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Abstract 

Cadmium Chloride (CdCl2) post annealing process has significant impacts on the 

performance of the CdS/CdTe solar cells since it affects the microstructure, crystallinity and 

charge carrier doping in CdTe films and also the CdS/CdTe p-n junction formed through S and 

Te interdiffusion at the junction interface. Therefore, this process has been investigated 

extensively during the past two decades, and has been optimized for polycrystalline CdS/CdTe 

thick film solar cells, in which the CdTe thickness is typically in the range of 3-8 µm. 

Nevertheless, the recent effort to develop cost-performance balanced thin film CdS/CdTe solar 

cells (with CdTe thickness on the order of 1 µm or less) has encountered difficulties through 

direct applications of the thick-film CdCl2 post annealing process. These difficulties stem from 

the large CdTe grain sizes typically in the range of microns in the thick film case. Grain 

boundaries between such large grains result in through-thickness shorts when the CdTe film 

thickness is comparable to or smaller than the grain size. Overcoming these difficulties to 

achieve precise controls of grain morphology, crystallinity and CdS/CdTe interface is important 

to high-performance CdS/CdTe thin film solar cells and will be the main objective of this thesis.   

In order to accelerate the study, a combinatorial Pulsed Laser Deposition technique (cPLD) was 

developed for deposition of CdTe films with different thicknesses on each sample to elucidate 

important physical properties of Cl diffusion through the selected thickness range at a given 

CdCl2 annealing condition.  Two sets of samples A and B of CdTe solar cells of multiple 

thicknesses of 1.5, 1.25, 1.0, and 0.75 µm have been fabricated by using cPLD. Sample A was 

completed without CdCl2 treatment as a reference, and sample B was treated with CdCl2  in 

different durations (10, 12, 15, and 17 min) at 360 
o
C in mixed vapor of O2 and Argon (25 

sccm:100 sccm). The sample that was treated at 15 minutes CdCl2 showed the best performance 
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in all thickness range 0.75-1.5 µm. Through comparisons between the two types of samples with 

and without CdCl2 annealing, it became obvious that the CdCl2 treatment promotes the 

recrystallization and grain growth of CdTe films, which led to improvements in the performance 

of the solar cells. In addition, different performance between the variable thicknesses of CdTe on 

the same sample was studied, and the highest efficiency 5.3% was obtained from the 0.75 µm. 
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 Introduction Chapter 1.

1.1 Solar Cell’s History 

In 1839, the photovoltaic effect was discovered by French scientist Edmond Becquerel. He 

made an electrolytic cell of silver, coated with a platinum electrode. The cell was placed into an 

electrical solution. What Edmond Becquerel observed was that the electric current can be 

increased when the cell is exposed to the light[1, 2]. In 1873, the photoconductivity of selenium 

was observed by Smith. Three years later, Adams and Day also observed the photovoltaic  effect 

in the selenium [3]. In 1914, 1% solar conversion efficiency was achieved from the selenium 

cell. A thin film of copper-copper oxide structure has also shown the photovoltaic effects. In 

addition, in the same year (1914) Goldman and Brodsky noticed that the energy barrier existed in 

both selenium and copper-copper oxide solar cells [2, 3]. In the period between the 1950s and 

1960s, there were a lot of developments in silicon solar cells. For instance, in 1954, Chapin, 

Fuller, and Pearson reported the first solar cell made from a silicon single-crystal, and the highest 

conversion efficiency was 6% [4]. In the same year, also 6% conversion efficiency was reported 

from cadmium sulfide and cuprous sulfide [3, 5]. Many thin films, such as indium phosphide, 

gallium arsenide, and cadmium telluride have attracted the attention of many researchers due to 

this theoretical work, which showed that the higher efficiency can be produced from these 

materials[6]. The solar cells received huge interest as alternative sources of energy; so many 

materials have been explored and developed as thin film materials. Researchers sought to reduce 

the cost and maintain the availability of these materials. The best thin film materials that have 

been used in the solar cell devices are amorphous silicon (𝛼-Si), cadmium telluride (CdTe), and 

copper indium diselenide (CuInSe2) [3]. By contrast, the production of silicon crystalline and 

polycrystalline is too expensive and may reach 1.15$/W after many optimizations. However, the 
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small amount of material and low cost make the thin film solar cells the preferable materials as 

an alternative energy. Moreover, the cost of the CdTe solar cell might reach 0.95$/W [7]. 

1.2 The Principle of Solar Cell 

Conversion of energy from incident photons (sunlight) directly into electricity (current) 

using solar cells is called the process of photovoltaics. Basically, this process is based on the p-n 

junction device. The semiconductor materials can exhibit the photoelectric effect which means 

that when the light is absorbed by these materials, the incident photons create the electron-hole 

pair [3]. In other words, if the incident photon has energy greater than the energy of band gap, it 

will be absorbed inside the semiconductors. Therefore, the electron will be excited from the 

valance band to the conduction band leaving behind a hole. In addition, if the semiconductor has 

direct band gap, the electron will easily reach to the conduction band. However, indirect band 

gap needs some momentum to do so.  Figure 1 shows this process. 

 

Figure 1: Band gap of semiconductor. 
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The majority of carriers are holes and electrons inside the p and n types respectively. The 

two semiconductors should be brought together to create a p-n junction. In addition, there are 

two types of p-n junctions. The first one is called Heterojunction in which two different 

semiconductors form the junction. One of them is p type and the other is n type. The 

Homojunction is the second type of the p-n junction  in which the same semiconductors with 

different doping to create a p and n types are brought together [8, 9].  

Figure 2 shows the different concentrations between the two regions of p-n junction; the 

electrons move from n-type to the p-type region. 

  

Figure 2: Single p-n junction[10]. 

The holes move from the p- type to the n- type. If the holes and electrons were not charged, the 

process of diffusion would not stop until the concentration of holes and electrons on both sides 

reach equilibrium state. The result of these movements is to form the p-n junction. Figure 2 also 

indicates that when the electron moves to the p-type part, it will leave behind a fixed positive 

ion. Likewise, when the hole moves to the n-type, it will leave a fixed negative ion. This means 

that the negative and positive charges appear on the p and n type sides respectively. As a result, 
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an electric field will be created and pointed from the positive side, which was formed in the n-

type to the negative side of the material. Therefore, the charge carriers are going to move in one 

direction. The new layer which is formed through this process  near the junction is called the 

space charge or the depletion region because it is depleted most of the free carriers [3, 8]. 
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  Technical Aspects of CdS/CdTe Solar Cells Chapter 2.

2.1 CdTe Solar Cells History 

Since the 1950s, Cadmium Telluride (CdTe) has been known as one of the strongest 

semiconductor candidates that has been used in the fabrication of thin film solar cells. CdTe has 

many advantages for thin film solar cell applications, including a direct bandgap (∼ 1.5 eV), a 

high absorption coefficient (up to 105/cm), and it can be doped n-type or p-type[11]. In 1963, it 

was observed that the conversion efficiency could be increased from 5% to 8% by using 

Cadmium Sulfide as a window layer[12]. In 1980, CdS/CdTe solar cells were made by using 

Close Spaced Sublimation technique (CSS), and 10% conversion efficiency was achieved[13]. 

Solar cells were scaled up to produce large area products using transparent conducting oxide 

(TCO) as the front electrode in a solar cell. In 1992, 15% conversion efficiency was achieved by 

adding a buffer layer (tin oxide) between TCO and CdS to allow the thickness of CdS to be 

reduced to less than 100 nm to improve the shorter wavelengths. About 20% of light which has 

energy greater than 2.42 eV could be blocked by using thick CdS[14]. Achieving higher electric 

conversion efficiencies of CdS/CdTe solar cells requires a Cadmium Chloride (CdCl2) 

treatment[15]. This treatment, which is used on CdTe, is found to be extremely important in 

different aspects, such as helping in grain growth, blocking the channels or pinholes, and 

increasing the majority carriers in CdTe [16-18]. CdTe is a compound material of cadmium and 

telluride (Cd + Te), but if the production levels of Te increase gradually, then the availability of 

this material will be reduced [19]. Therefore, a lot of recent research has been focused on 

reducing the thickness of CdTe, which in addition to protecting Te reserves, would also decrease 

the device cost [20-22]. In 2006, a group from Toledo University reduced the thickness of CdTe 

to less than 1µm, and 11.8 % conversion efficiency was achieved by controlling the CdCl2 
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conditions. Since then several attempts have been made, including reducing the thickness of both 

CdTe and CdS, adding a buffer layer to block the pinholes, and using CdCl2 to reduce the 

recombination. The highest conversion efficiency of the CdS/CdTe so far is 18-20% [23, 24].   

2.2 Structure of the CdTe Thin Film Solar Cell 

Figure 3 shows a basic structure of the CdS/CdTe solar cell; generally, the structure of 

the CdS/CdTe solar cell is two semiconductor materials. One of them is p-type which is 

represented by CdTe and called the absorption layer. The other one is n-type material which is 

represented by CdS and acts as a window layer.  

 

Figure 3: Structure of CdS/CdTe solar cells. 

 

 

 

These two semiconductors come together to create a p-n junction. The CdS is deposited 

on glass which is coated by a transparent conductive oxide (TCO), such as indium tin oxide 
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(ITO) or fluorine tin oxide (FTO) to provide a front contact of the cell. The main reason to use 

the glass is to support the structure of the cell. Furthermore, after depositing the CdTe on the 

CdS, an electrode (silver, Gold, or Copper) is required to provide a contact to the cell. However, 

CdTe has a work function higher than the work function of the electrode. So researchers have 

used a back contact which is deposited on the CdTe to reduce the Schottky barrier between the 

CdTe semiconductor and the metal, and then the electrode will be deposited on the back contact.  

 

As can be seen in figure 4, when the light inters the p-n junction, there are three important 

regions will be formed, generation, charge separation, and collection regions. 

 

Figure 4: Diagram of the p-n junction after entering the light. 

  

2.2.1 Electrical Front and Back Contacts 

        The front and back contacts are extremely important in the solar cell structure because they 

provide an electrical contact. The front contact is called the transparent conducting oxide (TCO), 
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which has a very high transparency, a very low absorption, and the sheet resistance is no more 

than (10 Ω/square).  The material that has been used as a TCO is tin oxide, and because of its 

low conductivity, it is doped with fluorine or indium, and it will form fluorine tin oxide (FTO) 

and indium tin oxide (ITO) respectively [25, 26]. On the other hand, there is another contact, 

which is called the back contact, occurs between the p- type CdTe semiconductor and the metal 

electrode. However, making a direct contact between metal and semiconductor may create a 

Schottky barrier. The work function in the metal is fixed, but in the semiconductor, it can be 

controlled by doping [3].  The best way to reduce this resistance is to make the surface of CdTe 

Te-rich by using chemical etching. The etching process is used to remove contaminants from the 

surface as well as make a Te-rich surface for better ohmic contact.[27] This is a matter of 

optimization between the CdTe, back contact, and electrode and studies are already underway to 

resolve this issue.   

2.2.2 Semiconductor Window Layer (CdS)  

         The p and n type semiconductor materials which have been used in the solar cell device act 

as absorption and window layers, respectively. The polycrystalline CdS semiconductor acts as a 

window layer in which photons pass  into the absorption layer CdTe. The CdS semiconductor 

has band gap energy of (2.42 eV). The disadvantage of CdS is that the band gap is not large 

enough to let more photons pass through to the absorption layer. Thus the photons that have 

energy greater than the band gap of CdS may not be able to reach the CdTe absorber.  Therefore, 

reducing the thickness of the CdS as much as possible is required to increase the transparency to 

allow more shorter wavelength photons to the absorption layer [20]. One strategy employed by 

some researchers uses a buffer layer, such as Zinc tin oxide (bandgap ~3.37 eV) before the CdS. 

This composite ZnO/CdS window replaces a part of smaller bandgap CdS with larger bandgap 
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ZnO for better window transparency. Generally, the buffer layer should have a band gap greater 

than the band gap of CdS to increase the band gap of CdS by diffusion [28].   

2.2.3  Semiconductor Absorption Layer (CdTe)  

        Cadmium Telluride (CdTe) is one of the most important semiconductors and  has been used 

as an absorption layer in the photovoltaic solar cell. Although the CdTe has many advantages for 

thin film solar cell applications including direct bandgap (∼ 1.5 eV) and high absorption 

coefficient (up to 105/cm), it also has disadvantages. For instance, CdTe is a compound material 

of cadmium and telluride (Cd + Te), but if the production levels of Te increase gradually, then 

the availability of this material will be reduced [19]. Therefore, in order to avoid the reduction in 

the Te, most researchers have tried to reduce the thickness of the CdTe solar cell which also 

decreases the cost [20-22]. Therefore, reducing the thickness of the CdTe solar cell is an 

important process to address the issue of material sustainability and reduction of the solar cell 

cost. In other words, fabricating a thick film solar cell consumes a large amount of materials and 

requires a particular process, but a small amount of materials and a simple process are enough to 

develop a thin film solar cell [21, 22].  

          There are several materials that have been used as thin film solar cells, such as amorphous 

silicon (𝛼-Si), copper indium diselenide (CuInSe2), and CdTe, which act as absorption layers. 

Table 1 is a comparison among these three materials; it is obvious that the CdTe is the strongest 

candidate among them as an absorption layer based on considerations of electronic structures and 

cost [3]. 
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Table 1: Comparison among Cadmium Telluride (CdTe), Amorphous Silicon (α-Si), and Copper 

Indium Diselenide (CuInSe2) 

Copper Indium Diselenide (CuInSe2) Amorphous Silicon (𝛂-Si) Cadmium Telluride (CdTe) 

The band gap 1.02 eV The band gap 1.7 eV The band gap 1.5 eV 

Direct band gap Direct band gap Direct band gap 

absorption 

2 µm absorbs most of the light 

 

absorption 

5 µm absorbs most of the 

light 

absorption 

1 µm absorbs 90% of the light 

Polycrystalline Amorphous Polycrystalline 

Indium is very expensive. 

 

It is cheap. 

 

It is cheap. 

 

       

2.3  Parameters of the Solar Cell 

The measurements of the Current–Voltage (J-V) for a solar cell provide the most 

important information about the performance of the solar cell. From the J-V curve, several 

parameters can be obtained, such as the short circuit current (Jsc), open circuit voltage (Voc), fill 

factor (FF), and the conversion efficiency (ɳ). In addition, information about the series and shunt 

resistances also can be provided from the J-V curve. The quality of the materials and the optimal 

solar cell design can be obtained by measuring an important parameter, which is called the 

external quantum efficiency (EQE). EQE represents the ratio between the numbers of electrons 

collected by the solar cell to the number of photons incident on the solar cell [3, 29]. 
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2.3.1  Short Circuit Current (Jsc) & Open Circuit Voltage (Voc) 

One of the parameters which can highly affects solar cell performance is the short circuit 

current, which is the highest current in the solar cell when the voltage into the cells equals zero 

(see figure 5). Basically, the (Jsc) is represented by the following equation:   

Jsc = 
ISC

A
    (mA/cm2). 

(Jsc) and (A) are the current density and the area of the solar cell respectively [3, 30]. 

 

Figure 5: Current-Voltage (I-V) curve. 

 

 

In addition, there are several parameters which can influence the short circuit current itself, such 

as incident light intensity, and the optical properties of the solar cell (absorption and reflection). 

However, the major effect on the Jsc is the recombination which occurs due to the short life time 
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of the electrons [30]. Figure 5 also shows the open circuit voltage (Voc), which is the highest 

voltage through the solar cell when the current equals zero [31].  

2.3.2  Fill Factor (FF) 

One of the parameters that can be directly determined from the I-V curve is the fill factor 

(FF), which is defined as the ratio of the power in the maximum value (Pm=Im. Vm) to the 

product of the short circuit current (Jsc) and the open circuit voltage (Voc).  The major effect on 

the FF is the recombination [32]. The equation below represents the FF:  

FF =
Pm

Voc ∗ Isc
=

Im ∗ Vm

Voc ∗ Isc
 

2.3.3 Power Conversion Efficiency of the Solar Cell (ɳ) 

The power conversion efficiency is the key parameter of the solar cell which can be used 

to determine the best performance of one solar cell to another. The efficiency is the ratio of the 

output power, which is electricity from the solar cell, to the input power, which is incident 

photons (light) from the sun. It can be calculated from the following equation [3, 33]:  

ɳ=
Pout

Pin
=  

VocIscFF

Pin
 

The standard spectrum (Pin) is 100mW/cm2. 

 

2.4  Series and Shunt Resistances 

There are two types of resistances in the solar cell which must be in the right ranges to 

not cause a reduction in the efficiency. One of them is a series resistance (Rs) which occurs due 

to the contact between the metal and the semiconductor. An ideal value of Rs is zero. While it is 
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difficult, the experimental efforts have been put to minimize the Rs and therefore the power loss 

it causes. The other resistance is called a shunt resistance (Rsh) which is the resistance at the p-n 

junction, which is infinite for a perfect p-n junction. A finite Rsh on the solar cell implies an 

alternative path for the current, which leads to degraded solar cell performance. Both of the 

series and shunt resistances have a major effect on the solar cell’s  fill factor due to the power 

dissipation [3, 34, 35]. The series and shunt resistances can be estimated from the J-V curve’s 

slope; the effect that appears near the short circuit current gives us information about the Rsh. 

Moreover, the Rs effect can appear near the open circuit voltage. Figure 6 shows the Rs and Rsh 

[34, 35]. 

 

Figure 6: Series and shunt resistances. 

 

2.5 External Quantum Efficiency (EQE) 

The ratio of the number of charge carriers collected by the solar cell to the incident 

photons flux on the solar cell is the external quantum efficiency (EQE). The QE for an ideal solar 
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cell means that each photon from the incident photons flux will create an electron-hole pair, and 

then the pair might be separated into the depletion region and collected on the top of the cell. 

However, it is difficult to get an ideal QE solar cell because the incident photons have different 

energies, so not every photon can generate an electron-hole pair. In other words, if the photon 

has energy greater than the band gap of the semiconductor, the (e-h) pair will be created; 

otherwise, it will not. As a result, the EQE depends on the photon absorption, efficiency of 

charge separation and collection [3, 29]. Figure 7 shows the ideal and non-ideal EQE of 

CdS/CdTe solar cell as an example. 

 

Figure 7: Ideal and non-ideal EQE of CdS/CdTe solar cell. 
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  Experimental Chapter 3.

3.1 Experimental 

Different techniques have to be applied in order to determine the performance and 

properties of the solar cells. Often, it is difficult to correlate the performance of a solar cell with 

its microstructure by measuring one characteristic. Therefore, in order to understand 

performance limiting factors of the solar cells, multi scale characterization from microscopic to 

macroscopic must be taken. In this study, there are three major steps involved in CdS/CdTe solar 

cell fabrication and characterization. First, the fabrication technique, in which Pulsed Laser 

Deposition technique, Cadmium Chloride (CdCl2) treatment, Bromine etches, and electrical back 

contacts have been used to fabricate a complete cell. Next, Atomic force microscopy (AFM) and 

Raman spectroscopy have been utilized to measure the microstructure (morphology and 

crystallinity) of the materials in the solar cell. Finally, electrical measurements were taken of the 

current density-voltage (J-V) and the quantum efficiency.     

3.2 Fabrication CdS/CdTe Solar Cell 

  In order to fabricate a complete solar cell, there are several necessary steps, such as 

deposition technique, the CdCl2 treatment, bromine etches, back contact with electrode. Once 

completed, the structural and electrical measurements can be applied to determine the 

performance of the solar cell.  

3.2.1  Combinatorial Pulsed Laser Deposition (cPLD) Technique 

There are numerous methods that have been used to deposit CdS/CdTe semiconductors to 

produce solar cells. Physical Vapor Deposition (PVD), Close-Space Sublimation (CSS), Vapor 

Transport Deposition (VTD), Sputter Deposition, Metal Organic Chemical Vapor Deposition 
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(MOCVD), Spray Deposition, and Pulsed Laser Deposition (PLD) are some of the methods that 

have been used to fabricate solar cells [36]. In addition, these methods have been improved and 

developed by companies of solar cells and some researchers.  In this study, the method that was 

utilized is the combinatorial Pulsed Laser Deposition (cPLD) as shown in figure 8. 

 

Figure 8: A depiction of the combinatorial PLD process which allows different thicknesses to be 

deposited on a single substrate. 

 

The PLD system consists of a 248 nm KrF excimer laser with 20 ns laser pulse duration. The 

absorber and window layer targets are mounted inside of a vacuum chamber on rotating stands 

that allow for both targets to be moved into the path of the laser and rotation about the axis of the 

targets facilitates uniform ablation of the target surface.[37-41]. The substrate stage is mounted 

into the chamber across from the targets with a distance of 5.5 cm separate the two. The scanning 

stage has two axes of movement so that it can move in any motion desired that is perpendicular 

to the laser plume axis. Two external stepper motors drive the stage under computer control. The 

computer control is achieved by a custom computer program which makes it possible for the 
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stage to undergo very complicated motions. Located in the path of the ablated laser plume, in 

between the target and substrate, is a partial shield that covers half of the stage when the stage is 

in the neutral position. This allows for precise control over which area of the substrate is 

deposited on, granting a combinatorial way to control in-situ thickness variations on a single 

substrate. As the substrate is moved in the y-direction to make the different CdTe thicknesses it 

is also constantly scanning in the x-direction (in and out of the page in Fig. 6) to achieve uniform 

thickness across the entire substrate. Thicknesses of 1.5, 1.25, 1.0, and 0.75 μm were chosen to 

be deposited on top of the 120 nm thick CdS layer. The schematic is depicted in figure 9. 

 

 

Figure 9: A schematic drawing of the samples made with varying CdTe thickness. 
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TEC 15 soda lime glass is used as the conductive substrate and serves as the front contact 

to the devices. The CdS window layer was deposited at 200 
o
C in 1.5 mTorr of Argon gas flow 

with a laser repetition rate of 10 Hz, spot size of 8.7 mm
2
, and pulse energy of 150 mJ with a 0.3 

OD filter reducing the energy to 70 mJ. The CdTe absorber layer parameters are identical except 

the laser spot size is decreased to 7.6 mm
2
 and the thickness is varied in 250 nm steps from 750 

nm to 1500 nm using the partial shield and moving stage. After ablation is complete, the sample 

was annealed in the vacuum chamber at 400 
o
C for 5 min in 20 Torr Ar and cooled naturally 

overnight to room temperature. In these conditions, two groups of samples were fabricated for 

comparison: sample A regards those not treated with ex situ CdCl2 annealing after the PLD 

deposition, while sample B were exposed to the vapors of CdCl2 at 360 
o
C, in mixed O2 and 

Argon (25 sccm:100 sccm)  for (10, 12, 15, and 17 minutes). The best result was obtained of 

sample B that was treated with 15 minutes. Therefore, the comparisons of physical properties are 

made between the samples A and B to elucidate the effect of the annealing on the solar cells of 

variable thicknesses of CdTe film. Figure 10 shows the real photos of the PLD. 
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Figure 10: Real photos of PLD. Figures 10a and 10b represent PLD from both sides. Figures 10c 

and 10d are the scanning stage and two stepper motors respectively. 

 

3.2.2 Cadmium Chloride (CdCl2) Treatment 

  Achieving higher electric conversion efficiencies of (TCO/CdS/CdTe) solar cells requires 

a Cadmium Chloride (CdCl2) treatment. This treatment, which is used on CdTe, is found to be 

extremely important in different aspects, such as helping in grain growth, blocking the channels 

or pinholes, and increasing the majority carriers in CdTe [16-18]. There are several ways in 

which cadmium chloride (CdCl2) has been used as a treatment of the CdS/CdTe solar cell in 

order to achieve high conversion efficiency. For instance, some researcher groups have mixed 

the cadmium chloride powder with methanol and spread it on the CdTe solar cell. They leave the 

solvent until evaporated, and then the new structure will be treated at certain conditions 
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(atmosphere, temperature and duration). In addition, the thickness of CdTe is various, so that the 

duration of CdCl2 treatment will be various, as thicker films require longer treatment. After this 

process and due to the white color of CdCl2, the surface of CdTe, which has a dark color, will 

turn out milky. Other researchers have used different methods, such as laser ablation and vacuum 

evaporation to deposit cadmium chloride as a layer on CdS and CdTe respectively [42-45]. 

Currently, CdCl2 treatment with a Freon gas, such as (HCF2CL), which consists of Chlorine, has 

been used as another treatment, and solar cells with conversion efficiencies close to 16% have 

been achieved[46]. 

In this thesis, the CdCl2 treatment has been done as following; 50mL of methanol and 

0.075 g of CdCl2 powder have been mixed together. The solution was dropped on the piece of 

glass and warmed to 98-100 
o
C until the source dried on the glass. After that, the solar cell 

sample (TCO/CdS/CdTe) was flipped face down on the source of CdCl2. Figure 11 shows this 

process. Then, the sample was placed into the tube furnace.  
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Figure 11: Process of CdCl2 treatment. 

Groups of sample B were exposed to the vapors of CdCl2 at 360 
o
C, in mixed O2 and Argon (25 

sccm:100 sccm)  at 10, 12, 15, and 17 minutes. The best result was obtained of sample B that 

was treated at 15 minutes. Therefore, the comparisons of physical properties are made between 

the samples A and B to elucidate the effect of the annealing on the solar cells of different 

thicknesses of CdTe layer. 

3.2.3 Electrical Back Contacts  

In the solar cell fabrication, using a metal on the CdTe is an important step to provide an 

electrical back contact. The contact between metal and semiconductor will have a resistance 

higher than connection between two metals [3, 9]. In other words, the metal’s work function is 
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the required energy to remove an electron from the Fermi Level to the vacuum. On the other 

hand, the work function of semiconductor can be controlled by doping. Particularly, when 

semiconductor is doped p-type, will have a work function greater than when it is doped n-type 

[3]. Therefore, there are no metals with work functions greater than or similar to the work 

function of p-type CdTe semiconductor[3]. Table 2 shows the work function of the p-type CdTe 

and some materials that have been used as an electrode. 

Table 2: Work functions of CdTe, gold, cooper, and silver 

p-type CdTe 5.9 eV 

Ag 4.7 eV 

Au 5.1 eV 

Cu 4.65 eV 

 

In other words, metal-p type semiconductor junction tends to form a Schottky barrier, and 

it is a significant challenge to provide a low resistance ohmic contact instead. As a result, many 

researchers have tried to reduce this barrier by producing a mixture of some materials that can 

have a work function between the metal and CdTe semiconductor [47]. This material is called 

the back contact, and the most popular back contact (B. C.) used in the CdTe solar cell is a 

mixture of Copper, Mercury Telluride, and Graphite which has a work function (∼5.3). Appling 

the (B.C.) requires the surface of CdTe to be Te-rich in order to reduce the series resistance so 

that another step has to be done before the (B.C.) which is called Bromine etching. The etching 

process is used to remove contaminants from the surface as well as make a Te-rich surface for 

better ohmic contact [27]. Studies are already underway to resolve this issue.  
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 In this work, the samples were etched using the Bromine: Methanol. The Bromine etch is 

produced by mixing 0.25 mL Bromine with 25 mL Methanol. The sample was submerged for 4 

seconds and then immediately rinsed with Methanol, Acetone, and IPA. Small contacts with 

average areas of roughly 1.25 mm
2
 are then applied across the entire sample. The contact paste is 

made using Cu doped HgTe (0.017 g Cu, 4 g HgTe, 10 g graphite paste). After application, the 

sample is baked in the tube furnace with 100 sccm Ar flow at 280
o
C for 30 minutes. Then the 

electrode (Silver) was coated on the back contact, and the sample also baked at 150 
o
C for 60 

minutes. Figure 12 shows the final structure of FTO/CdS/CdTe. 

 

Figure 12: Final structure of FTO/CdS/CdTe solar cell. 
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3.3 Microstructural Measurements 

  Atomic force microscopy (AFM) and Raman spectroscopy (488 nm excitation 

wavelength) were performed using a WiTec Alpha 300 confocal Micro Raman system to obtain 

surface roughness and phase orientation for the different growth and annealing conditions. 

3.4 Electrical Measurements 

Current-voltage (I-V) measurement from which the performance of the solar cell can be 

determined, such as open circuit voltage, short circuit current, fill factor, and the conversion 

efficiency. Figure 13 shows the I-V curve measurement.   

 

Figure 13: Current-Voltage (I-V) measurement. 
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Current density-voltage curves were measured under an AM 1.5 solar simulator of 100 

mW/cm
2
 photo optic lamp by using a Newport solar simulator with Oriel housing at room 

temperature as shown in figure 13a and 13b.Two probes were used to connect both of the front 

and back contacts of the solar cell by utilizing a probe station as shown in figure 13c. The probes 

connect to the CHI660D electrochemical workstation to send the data to the computer in order to 

calculate the I-V curve.  

The quality of the materials and the perfect solar cell design can be obtained by 

measuring the quantum efficiency (QE), which represents the ratio between the numbers of 

electrons collected by the solar cell to the number of photons incident on the solar cell [3, 29]. 

Figure 14 shows a system of QE Measurement.  

 

Figure 14: Quantum efficiency measurement system. 
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Figure 14 shows the external quantum efficiency EQE measurements. Figure 14a represents a 

Newport Optical Power which provides a power to Newport monochromator in order to select 

wavelengths. The monochromatic light output is focused on a test cell by optical lenses as shown 

in figure 14b. The sample is already placed on the probe station and connected to the CHI660D 

electrochemical workstation. The previous procedure will be repeated for the sample under 

measurement[48]. The current from the solar cell, which is measured under illumination, is used 

to calculate the number of electrons generated due to photovoltaic effect. Also, the current of the 

standard reference solar cell provides the number of photons. TracQ Basic software calculates 

instrument control, data collection and calculations.         
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 Results and Discussion Chapter 4.

          For comparison, five groups of samples were fabricated using combinatorial Pulsed Laser 

Deposition (cPLD) by which the variable thickness of CdTe were obtained l.5, 1.25, 1.0, 0.75 

µm in correspondence to layers 1, 2, 3, and 4 respectively on the same substrate. Sample A 

regards those not treated with ex situ CdCl2 annealing after the cPLD deposition, while the other 

samples were exposed to the vapors of CdCl2 at 360 
o
C, and they were treated with different 

durations of CdCl2 10, 12, 15, and 17 minutes respectively. Sample B that was treated at 15 

minutes CdCl2 showed the best performance in all thickness range 0.75-1.5 µm. Therefore, 

comparisons of physical properties were made between the samples A and B to elucidate the 

effect of the annealing on the solar cells with variable thicknesses of CdTe.   

 

4.1 Microstructural Results 

4.1.1  Atomic force microscopy (AFM) 

Atomic force microscopy (AFM) was applied to characterize the CdTe surface morphology 

before and after CdCl2 treatment. The results are compared in figure 15 for samples without 

(sample A) and with (sample B) 15 minutes CdCl2 annealing. The AFM images indicate that the 

average roughness and the grain size of the CdTe in sample A are in the range of 13-16 nm and 

140-160 nm, respectively. The crystallinity and grain size of this sample is very small and one 

might expect there is still much recombination in a device made with this CdTe as there would 

still be many grain boundaries. The deposition at low temperature (200 
o
C) is not sufficient 

enough to promote good grain growth. On the other hand, in sample B, the average roughness for 

all layers was roughly 30 nm and the grain size is much larger which can clearly be observed in 



28 
 

the second row of the AFM images. There is a correlation between the grain size seen at the film 

surface and the thickness of CdTe. This is most easily seen in sample B where it is obvious that 

the grains get bigger as the thickness gets smaller. The thinnest layer of CdTe at 0.75 μm has 

grains that vary in size from 300-700 nm while the thickest layer at 1.5 μm has grains in the 

range of 150-550 nm.  The average grain size for the thinnest layer is approximately 65% of the 

total thickness. For the thicker layer the average grain size is closer to 20% of the total thickness. 

This difference seen in grain size per thickness is most likely because the recrystallization is 

easier in the thinner layers as there is less material.  As expected the CdCl2 annealing promotes 

recrystallization and additional grain growth, which is shown by the improvements in surface 

roughness and grain size.  

 
Figure 15: First row of AFM images is corresponding to sample A (No CdCl2 annealing). The 

second row is corresponding to the sample B (with 15 min. CdCl2 annealing). The scale bar for 

all images is 0.6 µm. 
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4.1.2 Raman Spectroscopy  

Raman spectroscopy was performed in order to examine the structural properties between 

the two samples and the data can be seen in Figure 16. The transverse optical phonon (TO) for 

CdTe is known to be located at a Raman shift of 141 cm
-1

, which can clearly be seen in all of the 

plots. The peak at the 169 cm
-1

 shift is assigned to the longitudinal optical phonon (LO) of 

CdTe[49]. The peaks at 292 cm
-1

 and 750 cm
-1

 are attributed to the 2TO mode of CdTe and 

tellurium oxide (Te𝑂𝑥), respectively [50, 51]. The TeOx signature found in both samples is 

possibly attributed to oxygen residues which might exist during the fabrication of the samples. 

By comparison of the two samples, it is obvious that the peaks of sample A have lower 

intensities compared to sample B, which was processed with the 15 minute CdCl2 treatment. This 

indicates that there is an improvement in the crystallinity of the CdTe after the annealing.  

 

Figure 16: Raman spectroscopy of sample A and B. 
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The selection rules for CdTe illustrates that the TO and LO modes of CdTe are allowed from 

(110) and (100), respectively. Also, both modes can be allowed from (111).[52-54]. The LO 

mode is not highly pronounced after CdCl2 annealing suggesting that the polycrystalline 

structure of sample B is in the (110) crystal orientation.  

4.2 Current- Voltage (J-V) Results 

 Figure 17 shows the J-V curves of the highest performance of variable thicknesses CdTe 

for the two samples made with and without CdCl2 treatment. The JV data from sample B shows 

that the best performance came from the thinnest CdTe layer of 0.75 μm. This layer achieved a 

maximum efficiency of 5.3% with a JSC, VOC, and FF of 17.6 mA/cm
2
, 643 mV, and 45%, 

respectively. Obviously this layer will absorb the fewest photons due to its thickness in 

accordance with the Beer-Lambert Law. However, the shortest travel distance for charges to be 

collected at the electrodes may outweigh the loss in photon absorption as compared to its thicker 

counterparts. The data from all cells can be seen in Tables 3 and 4, which are the averages of the 

four cells made on each layer. Note that the JV curves are the best performing cells from each 

layer.  
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Figure 17: Current-Voltage (J-V) curves of the two sample A and B. 

All of the layers in sample A have extremely low performance as one would expect. The 

extremely small Voc is attributed to the weak electric field established by the p-n junction, due to 

the lack of doping in CdTe which is achieved during the CdCl2 annealing process, and quite 

possibly pinhole formation. The CdTe for this sample is possibly nanocrystalline, which causes 

huge amounts of recombination due to the small grain sizes [55, 56]. This would affect not only 

the fill factor, but the Jsc as well. The order of magnitude increase in the Jsc of sample B is due to 

the increased number of majority carriers, improvements in the grain connectivity, and increases 

in the grain size, which implies a reduced density of the grain boundaries. However, the rollover 

seen in sample B indicates that the series resistance which occurs due to the contact between 

materials is still high.[27] This is a matter of optimization between the CdTe, back contact, and 

electrode and studies are already underway to resolve this issue. 
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4.3 Performance of CdS/CdTe Solar Cells 

 

Table 3: Thicknesses and electrical properties of sample A with No CdCl2 annealing. 

Sample A Layer 1 Layer 2 Layer 3 Layer 4 

Thickness of CdS (µm) 0.12  

Thickness of CdTe (µm) 1.5 
 

1.25  1  0.75  

VOC (mV) 214 198 203 197 

JSC (mA/cm
2
) 1.7 2.5 2.6 3.0 

FF % 27 28 29 29 

Efficiencies % 0.10 0.14 0.15 0.18 

 

 

 

Table 4: Thicknesses and electrical properties of sample B with 15 minutes CdCl2 annealing. 

Sample B Layer 1 Layer 2 Layer 3 Layer 4 

Thickness of CdS(µm) 0.12 

Thickness of CdTe(µm) 1.5 1.25 1 0.75 

VOC (mV) 638 639 645 651 

JSC (mA/cm
2
) 16.5 16.7 17.0 18.0 

FF % 36 39 42 45 

Efficiencies % 4.0 4.2 4.6 5.1 
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 Figure 18 shows how the key parameters of the solar cells change as a function of 

thickness. The Voc is essentially unchanged regardless of the CdTe thickness indicating that the 

same or comparable charge doping level, and thus the built-in bias voltage, was achieved in all 

layers. The Jsc values are also nearly identical between the layers of different thickness regardless 

of whether they were processed with or without the CdCl2 annealing. However, a 690% fold 

increase in of the Jsc value was observed in samples with CdCl2 annealing with respect to their 

counterparts without such annealing.  The biggest factor contributing to difference in 

performance between layers was the FF. There is a linear decrease in FF observed with 

increasing CdTe thickness. The higher FF values seen at smaller CdTe thicknesses indicate the 

benefit of less recombination at smaller CdTe thickness as expected.  

 

Figure 18: The values of open circuit voltage (a), short circuit current (b), fill factor (c), and 

efficiency (d) as a function of CdTe thickness. 
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4.4 External Quantum Efficiency Results 

The efficiency of the solar cell can be further characterized by measuring the external quantum 

efficiency EQE, which represents the ratio between the numbers of electrons collected by the 

solar sell to the number of photons incident on the solar cell.[57]  

 

Figure 19: The quantum efficiencies for the best performing cells from the two samples made 

with (B) and without (A) CdCl2 annealing. 

 

 Figure 19 shows the extreme difference in the EQE between samples A and B.  The EQE 

of sample B is much higher than that of sample A which indicates that the probability of 

collection has been improved after the CdCl2 treatment. We also gain more insight into the 

behavior between the different CdTe thicknesses.  The two thickest CdTe layers in sample B 

have nearly identical EQE curves implying that the recombination relative to CdTe thickness is 

the same for these two layers. When reducing the CdTe thickness from 1.25 μm to 1 μm an 

improvement in EQE was observed.  An even further increase in EQE was observed when 
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reducing the thickness by another 250 nm to 0.75 μm. The entire increase in collection efficiency 

from layer 3 to layer 4 happens above the CdS band edge. This observation, combined with the 

comparable grain size revealed in AFM and crystallinity in Raman analysis, clearly indicates that 

the thinnest layer is the better performer because of less recombination in the CdTe due to the 

decreased number of grain boundaries encountered by electrons/holes in this cell. This 

observation is important in further optimization of the thin film CdS/CdTe solar cells.   
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Conclusion 

CdS/CdTe solar cells with variable thickness were fabricated using cPLD system. Five 

samples were fabricated with one sample not being treated with CdCl2 annealing. The other four 

samples were treated in CdCl2 vapor at 360 °C for different durations of 10, 12, 15, and 17 

minutes, respectively. The sample that was treated at 15 minutes CdCl2 showed the best 

performance in all thickness range 0.75-1.5 µm. The effects of the CdCl2 treatment increased 

doping, improved grain connectivity, and created larger grains in the CdTe. The AFM images 

show that the average roughness and the grain size of sample A (No CdCl2 annealing) in the 

range 13-16 nm and 140-160 nm respectively, implying that the grain sizes are still too small and 

the grain boundaries are massive. However, after the CdCl2 treatment (sample B), the roughness 

becomes in the range of 28-30 nm and the grain size increases to 350-450 nm. The increase in 

grain size implies a reduced density of the grain boundaries which led to a reduction in charge 

recombination. In addition, Raman spectra show that the CdTe signature peaks intensities have 

been increased after the CdCl2 treatment, and this also promotes the crystallinity of the CdTe. 

These improvements led to a significant increase in the performance (Voc, Jsc, FF, and ɳ) of the 

CdTe solar cells. The grain size of ~450 nm in the sample B yield the best power conversion 

efficiency 5.3% in the solar cells of the thinnest CdTe layer of 0.75 μm, it most probably was due 

to the benefit of reduced charge recombination outweighing the reduced optical absorption.   

  



37 
 

References 

 

1. A.Romeo, A.N.T., H Zogg, M. Wagner, J.R. Guenter. Influence of Transparent Conducting Oxides 
on the Properties of CdTe/CdS Solar Cells Proceedings of 2nd World Conference and Exhibition in 
Photovoltaic Solar Energy Conversion. 6-10 July 1997. Vienna (Austria), 1105-1108. 

2. Bube, A.L.F.R.H., Fundamentals of Solar Cells, Photovoltaic Solar Energy Conversion. Academic 
Press, INC. (London) LTD. 

3. Nelson, J., The Physics of Solar Cells. 2004, UK: Imperial College Press. 363. 
4. APS Physics, T.M.i.P.H. Bell Labs Demonstrates the First Practical Silicon Solar Cell.  [cited 2015; 

Available from: APS Physics  
5. Kazmerski, L.L., Photovoltaics: A review of cell and module technologies. Renewable and 

Sustainable Energy Reviews, 1997. 1(1–2): p. 71-170. 
6. Singh, J., Physics of Semiconductor Devices (Book). Physics Today, 1990. 43(10): p. 98. 
7. L. Frantzis, E.J., A. N. D. Little, C. Lee, M. Wood, and P. Wormser. . In Proceedings of 16th 

European Photovoltaic Solar Energy Conference. 2000. Glasgow, United Kingdom. 
8. Neamen, D.A., Semiconductor Physics and Devices. 2003: McGraw-Hill Higher- Education, 

Elizabeth A. Jones. 
9. EDUCATION.ORG, P. Semiconductor Structure.  [cited 2015 05/13]; Available from: PV 

EDUCATION,OGR. 
10. Electronics, P.a.R. Deplation Region.  [cited 2015 5/24]. 
11. Jenny, D.A. and R.H. Bube, Semiconducting Cadmium Telluride. Physical Review, 1954. 96(5): p. 

1190-1191. 
12. Cusano, D.A., CdTe solar cells and photovoltaic heterojunctions in II–VI compounds. Solid-State 

Electronics, 1963. 6(3): p. 217-218. 
13. Tyan, Y.S., Polycrystalline thin film CdS/CdTe photovoltaic cell. 1980, Google Patents. 
14. NREL, N.R.E.L. Polycrystalline Thin-Film Materials and Devices R&D, CdTe Research.  [cited 2015 

5/25]; Available from: National Renewable Energy Laboratory NREL,. 
15. Nakayama, N., et al., Ceramic Thin Film CdTe Solar Cell. Japanese Journal of Applied Physics, 

1976. 15(11): p. 2281. 
16. Abdul-Manaf, N.A., et al., Development of Polyaniline Using Electrochemical Technique for 

Plugging Pinholes in Cadmium Sulfide/Cadmium Telluride Solar Cells. Journal of Electronic 
Materials, 2014. 43(11): p. 4003-4010. 

17. Baron, B.N., et al., Polycrystalline thin film materials and devices. 1992. p. Medium: ED; Size: 
Pages: (107 p). 

18. Moutinho, H.R., et al. Studies of recrystallization of CdTe thin films after CdCl<sub>2 </sub> 
treatment [solar cells]. in Photovoltaic Specialists Conference, 1997., Conference Record of the 
Twenty-Sixth IEEE. 1997. 

19. PV FAQs. Will we have enough materails for energy-significant PV production.  [cited 2015; 
Available from: PV FAQs. 

20. Gupta, A., V. Parikh, and A.D. Compaan, High efficiency ultra-thin sputtered CdTe solar cells. 
Solar Energy Materials and Solar Cells, 2006. 90(15): p. 2263-2271. 

21. Krishnakumar, V., et al., A possible way to reduce absorber layer thickness in thin film CdTe solar 
cells. Thin Solid Films, 2013. 535(0): p. 233-236. 

22. Salavei, A., et al., Influence of CdTe thickness on structural and electrical properties of CdTe/CdS 
solar cells. Thin Solid Films, 2013. 535(0): p. 257-260. 



38 
 

23. First Solar sets new world record for CdTe solar cell efficiency. 2013. 
24. Green, M.A., et al., Solar cell efficiency tables (version 42). Progress in Photovoltaics: Research 

and Applications, 2013. 21(5): p. 827-837. 
25. Qiao, Q., et al., A comparison of fluorine tin oxide and indium tin oxide as the transparent 

electrode for P3OT/TiO2 solar cells. Solar Energy Materials and Solar Cells, 2006. 90(7–8): p. 
1034-1040. 

26. Baek, W.-H., et al., Use of fluorine-doped tin oxide instead of indium tin oxide in highly efficient 
air-fabricated inverted polymer solar cells. Applied Physics Letters, 2010. 96(13): p. 133506. 

27. Fang, Z., et al., Achievements and Challenges of CdS/CdTe Solar Cells. International Journal of 
Photoenergy, 2011. 2011: p. 8. 

28. Wu, X., High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy, 2004. 77(6): p. 803-
814. 

29. EDUCATION.ORG, P. Quantum Efficiency [cited 2015; Available from: PV EDUCATION,OGR. 
30. EDUCATION.ORG, P. short circuit current.  [cited 2015 05/13]; Available from: PV 

EDUCATION,OGR. 
31. EDUCATION.ORG, P. Open Circuit voltage [cited 2015 05/13]; Available from: PV 

EDUCATION,OGR. 
32. EDUCATION.ORG, P. Fill Factor.  [cited 2015 05/13]; Available from: PV EDUCATION,OGR. 
33. EDUCATION.ORG, P. the efficiency [cited 2015 05/13]; Available from: PV EDUCATION,OGR. 
34. EDUCATION.ORG, P. Shunt Resistance [cited 2015; Available from: PV EDUCATION.ORG. 
35. EDUCATION.ORG, P. Seriese resistance [cited 2015 05/13]; Available from: PV EDUCATION,OGR. 
36. Handbook of photovoltaic science and engineering, 2d ed. Reference and Research Book News, 

2011. 26(2). 
37. Bing, L., et al., Development of pulsed laser deposition for CdS/CdTe thin film solar cells. Applied 

Physics Letters, 2012. 101. 
38. Harrison, P., et al., The effects of fabrication pressure on the physical properties of CdS/CdTe thin 

film solar cells made via pulsed laser deposition. Photovoltaic Specialists Conference (PVSC), 
2013 IEEE 39th, 2013. 

39. Meeth, J., et al., Pulsed Laser Depositin of Thin Film CdTe/CdS Solar Cells with CdS/ZnS 
Superlattice Window. Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th, 2013. 

40. Moure-Flores, F.d., et al., Physical properties of CdTe:Cu films grown at low temperature by 
pulsed laser deposition. Journal of Applied Physics, 2012. 112. 

41. Pengchen, H., et al., Effects of the substrate temperature on the properties of CdTe thin films 
deposited by pulsed laser deposition. Surface and Coatings Technology, 2012. 213. 

42. Komin, V., et al., The effect of the CdCl2 treatment on CdTe/CdS thin film solar cells studied using 
deep level transient spectroscopy. Thin Solid Films, 2003. 431–432(0): p. 143-147. 

43. Metzger, W.K., et al., CdCl2 treatment, S diffusion, and recombination in polycrystalline CdTe. 
Journal of Applied Physics, 2006. 99(10): p. 103703. 

44. Potter, M.D.G., et al., A study of the effects of varying cadmium chloride treatment on the 
luminescent properties of CdTe/CdS thin film solar cells. Thin Solid Films, 2000. 361–362(0): p. 
248-252. 

45. Romeo, N., et al., A highly efficient and stable CdTe/CdS thin film solar cell. Solar Energy 
Materials and Solar Cells, 1999. 58(2): p. 209-218. 

46. Mazzamuto, S., et al., A study of the CdTe treatment with a Freon gas such as CHF2Cl. Thin Solid 
Films, 2008. 516(20): p. 7079-7083. 

47. Granek, F. and C. Reichel, Back-contact back-junction silicon solar cells under UV illumination. 
Solar Energy Materials and Solar Cells, 2010. 94(10): p. 1734-1740. 



39 
 

48. Newport. QEPVSI-b Quantum Efficiency Measurement System.  [cited 2015 5/26]; Available 
from: Newport, QEPVSI-b Quantum Efficiency Measurement System. 

49. Kimata, M., et al., Interdiffusion of In, Te at the interface of molecular beam epitaxial grown 
CdTeInSb heterostructures. Journal of Crystal Growth, 1995. 146(1–4): p. 433-438. 

50. Dewan, N., et al., Growth of amorphous TeOx(2≤x≤3) thin film by radio frequency sputtering. 
Journal of Applied Physics, 2007. 101(8): p. 084910. 

51. Wang, D., Z. Hou, and Z. Bai, Study of interdiffusion reaction at the CdS/CdTe interface. Journal 
of Materials Research, 2011. 26(5): p. 697-705. 

52. Amirtharaj, P.M. and F.H. Pollak, Raman scattering study of the properties and removal of excess 
Te on CdTe surfaces. Applied Physics Letters, 1984. 45(7): p. 789-791. 

53. Islam, S.S., et al., Forbidden one-LO-phonon resonant Raman scattering and multiphonon 
scattering in pure CdTe crystals. Physical Review B, 1992. 46(8): p. 4982-4985. 

54. Menéndez, J., et al., Resonance Raman scattering in CdTe‐ZnTe superlattices. Applied Physics 
Letters, 1987. 50(16): p. 1101-1103. 

55. Kosyachenko, L.A., E.V. Grushko, and V.V. Motushchuk, Recombination losses in thin-film 
CdS/CdTe photovoltaic devices. Solar Energy Materials and Solar Cells, 2006. 90(15): p. 2201-
2212. 

56. Maniscalco, B., et al., The activation of thin film CdTe solar cells using alternative chlorine 
containing compounds. Thin Solid Films, (0). 

57. Nelson, J., The physics of solar cells. 2003, Imperial College Press. 

 

 

 

 


