 

 

  



 152 

APPENDIX A: Figures 

CHAPTER 1: Figures 1.1-1.2 

CHAPTER 2: Figure 2.1 

CHAPTER 3: Figures 3.1-3.4 

CHAPTER 4: Figures 4.1-4.8 

CHAPTER 5: Figures 5.1-5.7 

CHAPTER 6: Figures 6.1-6.9 

CHAPTER 7: Figures 7.1-7.3 

  



 153 

 
 

Figure 1.1: Conversion of Hydrogel Precursors into Hydrogel Precursor Pastes  

 

Hydrogel pastes are created by mixing traditional photocrosslinkable polymers with 

particulates. The photocrosslinkable polymer gives the paste its ‘set’ strength after 

photocrosslinking while the particles impart a yield stress on the paste prior to crosslinking. 
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Figure 1.2: Schematic of the Progression of Thesis Aims 

 

The two-component hydrogel pastes in aim 1 are hyaluronic acid nanoparticles (HAnp) 

and methacrylated hyaluronic acid (MeHA). In Aim 2, DCC and DVC particles replace the 

HAnp. In Aim 3, MeSDCC is evaluated alone as a hydrogel material and then two 

component pastes composed of DVC particles and MeSDVC were evaluated. 
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Figure 2.1: Structure and Components of Tissue Interfaces 

 

This diagram depicts the cartilage–bone and tendon/ligament–bone interfaces and their 

compositions. 
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Figure 3.1: Hyaluronic Acid Nanoparticle (HAnp)-Incorporated Solutions Impart 

Paste-Like Gross Rheological Behavior 

 

(A-C) Images of select experimental groups loaded onto the lower rheometer plate prior to 

rheological testing. (A) 4% Methacrylated hyaluronic acid (MeHA) with 15% HAnp gel 

solution with shape-retention, (B) 4% MeHA with 15% linear HA (HAlin) and (C) 4% 

MeHA formulations yielding low viscosity solutions absent of yield stress. Because there 

were no visible differences between the remaining linear HA groups and Figure 1B, and 

likewise, no visible differences between the remaining HAnp-containing solutions and 

Figure 1A, the photographs of these remaining experimental groups were omitted from this 

figure. (D) Scanning transmission electron microscopy (STEM) observation of HAnp. The 

scale bar is 200 nm and arrows point to individual HAnps. 

 

  



 157 

 

Figure 3.2: Rheological Behavior of Solutions Prior to Crosslinking 

 

(A-B) Shear rate sweep of formulations without yield stress (A) and formulations with 

yield stress compared to 4% Methacrylated Hyaluronic Acid (MeHA) (B). Data points are 

mean + standard deviation (n=5) and the lines are used to connect the data points to discern 

between samples. For the 30% hyaluronic acid nanoparticle (HAnp) formulation, shear 

banding was observed at low shear rates so those data were excluded. (C) Yield stress 

obtained from fit to Herschel-Bulkley equation. (D) Storage modulus of formulations 

before, after, and during disruption. Data reported as mean + standard deviation (n=5). 

Formulations with different letters indicate statistically significant differences (p<0.05). 
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Figure 3.3: Characterization of Gels After Crosslinking  

 

Compressive modulus (A) and swelling degree (B) of crosslinked gels. Data are reported 

as mean + standard deviation (n=6). Formulations with different letters indicate statistically 

significant differences (p<0.05). Live/Dead image analysis of cells encapsulated and 

cultured for 4 weeks within 4% Methacrylated Hyaluronic Acid (MeHA) (C) and 4% 

MeHA + 15% hyaluronic acid nanoparticles (HAnp) (D). Scale bars are 100 µm. 
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Figure 3.4: Hyaluronic Acid Nanoparticle (HAnp)-Incorporated Solutions Maintain 

Shaping Before and After Crosslinking 

 

(A) A solution containing 4% MeHA with 15% HAnp can be readily loaded into a 1 mL 

syringe and extruded. (B) After extrusion, the HAnp-incorporated solution maintained 

extruded shaping, which demonstrates that this formulation could be implanted in vivo 

without the risk of leaking from the implantation site. (C) After photocrosslinking the 

HAnp-incorporated solution, the solution was a crosslinked hydrogel network that retained 

its original shaping.   
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Figure 4.1: Biochemical Contents and SEM Images of Hydrogel Paste Components  

 

A) PicoGreen content, B) GAG content, and C) Hydroxyproline content of DVC, DCC, 

and MeHA. Following decellularization, there was a 44% reduction in DNA, a 23% 

reduction in GAG, and a 23% reduction in hydroxyproline content. Data reported as mean 

+ standard deviation (n=5); ^below detectable limit, *significantly different from DVC 

(p<0.05), #significantly different from DCC (p<0.05). D) SEM images of DCC and DVC 

microparticles under 500x and 12,000x magnifications. Under 500x magnification, the 

DCC microparticles were noted to have more smooth surfaces overall in comparison to the 

DVC microparticles and under 12,000x magnification, the surfaces of the DCC 

microparticles were noted to have a grain-like appearance that was non-existent in the DVC 

microparticles. Scale bars for the 500x and 12,000x magnifications are 100 µm and 5 µm, 

respectively.  
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Figure 4.2: Macroscopic Rheological Evaluation of Hydrogel Precursors Before and 

After Crosslinking  

 

All formulations were acellular unless noted. Non-Newtonian behavior was observed in 

solutions containing at least 5% DCC, whereas shape retention (indicated by the solution 

retaining extrusion orifice diameter) was only noted in 10% DCC and 3% MeHA + 10% 

DVC acellular formulations. All formulations containing MeHA retained their shape after 

crosslinking. 
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Figure 4.3: Yield Stress (A) and Storage Modulus (B) of Hydrogel Precursor 

Solutions 

 

Only the 10% DCC, 3% MeHA + 10% DCC, and 3% MeHA + 10% DVC groups exhibited 

a measurable yield stress, while all groups had a measurable storage modulus. Data 

reported as mean + standard deviation (n=5); *significantly different from 3% MeHA 

acellular group (p<0.05), #significantly different from 3% MeHA + 10% DCC acellular 

group (p<0.05), $significantly different from 10% DCC group (p<0.05), &significantly 

different from all other groups (p<0.05).  
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Figure 4.4: Compressive Moduli of Crosslinked Hydrogels After 1 Day and 6 Weeks 

of Culture 

 

Gels containing at least 10% DCC or DVC microparticles had significantly larger moduli 

than 3% MeHA gels alone. Data reported as mean + standard deviation (n=5); 

*significantly different from 3% MeHA at same time point (p<0.05), %significantly 

different from acellular group of same formulation at same time point (p<0.05), 

#significantly different from all other groups at same time point (p<0.05), $significantly 

different from 3% MeHA + 10% DCC at same time point (p<0.05), @significantly 

different from 3% MeHA + TGF-β3 and 3% MeHA + 5% DCC at same time point (p<0.05), 

&p<0.05 for specified comparison, !significantly different from same group at first time 

point (p<0.05). 
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Figure 4.5: Swelling Degree (A) and Volume (B) of Crosslinked Hydrogels  

 

The only gels with significantly smaller swelling degrees than the 3% MeHA gels were the 

3% MeHA + 10% DCC acellular group and the 3% MeHA + 10% DVC acellular and 

cellular groups. At day 1, there were no significant differences between groups. However, 

the inclusion of DCC or DVC or exposure to TGF-β3 significantly reduced the volume at 

6 weeks. Data reported as mean + standard deviation (n=5); *significantly different from 

3%MeHA at same time point (p<0.05), %significantly different from acellular group of 

same formulation at same time point (p<0.05), $significantly different from 3%MeHA + 

10% DCC at same time point (p<0.05), !significantly different from same group at first 

time point (p<0.05). 
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Figure 4.6: Biochemical Content of Gels over the 6 Week Culture Period 

 

A) DNA content, B) GAG content, and C) Hydroxyproline content. All gels contained 

significantly higher DNA contents than their respective acellular groups at all time points 

and all gels containing DCC or DVC had significant reductions in GAG over the 6 week 

culture period. Data reported as mean + standard deviation (n=5); ^below detectable limit, 

*significantly different from 3%MeHA at same time point (p<0.05), %significantly 

different from acellular group of same formulation at same time point (p<0.05), 

#significantly different from all other groups at same time point (p<0.05), $significantly 

different from 3% MeHA + 10% DCC at same time point (p<0.05), !significantly different 

from same group at first time point (p<0.05), +significantly different from same group at 

previous time point (p<0.05). 
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Figure 4.7: Relative Gene Expression of A) Collagen II, B) Collagen I, C) Sox-9, and 

D) Aggrecan  

 

The DVC group consistently outperformed the other groups in collagen II, Sox-9, and 

aggrecan expression, even when compared to TGF-β3 exposed groups. Data reported as 

mean + standard deviation (n=5); *significantly different from 3%MeHA at same time 

point (p<0.05), #significantly different from 3%MeHA +TGF-β3 at same time point 

(p<0.05), @significantly different from all DCC containing groups at same time point 

(p<0.05), %significantly higher than same group at previous time point (p<0.05), 

$significantly higher than same group at first time point (p<0.05), !significantly lower than 

same group at previous time point (p<0.05), ^expression not detected. 
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Figure 4.8: Histological Analysis of Gels  

 

All gels stained red/orange for GAGs, although no increase in the amount of staining was 

noted over the culture period. However, nodular Saf-O staining was noted in the 3% MeHA 

+ TGF-β3 group. All DCC and DVC containing groups stained for Collagen II, however 

no changes were noted in the location and intensity of collagen II staining over the culture 

period. Collagen I staining was noted again in all DCC and DVC containing groups. 

However, the intensity of collagen I staining decreased over the culture period for the 3% 

MeHA + 5% DCC and 3% MeHA + 10% DCC groups and appeared to increase slightly 

for the 3% MeHA + 10% DVC group. Aggrecan staining was noted in all DCC and DVC 

containing groups, where the aggrecan staining became more intense near the DCC and 

DVC microparticles in the 3% MeHA + 10% DCC + TGF-β3 and 3% MeHA + 10% DVC 

groups over the culture period. Scale bars are 200 µm.  
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Figure 5.1: NMR of GelMA (A) and MeSDCC (B) Before and After Methacrylation 

and (C) Gross Morphology of Crosslinked Hydrogels 

 

Methacrylation was confirmed on both materials by the emergence of methacrylate peaks 

between 5 and 6.5 ppm. The GelMA and MeSDCC were successfully crosslinked into 

hydrogels. The photograph is of the GelMA and MeSDCC gels 6 weeks after crosslinking 

and they are pink from soaking in cell media. The scale bar is 5 mm.
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Figure 5.2: Biochemical Contents of DVC, DCC, SDCC, MeSDCC, and GelMA  

 

A) PicoGreen content, B) GAG content, and C) Hydroxyproline content of each material. 

Decellularization removed 44% of the DNA, 23% of the GAGs, and 23% of the 

hydroxyproline (p<0.05). After solubilizing and after methacrylating, the DNA content 

further reduced to 4% and 1.7% of that of the original DVC DNA content, respectively 

(p<0.05). Data reported as mean + standard deviation (n=5); *significantly different from 

DVC (p<0.05), #significantly different from DCC (p<0.05), @significantly different from 

SDCC (p<0.05), $significantly different from MeSDCC (p<0.05). 
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Figure 5.3: Mechanical Testing of Crosslinked Hydrogels  

 

A) Compressive modulus of gels after 1 day and 6 weeks of culture. At day 1, the 

compressive modulus of the 10% MeSDCC and 20% MeSDCC cellular groups were 5.3 

and 20 times larger than the 10% GelMA gels, respectively. Data reported as mean + 

standard deviation (n=5); * significantly different from 10% GelMA at same time point 

(p<0.05), #significantly different from 10% MeSDCC at same time point (p<0.05), 

&p<0.05 for specified comparison, @significantly different from same group at first time 

point (p<0.05), -not tested. B) Stress-Strain Curves of Native Porcine Cartilage Compared 

to Select Hydrogels. Data are reported as mean ± 95% confidence interval. The stress strain 

profile of native porcine cartilage were compared to that of 20% MeSDCC, 20% GelMA 

acellular, and 3% MeHA gels, where 20% MeSDCC was the only hydrogel that fell within 

the 95% confidence interval of native porcine cartilage until they began to fracture at 7.5% 

strain on average.  
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Figure 5.4: Swelling Degree (A) and Volume (B) of Crosslinked Hydrogels  

 

A) The 10% MeSDCC gel had a significantly higher swelling degree compared to 10% 

GelMA, while the 20% GelMA and 20% MeSDCC groups had significantly lower swelling 

degrees compared to 10% MeSDCC. B) The only group that had a significant change in 

volume was the 10% MeSDCC acellular group, which experienced an 11% volume 

reduction (p<0.05). Data reported as mean + standard deviation (n=5); *significantly 

different from 10% GelMA at same time point (p<0.05), #significantly different from 10% 

MeSDCC at same time point (p<0.05), !significantly different from acellular group at same 

time point (p<0.05), &p<0.05 for specified comparison, @significantly different from 

same group at first time point (p<0.05), -not tested. 
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Figure 5.5: Biochemical Content of Gels over the 6 Week Culture Period  

 

A) DNA content, B) GAG content, and C) Hydroxyproline content. All cellular groups had 

significantly higher DNA contents than their respective acellular groups at all time points 

(p<0.05). Over the course of the 6 week culture period, all cellular groups had a significant 

reduction in DNA content, both the 10% MeSDCC group and the 20% MeSDCC groups 

experienced a significant reduction in GAG content, and the only group that experienced a 

significant loss in hydroxyproline was the 20% MeSDCC group. Data reported as mean + 

standard deviation (n=5); ^below detectable limit, *significantly different from 10% 

GelMA at same time point (p<0.05), #significantly different from 10% MeSDCC at same 

time point (p<0.05), !significantly different from acellular group at same time point 

(p<0.05), &p<0.05 for specified comparison, @significantly different from same group at 

first time point (p<0.05), +significantly different from same group at previous time point 

(p<0.05). 
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Figure 5.6: Relative Gene Expression of A) Sox-9, B) Aggrecan, C) Collagen II, and 

D) Collagen I 

 

MeSDCC gels significantly upregulated chondrogenic genes compared to GelMA as early 

as day 1. Data reported as mean + standard deviation (n=5); *significantly different from 

10% GelMA at same time point (p<0.05), #significantly different from 10% MeSDCC at 

same time point (p<0.05), @significantly different from same group at first time point 

(p<0.05), $significantly different from same group at previous time point (p<0.05), ^below 

detectable limit. 
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Figure 5.7: Histological Evaluation of Gels  

 

H&E stained the nuclei dark purple and MeSDCC light purple. GelMA and new tissue 

formation in the 20% MeSDCC group at 6 weeks was stained pink. Regions of new tissue 

formation can be observed within the 20% and 20% MeSDCC groups at 6 weeks. All 

MeSDCC gels stained red/orange for GAGs, while no GAG staining was observed in the 

10% GelMA group. Regions of new tissue formation surrounding rBMSCs were observed 

to stain for GAGs. All MeSDCC groups stained for collagen II, although no increase in 

collagen II staining was observed for those groups throughout culture. However, the 10% 

GelMA group had an increase in collagen II staining at 6 weeks. Minimal collagen I 

staining was observed in the MeSDCC groups. Collagen I staining was noted in the 10% 

GelMA group, although there were no significant changes in staining over the culture 

period. Last, a slight increase in aggrecan staining was observed in the 10% GelMA and 

20% MeSDCC groups over the culture period. Scale bars are 200 µm.   
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Figure 6.1: NMR of MeSDVC Before and After Methacrylation 

 

Methacrylation was confirmed by the emergence of methacrylate peaks circled between 5 

and 6.5 ppm. 
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Figure 6.2: Biochemical Contents of DVC, SDVC, and MeSDVC  

 

A) PicoGreen content, B) GAG content, and C) Hydroxyproline content of each material. 

The SDVC and MeSDVC had DNA contents that were 92% and 97% less than DVC, 

respectively, and had GAG contents that were 44% and 41% less than that of DVC, 

respectively (p<0.05). The hydroxyproline content of SDVC was 26% lower than that of 

DVC (p<0.05). While the hydroxyproline content of MeSDVC was not significant from 

DVC, it was 41% higher than that of SDVC (p<0.05). Data reported as mean + standard 

deviation (n=5); *statistically significant from DVC (p<0.05), #statistically significant 

from SDVC (p<0.05). 
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Figure 6.3: Macroscopic Rheological Evaluation of Hydrogel Precursors Before and 

After Crosslinking 

 

All formulations were acellular unless noted and cellular formulations were pink in color 

due to presence of cell culture medium. Non-Newtonian behavior was observed in all 

solutions. However, the 5% DVC and 10% DVC formulations were the only solutions that 

could not be molded and shaped into a sphere. Shape retention (indicated by the solution 

retaining extrusion orifice diameter) was noted in all solutions except the 5% DVC 

solution. Finally, all formulations containing MeSDVC retained shaping after crosslinking. 
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Figure 6.4: Yield Stress (A) and Storage Modulus (B) of Hydrogel Precursor 

Solutions  

 

All solutions had a measurable yield stress and storage modulus, while the groups 

containing both MeSDVC and DVC had the highest reported values. No significant 

differences were observed with the incorporation of cells. Data reported as mean + standard 

deviation (n=5); *significantly different from 10% MeSDVC acellular, #significantly 

different from 20% MeSDVC acellular. 
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Figure 6.5: Compressive Modulus of Crosslinked Hydrogels After 1 Day and 6 

Weeks of Culture 

 

None of the groups were significantly different from the 10% MeSDVC acellular group 

except the 20% MeSDVC acellular group, which had a modulus of 675 ± 130 kPa (p<0.05). 

Additionally, the only groups that significantly deviated from their original compressive 

modulus over the 6 week period were the 10% MeSDVC acellular and cellular groups. 

Data reported as mean + standard deviation (n=5); *significantly different from all other 

groups at same time point (p<0.05), @significantly different from same group at first time 

point (p<0.05), -not tested. 
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Figure 6.6: Swelling Degree (A) and Volume (B) of Crosslinked Hydrogel Pastes 

 

A) The only group that had a significantly lower swelling degree than that of the 10% 

MeSDVC group was the 20% MeSDVC acellular group. B) Over the course of the 6 weeks, 

the only groups that had a significant reduction in volume were the 10% MeSDVC acellular 

and cellular groups. Data reported as mean + standard deviation (n=5); *statistically 

significant from 10% MeSDVC at same time point (p<0.05), !statistically significant from 

acellular group at same time point (p<0.05), &p<0.05 for specified comparison, 

@statistically significant from same group at first time point (p<0.05), -not tested. 
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Figure 6.7: Biochemical Content of Gels over the 6 Week Culture Period 

 

A) DNA content, B) GAG content, and C) Hydroxyproline Content. All cellular groups 

had significantly higher DNA contents than their respective acellular groups at all time 

points. Over the course of the 6 week culture period, all groups had significant reductions 

in biochemical content (p<0.05), except for the TGF-β3 exposed group, which did not have 

a significant reduction in hydroxyproline. Data reported as mean + standard deviation 

(n=5); *significantly different from 10% MeSDVC at same time point (p<0.05), 

#significantly different from acellular group at same time point (p<0.05), &p<0.05 for 

specified comparison, @significantly different from same group at first time point 

(p<0.05), +significantly different from same group at previous time point (p<0.05). 
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Figure 6.8: Relative Gene Expression of A) Sox-9, B) Aggrecan, C) Collagen II, and 

D) Collagen I 

 

From 2 weeks onward, the DVC-incorporating groups repeatedly outperformed the 

MeSDVC group in chondrogenic gene expression, especially at 6 weeks with collagen II. 

Data reported as mean + standard deviation (n=5); *statistically significant from 10% 

MeSDVC at same time point (p<0.05), #statistically significant from 10% MeSDVC 10% 

DVC at same time point (p<0.05), @statistically significant from same group at first time 

point (p<0.05), $statistically significant from same group at previous time point (p<0.05), 

^below detectable limit. 
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Figure 6.9: Histological Evaluation of Gels 

 

H&E staining revealed the cells remained evenly distributed throughout culture. MeSDVC 

and DVC particles were stained a dark red/orange color with Saf-O staining and the color 

of the DVC particles appeared to fade over the 6 weeks. A slight increase in collagen II 

staining was noted in the DVC-incorporating groups at 6 weeks. A slight increase in 

collagen I staining was observed for the 10% MeSDVC group at 6 weeks, whereas the 

DVC-incorporated groups had a slight decrease in staining at 6 weeks. A slight increase in 

aggrecan staining at 6 weeks was observed next to the cells of the 10% MeSDVC group. 

Additionally, the 10% MeSDVC 10% DVC group had a slight increase in aggrecan 

staining near the location of the rBMSCs at 6 weeks. Last, the 10% MeSDVC + 10% DVC 

+ TGF-β3 group had no discernable changes in aggrecan staining over the 6 weeks. Scale 

bars are 200 µm.  
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Figure 7.1: Implantation of Hydrogel Pastes in a Human Cadaver Elbow 

 

A hydrogel paste, consisting of methacrylated hyaluronic acid and decellularized cartilage 

microparticles, was implanted in an articular cartilage defect created in a human cadaver 

elbow joint. The paste was able to be implanted and shaped by the surgeon. The paste was 

retained within the defect site prior to UV crosslinking. After crosslinking, the joint was 

able to be articulated without dislodging the paste from the defect site.  
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Figure 7.2: Stress-Strain Curves of Native Porcine Cartilage Compared to Select 

Hydrogels 

 

The stress strain profiles of native porcine cartilage were compared to that of 20% 

MeSDCC, 20% MeSDVC acellular, 20% GelMA acellular, and 3% MeHA gels, where 

20% MeSDCC was the only hydrogel that fell within the 95% confidence interval of native 

porcine cartilage until they began to fracture at 7.5% strain on average. The next closest 

hydrogel matching the stress-strain profile of native cartilage was 20% MeSDVC, which 

did not fracture early like the 20% MeSDCC gels. Data are reported as mean ± 95% 

confidence interval. 
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Figure 7.3 Relative Gene Expression of Select Gels from Aims 2-3. 

 

Relative gene expression observed for A) aggrecan, B) collagen II, C) Sox-9, and D) 

collagen I. The 10% MeSDCC gels had significantly higher aggrecan and Sox-9 expression 

at day 1 compared to the other groups, but high levels of collagen II gene expression were 

only observed for the DVC-containing groups. Data reported as mean + standard deviation 

(n=5); *Significantly different from 3% MeHA at same time point (p<0.05), #significantly 

different from 3% MeHA 10% DVC at same time point (p<0.05), %significantly different 

from 10% GelMA at same time point (p<0.05), &significantly different from 10% 

MeSDCC at same time point (p<0.05), +significantly different from 10% MeSDVC at 

same time point (p<0.05), !significantly different from same group at first time point 

(p<0.05), @significantly different from same group at previous time point (p<0.05), 

^below detectable limit. 
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APPENDIX B: Tables 

CHAPTER 1: Tables 1.1-1.2 

CHAPTER 2: No Tables 

CHAPTER 3: No Tables 

CHAPTER 4: No Tables  

CHAPTER 5: No Tables 

CHAPTER 6: No Tables 

CHAPTER 7: No Tables 
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Table 2.1: Applications of Nanomaterials in Osteochondral Interfaces 
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Table 2.1 (Continued) 
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Table 2.1 (Continued)
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Table 2.2 Applications of Nanomaterials in Bone-Tendon and Bone-Ligament 

Interfaces 

 
 


