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Abstract

In this paper we discuss some practical issues that arise in solv-
ing hybrid Bayesian networks that include deterministic conditionals
for continuous variables. We show how exact inference can become
intractable even for small networks, due to the difficulty in handling
deterministic conditionals (for continuous variables). We propose some
strategies for carrying out the inference task using mixtures of polyno-
mials and mixtures of truncated exponentials. Mixtures of polynomials
can be defined on hypercubes or hyper-rhombuses. We compare these
two methods. A key strategy is to re-approximate large potentials
with potentials consisting of fewer pieces and lower degrees/number
of terms. We discuss several methods for re-approximating potentials.
We illustrate our methods in a practical application consisting of solv-
ing a stochastic PERT network.

1. Introduction

Hybrid Bayesian networks are Bayesian networks (BNs) that include a mix
of discrete and continuous random variables. A random variable is discrete if
its state space is countable, and is continuous otherwise. In a BN, each vari-
able is associated with a conditional distribution for it given each state of its
parents. A conditional distribution for a variable is said to be deterministic
if its variances are all zeroes (for each state of its parents).

The first proposal of an exact algorithm for hybrid BNs was developed for
the case in which the joint distribution of all variables is a mixture of Gaus-
sians (MoG).1 Some limitations of the MoG model are that it is restricted to
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network topologies in which discrete variables do not have continuous par-
ents, and each conditional for a continuous variable has to be a conditional
linear Gaussian, i.e., a Gaussian distribution whose mean is a linear function
of its continuous parents, and whose variance is a constant. Also, during the
solution phase, continuous variables have to be marginalized before discrete
ones and this restriction can lead to large cliques,2 and consequently large
memory storage requirements. It has been shown that inference in MoG
networks is NP-hard, even for network structures for which inference in the
discrete case is easy.2

A more general technique is based on the use of mixtures of truncated
exponentials (MTEs).3 The MTE model does not impose any topological
restrictions on its networks, and is compatible with any efficient algorithm
for exact inference that requires only the combination and marginalization
operations, such as the Shenoy-Shafer4,5 and variable elimination methods.6

Furthermore, MTEs have shown a remarkable ability for fitting many com-
monly used univariate probability density functions (PDFs).7

Hybrid BNs can also be solved by discretizing the continuous variables,
so that all the existing methodology for discrete BNs can be applied with any
further modification. The most prominent proposal in this direction is the
so-called dynamic discretization,8 where inference is carried out iteratively
in an any-time manner, seeking for better representations of high density
areas. A study of the complexity of the MTE approach versus discretization
can be found in existing literature.9,10

The most recent proposal for dealing with hybrid BNs is based on the
use of mixtures of polynomials (MOPs).11 Like MTEs, MOPs have high
expressive power, but the latter are superior in dealing with deterministic
conditionals for continuous variables.5,11 Also, a MOP approximation of a
PDF can be easily found using Lagrange interpolating polynomials with
Chebyshev points.12 Both MTEs and MOPs can be seen as instantiations
of a more general framework known as mixtures of truncated basis functions
(MoTBFs).13

In this paper, we discuss some practical issues that have to be addressed
in order to make inference in hybrid BNs tractable, even for small problems,
when deterministic conditionals are present. Dynamic discretization can
also be used in this context,8,14 but the approach we follow here is based
on the use of MOPs and MTEs as discretization is in fact a particular case
of these models.13 A key strategy is re-approximation of MOPs (MTEs)
with fewer pieces and lower degrees (fewer terms) during the solution phase.
We compare the sizes, computation time and accuracy of MOPs defined on
hypercubes and hyper-rhombuses. We compare the performance of MOPs
and MTEs in this context, through an example arising from a stochastic
PERT network.15 We also carry out an experiment illustrating how the
complexity grows with the size of the model.
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Contributions The main contributions of this paper are as follows. First,
in the case of MOPs, they can be defined on either hypercubes or hyper-
rhombuses when deterministic conditionals are present in the network. In
this paper, we do a small comparison of these two possibilities. Second,
in the case of MOPs or MTEs, we describe a re-approximation method by
dropping pieces. Third, in the case of MOPs, we describe a re-approximation
method using Lagrange interpolating polynomials with Chebyshev points.12

Fourth, in the case of MTEs, we describe a re-approximation method us-
ing numeric least squares. Fifth, we demonstrate the efficacy of the re-
approximation methods by solving a small hybrid Bayesian network with
2 discrete variables, and 10 continuous variables of which 4 have deter-
ministic conditionals. We were unable to solve this problem without using
re-approximations.

Limitations Some limitations of our work are as follows. First, we do not
describe the worst-case complexity of inference in hybrid Bayesian networks
with deterministic conditionals using MOPs/MTEs. Instead, we carry out
an experiment illustrating how the complexity grows with the size of the
model. Due to the fact that MOP/MTE-based methods are more general
than MoG methods, we suspect that it is at least as bad as MoG networks,
if not worse. Second, although we do a small comparison of hypercubes and
hyper-rhombuses in the case of MOPs, a more systematic study is needed
with more examples. Based on our limited set of experiments, we believe
that hypercubes are more tractable than hyper-rhombuses, as long as an ap-
propriate approximation can be found for each hypercube. Third, for all the
re-approximations methods we have described, there are many judgments
that have to be made for which we have no systematic rules for doing so.
Fourth, it would be useful to know approximately the size of problems that
can be solved using the re-approximation methods. Fifth, it would be useful
to have some error bounds on the results of inference using MOP/MTE-
methods, with or without re-approximations. All of these limitations need
further research.

2. MTEs and MOPs

We will use uppercase letters to denote random variables, and boldfaced
uppercase letters to denote random vectors, e.g. X = {X1, . . . , Xn}, and its
state space will be written as ΩX. Lowercase letters x (or x) will denote
elements of ΩX (or ΩX). The MTE model3 is defined as follows.

Definition 1. Let X be a mixed n-dimensional random vector. Let Y =
(Y1, . . . , Yd)

T and Z = (Z1, . . . , Zc)
T be its discrete and continuous parts

respectively. A function f : ΩX 7→ R+
0 is a mixture of truncated exponentials

3



(MTE) potential if for each fixed value y ∈ ΩY of the discrete variables Y,
the potential over the continuous variables Z is defined as:

f(z) = a0 +
m∑
i=1

ai exp
{

bT
i z
}
, (1)

for all z ∈ ΩZ, where ai ∈ R and bi ∈ Rc, i = 1, . . . ,m. We also say that f
is an MTE potential if there is a partition D1, . . . , Dk of ΩZ into hypercubes
and in each one of them, f is defined as in Eq. (1). In this case, we say f
is a k-piece, m-term MTE potential.

Mixtures of polynomials (MOPs) were initially proposed as modeling
tools for hybrid BNs.11 The original definition is similar to MTEs, in the
sense that they are piecewise functions defined on hypercubes. A more
general definition, where the hypercube condition is relaxed, can be stated
as follows.12

Definition 2. Let X,Y and Z be as in Definition 1. A function f : ΩX 7→
R+

0 is a mixture of polynomials (MOP) potential if for each fixed value
y ∈ ΩY of the discrete variables Y, the potential over Z is defined as:

f(z) = P (z), (2)

for all z ∈ ΩZ, where P (z) is a multivariate polynomial in variables Z =
(Z1, . . . , Zc)

T. We also say that f is a MOP potential if there is a parti-
tion D1, . . . , Dk of ΩZ into hyper-rhombuses and in each one of them, f is
defined as in Eq. (2).

The fact that the elements in the partition are hyper-rhombuses, means
that for any ordering of the variables Z1, . . . , Zc, for each Di it holds that
l1i ≤ z1 ≤ u1i, l2i(z1) ≤ z2 ≤ u2i(z1), . . . , lci(z1, . . . , zc−1) ≤ zc ≤ uci(z1, . . . , zc−1),
where l1i and u1i are constants, and lji(z1, . . . , zj−1) and uji(z1, . . . , zj−1) are
linear functions of z1, . . . , zj−1 for j = 2, . . . , c, and i = 1, . . . , k. Figure 1
shows the difference between a hypercube and a hyper-rhombus.

MTEs and MOPs are closed under multiplication, addition, and integra-
tion. However, integrating over hyper-rhombuses is in general more complex
than over hypercubes. The advantage is that by using hyper-rhombuses, it
is easier to represent models such as the conditional linear Gaussian, where
the conditional distribution of a variable may depend on the values of its
continuous parents in the network. Unfortunately, MTEs cannot be defined
on hyper-rhombuses, as the integration operation would not remain closed
for that class.
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Figure 1: A hypercube defined by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (left) and a hyper-
rhombus defined by 0 ≤ y ≤ 2, y ≤ x ≤ y+ 1 (right). Note that the borders
of the region are not constant in the hyper-rhombus case.

3. Inference in Hybrid BNs with Deterministic Con-
ditionals

The inference task in hybrid BNs with deterministic conditionals has been
already studied.5 Traditional algorithms for inference in hybrid BNs rely on
the assumption that all the conditionals in the network belong to the same
class, and that the operations used during inference are closed within the
same class. This is not necessarily the case for deterministic conditionals.

For instance, assume we have a BN with three continuous variables B,C
and D, such that D = max{B,C}. In such case, existing procedures5 can-
not be directly applied. However, the max deterministic function can be
converted to a linear function by introducing an auxiliary variable A with
two states a and na, which denote whether B ≥ C or B < C, respectively,
obtaining the equivalent representation displayed in the right hand side of
Figure 2, where D = B if A = a and D = C if A = na. Note that after
the transformation, the distribution is the same as in the original network.
However, the price to pay is the introduction of additional complexity, as
there will be a new variable with as many parents as de deterministic vari-
able. This gives an idea of the increased complexity when dealing with
deterministic conditionals with respect to plain hybrid BNs.

Whether or not a deterministic conditional can be properly handled,
depends on the model used. We will analyze the situation from the point of
view of MTEs and MOPs.

3.1. MTE Representation of Conditionals

MTEs can be used to accurately approximate several univariate distribu-
tions.7 The approximation of conditional densities using MTEs is more dif-
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Figure 2: A max conditional (left) and its transformation (right).

ficult,16 as the hypercube condition in the definition of an MTE function
means that the value of a continuous parent has to be a constant.17 There-
fore, this implies that a conditional density is approximated by MTEs by
partitioning the state space of the continuous parents into hypercubes, and
then fitting a univariate MTE in each hypercube. The resulting conditional
MTE density is called a mixed tree.18

An additional problem is found when attempting to deal with deter-
ministic conditionals. MTEs are not closed with respect to the convolution
operation required by the sum conditional. Consider two independent ran-
dom variables X1, X2 ∼ Exp(µ = 1) and Y = X1 +X2. The marginal PDF
of Y is Gamma[r = 2, µ = 1], which is not an MTE function. The reason is
that such a marginal is obtained through the so-called convolution operation
as

fY (y) =

∫ ∞
−∞

fX1(x1) fX2(y − x1) dx1 =

∫ y

0
e−x1 e−(y−x1) dx1 = y e−y (3)

for y > 0, which is not an MTE according to Definition 1. This is a con-
sequence of the fact that even though fX2(x2) is defined on hypercubes,
fX2(y − x1) is no longer defined on hypercubes, and therefore, the limits of
integration in Eq. (3) are not all constants.

One solution to this problem is to approximate the function fX2(y−x1)
on hypercubes using a mixed tree approach.18 In order to illustrate the
mixed tree approach, consider a hybrid BN formed by variables X1, X2 and
X3. X1 ∼ N(3, 1), X2|x1 ∼ N(6 + 2x1, 2

2) and X3 = X1 + X2. If Z ∼
N(0, 1), f(·) is an MTE approximation of the PDF of Z, and Y = σZ + µ,
where σ > 0 and µ are real constants, then Y ∼ N(µ, σ2), and an MTE
approximation of the PDF of Y is given by g(y) = 1

|σ|f(y−µσ ). Suppose

f(·) is a 2-piece MTE approximation of the PDF of N(0, 1) on the domain
(−3, 3), where the two pieces are (−3, 0) and [0, 3).7 Then, g1(x1) = f(x1−3)
is an MTE approximation of the PDF of X1 ∼ N(3, 1) on the domain
(0, 6). However, g2(x1, x2) = f(x2−6−2x1

2 )/2 is not an MTE since it would
be defined on regions such as −3 < x2−6−2x1

2 < 0, which are not hypercubes.
So we partition the domain of X1 into equal-size intervals, and assume that
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x1 is a constant in each interval equal to the mid-point of the interval.
Thus, g2c(x1, x2), as described in Eq. (4), is a 3-point mixed tree MTE
approximation of g2(x1, x2) representing the conditional PDF of X2 given
x1.

g2c(x1, x2) =


f(x2−8

2 )/2 if 0 < x1 < 2,

f(x2−12
2 )/2 if 2 ≤ x1 < 4,

f(x2−16
2 )/2 if 4 ≤ x1 < 6.

(4)

Notice that this mixed-tree method can also be used with MOPs. Next,
we wish to compute the marginal PDF of X3. The conditional associated
with X3 is g3(x1, x2, x3) = δ(x3 − x1 − x2), where δ is the Dirac delta
function (see5 for a detailed description on the use of Dirac delta functions
for handling deterministic relationships). To compute the marginal of X3,
we first marginalize X2 and then X1. The result after marginalizing X2 is
g4(x1, x3) =

∫∞
−∞ g2c(x1, x2) δ(x3 − x1 − x2))dx2 = g2c(x1, x3 − x1), which

represents the conditional of X3 given x1.
Now we notice that g4(x1, x3) is not defined on hypercubes anymore

since we have regions such as a ≤ x3 − x1 < b, where a and b are constants.
So we approximate g4(x1, x3) by g5c(x1, x3) using mixed trees as follows:

g5c(x1, x3) =


g2c(1, x3 − 1) if 0 < x1 < 2,

g2c(3, x3 − 3) if 2 ≤ x1 < 4,

g2c(5, x3 − 5) if 4 ≤ x1 < 6.

(5)

Notice that g5c(x1, x3) is an MTE function since it is defined on hyper-
cubes. Next we marginalize X1 as follows (resulting in the marginal PDF
g6c(·) of X3):

g6c(x3) =

∫ ∞
−∞

g1(x1) g5c(x1, x3) dx1. (6)

Since MTEs are closed under multiplication and integration, g6c(·) is an
MTE function. A cost of the mixed-tree approach to maintain the hypercube
nature of the pieces is the increase in the number of pieces. Thus, if f(·) is a
1-piece MTE approximation of the PDF of N(0, 1), then g1(d1) is a 1-piece
MTE potential, g2c(d1, d3) is a 3-piece MTE potential and g5c(d1, c3) is a
3-piece MTE potential. Another cost is loss of accuracy. We have used 3-
point mixed trees for our illustration. We could use more points to improve
accuracy of the computed potentials, but this would mean more pieces. We
will discuss this in more detail in Section 3.3 for the case of MOPs.

3.2. MOP Representation of Conditionals

The problem of fitting univariate and multi-variate PDFs using MOPs has
already been approached using the Taylor series approximation of differen-
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tiable functions.11 More recently, the ability of MOPs to fit multivariate con-
ditional linear Gaussian distributions was significantly improved by means
of allowing the functions to be defined into hyper-rhombuses rather than
into hypercubes.12 Also, an improved method for finding MOP approxima-
tions based on Lagrange interpolating polynomials with Chebyshev points
has been proposed.12

To illustrate this improvement, consider the BN used in Section 3.1
formed by three continuous variables X1, X2 and X3. Suppose f(·) is a
2-piece, 3-degree MOP approximation of the PDF of N(0, 1) on the do-
main (−3, 3).12 Then, g1(x1) = f(x1 − 3) is a 2-piece, 3-degree MOP ap-
proximation of the PDF of X1 ∼ N(3, 1) on the domain (0, 6). Finally,
g2(x1, x2) = f(x2−6−2x1

2 )/2 is a 2-piece, 3-degree MOP approximation of
the conditional PDF of X2 given x1. Notice that g2(x1, x2) is defined on
hyper-rhombuses, e.g., −3 < x2−6−2x1

2 < 0, etc, and not on hypercubes.
Unlike MTEs, MOPs are closed under the operations required for sum

conditionals. Thus, after the elimination of X2, g5(x1, x3) = g2(x1, x3−x1) is
a MOP, and after the elimination of X1, g6(x3) =

∫∞
−∞ g1(x1) g5(x1, x3) dx1

is also a MOP. So in the case of MOPs, we have a choice of using MOPs
defined on hypercubes (using mixed trees) or on hyper-rhombuses. In the
next subsection, we compare the two alternatives in terms of the sizes of
MOP potentials (pieces and degrees), computation time, and accuracy of
resulting MOP potentials. All computations were done in Mathematica R© v.
8.0.4, running on an Apple iMac with 3.4 GHz Intel Core i7 processor and
16 GB memory. 1

3.3. Hypercube vs. Hyper-rhombus MOP Representations
of Gaussian PDFs

In order to compare the hypercube and the hyper-rhombus approximations
of Gaussian PDFs, we do a small experiment. Consider again the BN formed
by X1, X2 and X3. We will represent the PDFs of X1 and X2 using hy-
percubes and hyper-rhombuses. We will compute the marginal PDFs of X2

and X3, and compare the sizes of resulting MOP marginals, time required
for the computation of marginals, and the quality of the approximation.

3.3.1. Using Hypercube MOPs

We start with f(z), a 2-piece, 3-degree MOP approximation of the PDF
of N(0, 1) on the interval (−3, 3).11 Then as discussed before, g1(x1) =
f(x1 − 3) is a 2-piece, 3-degree MOP approximation of the PDF of N(3, 1)
on (0, 6), and g2c(x1, x2) as defined in Eq. (4) is a 6-piece, 3-degree hypercube
MOP approximation of the conditional PDF of X2 given X1. The marginal

1The Mathematica R© notebooks used in this paper can be downloaded from
http://elvira.ual.es/DetCond
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Figure 3: Left: A plot of g4c(·) (blue) overlaid on the PDF of N(12, 8)
truncated to (2, 22) (red). Right: A plot of g4(·) (blue) overlaid on the PDF
of N(12, 8) truncated to (0, 24) (red).

PDF of X2 is given by

g4c(x2) =

∫ ∞
−∞

g1(x1) g2c(x1, x2) dx1. (7)

It takes approximately 1.41 seconds to compute the integral above and re-
sults in a 8-piece, 3-degree MOP approximation of the PDF of X2 on the
interval (2, 22). The exact marginal distribution of X2 is N(12, 8). A plot of
g4c overlaid on the plot of the PDF of N(12, 8) truncated to (2, 22) is shown
at the left in Figure 3.

We will measure the accuracy of a PDF with respect to another defined
on the same domain by four different measures, the Kullback-Leibler (KL)
divergence, maximum absolute deviation, absolute error of the mean, and
absolute error of the variance. These measures are defined as follows.12

If f is a PDF on the interval (a, b), and g is a PDF that is an approxima-
tion of f such that g(x) > 0 for x ∈ (a, b), then the KL divergence between
f and g, denoted by KL(f, g), is defined as

KL(f, g) =

∫ b

a
ln

(
f(x)

g(x)

)
f(x) dx. (8)

KL(f, g) ≥ 0, and KL(f, g) = 0 if and only if g(x) = f(x) for all x ∈ (a, b).
The maximum absolute deviation between f and g, denoted byMAD(f, g),

is given by:

MAD(f, g) = sup{|f(x)− g(x)| : a < x < b}. (9)
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Figure 4: Left: A plot of g6c(·) (blue) overlaid on the PDF of N(15, 13)
truncated to (3, 27) (red). Right: A plot of g6(·) (blue) overlaid on the PDF
of N(15, 13) truncated to (0, 30) (red). Note that g6c(·) is computed using
hypercube MOPs while g6(·) is obtained using hyper-rhombuses MOPs.

The absolute error of the mean, denoted by AEM(f, g), and the absolute
error of the variance, denoted by AEV (f, g), are given by:

AEM(f, g) = |E(f)− E(g)|, AEV (f, g) = |V (f)− V (g)|, (10)

where E(·) and V (·) stand for expected value and variance of a PDF.
The goodness of fit measures for g4c vs. fX2 , the PDF of N(12, 8) trun-

cated to (2, 22), are displayed in Table 3, hypercube column.
Next, we compute the PDF of X3. After marginalization of X2, we have

g′5(x1, x3) = g2c(x1, x3 − x1), which is not defined on hypercubes. So we
approximate g′5 by g5c(x1, x3) as defined in Eq. (5). After marginalization of
X1, we get g6c(x3), which is a 6-piece, 3-degree MOP approximation of the
PDF of X3 defined on the domain (3, 27). It takes approximately 1.31 sec-
onds to compute g6c(·). The exact marginal distribution of X3 is N(15, 13).
A plot of g6c overlaid on the plot of the PDF of N(15, 13) truncated to
(3, 27) is shown at the left in Figure 4.

The goodness of fit measures for g6c vs. fX3 , the PDF of N(15, 13)
truncated to [3, 27], are displayed in Table 3, hypercube column.

3.3.2. Using Hyper-rhombus MOPs

As in the case of hypercubes, we start with f(·), a 2-piece, 3-degree MOP
approximation of the PDF of N(0, 1). Then g1(x1) = f(x1 − 3) is a MOP
approximation of the PDF of X1, and g2(x1, x2) = f(x2−6−2x1

2 )/2 is a
hyper-rhombus MOP approximation of the conditional PDF of X2|x1. The
marginal PDF of X3 is computed as

g4(x2) =

∫ ∞
−∞

g1(x1) g2(x1, x2) dx1. (11)

It takes approximately 3.44 seconds to do this integral, and g4(·) is computed
as a 4-piece, 7-degree MOP on the domain (0, 24). The exact marginal
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distribution of X2 is N(12, 8). A plot of g4 overlaid on the plot of the PDF
of N(12, 8) truncated to (0, 24) is shown at the right in Figure 3.

The goodness of fit measures for g4 vs. f ′X2
, the PDF of N(12, 8) trun-

cated to [0, 24], are displayed in Table 3, hyper-rhombus column.
Finally, we compute the marginal PDF of X3 as follows:

g6(x3) =

∫ ∞
−∞

g1(x1) g2(x1, x3 − x1) dx1. (12)

It takes approximately 4.98 seconds to do the integration in Eq.(12), and
g6(·) is computed as a 9-piece, 7-degree MOP on the domain (0, 30). The
exact marginal distribution of X3 is N(15, 13). A plot of g6 overlaid on the
plot of the PDF of N(15, 13) truncated to (0, 30) is shown at the right in
Figure 4. The goodness of fit measures for g6 vs. f ′X3

, the PDF of N(15, 13)
truncated to (0, 30), are displayed in Table 3, hyper-rhombus column.

3.3.3. Comparison

We will compare the computed marginals of X2 and X3 in terms of the sizes
of MOPs, time required for computation, and accuracy.

Sizes of MOPs. Consider the sizes of the MOP approximations of the
marginals of X2 and X3 displayed in Table 1.

Size of MOPs Hypercube Hyper-rhombus

Marg. PDF of X2 8-piece 4-piece
g4c vs. g4 3-degree 7-degree

Marg. PDF of X3 6-piece 9-piece
g6c vs. g6 3-degree 7-degree

Table 1: Sizes of the MOP approximations of the marginals of X2 and X3.

For the marginal PDF of X2, the hypercube MOP g4c(·) has more pieces
but fewer degrees than the corresponding MOP g4(·). To see why, g4c(·) is
computed as described in Eq. (7). g1(x1) is a 2-piece, 3-degree MOP and
g2c(x1, x2) is a 6-piece, 3-degree MOP. After multiplication, g1(x1) g2c(x1, x2)
is a 8-piece, 6-degree MOP defined on hypercubes. After integration with re-
spect to d1, the degrees associated with d1 disappear, but none of the pieces
do, resulting in a 8-piece, 3-degree MOP g4c(x2). On the other hand, g4(·)
is defined as in Eq.(11). g1(x1) is a 2-piece, 3-degree MOP, and g2(x1, x2)
is a 2-piece, 3-degree MOP defined on hyper-rhombus. After multiplication,
g1(x1) g2(x1, x2) is a 4-piece, 6-degree MOP defined on hyper-rhombus re-
gions. After integration with respect to x1, the result is a 6-piece, 7-degree
MOP. Two of the six pieces are defined on singleton points (x2 = 18, and
x2 = 22). The reason why the degree increases to 7 is because when inte-
grating a MOP defined on a rhombus, the limits of integration are in terms
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of x2, and since
∫
xn1 dx1 =

xn+1
1
n+1 , the degree of the resulting MOP increases

from 6 to 7.
For the marginal PDF of X3, the hypercube MOP g6c(·) has fewer pieces

and fewer degrees than the corresponding MOP g6(·). To see why, g6c(·) is
computed as described in Eq. (6). g1(x1) is a 2-piece, 3-degree MOP and
g5c(x1, x3) is a 6-piece, 3-degree MOP. After multiplication, g1(x1) g5c(x1, x3)
is a 8-piece, 6-degree MOP defined on hypercubes. After integration with re-
spect to x1, the degrees associated with x1 disappear, and three of the pieces
do, resulting in a 6-piece, 3-degree MOP g4c(x3). Two of the six pieces are
defined on singleton regions (x3 = 9 and 15). On the other hand, g6(·) is
defined as in Eq. (12). g1(x1) is a 2-piece, 3-degree MOP, and g2(x1, x3−x1)
is a 2-piece, 3-degree MOP defined on hyper-rhombus. After multiplication,
g1(x1) g2(x1, x3 − x1) is a 4-piece, 6-degree MOP defined on hyper-rhombus
regions. After integration with respect to x1, the result is a 9-piece, 7-degree
MOP. One of the nine pieces is defined on a singleton point (x3 = 15).

In summary, although mixed-tree hypercube MOPs initially require more
pieces than hyper-rhombus MOPs, after integration, MOPs defined on hy-
percubes tend to lose pieces and lose degrees, whereas MOPs defined on
hyper-rhombuses tend to increase pieces (some of these are defined on lower
dimensional regions), and increase degrees.

Computation Time. Next, consider the times required for the com-
putation of the marginals of X2 and X3 displayed in Table 2. Notice that
the time required is a random variable. We repeated the experiment 10
times under identical conditions for both cases and computed the mean and
standard error (SE) of the mean. The 97.5 percentile t-statistic is 2.25 and
a 95% confidence interval for the mean is mean± 2.25SE.

Table 2: Times required for the computation of the marginals of X2 and
X3.

Mean time in seconds (SE) Hypercube Hyper-rhombus

Marg. PDF of X2 1.42 3.33
g4c vs. g4 (0.01) (0.01)

Marg. PDF of X3 1.35 4.92
g6c vs. g6 (0.009) (0.003)

Integrating a MOP defined on hypercube regions is faster than integrat-
ing a MOP defined on hyper-rhombus regions. For the latter, we have to
first solve linear inequalities and then do the integration where the limits of
integrations are the solutions of the inequalities.

Accuracy. Finally, consider the accuracy of the computed marginals
for X2 and X3 in terms of KL-divergence, maximum absolute deviation,
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absolute error in the mean and absolute error in the variance, shown in
Table 3.

Hyper-rhombus MOPs are more accurate than mixed-tree hypercube
MOPs by two orders of magnitude or more. We can increase accuracy of
mixed-tree hypercube MOPs by increasing # mixed-tree points (up to a
point), but this will increase sizes and computation time. An important
point is that in the case of mixed-tree hypercube MOPs, we have a choice of
accuracy vs. computation time/sizes, which we don’t with hyper-rhombuses.

Table 3: Accuracy of the computed marginals for X2 and X3.

Accuracy Hypercube Hyper-rhombus

Marg. PDF of X2 KL: 0.0082 KL: 0.00002
g4c vs. g4 MAD: 0.0092 MAD: 0.00004

AEM: 0.0 AEM: 0.0
AEV: 1.1653 AEV: 0.0188

Marg. PDF of X3 KL: 0.0480 KL: 0.00003
g6c vs. g6 MAD: 0.0360 MAD: 0.00004

AEM: 0.0 AEM: 0.0
AEV: 2.6735 AEV: 0.0284

4. Re-approximation of MOPs/MTEs

As we saw in the preceding section, in the process of integrating MOPs
using convolutions, we may get pieces defined on lower-dimensional regions,
which have no probabilities associated with them. For example, g6(x3) is a
11-piece, 7-degree MOP. Three of the eleven pieces are defined on singleton
regions, and these pieces have no probabilities associated with them. By
re-approximating MOPs, we can reduce # pieces and degrees (# pieces and
terms for MTEs), which will increase computational efficiency at a small cost
in accuracy. We will describe two methods for re-approximating potentials.
The first method is applicable both for MOPs and MTEs, whilst the second
re-estimates the parameters of the potentials in a different way for MOPs
and for MTEs.

4.1. Re-approximation by Dropping Pieces

A simple method of re-approximation is simply dropping pieces that are
defined on lower-dimensional regions. Since there are no probabilities as-
sociated with such pieces, dropping these pieces causes no additional loss
of accuracy. In some cases, we get pieces that have very low probabili-
ties associated with them. In this case, we can drop such low probability
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pieces. One should make sure that the total probability associated with
the dropped pieces stays below some limit (e.g., 0.05) so that the loss of
accuracy of computation is not much. It is necessary to re-normalize the
potentials after dropping pieces with positive probabilities.

In Sec. 5, we describe some re-approximations of some intermediate func-
tions obtained while solving a sample hybrid Bayesian network using MOPs
and MTEs. Notice that this method cannot be used to lower the degree of
a MOP potential, or the number of exponential terms in a MTE potential.

4.2. Re-approximation of MOPs using LIP with Chebyshev
points

Another method for re-approximating MOP potentials is by using LIPs (La-
grange Interpolating Polynomials) with Chebyshev points.12 To illustrate
this, consider g6(·), the marginal PDF of X3 from the example in Sec-
tion 3.3.2, which is defined on non-singleton intervals (0, 6), (6, 9), (9, 12],
(12, 15), (15, 18], (18, 21), (21, 24), (24, 30). Let’s re-approximate g6(·) using
5 pieces as follows: (0, 6), [6, 12), [12, 18), [18, 24), [24, 30). Currently, we
do not have a theory for the choice of pieces. Our strategy is to use fewer
pieces by merging pieces of the MOP being approximated, and to keep the
sizes of the pieces as equal as possible.

For each interval, we compute the Chebyshev points starting with a
number of points n initially set to a small number. A good starting choice
is n = 4. We compute the 3-degree LIP that passes through these 4-points.
We need to verify that the LIP is non-negative on the interval. If not, we
increase n. If the function being approximated is strictly positive over the
interval, then we are guaranteed to find an interpolating polynomial that
is non-negative for some n. This is because when we increase the number
of Chebyshev points by 1, the maximum error between the LIP and the
polynomial being approximated is reduced by a factor of 2. If the smallest
n that results in a polynomial that is non-negative is too high, we reduce
the width of the interval (i.e., use more pieces) and re-start.

For approximating g6(·), using n = 5 for all five pieces results in a
MOP that is non-negative on all the five pieces. Next we normalize the
resulting 5-piece, 4-degree MOP so the total area under the MOP is 1. Let
g6r(·) denote the 5-piece, 4-degree MOP approximation of g6 found using
the above procedure. The accuracy measures of g6r(·) compared to g6(·), of
g6r compared to f ′X3

, the exact PDF of X3 truncated to (0, 30), and of g6

compared to f ′X3
, the exact PDF of X3 truncated to (0, 30) are shown in

Table 4. The comparison suggests that g6r approximates f ′X3
similarly to

g6, and we conclude that g6r(·) is a good approximation of g6.
The LIP method applies also for two or higher dimensional functions.

There also exists Chebyshev points theory for two-dimensional regions.19

For regions in 3 or higher dimensions, we can use some extensions of the
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Table 4: Accuracy of the approximations of the marginal PDF of X3 using
the LIP method.

Approximations KL MAD AEM AEV

g6r(·) vs. g6(·) 0.00004 0.00003 0.0 0.0013
g6r vs. f ′X3

0.00005 0.00004 0.0 0.0297

g6 vs. f ′X3
0.00003 0.00004 0.0 0.0284

one-dimensional Chebyshev point theory. One problem with using LIP with
Chebyshev points in two or higher dimensions is non-negativity. It may be
necessary to increase the degree of the MOP potential to a very high number
making computations numerically unstable. In such cases, we can resort to
the idea behind mixed-tree approximations, and use a one-dimensional LIP
method with Chebyshev points to approximate a two or higher dimensional
function. In Sec. 5, we describe a re-approximation of a MOP (using a
one-dimensional LIP method with Chebyshev points) that is obtained as an
intermediate function while solving a sample hybrid BN using MOPs defined
on hypercubes.

4.3. Re-approximation of MTEs Using Numeric Least Squares

We discuss how to re-approximate MTEs by reducing the number of pieces
and exponential terms. The idea behind the re-approximation method is
similar to the one used for MOPs, but using a different mathematical tool.
In this case, we rely on the Levenberg-Marquardt (LM) algorithm,20,21 avail-
able via the command FindFit provided by Mathematica R©. The LM algo-
rithm is for minimizing the sum of the squares of the deviations of the fitted
model from the exact one. It is controlled by a so-called damping parame-
ter, λ, which is automatically adjusted in each iteration. If the reduction in
the sum of squares is fast, λ is set to a small value and the LM algorithm
becomes similar to the Gauss-Newton method. Otherwise, λ is set to a high
value, and the LM algorithm becomes closer to a gradient descent method.
Selecting appropriate starting values for the set of parameters to estimate
is an important issue in order to avoid local optima. Since the MTE ap-
proximation to the Gaussian distribution is quite accurate, we will use the
parameter estimates of this approximation as starting values for the LM
algorithm. The steps to re-approximate an MTE density f for a given par-
tition of the domain, and a fixed number of terms are detailed in Algorithm
1.

Note that this procedure is flexible. For example, if the shape of the
function to re-approximate is not too irregular (for instance, if it has smooth
parts), we can set a different number of terms in different regions, with fewer
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NLS re-approximation(f ,n,P)
Input: A univariate MTE f , an integer n > 0 and a partition P of

the support of f .
Output: A re-approximation of f with n exponential terms in each

element of P.
begin

Let µ and σ be the mean and standard deviation obtained from f .
Let g0 be an MTE approximation of a Normal density with
parameters µ and σ.22

Let S1, . . . , Sm be the elements of P.
for i← 1 to m do

Select a sample of equally distributed points xj ∈ Si.
Find the n-term MTE gi defined on Si that best fits the
points {xj , f(xj)} according to the LM algorithm.

end
Define g(x) as

g(x) = gi(x) if x ∈ Si, i = 1, . . . , n.

Normalize g(x) so that∫
∪iSi

g(x)dx =

∫
∪iSi

f(x)dx

return g.
end

Algorithm 1: An algorithm for re-approximating MTEs using the LM
method.

terms in the more uniform ones. Similar to MOPs, there is not yet a formal
method to divide the domain. We followed the strategy of splitting the do-
main if the shape of the function differs from Gaussian shape. This is also
related to a successful selection of the starting points, as it requires that the
density in the piece being re-approximated somehow resembles a Gaussian
shape, which is not always the case. Another possible strategy for splitting
the domain, already explored in the literature,23 consists of choosing points
corresponding to extremes and inflection points. Such heuristic is appro-
priate when the number of exponential terms is low, but when the number
of exponential terms is allowed to be higher, splitting by those points my
be useless, as the MTE function is able to accurately represent changes in
inflection and extremes.13

In the case of re-approximating 2 or higher dimensional potentials, we use
the same procedure as MOPs, i.e. using mixed trees and fixing one dimension
whilst re-approximating the function for the remaining dimensions. In the
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case of MTEs this is not difficult, since this is the approach selected to define
the conditional distributions (parent variables can only affect the partition
of the domain, not the expression of the density itself).

Note that the re-approximation technique can lead to very accurate so-
lutions, in which the complexity reduction is minimal, or to very smooth
approximations, but with a big decrease in the complexity. It depends on
the number of pieces selected and the number of exponential terms included
(or degree of the polynomial in the MOP case). Finding a tradeoff between
these two extremes is still an open question. This issue has been addressed
from the point of view of learning, when a data sample is available,24 propos-
ing a heuristic based on finding the configuration that maximizes the Bayes
information criterion (BIC) score of the model.

4.4. Experimental evaluation

In order to evaluate how the complexity of inference grows and how our
proposed solution scales up, we have conducted a series of experiments over
networks of increasing complexity as depicted in Figure 5. The experiments
consisted of computing the marginal for Y1 in network (a) and Y2 in (b). The
initial distributions in the networks are such that X1 ∼ N (0, 1), Xi|xi−1 ∼
N (xi−1, 1), i = 2, 3, Y1 = X1 + X2 and Y2 = Y1 + X3. Therefore, we have
deterministic conditionals for Y1, Y2.

X1 X2

Y1

(a)

X1 X2

Y1

X3

Y2

(b)

Figure 5: Networks used in the experimental evaluation.

We attempted to evaluate each network using the next three schemes:

• Hyper-rhombus MOPs. In this case, no approximations are carried
out. Only pieces that correspond to singletons (and that, therefore,
have null probability allocated) are removed.

• Hypercube MOPs with 3 pieces per variable. In this approach, when
the hypercube is lost, re-approximation using LIPs with Chebyshev
points is employed.

17



• Hypercube MTEs with 3 pieces per variable. Similarly, when the
hypercube condition is lost, re-approximation using numerical least
squares is applied.

Table 5: Results of the experiments carried out over the networks in Figure 5.
The exact mean and variance for network (a) are µ = 0, σ2 = 5.76, while
for (b) these values are µ = 0, σ2 = 13.9995. Note that Mathematica R© is
unable to compute the KL divergence for the estimated MTEs.

Net Model Domain µ̂ σ̂2 KL MAD AEM AEV Time

(a) MOP Hyper-cube 0 5.44 0.073458 0.0806 0 0.3208 412.84
(a) MOP Hyper-rhombus 0 4.87 0.013378 0.01651 0 1.10387 47.47
(b) MOP Hyper-rhombus 0 13.65 0.00041 0.00069 0 0.348 672.44
(a) MTE Hyper-cube -0.0008 5.1296 −− 0.1049 0.000822 0.638831 1181.82
(b) MTE Hyper-cube -0.00158 16.07 −− 0.04883 0.00158 2.071 3273.65

The results of the experiments are shown in Table 5, where for each es-
timated model we have measured the mean and variance (µ̂, σ̂2), maximum
absolute deviation (MAD), absolute error in the mean (AEM), absolute
error in the variance (AEV ) and computing time. Note that, even though
MOPs with hyper-rhombuses do not carry out approximations during infer-
ence, it underestimates the variance due to the fact that, in this experiment,
we consider Gaussian variables, whose domain is infinite, while MOPs and
MTEs have finite domain by definition.

In what concerns the growth of the complexity of inference, computing
time of MOPs with hyper-rhombuses (i.e. with no approximation) is over
10 times higher in network (b) with respect to network (a). Note also that
hyper-cube MOP for network (a) is much more costly (close to 10 times
more) than MOP hyper-rhmobuses. It indicates that the time required to
interpolate the approximate densities using LIP is not negligible. Regarding
MTEs, the added complexity due to the inclusion of X3 and Y2 in network
(b) causes the execution time to be close to 3 times higher than in network
(a). Adding an extra pair of variables X4, Y3 makes the problem intractable
with any of the methods.

5. Case Study: Solving a PERT Hybrid Bayesian
Network

We will illustrate the inference process in hybrid BNs using a stochastic
PERT network.15 This problem has previously been addressed using BNs,25

but the approach we propose here is more flexible and general, as it al-
lows to compute the full distribution of the variables of interest, and not
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A1

A3

A5

FS

A4A2

Figure 6: A PERT network with five activities

only their expectations and variances. PERT stands for Program Evalua-
tion and Review Technique, and is one of the commonly used project man-
agement techniques.26 PERT networks are directed acyclic networks where
the nodes represent duration of activities and the arcs represent precedence
constraints in the sense that before we can start any activity, all the parent
activities have to be completed. The term stochastic refers to the fact that
the duration of activities are modeled as continuous random variables. A
previous proposal on using hybrid BNs for project scheduling under uncer-
tainty is based on adapting the so-called critical path method to incorporate
uncertainty, and representing the resulting model as a hybrid BN that is af-
terwards solved using dynamic discretization.27 Our solution sidesteps the
discretization problem by directly employing MTEs and MOPs.

Figure 6 shows a PERT network with 5 activities A1, . . . , A5. Nodes
S and F represent the start and finish times of the project. The links
among activities mean that an activity cannot be started until after all
its predecessors have been completed. Assume we are informed that the
durations of A1 and A3 are positively correlated, and the same is true with
A2 and A4. Then, this PERT network can be transformed into a BN as
follows.

Let Di and Ci denote the duration and the completion time of the ac-
tivity i, respectively. The activity nodes in the PERT network are replaced
with activity completion times in the BN. Next, activity durations are added
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D1

D2

D5

D4

D3 C3

C23

C3 = D1 + D3

C5 = D1 + D5

C4 = C23 + D4

C23 = max{D2, C3}

F = max{C4, C5}

D1 ~ N(3, 12)

D5 ~ Exp(µ = 25)

D2 ~ N(14, 32)

D3 ~ N(6 + 2d1, 22)

D4 ~ N(1 + d2, 42)

C5

C4

F

D1

A B

D2

D5

D4

D3 C3

C23

C3 = D1 + D3

C5 = D1 + D5

C4 = C23 + D4

F = C4 if B = b
  = C5 if B = nb

C23 = D2 if A = a
     = C3 if A = na

D1 ~ N(3, 12)

D5 ~ Exp(µ = 25)

D2 ~ N(14, 32)

D3 ~ N(6 + 2d1, 22)

D4 ~ N(7 + d2, 42)

C5

C4

F

P(a) = 1 if D2 ≥ C3

P(b) = 1 if C4 ≥ C5

Figure 7: A BN (left) and a hybrid BN (right) representing the PERT
network in Figure 6.

with a link from Di to Ci, so that each activity will be represented by two
nodes, its duration Di and its completion time Ci. Notice that the comple-
tion times of the activities which do not have any predecessors will be the
same as their durations. Hence, activities A1 and A2 will be represented
just by their durations, D1 and D2. As A3 and A1 have positively corre-
lated durations, a link will connect D1 and D3 in the BN. For the same
reason, another link will connect D2 and D4. The completion time of A3

is C3 = D1 + D3. Let C23 = max{D2, C3} denote the completion time of
activities A2 and A3. The completion time of activity A5 is C5 = D1 +D5,
and for activity A4, it is C4 = C23 +D4.

We assume that the project start time is zero and each activity is started
as soon as all the preceding activities are completed. Accordingly, F repre-
sents the completion time of the project, which is the maximum of C5 and
C4. The resulting PERT BN is given in Figure 7 (left).

Notice that the conditionals for the variables C3, C23, C4, C5 and F are
deterministic, in the sense that their conditional distributions given their
parents have zero variances. On the other hand, variables D1, . . . , D5 are
continuous random variables, and their corresponding conditional distribu-
tions are depicted next to their corresponding nodes in Figure 7. The pa-
rameters µ (mean) and σ2 (variance) of the Normal distribution are in units
of days and days2, respectively. The parameter µ (mean) of the exponential
distribution is in units of days.

Using the re-approximation techniques described in Section 4, we were
able to solve the PERT hybrid Bayesian network using MOPs defined on
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hypercubes and using MTEs. Using MOPs on hypercubes, evaluation of the
entire Mathematica notebook (all computations including re-approximation)
takes about 169.15 seconds (2.82 minutes). Using MTEs, evaluation of the
entire Mathematica notebook (all computations including re-approximation)
takes about 142.65 seconds (about 2.4 minutes). Details of all computations
including re-approximations are given in the next sub-sections. Without
re-approximations of some of the intermediate functions, we get a “lack of
memory” warning message, even though the available memory was 16GBs.
A reason for this is as follows. During the solution of the PERT hybrid
Bayesian network problem, we get an intermediate function f4 for {C3, C5}
that is a 23-piece, 8-degree MOP, and another intermediate function f7 for
{C3, C4} that is a 17-piece, 7-degree MOP. In the process of marginalizing
C3, we have to multiply f4 and f7, and this results in a MOP that has up
to 391 pieces and 17-degrees, and Mathematica runs out of memory during
the marginalization process.

5.1. Solution Using Hypercube MOPs

We start with a 2-piece, 3-degree MOP f1(·) as an approximation of the
PDF of the standard normal. Using f1(·), we define a 2-piece, 3-degree
MOP approximation of the PDFs of D1 and D2. Using mixed trees, we
define a 6-piece, 3-degree MOP of the conditional PDFs of D3 and D4. We
used a 2-piece, 3-degree MOP approximation of the Exp(25) density for D5.

The initial potentials in the PERT hybrid BN in the right panel of Fig-
ure 7 are summarized in Table 6.

Table 6: Summary of the initial potentials in the PERT hybrid BN. Type
CD means conditional density and DC stands for deterministic conditional.

Variable Potential Type Variable Potential Type
D1 fD1

CD A pAa(d2, c3) = P (A = a|d2, c3) CD
pAna(d2, c3) = P (A = na|d2, c3)

D2 fD2 CD C3 fC3(d1, d3, c3) = δ(c3 − d1 − d3) DC
D3 fD3

CD C4 fC4
(c23, c4, d4) = δ(c4 − c23 − d4) DC

D4 fD4
CD C5 fC5

(d1, d5, c5) = δ(c5 − d1 − d5) DC
D5 fD5

CD C23 fC23a
(d2, c3, c23) = δ(c23 − d2) if A = a DC

fC23na
(d2, c3, c23) = δ(c23 − c3) if A = na

F fFb(c4, c5, f) = δ(f − c4) if B = b DC
fFnb(c4, c5, f) = δ(f − c5) if B = nb

B pBb(c4, c5) = P (B = b|c4, c5) CD
pBnb(c4, c5) = P (B = nb|c4, c5)

The goal is to compute the marginal density for F . To that end, we
choose an elimination order of the remaining variables in the network, namely
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D5, D3, D1, D4, D2, C23, A,C3, C4, C5, and B. Different elimination orders
can influence the complexity of the inference process. A discussion on the
selection of the elimination order in hybrid BNs can be found in the related
literature.9

Table 7: Potentials computed during the elimination of the variables in the
PERT hybrid BN. The first column indicates the variables being eliminated,
and the second contains the potentials obtained after eliminating them.

Variable Potential computed

D5 f2(d1, c5) =
∫∞
−∞ fD5(d5) fC5(d1, d5, c5) dd5 = fD5(c5 − d1)

D3 f2(d1, c5) =
∫∞
−∞ fD5(d5) fC5(d1, d5, c5) dd5 = fD5(c5 − d1)

D1 f4(c3, c5) =
∫∞
−∞ fD1(d1) f2c(d1, c5) f3c(d1, c3)dd1

D4 f5(c23, d2, c4) =
∫∞
−∞ fD4(d2, d4) fC4(c23, c4, d4) dd4 = fD4(d2, c4 − c23)

D2 f6a(c3, c23, c4) =
∫∞
−∞ fD2(d2) fC23a(d2, c3, c23) f5c(c23, d2, c4) pAa(d2, c3) dd2

= fD2(c23) f5c(c23, c23, c4) pAa(c23, c3)
f6na(c3, c23, c4) = fC23na(d2, c3, c23)

∫∞
−∞ fD2(d2) f5c(c23, d2, c4) pAna(d2, c3) dd2

= δ(c23 − c3)
∫ c3
−∞ fD2(d2) f5c(c23, d2, c4) dd2

C23 f7a(c3, c4) =
∫∞
−∞ f6a(c3, c23, c4) dc23

=
∫∞
−∞ fD2(c23) f5(c23, c23, c4) pAa(c23, c3) dc23

=
∫∞
c3
fD2(c23) f5(c23, c23, c4) dc23

f7na(c3, c4) =
∫∞
−∞ f6na(c3, c23, c4) dc23 =

∫ c3
−∞ fD2(d2) f5(c3, d2, c4) dd2

A f7(c3, c4) = f7a(c3, c4) + f7na(c3, c4)

C3 f8(c4, c5) =
∫∞
−∞ f4r(c3, c5) f7r(c3, c4) dc3

C4 f9b(c5, f) =
∫∞
−∞ pBb(c4, c5) fFb(c4, c5, f) f8(c4, c5) dc4

=
∫∞
−∞ pBb(c4, c5) δ(f − c4) f8(c4, c5) dc4

= pBb(f, c5) f8(f, c5)
f9nb(c5, f) =

∫∞
−∞ fFnb(c4, c5, f) pBnb(c4, c5) f8(c4, c5) dc4

= δ(f − c5)
∫ c5
−∞ f8(c4, c5) dc4

C5 f10b(f) =
∫∞
−∞ f9b(c5, f) dc5 =

∫ f
−∞ f8(f, c5) dc5

f10nb(f) =
∫∞
−∞ f9nb(c5, f) dc5 =

∫ f
−∞ f8(c4, f) dc4

B f11(f) = f10b(f) + f10nb(f)

The potentials obtained after eliminating each variable are shown in
Table 7. The deletion of D5 is carried out by computing f2(d1, c5). Notice
that f2 is not defined on hypercubes. So we approximate f2 by f2c by
using a 3-point mixed tree approximation. Next we delete D3 by computing
f3(d1, c3). Notice that f3 is not defined on hypercubes. So we approximate
f3 by f3c by using a 3-point mixed tree approximation.

Next we delete D1 by computing f4(c3, c5). It is computed as a 23-
piece, 8-degree MOP, and takes 5.05 seconds to be calculated. Next, we
re-approximate f4 by f4r, as follows. 9 of the 23 pieces are defined on
1-dimensional regions. Thus, we can safely drop these pieces resulting in
a 14-piece MOP. Further examination of these 14 pieces reveals that 6 of
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Figure 8: 3-D plots of f4 (left) and f4r (right).

the pieces have very small probabilities (0.000017 to 0.026) associated with
them. The total probability associated with these 6 pieces is ≈ 0.044. After
we drop these 6 pieces and re-normalize the potential, we obtain a 8-piece
MOP f4r(c3, c5) that can be used in place of f4(c3, c5). Figure 8 shows 3-D
plots of f4 and f4r.

Next, we delete D4 by computing f5(c23, d2, c4), which is not defined on
hypercubes. As before, we re-define f5 by f5c, which is defined on a 3-point
mixed tree hypercube.

Next, the deletion ofD2 yields the functions f6a(c3, c23, c4) and f6na(c3, c23, c4).
Afterwards, we marginalize out C23 obtaining f7a(c3, c4) and f7na(c3, c4).

Next we delete A by computing f7(c3, c4). Potential f7 is computed
as a 17-piece, 7-degree MOP and it requires 16.82 seconds to be computed.
Given the large number of pieces, which may lead to unmanageable functions
after a new multiplication, we re-approximate f7 by f7r, an 8-piece, 7-degree
MOP using LIPs with Chebyshev points as follows.

f7 is computed on the domain (3 < c3 < 27)× (1.125 < c5 < 137.5). We
will approximate this potential by a 8-piece, 7-degree MOP f7r as follows.
Consider a 4-way partition of (3 < c3 < 27) as follows: (3, 11), [11, 17),
[17, 23), and [23, 27). Consider the region 3 < c3 < 11. We approximate
f7(7, c4) (a 1-dimensional function, c3 = 7 is the mid-point of the interval)
using LIP with Chebyshev points as discussed earlier by a 2-piece, 7-degree
MOP and use this approximation for the region (3 < c3 < 11)× (11 < c5 <
59). By doing this for all four pieces of the partition of the domain of C3, we
obtain a 8-piece, 7-degree MOP approximation f7r of the two-dimensional
MOP f7. Figure 9 shows 3-D plots of f7 and f7r.

Next, after elimination of C3, f8(c4, c5) is computed as a 53-piece, 10-
degree MOP in 26.01 seconds. The elimination of C4 consists of computing
f9b(c5, f) and f9nb(c5, f). The elimination of C5 takes 108.19 seconds, re-
quired to calculate f10b(f) and f10nb(f).

Finally, by eliminating B, we obtain f11(f), which is a 22-piece, 11-
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Figure 9: 3-D plots of f7 (left) and f7r (right).
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Figure 10: The MOP approximation f11 of the marginal of F .

degree MOP representation of the PDF of F . Using f11, we compute the
expectation and standard deviation of F : µF = 43.44 days and σF = 15.71
days, respectively. A plot of f11 is shown in Figure 10. Evaluation of the
entire Mathematica notebook (all computations including re-approximation)
takes about 169.15 seconds (2.8 minutes).

5.2. Solution using MTEs

The inference process to solve the PERT network using MTEs is exactly
the same as in the previous section using MOPs, but using MTE potentials
instead. Therefore, we will only describe here the differences about the sizes
of the potentials and the computations times, as well as the result obtained.

In Section 3.1, we explained how to avoid the problem of obtaining non-
MTE potentials when doing the convolution operation. However, there is
another problem when dealing with the max operations involved in the net-
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Table 8: Parameter values of the MTE approximation to the Gaussian dis-
tribution.

ai 73750.9 -235407 146016 146855 -140195 8980.02
bi -0.045451 -0.027365 -0.006084 -0.006084 0.013520 0.065411

work, in particular when computing f7a, f7na, f10b, and f10nb. In all those
cases, because the probability potentials for discrete variables A and B are
not defined on hypercubes, one of the integration limits is a variable, which
yields a non-MTE potential. As an example illustrating this issue consider
an MTE potential as follows:

f(x, y) = 1 + e3x+2y if 3 ≤ x ≤ 5, 1 ≤ y ≤ 5, and x ≥ y. (13)

Integrating out y we obtain∫ x

1
f(x, y)dy = x− 1 +

1

2
e5x − 1

2
e3x+2, if 3 ≤ x ≤ 5, (14)

which is not an MTE function, as it contains a polynomial term. In this
case, the problem is due to the constant term a0 = 1 in f(x, y), and it can
be avoided by not including it in Definition 1 of an MTE function. Using
this version of MTEs, the PERT network can be solved within the MTE
class. Thus, instead of using the original definition, for solving the PERT
network we use

f(z) =

m∑
i=1

ai exp
{

bT
i z
}
, (15)

in all the MTE potentials involved in the solution.
So, we start with a 1-piece, 6-terms (without a constant term) MTE,

f1(·), as an approximation of the PDF of the standard normal PDF on the
domain [−2.5, 2.5] (see the parameters in Table 8), obtained using the LM
algorithm (see Section 4.3) and using as initial values the ones obtained by
Langseth et al.22 in their approximation of the PDF of the standard normal
density. Using f1(·), we define a 1-piece, 6-terms MTE approximation of the
PDF of D1 and D2. Using mixed trees, we define a 2-piece, 6-terms MTE
approximation of the conditional PDFs of D3 and D4. Since the PDF of the
exponential distribution is already a 1-piece, 1-term MTE, no approximation
is needed for the PDF of D5.

In order to compute the marginal for F , we use the same elimination
order as for the case of MOPs. After the elimination of D5, D3, and D1,
we compute a 11-piece, 6-terms MTE f4(c3, c5) in 4.54 seconds. We re-
approximate f4 as follows.

One of the 11 pieces is a singleton point, which due to the continuous
nature of the distribution can be excluded. Three of the remaining pieces
have very low probabilities (0.00005 to 0.019) with a total mass of 0.02594.
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After dropping these pieces and re-normalizing, the density is a 4-piece MTE
f4s(c3, c5) that can be used in place of f4(c3, c5). Figure 11 shows f4 and
f4s.

Figure 11: MTEs corresponding to f4 (left) and f4s (right).

After further elimination of D4, D2, C23 and A, we compute a 16-piece,
72-terms MTE f7(c3, c4) in 31.96 seconds, which we re-approximate as a
7-piece potential f7s, with 6 terms for 5 of the pieces and 2 terms for the
remaining 3 pieces.

After further elimination of C3, we obtain a 20-piece, and between 4
and 10 terms MTE f8(c4, c5) in 29.21 seconds. Then we delete C4, and
C5 (need 59.14 seconds), and B, obtaining a 5-piece, and between 2 and
38 terms MTE approximation of the marginal PDF of F . A graph of it is
displayed in Figure 12. We compute the expectation and standard deviation:
E(F ) = 43.79 days and σF = 16.17 days, respectively. The evaluation of the
entire Mathematica notebook (all computations) takes about 142.65 seconds
(about 2.4 minutes).

5.3. Solution Using Simulation

In order to have a clearer idea of the true marginal for F , we computed an
estimate of it by simulating a sample of size n = 1, 000, 000 of D1, . . . , D5

using plain Monte Carlo simulation and then computing the corresponding
values of C3, C23, C4, C5 and F for each record in the sample, according to
their definition. Then, we fitted a Gaussian kernel density to the values
obtained for F . The result is displayed in Figure 13. In this case, point
estimates of the expectation and standard deviation of F are Ê(F ) = 36.19
and σ̂F = 20.28 days, respectively.

We have also computed confidence intervals for both parameters, using

the statistic X̄−µ
s/
√
n
∼ t(n − 1) for the mean and the statistic (n−1)S2

σ2 ∼
χ2(n− 1) for the standard deviation. The obtained 95% confidence interval
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Figure 12: The MTE approximation of the marginal of F .
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for the mean of F was (36.15, 36.23), whilst for the standard deviation the
result was (20.25, 20.31).

Notice that we are able to compute the solution using Monte Carlo sim-
ulation just because in this example no observed variables are considered.
If some of the variables were observed, then the Monte Carlo approxima-
tion may not converge. As an illustration, consider a piece of a Bayesian
network with three continuous variables A,B and C, where C = A+B, i.e.
C has a deterministic conditional, and A and B take values on the interval
(0, 1). Assume that C is observed to be equal to the value C = 0.5. In this
scenario, it is likely that many of the configurations generated during the
Monte Carlo sampling are finally discarded because they are incompatible
with the observation. For instance, if we have sampled a value A = 0.7 then
any value sampled for B will be incompatible with the observation C = 0.5,
as A+B will be greater than 0.5 with total certainty.

Unlike Monte Carlo approximations, the solution we propose in this
paper is not affected by evidence.

6. Summary and Conclusions

We have described some practical issues in solving hybrid BNs that include
deterministic conditionals using MTEs and MOPs. As an illustration, we
have solved a PERT hybrid BN consisting of 2 discrete and 10 continuous
variables, 5 of which have linear deterministic conditionals.

One key observation is that in the process of solving the PERT hybrid
BN, some of the intermediate potentials have a large number of pieces, some
of which are defined on lower dimensions and which have no useful informa-
tion. One solution to this is to re-approximate these potentials with a smaller
number of pieces and fewer degrees/terms. In the case of MOPs/MTEs, this
can be done by dropping pieces on lower-dimensional regions (that have no
probabilities) or pieces that have very small probabilities. In the case of
MOPs, this can also be done using LIPs with Chebyshev points. In the case
of MTEs, this can be done using the LM algorithm.

Some limitations of our methods are as follows. Currently, doing the
re-approximations needs manual interventions to determine the number of
pieces, the split points defining the pieces, and the number of terms in the
case of MTEs. More work needs to be done in making these judgments.

We plan to solve the PERT hybrid BN using MOPs defined on hyper-
rhombuses to keep the number of pieces to a minimum, and compare the
running time and accuracy with the corresponding results using hypercubes.
Shenoy12 describes the use of LIPs with Chebyshev points for approximat-
ing univariate and bivariate functions by MOPs. However, more work needs
to be done in re-approximating high-dimensional joint and conditional func-
tions by MOP using LIPs with Chebyshev points.
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Figure 13: A Kernel approximation of the marginal PDF of F .
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Proceedings of the 8th Workshop on Uncertainty Processing (WUPES-
09). University of Economics, Prague. 2009. pp. 269–283.

16. Cobb BR, Rumı́ R, Salmerón A. Modeling conditional distributions of
continuous variables in Bayesian networks. Lect Comp Sci 2005;3646:36–
45.

17. Langseth H, Nielsen TD, Rumı́ R, Salmerón A. Maximum likelihood
learning of conditional MTE distributions. ECSQARU’09. Lect Notes
Artif Intell 5590 2009; pp. 240–251.

18. Moral S, Rumı́ R, Salmerón A. Approximating conditional MTE distri-
butions by means of mixed trees. ECSQARU’03. Lect Notes Artif Intell
2711 2003; pp. 173–183.

19. Xu Y. Lagrange interpolation on Chebyshev points of two variables. J
Approx Theory 1996;87:220–238.

20. Levenberg K. A method for the solution of certain non-linear problems
in least squares. Q Appl Math 1944;2:164–168.

21. Marquardt D. An algorithm for least-squares estimation of nonlinear
parameters, SIAM J Appl Math 1963;11:431–441.

22. Langseth H, Nielsen TD, Rumı́ R, Salmerón A. Parameter estimation
and model selection for mixtures of truncated exponentials. Int J Approx
Reason 2010;51:485–498.

23. Rumı́ R, Salmerón A, Moral S. Estimating mixtures of truncated expo-
nentials in hybrid Bayesian network. Test 2006;15:397–421.

31
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