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INTRODUCTION. 

The purpose of this paper is to give the 

historical development of the number concept in 

so far as material is available in the library 

of the University of Kansas. The development of 

the different numbers is taken up separately and 

chronologically. They have been taken up in the 

following order: 
Positive Integers. 
Fractions. 
Negative Integers. 
Irrational Numbers. 
Complex Numbers. 
Transcendental Numbers. 
Transfinite Numbers. 
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The history of primitive Aryan numbers has been 

lost, but those who have made a study of lower races of 

today have formed a theoretical history. No tribes with­

out a concept of number have been found. In Australia 

are those that count only as far as 2, and among the low 

tribes of Brazil are some that do not count beyond 2 or 

3.* 

The concept of unity seems to be readily grasped by 

the primitive mind. When one object is distinguished 

from another they have the idea of duality. Many of the 

low tribes have not counted beyond two. The word for "one" 

may be expressed by their word for earth or moon, "two" 

by ear or wing. Numbers beyond two are denoted by their 

word for many. In acquiring this limited concept of num­

ber the savage may make no use of a practical method of 

numeration. If counting is continued practical means are 

used. That is, the number of things in a group is repre­

sented by the number of things in another group. The 

most natural counters are the fingers, for they are al­

ways accessible and familiar to every one. As the count­

ing is continued the word used for 5 is generally their 

*-Tylor, page 242.. 
** Tylor, page 252.-
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word for "hand", for 10 "two hands", for 15 "foot" and 

for 20 "feet and hands".* The use of these words for 

the numerals shows that the fingers and toes were used 

as counters. A great variety of other practical meth­

ods of numeration such as sticks, pebbles, shells, and 

knots have been used. When practical methods of count­

ing are adopted there is an advance so that complete 

number systems may be developed. Different systems of 

finger counting have been developed to such an extent 

that all numbers from 1 to 100,000 could be expressed. 

The practice of indicating numbers on the fingers was 

common among the ancient Egyptians, Babylonians, Greeks 

and Romans. The Chinese have a well developed sys­

tem of finger counting. Finger symbolism is commonly 

used in bargaining in eastern countries of to-day. 

Finger counting has been found in all different 

parts of the world. This shows that there must have 

been independent methods of mental development. The 

child in learning to count makes use of his fingers. 

He is thus reproducing the mental development of the 

race. 

After the concept of number has been developed 

begins the formation of^numeral words. Preceding the 

* Conant, page 55. 
** Richardson, American Mathematical Monthly, Vol.23 

page 7. 



—4— 

word numerals are the sign words. The words for numer­

als are often a description of the gesture. 

Humboldt says, "7/hen 5 is expressed by 1 hand1 this 

is the same as when 2 is expressed by 'wing1. At the 

root of all numbers are such metaphors as these, though 
* 

they can not always be traced." 

In the languages of Europe all traces of the crigin 

of number words seems to have disappeared. The words 

have been made conventional by allowing the descriptive 

meaning to disappear. 

Among some tribes of Australia fixed names are giv­

en to the children in order of their age. This method 
* ** 

is also used by the Malays and the Sioux Indians. 

Tylor gives an example of a child using the names of the 

months for counting. The days of the week could have 

been used just as well. Any series of names arranged in 

order can be used in counting. Sometimes distinct numer­

als are found for various classes of words. This var­

iation in numerals is found in many places, but more com­

monly among the Indians of British Columbia. It is also 

used by people as enlightened as the Japanese. 

In counting there must be a certain order, and words 

* Tylor, Vol. 1, page 252. 
** Tylor, Vol. 1, page 254. 
*** Tylor, Vol. 1, page 258. 
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or symbols for each successive total. If the count­

ing is to be continued to any extent some base must be 

established, for we can see at once the difficulty 

there v/ould be in remembering so many words in their pro­

per order, and the symbols for these words^ 

The numbers used most often as bases are 5, 10, and 

20. The direct numeral combination is begun after the 

base is passed, as 5 and 1 or 10 and 1. Exceptions to 

this method are noticed in the English where direct meth­

od is not used before we reach 21, and in the German be­

fore 101. When the smaller number precedes, it general­

ly means multiplication. In the development of. a number 

system the idea of grouping must be understood and the 

fundamental principles of addition and multiplication. 

Subtraction is sometimes used in place of addition. This 

is found among Indians of British Columbia.* 

Peacock, writing in 1847, says that the numerical 

languages of the Indians in the central part of North 

America are quite complete, and most of them are in the 

decimal scale. The Algonquins had simple terms for 100 

and 1000. The Hurons although speaking a most rude lan­

guage had numerical scales sufficiently large and simple 

words for 10, 100, and 1000. The Iroquois also had a 

sufficiently complete system. The decimal scale was much 

* Conant, page 46. 



-6-

less common, in South America. The systems were not so 

perfect, rarely extending beyond 100, and frequently lim­

ited to small numbers. The names for the numbers that 

are compounded are often very long and complex. Great 

complexity of names for numbers is a very frequent occur­

ence among low tribes when their systems Eire at all exten­

sive. The Peruvians have a very complete and extensive 

decimal system. Other tribes have borrowed from them the 
* 

simple words for higher numerals. 

£he vigesimal system was found in the northern and 

western parts of North America. The Maya of Yucatan 

have a pure vigesimal system. The Aztecs who have a 

well developed system, make use of the quinary to 2o, then 
1. 

the vigesimal. Among the tribes of western South Amer-

2 
ica the vigesimal is used. 

The tendency of the quinary system is the estab­

lishment of a higher base, the quinary element becoming 

subordinate. This system has been found in all parts of 

• the world. One of the purest examples of quinary num­

eration is that from the Betoya dialects of South Amer-
3. 

ica. The reckoning is entirely by fives. 

* Encyclopedia of Pure Mathematics,page 379 
** Conant, page 200 
*** Conant, page 200 
1. Conant, page 201. 
2. Conant, page 206. 
3. Conant, page 57. 
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The binary system is found among many 6f the tribes 
* 

of Australia and South America. This scale may also be 

considered natural if we think of the binary combinations 

of the body. The adoption of this scale would require a 

rather complete knowledge of the classification of num­

bers. When this system is found among primitive people 

there is no extensive development. With a base as small 

as this it would require too many names and places to ex­

press large numbers. Leibnitz (1646-1716) developed a 

complete binary system and made efforts to have it adopt-

ed. 

Quaternary and ternary scales are not as often used 

as the binary. Indians of British Columbia have used these 

scales. There seems to be no record of systems using 6, 

7,8, or 9 as a base, although traces of them have been 

found in some systems. There would be no natural reason 

for using such bases. 

The primitive people of to—day all make use of the 

fingers in counting, and some number is used as a base, 

most generally 5,10, or 20. Where the systems are exten­

sive there are distinct words for 10,100, etc. 

The methods used in writing numbers for 10,100, and 

1000 in the Egyptian and Phoenician earliest known writ­

ings show they used- the decimal idea.^* 

* Conant, page 106 
** Conant, page 102 
*** Conant, page 112 
1. Gow,p.43 
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The Roman notation is based on the scale of 5. The 

principles of subtraction and addition were used in writ 

ing. Simple strokes were probably first used for symbol 

Then for 10 they began the use of X • The symbol for 

5 would be half of that for 10, V or A • Noticing that 

these symbols represent letters of the alphabet they ar-
* 

ranged to use the letters as symbols of the numbers. 

The first letter of the numeral adjective was used 

to represent the number by the Greeks. These are known 

as the Herodianic signs. Later the Greeks used the 24 

letters of the alphabet and 3 antique letters to repre­

sent their numbers. The numbers from 1 to 9 were repre 

sented by the first 9 letters, tens were represented by 

the following 9 letters, and then the hundreds by the 

other 9. Although they made use of the decimal nota­

tion they did not recognize the importance of place 

value and the use of zero. 

The Babylonian notation shows that they used the 

decimal scale,making use of the principles of addition 

and multiplication. They also used the sexagesimal sys­

tem. At first the Babylonians reckoned the year as 360 

days. This led to the division of the circle into 360 

degrees. They were probably familiar with the fact that 

* Brooks,page 141 
** Ball,page 127. 
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the radius can be used as a chord six times, and each 

of these chords would subtend an arc of 60°. As subdi­

visions of the degree were made it was divided into 60. 

This theory is given by Cantor with regard to the adop-

tion of this system. They made use of place value for 

1.4 represents 64. The 1 stands for a unit of the sec­

ond order, because of its position with respect to 4. 

Their v/ritings do not show that they used zero for no 

number is written where they needed to use zero. 

Among the Hindoos there is no trace of finger count-
** 

ing like that of the Greeks or Romans. Not until the 

third century B.C. do numerals appear in any inscrip-
>** 

tions of the Hindoos thus far discovered. They appear 

only in the primitive form of marks as they would have 
4 

been found in Egypt, Greece or Rome. Evidence tends to 

show that the complete system was not in common use in 

5 India at the beginning of the eighth century. Brahma-

gupta in the early part of the seventh century gave in 

his arithmetic a distinct treatment of the properties of 

zero, which shows that it had acquired a special signifi-

* Cantor,Vol.I,pp.91-93 
** Richardson, American Mathematical Monthly,Vol.23,p.10 
*** Smith and Karpinski, p.19. 
4.Smith and Karpinski, p.45 
5.Smith and Karpinski, p.34. 
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cance, The zero is a prerequisite to a place value 

system. Without this the Hindoo numerals would never 

have become the computation system of the western world. 

The time and place of the introduction of Hindoo 

numerals into Europe is uncertain. One theory is that 

they were carried by the Moors into Spain in the eighth 

and ninth century and then transmitted to Christian Eur­

ope . Another is that they were in Spain when the Arabs 

arrived, having reached the West through the Neo-Pytha-

goreans. Considering the trade relations between the 

East and West it v/as probably the trader rather than the 

scholar who carried the Hindoo numerals to various coun­

tries . Books explaining the Hindoo art of reckoning ap-
ijc 

pear in the twelfth century. Perhaps the most influen­

tial in introducing the Hindoo numerals to the scholars 

of Europe was Leonardo Fibionacci of Pisa^ There was a 

great strife between the abacists and the algorists• The 

Hindoo numerals were not generally used in school and 

2 
busihess until the sixteenth century. 

The tendency to use 12 as a base is noticed in the 

use of such measurements as dozen, gross, inch and ounce. 

The establishment of the duodecimal system has at times 

been advocated because of its advantages. Were 12 the 

* Smith and Karpinski, p.34. 
** Smith and Karpinski, p.63 
*** Smith and Karpinski, p.128 
1. Smith and Karpinski,p.128 
2. Smith and Karpinski,p.137. 



base we would have a base divisible by 2, 3, 4, and 6 

instead of only 2 and 5 as in the decimal system. In ord­

inary business the fractions 1/2, 1/3 and 1/4 are used so 

frequently. There would also be an advantage in writing 

numbers corresponding to our decimals. 

The number systems based on nature have been univer­

sal and only those people using the decimal scales have 

attained any degree of civilization except the Aztecs. 
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The fraction is found in the oldest numerical rec­

ords as those of Egypt and Babylonia. Division brought 

in the difficulty of a remainder, and a fraction, at 

first came to be understood as a division that was not 

exact. Because of the primitive symbols it was easier 

to express the fraction 11/12 as 1/2 + 1/4 + 1/6. An­

other method of dealing with the fraction was always to 

divide the unit into the same number of parts as 1/12 

or 1/60. By using either of these two methods the sym­

bols for the fractions would be nearly the same as for 

integers. The ancient treatment of fractions avoided 

the handling of the numerator and denominator at the 

same time. 

The Ahmes papyrus written sometime before 1700 . . 

B.C.founded on an older writing of about 3400 B.C. deals 

somev/hat with fractions. The Egyptians understood 

fractional relations so as to generalize and represent 

the fraction by a symbol. Fractions were resolved into 

sums of unit fractions as 2/5 = 1/3 -f1/15/ Ahmes gave 

a table of answers for all fractions of the form ^ up 
2rt+i 

to 2/99^* No explanation of the work was given, and 

* Gov/, p.16. 
** Eisenlohr, pp.46-48. 
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only one form was given for each fraction. He gave a 

formula for multiplying a fraction by 2/3. He says, 

"2/3 of l/a is l/2a -j-l/6a." Example, 2/3 x l/5 was 

v/orked, then the statement was made that others are 

solved similarly. The unit fraction was expressed by 

writing the denominator as an integer and placing a dot 

over it. The only fraction not having unity as a num­

erator which was called a distinct fraction is 2/3, and 

it was given a separate symbol <j^j>. 

The unit fraction was used by the Greeks to a late 

period. They could state fractions easily, but calcu­

lations were difficult. They preferred to get rid of 

numerators and reduce the denominators to numbers,some 

of which were so low that they could be easily handled, 

and others so high that they could be omitted without 

changing the value materially. In writing a fraction 

the numerator was written first and marked with an ac­

cent, then the denominator was written twice and marked 

with two accents. JJL- ? C.' %&' xa."** The unit fraction 
2. S 

was written , by just indicating the denominator. (Jy- = X K )  
, . sj: 

The ancient symbol c was used for -£ and for 2/3. 

* Eisenlohr, p.150. 
Cantor,Vol.1, p.65. 

*** Tropfke,p.75. 



Until 1854 Babylonian mathematics had little or no 

foundation. At this time two small cylinders, probably 

written between 2300 B.C. and 1600 B.C. were found at 

Senekersh. These contain tables of squares and cubes 

written in sexagesimal system. In about 1889 a number 

of cylinders were found at Nippur. Prof. Hilprecht has 

examined many of these and has given an account of his 

study. He found certain unit fractions where the de-

nominator was 60 or some power of 60. The Babylonians 

dealt with fractions by using 60 as the constant de­

nominator. In written form only the denominator was 

given with a special sign attached. The sexagesimal 

notation of fractions was introduced into Greece about 

200 B.C. From this time until about the sixteenth cent 

ury the sexagesimal fractions were used in astronomical 
** 

and mathematical calculations. 

Fractions having a constant denominator were also 

used by the Romans. The use of duodecimals was due to 

the division of a mass of copper, weighing one pound, 

called the as, into twelve equal parts. There were 

names and symbols for these subdivisions, and also spec 

ial names for 1/24, l/48, 1/72, 1/144, and 1/288. Addi 

* Bulletin of Amer.Math.Soc.,p.392. 
** Tropfke,Vol.1, p.77. 
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tion and subtraction were simple with these fractions. 

Multiplication was very detailed. Division which did 

not fit into the duodecimal system could be represented 

by fractions with extreme difficulty, or only approxi­

mately. Tables for multiplication were worked out by 

Victorius of Aquitanien. These were used by the common 
* 

people and tradesman. 

Duodecimals v/ere represented on the Roman abacus. 

The eighth groove from the left was used to represent 

fractions. On this were five buttons, each represent­

ing 1/12. The one button on the upper part of this groove 

represented 6/12. In the ninth groove, the upper button 

represented 1/24, the middle 1/48, and each of the two 

lower ones 1/72. 

Fractions v/ere learned in connection with money, 

weights, and measures. These fractions were an advan­

tage for the common units were most frequently divided 

into 2,3,4, or 6 equal parts. 

The Hindoos used common fractions as we do to-day. 

Babylonian "and Greek influences were shown in their 

books. In writing a fraction the numerator was placed 

above the denominator. The mixed number was written by 

* Tropfke,Vol.1, p.77 
** Cajori, p.38. 
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. 4 - 1  placing the integer above the numerator. (£-5- — ̂ / * 

Their rules for the four dundamental operations differ­

ed only slightly from ours of to-day. Through the Arabs 

the knowledge of the Hindoos was transmitted to Western 

Europe• 

Our present method of writing fractions is similar 

to that of the Hindoos. The first use of the bar, sep­

arating the numerator from the denominator is found in 

Liber abaci(1202) of Leonardo of Pisa. Later the use 

disappeared, and it was not until the beginning of the 

sixteenth century that it was spoken of as a necessary 

part of the fraction. 

Our classification of proper and improper fractions 

was not used in medevial times. Generally only the first 

was used. Kaufol (1696) considered only proper frac­

tions as true fractions. Kastners in his writings 

of 1764 divided fractions into proper and improper frac­

tions. The circulation of these v/ords was due to Eu ler 
1. 

who introduced them in his algebra (1770) 

The word reduction in a true technical sense did not 

2 appear before in Rudolff1s book of 15327* The word ex— 

* Tropfke,Vol.1,p.78 
** Tropfke,Vol.1,p.78 
*** Tropfke,Vol.1,p.81. 
1. Tropfke ,Vol. 1 ,p..81. 
2. Tropfke,Vol.1,p.81. 
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pansion was not used until later. The general state­

ment that reduction and expansion does not change the 

value of the fraction was not given, although problems 

were given where they were used. 

In the addition of fractions Stifel (1545) first 

used more than two denominators at the same time. He 

tried to find a least common denominator, but finally 

contented himself with the product of the given denomi­

nators. Tartaglia (1556) first made use of the lowest 

common denominator. In the beginning of the seventeenth 

century we have the development of our modern method. 

In the multiplication of fractions Leonardo of Pisa 

multiplied the numerators then divided the product first 

by one denominator and then the other? Most of the oth­

er authors multiplied numerators, then denominators. The 

first one to bring up the point generally, that in mul­

tiplication of fractions the result is smaller than the 

multiplicand was Pacinolo (1494). Rudolff, Tartaglia, 

and Glavius attempted to explain it. Jordanus Nem-

orarius carried over to dividion the rule for multipli­

cation. The one used now was first given by Stifel, 

(1545). 

* Tropfke,Vol.1,p.84 
** Tropfke,Vol.1,p.84. 
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The influence tending toward the development of 

decimal fractions were (1) methods of extracting square 

root, (2) division by 10 or its multiples, and (3) the 

solution of trigonometric functions. The method of ex­

tracting square root of a surd by adding 2n ciphers and 

then writing the"result as a fractionwhose denominator 

is one followed by n ciphers was used by John of Seville 

in the twelfth century. This method was used by Johann 

of Gumunden during the fourteenth century, Peurbach in 

the fifteenth, and it continued to be used in the six­

teenth century. The bar was sometimes used to separate 

the fractional part from the integer. Rudolff was the 

first one who gave evidence of understanding the use of 

the bar. In his work of 1530 he used the bar as we use 

the decimal point. As early as 1492 Pellos, in problems 

of division where the divisor was 10 or a multiple of 10, 

had used the period to separate the integer from what was 

really the decimal fraction. 

The first discussion of decimal fractions was given 

by Stevin in La Disme,published 1585. He showed them how 

all business calculations could be performed as easily as 

with integers. The subject was clearly explained. He 

urged governments to establish decimal systems of coinage, 

weights, and measures. His symbolism was poor. He wrote 

.37594 in the form 3 o 7©5®9©4®, and 8.937 in the form 
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8o9©3®7®. 

Regiomontanus in solving for the trigonometric func­

tions used 10 as a radius. Although he gave the value of 

the tangent to five places he did not show any understand-
11 

mg of decimal fractions. Burgi in making these solutions 

used one as a radius instead of 10. The function then had 

the decimal form. ,He used both the period and the comma 

in his notation and placed a zero under the integer in 

unite place. (1414 - 141.4). Johann Hartmann Beyer used 
o 

both the comma and the sexagesimal symbols. In writing 

314.1592 it was written in the form 314,1* 5n9m 2'.m . Na­

pier first used the sexagesimal notation, but later the 

period. Even at present we have different forms of no­

tation. In England 23 45/100 is written 23-45, in Unit­

ed States 23.45 and on the continent 23,45 or 23<-. The 

decimal fraction became known in England through the pub­

lication of The Art of Tens by Henry Lyte (1619). 

As early as the twelfth century forms resembling the 

decimal fraction were used, but it v/as four hundred years 

before there appeared any written v/orks which gave an ex­

planation of the subject. The first treatise contain­

ing problems that showed an understanding of decimal 

fractions was written by Rudolff 1530, and this was foll­

owed by Stevin's theory of decimal fractions in 1585. 

* Smith, The Invention of Decimal Fractions. 
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Although fractions were known to the Egypt and Babylon­

ians 3000 years before our time of reckoning, there was 

not a complete development until in the sixteenth century. 
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Division brought in the difficulty of a remainder, 

and the fraction came to be understood as a division that 

was not exact. The solution of equations showed the need 

of another extension of the number system, that of intro­

ducing the negative number. The need of this extension 

would not appear until the subject of algebra v/as quite 

well developed. 

In the work of Diophantus (246-330) which represents 

the greatest achievements of the Greek in Algebra, only 

those differences were considered where the subtrahend 

was less than the minuend. He gave the rule for the mul­

tiplication of positive and negative numbers. In the so­

lution of the quadratic he gave but one root, the one ob~ 

tained by using the positive sign of the radical. In 

equations having both roots positive he took no account 
3JS 

of the smaller roots. A quantity which is negative 

was never accepted as a result. This clearly shows that 

he had no concept of the negative number. His number 

system was composed only of positive integers, and frac­

tions. 

The first trace of the negative is found in the math-

* Heath,o.60 
** Heath,p.61. 



ematics of the Hindoos. When one quantity was to be add­

ed to another it v/as placed after it without any particu­

lar sign. In subtraction the same method was used with a 

dot placed over the cofficient of the subtrahend. The dot 

was used as a symbol to distinguish positive from nega-

tive quantities, instead of a sign of operation. Neg -

ative and positive numbers were interpreted as debts and 

assets. Aryabhatta (476) and Bramhagupta (598) under­

stood the difference between positive and negative numb­

ers. Bramhagupta used the negative in the solution of e-

quations, 

Bhaskara seems to be the first writer who recognized 

the existence of the negative roots of a quadratic equa­

tion. In the solution of the equation xf - 45x = 250, he 

gave x=50 and x= -5. "But", says he, "the second value 

in this case is not to be taken, for it is inadequate; 

people do not approve of negative roots." Commentators 

speak of this as if negative roots were seen, but not 

admitted. Bhaskara recognized that a square root could 

be positive or negative and also thaty-a was not in the 

ordinary number system. The concrete idea was attached 

to the negative and positive. They were represented by 
1. 

lines drawn in opposite directions. 

* Cantor, Vol.1, p.580 
** Fink, p.216. 
*** Cajori,p.93 
1. Fine,p.105. 
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The Arabs received their learning from Greek and Ind­

ian sources. Their geometry was Greek, and their algebra 

was both Greek and Indian. Their solution of the quadrat­

ic was always followed by a geometric demonstration.* 

The two roots were considered if they were positive. The 

Arab avoided the use of the negative. Had he adopted the 

Indian interpretation of the negative, it would have been 

used earlier in Europe. Leonardo of Pisa (1180-1250) 

said that the negative solution had a meaning when its 

explanation was that of a debt# 

By the fifteenth century the people of Europe were 

beginning to devote more attention to learning# Mathe­

matics was at first not considered as a necessary sub­

ject and but little time was devoted to it in the schools. 

Later there came a demand for it, and it finally gained 

an important place in the curriculum. Many of the teach­

ers were the great mathematicians of that time. 

Michel Stifel (1487-1567) wrote his Arithmetica In­

tegra in 1544, which gave him a leading place among math­

ematicians of his time. Only the positive root value 

was used in his solution of the quadratic equation. He 

spoke of the negative number as the "absurd number, 

smaller than zero". He said that zero was in the middle 

* Ball,p.157. 
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between the two kinds of number!" Cardan (1501-1576) 

who taught mathematics in Italy permitted the negative 

solution of the equation, speaking of the negative num­

ber as 11 fictious'i ** Stevin (1548-1620) to whom we 

owe the invention of decimal fractions knew that the 
^ 

equation with the negative solution was customary. 

The earliest work that gave a symbolical treatment 

of algebra is In Artem Analyticam Isagoge written by 

Vieta in 1591. Algebra was applied to geometry, and 

a careful and extensive study of equations was made, 

He arrived at a partial knowledge of relations exist-

2. 
ing between the roots and cofficients of an equation,* 

He did not consider negative roots so did not fully 

see the relations. 

Thomas Harriot (1560-1621) was the earliest writer 

on algebra in England. He did work on equations simi­

lar to that of Vieta and Girard, but failed to recog­

nize the negative roots. He did not allow a negative 
5 

to stand alone as one member of the equation. 

The first to understand negative roots in the so-
4. 

Intion of geometric problems was Girard (1590-1633). 

* Tropfke,Vol.1,p.165. 
** Tropfke,Vol.1,p.165 
*** Tropfke,Vol.1,p.!66 
1. El.Cajori,p.230 
2. Tropfke,Vol.1, p.166 
3. EjL.Cajori ,p.232 
4. El. Cajori, p.231. 
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He made the statement that every equation has as many 

roots as was expressed by the number of units in the 
* 

degree of the equation. He first showed how to express 

the sum and products of the roots as cofficients of the 

dquation. 

The representation of a geometric curve by an equa­

tion which expressed the relation of its points to 

two lines of reference was introducted by Descartes in 

1637. He saw that mere length of the perpendicular 

would not show to which side of the line the perpendicu­

lar lay. To overcome this difficulty Descartes made the 

convention that the opposite sides of these lines should 

have opposite algebraic signs. With the adoption of 

this convention the negative gained a new position in 

mathematics. It has now received a real interpretation, 

and has just as significant meaning as the positive. 

The Hindoos as early as the fifth and sixth century 

understood the relation of the negative and positive. 

Bhaskara in the twelfth century made use of the two 

square roots in his solution of quadratics, and he al­

so used the two directions of the line to represent 

the negative and positive numbers. In Europe before 

the seventeenth century the ideas of the negative be­

* Tropfke Vol.1, p.166. 
** Ball, p.272. 



gan to occur only occasionally and many of the mathe­

maticians dealt almost entirely with absolute positive 

quantities. It was only when Descartes hit upon the 

idea of making a graphical interpretation of the nega­

tive that it was generally accepted and came into com­

mon use. If for the logical development of arithmetic 

we are to find suggestions from the historical develop­

ment, the negative would be taken up much later than 

the fraction. To give the child an interpretation that 

will not seem absurd, a concrete explanation by some 

means as the line or thermometer must be used. 
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The historical development of the irrational 

began with the appearance of Gfceek scientific mathe­

matics and continued to the middle of the nineteenth 

century. The irrational first appeared through its 

geometric nature and no number concept was associated 

with it. Pythagoras (580-500 B.C.# in his study of 

the right triangle observed that the side of the right 

isosceles triangle and its hypotenuse had no common 

unit of measure. Theodorus of Cyrene (410 B.C.) is 

said to have proved geometrically that numbers repre­

sented by 3, 5, 6, 7, 8, 10, 11, 12, 13, 
$ 

14, 15, and 17 were incommensurable with unity. 

Theaetetus, a pupil of Theodorus relates that after 

he and the younger Socrates knew the above statement, 

that it occurred to them, since the squares appeared 

to be infinite in number, to try to comprise them into 

one term, by which to designate these squares. He says, 

"We divided all numbers into two classes. Comparing 

that number which can be produced by the multiplication 

of equal numbers to a square in form, we called it 

quadrangular and equilateral. The numbers which lie 

between these, such as three and five, and every numb­

er which can not be produced by the m ultiplication of 

* Ball, p.30. 
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equal numbers, but becomes either a larger number taken 

a greater number of times, this we likened to an oblong 

figure, and called it an oblong number. 

The 10th Book of Euclid gives the Greek theory of 

the irrational. Euclid in conformity to his geometrical 

conception treated only the irrational which he construe-
if if 

ted with the line and circle. This book has a com­

pleteness which none of the others have. Euclid evident­

ly had in mind the classification of incommensurables. 

He investigated every possible variety of lines which 

can be represented by Vva zbVTTj - anci - representing two 

commensurable lines. He found that there are 25 species 

of lines that could be represented by this formula. He 

proved that every one of these species v/as distinct from 

every other, and that every line which was commensurable 

with a line of any one species v/as itself a line of the 

same species. He showed that every individual of ev­

ery species was incommensurable with all the individuals 

of every other species, and also that no line of any 

species could belong to that species in two different 

ways. He also showed how to form other classes of in-

commensurable s. 

Actual approximations to the values of incommen­

surables among the Greeks were few. Euclid was aware 

* Allman,pp.208-209. 
** Heath,Euclid,Vol. 3,pp.15-260 
*** De Morgan Euclides Smith's Dictionary,Vol.2,p.67. 
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of these as were others before him. Plato and the 

Pythagoreans were familiar with JL as an approximation 
5~ 

toVT. Archimedes (287 B.C.) gave JJLLL \ A/T \ 
7&o ̂  v 153 

and proved that the ratio of the circumference of a cir­

cle to its diameter was less than 3 1/7 but greater than 

3 10/71. The use of sexagesimal fractions to approxi­

mate surds appeared fully developed by Ptolemy. The ap­

proximation given toVT is JJ2JL _i_ JLJL _L 2-3 which is 
6 0  6 0 6 0 3  

equivalent to 1.7326509 

Diophantus did not give the irrational as a result 

in his solution of the indeterminate quadratics. 

The idea of incommensurable magnitude can be traced 

to Pythagoras, the geometry of the Greeks who followed 

him show a study of incommensurable quantities obtained 

by geometrical construction, as well as some approxima­

tions, yet no conception of extending the notion of nat­

ural numbers so as to give them, and the notion of in­

commensurable magnitudes the same character of general­

ity is shown. 

The Hindus saw the relations of commensurable and 

incommensurable quantities as if they depended on numb-

er. *** The works of Brahmagupta (born 598) and Bhaskara 

* Heath Euclid, Vol.3, p.119 
** Tropfke, Vol.1, p.159. 
*** Encylopedie des Sciences Mathematique, p.137 



—33— 

(born 1114) show the use of the irrational. Bhaskara 
* 

shows how to find the square root of a binomial surd. 

The irrationals were used as ordinary numbers. This 

method of proceeding was not justified for they did not 

seem to realize that there was such a need. 

The Arabs who were familiar with the mathematics 

of the Hindus and the Greeks did not show any different 

conception of the irrational. 

The name "surd number" is found in the writings 

of mathematicians of the middle ages; but this name in 

no way implies a generalization of the notion of number. 

Their methods of demonstration rested entirely upon the 

Euclidean. This manner of proceeding tended to remove 

all idea of speculating upon the surds themselves as if 
if 

they were like the natural numbers. The irrational num­

bers were looked upon as not real but improper numbers 
1. 

which would only be endured as a necessary evil. 

Michel Stifel (1487-1576) is probably the first 

to present any analogy between the character of surd num­

bers and that of rational numbers. In his Arithmetica 

Integra he divided numbers into classes; class of ration­

al numbers included in two natural consecutive numbers, 

* Cantor,Vol.1, p.586 
** Encyclopedie des Science Mathematique p.138. 

Tropfke, Vol. 1,p.150. 
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class of roots of any natural numbers, included in tv/o 

natural consecutive number. He noticed that the same 

number could not belong to the tv/o classes. Yet with 

his contemporaries he believed that surd numbers were 

not true numbers. His demonstrations show that in his 
* 

foundations he was attached to the idea of Euclid. 

The construction of trigonometric tables and 

the invention of logarithms contributed to prepare the 

way for the generalization of rational numbers to ex­

tend to irrational numbers which were the roots of nat­

ural numbers. The development of analytic geometry 

made a need of the generalization of the notion of num­

bers. This need was emphasized through the introduct­

ion of infinitesimal calculus by Leibnitz and Newton 

the last part of the seventeenth century. No scien­

tific study of the irrational was made until the nine­

teenth century, 

Dedekind relates how he felt the lack of a really 

scientific foundation for arithmetic as he was prepar­

ing a lecture on the elements of differental calculus. 

He says," In discussing the notion of the approach of 

a variable magnitude to a fixed limiting value, and es­

pecially in proving the theorem that every magnitude 

* Encyclopedie des Science Mathematique, pp.139-140. 
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which grows continually, but not beyond all limits must 

certainly approach a limiting value, I had recourse to 

geometric evidences. But that this form of introduct­

ion into differential calculus can make no claim to be­

ing scientific no one will deny. The statement is so 

frequently made that the differential calculus deals 

with continuous magnitude, and yet an explanation of 

this continuity is nowhere given. Even the most rigor­

ous expositions of differential calculus do not base 

their proofs upon continuity but, with more or less con­

sciousness of the fact, they either appeal to geometric 

notions or those suggested by geometry, or depend upon 

theorems which are never established in a purely arith­

metic manner.. It then only remained to discover its 

true origin in the elements of arithmetic, and thus at 

the same time secure a real definition of the essence 
* 

of continuity." 

In 1858 Dedekind presented his theory of the ir­

rational, which he based upon the ideas of rational 

number. This theory was founded on the idea of a cut 

(Schnitt) in the system of real numbers. He separated 

all the real numbers into two classes A, and A,.such that 

each number in A„ preceded every number in A*and there 

was no last number in A,and no first in At. The irrat— 

* Dedekind, pp. 1-2. 
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ional a being that one number which lay between all 

numbers in A, and all numbers in A*.* 

Weierstrass in developing his theory of the ir­

rational proceeded from the concept of the whole number. 

Division brought in the need of the fraction. Certain 

fractions, if referred to t he decimal system, consist 

of an infinite number of elements, but they also arise 

from a combination of a finite number of elements. He 

showed that every number formed from an infinite numb­

er of elements of a known species and which contained a 

known finite number of those elements possessed a defi­

nite meaning, whether it was capable of actual express­

ion or not. When a number could only be expressed by 

an infinite number of elements he called it irrational. 

His theory was made public in 1872 through E. Kossak who 

had followed his course of lectures at the University of 

Berlin, 

G. Cantor introduced the irrational number through 

a fundamental series. He showed that a number defined 

by a series is either identical with a rational number 
^ ^ 

or not identical. In the latter case it is irrational. 

This theory appeared in Math. Annalen in 1872, 

* Dedekind,p.ll. 
** Encyclopedie des Sciences Matheraatique, p.149. 
*** Hobson, pp.25-30. 
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Division can not be performed exactly in arith­

metic if we are restricted to integers, but if fractions 

are admitted division is always possible, so with their 

introduction we have a new class of numbers. The solu­

tion of equations brought in the need of another exten­

sion of the number system. With this extension both 

addition and subtraction are always possible with re­

sults as real as those of purely arithmetical addition. 

The form V-b*" indicates an impossible operation if 

we consider it as the square root of a negative quanti­

ty. If we resort to a geometrical representation and 

consider a system of two numbers, a and b which .are com­

bined with each other as the co-ordinates of a point in 

a plane, quantities of the form V-b , when reduced to 

the form afbV^l" are no longer impossible. They are just 

as real as the fraction or the negative. 

The history of the complex number began when it 

was noticed that a negative number does not have a square 

root. Bhaskara (1114) noticed that the square root of 
* 

a negative quantity was not possible. 

Cardan (1501-1576) in his study of the cubic 

* Tropfke, Vol.1, p.169. 
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met quantities of the form V-b\ He used the word 

"impossible" to designate a solution of an equation 

of the second degree in real cofficients having been 

carried on with these imaginary roots. He observed 

that (5+V^15)(5- V-15) =|"25-(-15)] = 40.* 

Bombelli (born 1530) gave the roots of the e-

quation xJ = 15x-f-4, as 4, 2±V-1~. His work showed that 

J\fz ^ V—12.1 = 2. ^ He probably found these roots 

by trial. 

Girard (1590-1633) justified the introduction 

of imaginary roots. He gave as roots of the equation 

x*=4x-3, 1,1, l+V-2, 1-\j-2. He also stated that 
5^ 5^ 

(-1+V-2) (-1-\f-2) = 3. This product was probably 

considered as the product of the sum and difference of 

two quantities. This product then checked by the fact 

that he knew the product of the roots should be 3. 

Descartes (1596-1650) made a distinction between 

real and imaginary roots. He was the first to use the 

word imaginary.~* 

The imaginary was used by mathematicians a long 

time without accounting for its true nature. They used 

them as signs of operation which had no meaning in them-

* Encyclopedie des Sciences Mathematiques,p.330 
#* • " " p. 331 
*** Girard (sign F. verso) 
1. Encyclopedie des Sciences Mathematiques,p.330 
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selves. They were unable to avoid the imaginary in 

their results in analysis. Wallis (1616-1703) appears 

to be the first who used the idea of graphical repre­

sentation to express the imaginary number. In his de 

Algebra tractus,which appeared in 1685 the imaginary 

number was represented by the geometric sum of two vec-

tos, the one representing a pure imaginary number, the 

other a real number. The vector representing a pure 

imaginary number ib, where b > o formed with the axis 

of the real positive quantities an angle which was some­

times fixed arbitrarily and sometimes depended upon 

h * the arc tan . 

In a publication of 1750 Ktlhn represented aV^l 

by a line J- to the line a and equal in length to a,. 

TheV^T was constructed as a mean proportional between 

1 and -1. 

Wessel's work presented to the Academy of Copen­

hagen (1795) showed an advance toward our present the-
J *** s$c >>: 

ory. His work is clear and complete. 

Argand's theory of the imaginary appeared in a 

pamphlet published in Paris in 1806. This showed how 

to represent the imaginary formsa.-{-bi by points in a 

plane by use of real and imaginary axes, and it gave 

* Encyclopedie des Sciences Mathematiques, p.339 
** Cajori, p.317 
*** Merriman & 77oodard, p.515. 
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rules for their geometric multiplication and addition. 

Seven years later J.F.Francais sent to the edito r of the 

Annales, the outline of a theory whose origin he had 

found in a letter written to his brother by Legendre who 

had obtained it from an author whose name he did not 

give. When this came to the notice of Argand he made 

himself known as the author referred to in the work 

given by Legendre. This gave rise to a discussion in 

the Annales. Through these articles Argand explained 

more satisfactorily his theory. This geometrical in­

terpretation of the imaginary made it a real quantity 

just as Descarte1s geometrical interpretation of the 

negative had made it a real quantity. Neither the neg­

ative or the imaginary were accepted until there was a 
* 

correspondence to some actual thing. 

The imaginary was of much interest to the math­

ematicians of the seventeenth and eighteenth centuries. 

Important relations were worked out, although it was 

nut until the beginning of the nineteenth century that 

there was a generally accepted geometrical interpreta-

ion. 

In 1675 Leibnitz had commenced to study the imag­

inary as is shown by his letters. His work shows a study 

* Argand, pp.3-16. 
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of the general formula \/a+V-b -f A/a.—Leibnitz and 

Bernoulli in their integration of rational functions by 

a separation into simple elements had noticed the loga­

rithms of imaginary quantities. Leibnitz and Bernoulli 

in their integration of rational functions by a separation 

into simple elements had noticed the logarithms of imag­

inary quantities. Leibnitz first spoke of these in his 

letter to Bernoulli in 1702.* At this time Bernoulli 

showed the relation between the arc of the circle and 

the logarithms of the imaginary. In 1712 he deduced 

the expression for the tangent of a multiple arc by means 

of the tangent of this arc. It would seem that hav­

ing advanced thus far they would have been able to con­

struct the theory of the logarithm of the imaginary. 

It was Euler (1707-1783) who was able to solve 

the difficulties of this question. He saw that he need­

ed to abandon the uniform character of the logarithm and 

admit for all numbers an infinity of logarithms. In 

1749 he explained the complete and definite theory of 

logarithms which is like that universally adopted to-

day. In 1740 he announced the formula cos x-e e 

and in 1748 the formula exfCT= cosx + ̂\£Tsin which has kept 

his name. He placed thus in evidence the identity, in 

a certain sense j, of the exponential functions and u-n© 

* Encyclopedie des Sciences Mathematiques,p•334• 
** * » " p.335. 
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trigonometric functions. It is upon this formula that 

he founded in the following year the theory of logarithms, 

in regarding the logarithm as the inverse function of the 
* 

exponential. 

The theorem that all functions of one or more 

imaginary numbers could always be placed in the form of 

p-fqV^l had been given by D'Alembert (1717-1783) in 1746, 

He had considered for the first time the power of which 
** 

the base and the exponent are imaginary. 

Euler took up the theory of the same expression 

in 1749 and founded it upon his theory of logarithms. 

The same year he gave expressions for the sin( a-t-b V -1), 

cos(a-f-b/\T^l) and tan (afbV^l) in the form of (p+qv~-T) 

and inversely the expressions of arc sin (p+qV -1) , arc 

cos (p+q V~~l) and arc tan (p+q V-l) in the form (a+-bV -1). 

In 1730 De Moivre (1667-1754) published the form­

ula cos0=i- Vcos n B-f-V- T s innS + " t  */c osnB—V^~ s innB 

Later in 1783 he considered directly the expression 

Va+ V-bT. He showed that Vcos a.— ̂/ry sadmitted n values 

all of the form p+qV^l, which he obtained in dividing 

the arc a, and the arcs differing by a multiple of the 

circumference into n equal parts. He had thus established 

the re-

* Encyclopedie des Sciences Mathematiques, p.335, 
** « n M " p•336. 

*** « « « » pp.336,337. 
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lation between the extraction of roots of imaginary numb-
if, 

ers and the division of arcs. 

By the middle of the eighteenth century the theory 

of the fundamental operations, trigonometric functions and 

logarithms had been worked out and some attempts had been 

made to represent these numbers graphically. Argand had 

developed his theory of graphical representation the 

early part of the nineteenth century, but it had not been 

generally brought to the knowledge of mathematicians. The 

imaginary was still looked upon with doubt. 

Much of the opposition to the imaginary was re­

moved by the i nfluence of Gauss (1777-1855). In 1831 he 

published his work on theory of imaginaries which showed 

their development in the same manner as that presented 

by Argand 25 years earlier. Unfortunately he never pub­

lished the demonstration which he had promised for the 

justification of imaginaries,** He was the first to use 

the word complex to designate these numbers together with 

the real numbers. 

Euler was the first to introduce the symbol & . 

It appeared in his work presented to the Academy of St. 

Petersburg in 1777. 

* Encyclopedie des Sciences Mathematiques,p.332, 
** *• » " » p.339 
*** " « " » p.337 
1. rt " " » p.343 
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In France Cauchy (1739-1857) contributed much 

to the spread of the theory of Argand. His authority 

and the importance of his works upon the theory of the 

functions of a complex variable and finally the import­

ance of the works by Abel (1802-1829) and Jacobi (1804-

1851) upon elliptic functions removed definitely all 

doubt. 

The connection between points on a plane and com­

plex numbers was a most powerful aid in the study of sym­

bolic algebra. In attempting to find a second imagi­

nary unit that would correspond to the perpendicular 

which may be drawn in space to the lines representing 

1 and i in the plane, Hamilton (1805-1865) discovered 
• 

quaternions. In the following year 1844 an account 

of his discovery appeared in the Philosophical Magazine. 

He discovered that the commutative law for multiplica­

tion did not hold. If the factors were interchanged the 

sign of the product had to be changed. These quanti­

ties were represented by the use of rectangular co-ordi­

nate in space. A line drawn from the origin to a point 

in space was called a vector. The application of quat­

ernions to physics has not been as wide as was expected. 

Kummer (1844), Kroneeker (1845), Scheffer (1845), Bell-

aviti (1835), Peacock (1845) and De Morgan (1849) have 

* Fine, p.128. 



-46-

made important contributions, Mobius can be mentioned 

because of his numerous geometric applications of com­

plex numbers. Contributors of the latter part of the 

nineteenth century are Wierstrass, Schwarz, Dedekind and 

* Poincare. 

* Merriman & V/oodard, p.516. 
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The history of the number commonly known as TJ 

can be traced from the earliest times, but it was not 

until 1882 that it was proved transcendental. From 

earliest times to the middle of the seventeenth cent­

ury attempts were made to find a square whose area was 

equal to that of a given circle; that is, to find the 

approximate value of 7T by purely geometric methods. 

During this period 77 was regarded as equivalent to a 

geometrical ratio. The earliest approximation is prob­

ably the one found in the Bible (I.Kings VII.,23) where 

the circumference is given as 3 times the diameter. The 

Babylonians also used the value 3 for 7~7 .* 

Ahmes showed how to find the area of a square 

equivalent to a circle. The diameter diminished by 

1/9 of itself was used as the side of the square. If 

the radius of the circle was unity, 16/9 was used for 

the side of the square and its area was(-LS)=3.l6 o 
U 

This gave a close approximation. 

Anaxagoras (499-428 B.C.) attempted to square 

the circle while he was in prison. This is the first 

record of any attempt to find the exact ratio. No 

* Tropfke , Vol.2, p.109 
** Eisenlohr, p.124. 
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solution was offered.* 

The process of exhaustion was introduced by Anti-

phon about the fifth century B.C. He inscribed in a 

circle a square and continued to double the number of 

sides of the polygon, thus obtaining polygons whose per­

imeters approached the circumference of the circle. He 

concluded that if a polygon was inscribed in this manner 

its perimeter would coincide with the circumference, a 

square could be found equal in area to the polygon, and 

hence a square could be constructed equal in area to a 
* * 

given circle. Bryson, a contemporary of Antiphon 

circumscribed polygons about the circle, as well as in­

scribed them. He made the error that the area of the 

circle was equivalent to the arithmetical mean of the 

areas of the two polygons.*** 

Antiphon believed the circumference of the cir­

cle and the perimeter of the polygon could be made to 

coincide. Bryson and many of the other Greek mathemat­

icians did not believe this was possible. This quest­

ion gave rise to many lively discussions. 

Euclid found no approximations to the ratio be­

tween the circumference and the diameter.x* This was 

probably due to the fact that the Greek geometers ex-

* Cantor, Vol.1, p.177 
** Cantor, Vol.„ pp.189-190 
*** Cantor, VoX.r, pp, 190-191 
1. El.Cajori,p.173. 



-50-

cluded calculations from their work. It was not evi­

dent to them that a straight line could be equal in 

length to a curved line. In Euclid the equality of 

lines was based on area and congruence. Nowhere in 

Euclid is there given the equality of a straight line 

and a curved line. 

Archimedes (287 B.C.?) in his book on the meas­

urement of the circle proved that a circular area is 

equal to that of a right triangle whose base is the 

circumference of the circle and the altitude, the rad­

ius . To find the upper limit for the ratio of the cir­

cumference to the diameter he constructed an equilat-
# 

eral triangle whose vertex was the center of the circle 

and whose sides are tangent to the circle. The angle 

at the center was bisected, and the ratio of the legs 

of the triangle was determined. This led him to con­

clude that TT <3 r . To find the upper limit he inscrib­

ed a hexagon and continued to double the number of sides 

until he had a polygon of 96 sides. He found the per­

imeter of this, and then concluded that the lower lim­

it was 3yf. The value 3 l/7 has continued to be used 

where approximate results are satisfactory. Archi­

medes assumed that a straight line existed which in 

length equaled a curved line. On this basis he made 
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many valuable contributions to geometry.* 

Ptolemy (87-165) in the sixth book of the Al­

magest which is devoted to the theory of eclipses, gave 

as the value of FT ,3°,Ql 30" (3 +J^ + g|™-)which in our nota-

tions is equivalent to 3-^ = 3.1416. 

The work of the Hindoos shows approximations for 

the value FT . Aryabhatta (478) gave the value 6 2-8 3 2. 
2. O O O O 

which equals 3.1416. "He showed that, if a is the side 

of a regular polygon of n sides inscribed in a circle of 

unit diameter, and if b is the side of a regular inscrib-

ed polygon of 2n sides, then b = -i- He 

begun with the side of an inscribed hexagon and found 

successively the sides of polygons of twice the number of 

sides, and finally the side of a polygon of 384 sides. 

Brahmagupta (598) gaveVlO as the value of 77 . He 

obtained his value by inscribing in a circle of unit dia­

meter, regular polygons of 12, 24, 48, and 96 sides, and 
1 

calculating their perimeters. 

Bhaskara (1114) gave two values ,' accurate ' .3 9 2.7 
2 I Z SO 

and 1 inaccuratef . , 2 - .  
.7 

* Cantor, Vol.1,pp.285-288 
** Ball Math.Recreations,p.252 
*** Ball, Math.Recreations,p.253 
1. Cantor, p.607 
2.Cantor,p.612 
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The ancient Chinese used the value 3 for TT • 

This value was used as early as the twelfth century B. 

C.* Chang Heng who lived during the first century A.D. 
^ 

gave V10 as value of TT . Liu Hiu in the third cent­

ury calculated the value of TT by inscribing a hexagon 

and then doubling the number of sides. He obtained the 

ratio - ^3-l 4,*** Tsu Ch1 ung chlh in the fifth cent-5 0 

ury showed that the value of TT was between and^ 

The Arabs used the value 3 4" and the two Indian 

valuesVlO and . Cl 
2. o o o o 

Leonardo of Pisa (1202) showed that, the limits of 

TT l 4 4° a !4?7and ±±±*L=3.\ 4-1 °. As a mean he gave 
f 58 g- 4-5 8-f-

1 ± = 3.1 f I 8 . 
4-5 8 -3-

Viete (1540-1635) by using the polygon, and con­

sidering those of 6*2- sides found correct to nine deci­

mal places the value of TT .4 Adrianus Romanus (1561-

1613) worked out the value to seventeen places. * Lu-

dolph van Ceulen (1540-1610) spent much time in finding 

the value of 7~f . He gave the value to thirty-five 

* Mikami ,p.46. 
** Mikami,p.47. 
*** Mikami,p.49 
1. Mikami, p.80 
2. Cantor, Vol.1, p.685. 
3. Young, p.395. 
4. Young, p.395. 
5. Young, p.395. 
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places (1610).* The value of T[ is sometimes called 

Ludolph1s number. 

From the middle of the seventeenth century to the 

middle of the eighteenth mathematicians attempted to dev­

elop as an infinite series. John Wallis (1616-1703) 

made the first attempt by this method. He proved 

that -IX — 2 2 4- 4- 6 6 8 8 
2  I  3  *3  5 " '  5  *7  *7  *9 * * *  

and that _fL = 1 _ J—. 
TT IT9 

2.4-2 5 
2-4-4-& 

2. -f8 I 
2LH 

The second form,that of the continued fractions had been 

given to him by Lord Brouncker (1620-1684) 

James Gregory (1638-1675) and Leibnitz (1646-1716) 

developed independently the series 

tan-«X = x-_|! + 

Gregory recognized the need of considering the convergen-

cy of such a series. If x = 1 we have the series 

_2JL _ I ! L __L_ _ _J u ...... 
4 -  "  3 + 5 "  7  

This was developed by Leibnitz in 16741 and published 

fXthe series of the arc tan becomes 

_J | ! 1 4. J J _j_ . . . 
3-3 ' 3-5 3J»7 ' 3* 9 3s* 11 ' 

which is more convenient as it does not converge so slow-

*** 
ly • -I , -I X- . -vV* ' V _j_ V 

The addition formula tan X-tan y= tja/n 

has also been used. 

* Sherwin* s Tables,p.108 ** Young, p.396 
1 Young, p.397 *** Young, p.397 

1682. If 

tt _.rr 
- VT 
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Using this method the value has been computed to 100 

decimal places. Many other attempts at computing the 

value of TT by means of series has been made. The value 

was computed to 700 places by Shanks. 

The results of these extensive computations show 

nothing about the nature of TT , that is, whether it is 

rational or irrational, or its transcendental character. 

From the middle of the eighteenth century to the present 

time efforts have been made to determine the nature of7T . 

The foundations for the solution of this problem were 

given by Euler in connection with his formulae involv­

ing e. 
i 

The number e is the limit (I +X)"*" which equals 

2.71828... In working out the derivative of the logarithm 
v 

the form (I + -^r JAV appears in the solution. Mathema­

ticians found that no number in the number system corres­

ponded to the limit of this form. The first use of a 

single symbol to represent this limit seems to be due to 

Cotes, who represented it by M.Euler used the symbol a 

for this number.** 

By means of Maclaurin's formula Euler expanded 

ex, cos x, and sin x. Using these series he showed that 

eix = cos x -t- i sinx and if x e,rr = - I . He gave many 

* Young, p.598 

** Ball,p.394. 
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other relations between _e and. TT .* 

Making use of Euler's work Lambert proved in 1761 

that TT could not be rational.** Legendre in his geometry 

z 
proved the irrationality of TT and also that of TT .In 

1840 Liouville showed that £ can not be the root of a 

quadratic equation with rational cofficients.*** 

The questions after this contribution were, of 

what if any algebraic equation with a finite number of 

terms with rational cofficients can e and TT be roots? 

Is it not possible to find numbers that are not roots 

of an algebraic equation? ^ Legendre was the first to 

express this latter idea. Liouville in 1884 proved the 

existence of non algebraic numbers and justified the 

division of numbers into algebraic and transcendental 

numbers. 

In 1875 Hermite provedd that the number e is trans­

cendental. In 1882 Lindemann by basing his work on that 

2 
of Hermite proved that TT was transcendental. This 

proof lead to the conclusion that if x is a root of a 

rational integral algebraic equation, then ex cannot be 

rational; hence,if 71i was the root of such an equation, 

ent could not be rational; but * equals -1, and there­

fore is rational; hence TT i cannot be the root of such an 

* Yoiong, p.398. 
** Mefriman & 7/oodard, p.514. 
*** Young, p.401 
1. Young,p.401 
2. Mathmatische Annalen,Vol.20,pp.213-225. 
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algebraic equation, and therefore neither can 77. 

Ball says,"If TT represented merely the ratio of 

the circumference of a circle to its diameter the determ­

ination of its numerical value would have but slight int­

erest. It is mere accident that it was defined in this 

way. It really represents a certain number which would 

enter analysis from whatever side it was approached. 

The approximate value of TT has also been obtained ex-

perimentally by theory of probability. 

* Ball Recreations,p.249. 

** Ball Recreations,p.260. 
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Transfinite numbers first appeared in connection 

with point aggregates. In 1882 Georg Cantor defined 

"transfinite numbers" independently of the aggregates.* 

The theory of irrational numbers on which the founding 

of the theory of functions depends were never investi­

gated with important results until the time of Dedekind 

and Weierstrass. However, they made no valuable con­

tributions as to the nature of the whole number,** 

After the appearance of Cantor's articles, arithmetic 

received a development into a theory of cardinal and 

ordinal numbers, both finite and transfinite. 

Aggregates with finite cardinal numbers are 

called "transfinite aggregates , and their cardinal 

numbers "transfinite cardinal numbers." The first ex­

ample of a transfinite aggregate is given by the to­

tality of finite cardinal numbers . Its cardinal 

number is called "Aleph-zero", and it is denoted by 

o'Aleph, the first letter of the Hebrew alphabet 

written with subscript zero).*** By a definite law, 

of v ..proceeds the next greater cardinal number 

, and out of this by the same law the next great­

s' „ and so on.1 Corresponding to a single 

*Jourdain,p.4 
**Jourdain,p.23 

« p.103, Mathematische Annalen,Vol.46, 
p. 488 

" p.109, " " .p.4 1 ti .p.495 
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transfinite cardinal number there is an infinity of 

transfinite ordinal numbers.* 

In general the commutative law does not hold 

with transfinite numbers. The associative law holds, 

but the distributive law is only generally valid.** 

Transfinite numbers are in a sense new irration­

alities. Transfinite numbers and finite irrational 

numbers are both definitely marked off modifications 

of the actually infinite.*** 

Hobson in his discussion of the transfinite 

number says, that it has already become of great value 

for purposes of exact formulations in Analysis and in 

Geometry. It is constantly receiving new applications 

because of its power of providing the language necess­

ary for expressing results in the theory of functions 

with the highest degree of rigour and generality. 

* Hobson,p.177 
** Jourdain,p,66 
*** Jourdain,p.77 
1. Hobson,p.211. 
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