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Abstract 

Prior studies have shown that analyzing a continuous time panel model with the Exact Discrete 

Model (EDM) is less biased and more efficient than approximate methods such as Latent 

Differential Equations (LDE). Simulation models have included observed variables, latent 

variables, or a mix of the two types, but prior work has not examined the effects of measurement 

error on estimation when only a single observation is made at each occasion. This paper 

compares the performance of the EDM and LDE when measurement error is varied. Data 

conforming to a first order differential equation was generated for two variables across four time 

points using a variety of sample sizes, auto-effect values, and cross-effect values. EDM auto-

effects were shown to be underestimated and become increasingly biased as measurement error 

increased while LDE estimates were positively biased, but addition of measurement error had 

little effect. Estimates for negative cross-effects had smaller absolute bias than positive cross-

effects in both models, with LDE estimates closer to the true value than EDM. If expected 

measurement error is less than 10%, then EDM will produce more accurate estimates than LDE. 

For measurement error ranging from 10% - 15% each model produced some less biased and 

more efficient parameters than the other. For measurement error than exceeds 15%, LDE will 

provide less biased parameters for all but strongly negative cross-effects. 
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Introduction 

 Most researchers being trained today in modern modeling methods are taught latent 

variable methods, which extol the benefits of separating true variance from error variance. But 

for a variety of reasons, such as cost of data collection, secondary data use, or parceling for the 

sake of parsimony, the researcher can be left with single measurements to represent a latent 

construct. This situation can leave the researcher with the question of what model to use to get 

the most accurate results given the constraints of the data that have been collected. If the selected 

model is a discrete time regression, the impact of measurement error on outcomes has been well 

documented (Fox, 2008). But, less understood is the impact of measurement error within 

continuous time structural equation models (SEM). 

 One continuous time model that can be used to estimate a panel model is the Exact 

Discrete Model (EDM). Oud and Jansen first introduced psychologists to the EDM estimated in 

SEM (2000). In the 2013 article by Voelkle and Oud introducing the Exact Discrete Model 

(EDM) with oversampling, the data were created with single indicator constructs and without 

measurement error in order to simplify the simulation. This choice was understandable because 

the primary goal was to compare two methods for estimating stochastic differential equations: 

direct estimation (Voelkle, Oud, Davidov & Schmidt, 2012) and estimation via oversampling 

(Singer, 2012). Both articles provided data and R syntax files for estimation in OpenMx (Neale 

et al., 2014) so that substantive researchers can run an example themselves, and the examples 

were based on single indicator constructs similar to the panel model in Figure 1. Though the 

code contains a comment that latent variables can be modeled as well, this article led to the 

question, what impact measurement would error have on estimates from EDM if only single 

indicator constructs were available for the analysis?  
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Continuous Time 

 The main idea of continuous time models is that for every psychological process we are 

trying to measure, the phenomenon does not start when it is being measured nor stop when we 

look away. We are capturing snapshots of cognition, behaviors, and emotions in an effort to 

generalize our findings. In longitudinal research we are taking snapshots over time, with the goal 

of understanding the underlying psychological process. For example, a researcher conducting a 

study of attachment observes a mother and child one or more times but assumes that the 

attachment behavior continues outside of the assessment. But, parameter estimates depend on 

rate of measurement unless the researcher selects a continuous time model (Gollob & Reichardt, 

1987; Deboeck & Preacher, in press). 

Imagine there were two longitudinal studies of depression and stress. One study 

scheduled assessments every week for 1 month, and the second study planned to collect data 

every three weeks for 12 weeks. Both used the same measures and had comparable sample sizes. 

A panel model was utilized to look at the relationship between depression and stress variables, 

but only the study with weekly measures found significant results. Or maybe they both found 

significant results but the effect sizes were different. What if stress has a fast rate of change and 

depression a slow rate of change? The different rates of observation could have a negative 

impact on model estimates resulting in biased or inefficient parameters. This phase problem, as 

described by Boker and Nesselroade (2002), could be resolved if the data were looked at another 

way. Rather than obtain parameter estimates tied to the specific intervals selected for study, a 

continuous time model could be used to identify the parameter estimates that would be relevant 

for any discrete span of time in the overall length of the study. 
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After model parameters have been estimated, it can be useful to compare analysis results 

to other substantive research in order to determine if the statistical results differ. If a continuous 

time model has been used but all previous research utilized discrete time models, then 

continuous time parameters can be converted to discrete time parameters or vice-versa. Discrete 

time parameters for a panel model are called auto-regressive and cross-lags while continuous 

time equivalents are called auto-effects and cross-effects, respectively. The exact relationship 

between these values is 

�� = �����∆
��
∆
� , (1) 

where AD is the drift matrix of continuous time values for one interval of time with auto-effects 

values on the diagonal and cross-effects on off-diagonal; A(∆ti) is the matrix of auto-regressive 

and cross-lag discrete time values for some lag, ∆ti. Taking the natural log of the A matrix, rather 

than the individual terms, will result in a corresponding continuous time matrix that is referred to 

as the drift matrix. The log of a matrix will depend on all values in the matrix because both 

eigenvalues and eigenvectors of A are used in the computation. For example, take two matrices 

that differ on only one entry. By taking the exponent of the matrix for one unit of time, 

�−0.12 0.450.67 −0.16� = �� �0.95 0.40	0.30 0.92� /1. (2) 

Change one value, A2,1, from 0.30 to -0.30, and every entry in the drift matrix changes.  

�			0.01 			0.41−0.31 −0.02� = �� �			0.95 0.40−0.30 0.92� /1. (3) 
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Change A2,1 to another value and every entry will change again. Any value in A or the drift 

matrix can never be considered in isolation. 

Two Types of Error 

This paper examines the impact of measurement error on the estimation of continuous 

time parameters in EDM. But to truly understand how measurement error may differentially 

impact the estimation process, more needs to be understood about the differing sources of error. 

In regression models, the theoretical model contains an error term that is associated with the 

outcome variable while the predictors are assumed to be measured without error. The distribution 

of errors will have some mean and variance and are usually assumed to be uncorrelated. Within 

latent variable modeling, a variable’s variance is separated into true variance representing the 

latent variable and unique variance, with measurement error variance being part of the unique 

variance. The unique variance is a mixture of variance unique to a measure, i.i.d. errors, and 

systematic error, such as variance related to the type of measurement method (Kline, 2011). 

Within a longitudinal context, the error structure can be constrained to be equal as in repeated 

measured analysis of variance (RANOVA), freed at all time points, constrained to decrease over 

time or take on other patterns (Singer & Willet, 2003; Grimm & Widaman, 2010).  

Rather than error variance that is assumed to exist across the whole range of the model, 

the error in continuous time is stochastic error with variance that has different properties. In 

EDM, the stochastic error term is assumed to be the Weiner process, a continuous time random 

walk (Voelkle et al., 2012). A random walk is a discrete time series model with mean of 0 and a 

variance term that depends on time (Brockwell & Davis, 2010). Likewise, the Weiner process 

has an initial variance of 0 and then grows proportional to time. If a measurement model with 

multiple indicator latent variables has been specified, the EDM will be able to estimate unique 
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variances as well as the Weiner process. The stochastic error term is always estimated by EDM, 

regardless of whether it is also possible to estimate unique variance terms. 

For data modeled in SEM the amount of variance present in the data will be estimated in 

one of the parameters in the model. If it is not possible to define latent variables with multiple 

indicators in the specification of EDM, it will not be possible to automatically separate the 

unique variance from the indicator variance. But if those single indicators contain measurement 

error, how will the estimated parameters be different from their true value? When compared to 

another SEM-based estimation method that treats errors differently, will EDM still be less biased 

and more efficient as has been found in previous simulations (Oud, 2007)? 

Model Choices 

 There are several methods available for estimating a continuous time panel model 

(CTPM). One is EDM, which is a stochastic differential equation that can estimate the stochastic 

error process separately from the deterministic process of interest. A second approach is Latent 

Differential Equations (LDE), a type of latent growth curve model (LGC) that generates 

equivalent parameters for the CTPM as EDM (Oud, 2007). LDE takes a different approach to 

error in that it can estimate the residual as defined in SEM but cannot estimate the continuous 

time stochastic error term that is explicitly a part of the EDM. 

 Exact Discrete Model. The EDM is a stochastic differential equation (SDE) that 

constrains the nonlinear relationship between discrete time and continuous time parameters in 

order to estimate the underlying, stationary process. The stochastic error is estimated as part of 

the equation (Voelkle et al., 2012), and the model is flexible enough to model observed variables 

through single indicator constructs or multiple indicator latent variables with a measurement 

model.   



  6 
 

Coming from a discrete time and time series perspective, the foundation of EDM is an 

autoregressive model with lag of 1 (AR1). AR1 is  

�� = ��� ! + #�. (4) 

The measurement of a variable at any time (xi) is equivalent to that weighted variable (a) at some 

previous time (xi-1) plus an error term (wi). The extension of AR1 into a multivariate form for a 

cross-lag panel model turns a into matrix A of autoregressive coefficients on the diagonal and 

cross-lag coefficients on the off-diagonal; x is a vector of outcome variables and w is a vector of 

uncorrelated error terms: 

�� = ��� ! + #�. (5) 

The interval of time is still represented from i-1 to i. Another way to represent the interval of 

time is to write the interval in terms of change in t, ∆ti; x, A and w are now defined as a function 

of time (Voelkle, et al., 2012).  

��
�� = ��∆
����
� − ∆
�� + #�∆
��. (6) 

The interval of time is still discrete and measureable. We could make ∆ti smaller and 

smaller so that it converges to 0; this is mathematically equivalent to taking the derivative with 

respect to time. Dropping the error term for the moment, the equation becomes 

$��
�$
 = �%��
�. (7) 

The derivative is predicted by the vector x and the continuous time drift matrix, AD.  Equation 7 

is a differential equation because it is a derivative of a function. As shown in the proof provided 

by Voelkle and his colleagues (2012), the Equation 8 is the solution for the differential equation: 

��
� = 	 &�%×�( ()���
*�. (8) 

Note that this process starts at t0 and ends at t. A more generic way to write t-t0 is ∆ti for some 

interval i. Putting the error term aside for the moment, both (6) and (8) are equal to x(t):  
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��∆
�� = &�%×∆(+ . (9) 

The left side of the equation contains in A�∆
�� the autoregressive and cross-lag parameters of 

discrete time while the right side of the equation holds auto-effect and cross-effects in the drift 

matrix AD, which is then multiplied by the change in t. This enables the equality to be 

constrained in the estimation step (Voelkle et al., 2012). 

Starting with Equation 7, the error term was deliberately dropped. EDM includes an error 

term that represents the stochastic error process. The continuous time stochastic error is the 

Weiner process, a process that is 0 when t = 0 and then grows proportional to time (Voelkle et 

al., 2012). The Weiner process also has infinite variance (White, 1986) so is not differentiable in 

the context of Newtonian calculus. New developments in stochastic calculus, a field of calculus 

devoted to these random processes, can be used to measure the area under the stochastic process.  

Returning the formulas and picking up from Equation 8, the error variance added to that 

formula is 

��
� = &�%×�( ()���
*� + , &�%×�( -�.$/�0�(
()

, (10) 

Where the AD multiplied by some lag is again included as an exponent, dW(s) represents the 

stochastic process with respect to continuous time and G is the Cholesky triangle for the model.  

In the case of a multivariate model, the error term changes and the new formula is 

��
� = &�1×�( ()���
*� + , &�%×�( -�2&�13×�( -�$/�0�.(
()

 (1l) 

In Equation 11, Q is referred to as the diffusion matrix and is the error covariance matrix; Q = 

GGT, and G is its transpose. Q is pre-multiplied by the same term as found in Equation 10, but it 

is also post-multiplied by a transposed version of that term (Voelkle et al, 2012).  
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 Latent Differential Equations. Latent Differential Equations (LDE) take a different 

approach in the estimation of differential equations than EDM. Latent in LDE refers to the 

estimation of latent variables while differential equations refers to the parameterization that 

results in estimates about a latent variable and its derivatives with respect to time (Boker, Neale, 

& Rausch, 2004). The foundation of LDE is a growth curve, a model which has a long history 

that McArdle and Nesselroade (2014) trace back to the seventeenth and eighteenth century work 

of Newton and Pascal (McArdle & Nesselroade, 2002). The work by Meredith (Meredith & 

Tisak, 1990) took growth curves into a latent variable framework, enabling the development of 

hypotheses about change between growth curves via the estimation of structural paths.   

 Latent growth curves (LGC) typically have a meaningful time point represented in the 

model. In some applications, the slope factor loading for the first measurement is fixed to 0 

indicating a common starting point. The last time point can be fixed to 0 to indicate the slope at 

the end of the study. A lack of a common time point can result confounded parameters between 

individual differences in the mean and individual differences in parameter estimates for the latent 

curve (Boker & Bisconti, 2006). If there is no shared time measurement, LDE can be used to 

measure the process independently of time because time is a lag (Boker, et al., 2004).  

When a LGC has been specified as a LDE, the intercept is the zeroth derivative, and the 

slope term is the estimate for the first derivative, also referred to as rate of change (Boker, et al., 

2004). Two outcomes can be modeled together to create a couple LDE and estimate parameters 

for the auto- and cross-effects in the CTPM, parameters that are equivalent to the auto- and 

cross-effects estimated by the EDM (Hu, Boker, Neale, & Klump, 2014; Oud & Singer, 2008). 

As shown in Figure 2, the parameter from the X-zeroth derivative to the X-first derivative (Ẋ) 

estimates the auto-effect. The path from the X-zeroth derivative on one variable to the Y-first 
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derivative (Ẏ) estimates the cross-effect. Because growth curves provide the foundation and may 

be more familiar to the reader, the rest of this section will describe LDE in terms of a LGC. 

The first decision in the estimation of a growth curve is the whether a linear or curved 

pattern is expected with the model containing the intercept and slope to estimate linear growth. 

The zeroth and first derivative are sufficient for the estimation of a first order differential 

equation with regression paths between the latent variables (Boker, et al., 2004). The second 

decision is how time will be denoted in the factor loadings and whether they will be fixed at each 

point or freed for estimation. LDE fixes each factor loading equal to the indefinite integral, for 

example ∫ 1dτ = τ, in order to obtain derivative estimates. Similar to the intercept in a standard 

latent growth curve, the zeroth derivative is fixed to 1 for every time point in order to set the 

scale. The factors for the slope, or first derivative, reflect the intervals of time. In LDE the values 

will be centered on zero; if there are five equally spaced time points, the factor loading values for 

the first derivative are -2, -1, 0, 1 and 2; four equally spaced time points would be fixed to -1.5, -

0.5, 0.5, and 1.5 (Boker, et al., 2004). Because the exact value for the parameters in a LGC can 

change based on how the factor loadings are specified, forcing the loadings to be centered on 0 

results in structural parameters equivalent to the EDM drift matrix and independent of time. 

Addition of Measurement Error 

Prior simulations using the EDM and LDE have examined the estimation of a damped 

linear oscillator (DLO), a second order differential equation. Oud and Singer (2008) showed that 

the two different methods provide the same drift parameter estimates for these models. Oud 

(2007) compared EDM, LDE and two other models in the estimation of a four time point panel 

model with a DLO and measurement model. EDM was less biased than LDE on all of the 

structural paths in the model with the most bias reported for the DLO parameter estimate. LDE 



  10 
 

latent parameter estimation was also less efficient than the EDM. One of the latent variable 

parameters that was part of that simulation was the auto-effect. While that parameter was more 

biased for LDE than the EDM, the difference in bias was small (.006). In the context of a 

measurement model the linear predictor was estimated equally well by both differential equation 

estimation methods. 

Steele and Ferrer (2011a) used a univariate and coupled LDE to examine how affective 

processes self-regulate and co-regulate. Residual-based composite scores from observed 

variables were analyzed instead of latent variables and the data was embedded, a method that 

attenuates measurement error (von Oertzen & Boker, 2010). In response to a criticism about the 

use of LDE instead of the EDM (Oud & Folmer, 2011), Steele and Ferrer (2011b) concisely 

describe the different ways that LDE and EDM approach error. In LDE all error that is not part 

of the true variance of the derivative is part of the residual. That residual variance will contain 

both measurement error and random error process with a separate estimate possible for each 

observed variable while EDM would only estimates the continuous time error process leaving 

Steele and Ferrer to conclude that LDE was a better methodological choice. 

If observed variables are used to represent the process rather than latent variables, then 

there is no way for EDM to separately estimate measurement error. A simple solution would be 

to use multiple indicators and build latent variables, but use of observed variables in models are 

still very common. A search of the journal Child Development for the years 2010-2014 using the 

terms ‘cross-lag’ and ‘longitudinal’ returned 33 articles. Seven articles used latent variables, 7 

articles used a mix of latent and observed variables, and 5 articles estimated LGC parameters 

from observed variables. The remaining 14 articles used observed variables. The majority of 

those articles (63.6%) estimated model parameters that would contain measurement error. And 
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while the impact of measurement errors on analysis results are understood in regression (Fox, 

2008), the role of error in estimates from differential equation models is less clear. 

When measurement error is added to the model, do EDM estimates become biased and 

less efficient than the condition without added measurement error? How biased and efficient are 

parameters estimated by LDE in the presence of measurement error? Are there conditions under 

which one estimation method is preferred over the other based on relative bias and efficiency? 

To determine the impact of measurement error on the estimation of continuous time parameters, 

a simulation study was carried out to examine parameter estimation when using LDE and EDM 

to fit a first order differential equation. Estimation of auto-effect and cross-effect parameters was 

examined. 

Methods 

Simulation 

 A simulation was designed to examine the estimation of a CTPM with two single 

indicators across four time points and varying A-matrix conditions as measurement error was 

added to the data. Each data set was analyzed with both LDE and EDM using the OpenMx 

package (Neale, et al., in press) in R 3.0.2 (R Core Team, 2014). LDE was specified using RAM 

notation. The oversampling program, CT_SEM.R (Voelkle & Oud, 2013) was utilized for the 

EDM analysis.  

A-matrix values. The A-matrix in discrete time with two constructs is composed of four 

values for a lag of 1: the X1 to X2 (auto-regressive), X1 to Y2 (cross-lag), Y2 to X1 (cross-lag), 

and Y1 to Y2 (auto-regressive). The values selected for each element in A with the 

corresponding range of drift matrix values are listed in Table 1. The continuous time auto- and 
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cross-effect values are reported in ranges because there is no one-to-one mapping for each 

discrete standalone value. 

Data generation. After an expected covariance matrix was created from discrete-time 

simulation parameters, time series data conforming to a first-order differential equation model 

were simulated using the mvrnorm function from the MASS package (Venables & Ripley, 2002) 

in R 3.0.2 (R Core Team, 2014). Four sample sizes (50, 150, 250, and 500) were crossed with the 

discrete time A-matrix values listed in Table 1. For the 1280 conditions related to sample size 

and A matrix, the mean was fixed to 0 across four time points for the two variables, X and Y, 

and 1000 data sets were generated for each condition. After the generation of each data set with 

0% measurement error, 10%, 15%, 20%, and 25% measurement error was added. This resulted 

in a total of 6400 conditions being varied in the data sets. Time interval information was added to 

the data required by EDM, and each interval was set to 1, indicating equal spacing of the data.    

Analysis 

The drift matrix parameter estimates, standard errors, convergence status, and data sets 

were saved for EDM and LDE for each run of the CTPM estimation. The logm function in the R 

package expm (Goulet et al., 2014) was used to compute the log of the A(∆ti) matrix for each 

simulation condition in order to obtain the true values for the drift matrix. Continuous time 

values for each drift matrix were then used to calculate bias, 

45�06 =	78 !9:;<
=

�>!
? − : (12) 

where R is the number of converged replications, :;<  is the parameter estimate, and : is the true 
value. Relative bias was computed as a ratio of bias for LDE divided by bias for EDM; if relative 
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bias was less than 1 then LDE was less biased than EDM. Relative efficiency (RE) of LDE to 

EDM was computed from the a ratio of mean square error (MSE), 

 

8@ = 45�06A�BC + D�E�:FA�B
45�06B�GC + D�E�:FB�G
 (13) 

with values less than 1 indicating that LDE is preferred over EDM (Burton, Alton, Royston & 

Holder, 2006). 

Results 

The bias of estimates across the four sample sizes, 50, 150, 250, and 500, differed very 

little in the estimates for LDE and EDM. For example, the difference for LDE’s 0.95 XX-auto-

effect between N = 50 and N = 150 was 0.00013 with even smaller differences on that parameter 

between N = 150 and larger sample sizes. More differences were observed in both bias and 

efficiency for the different A-matrix parameter estimates. Bias will be examined first, starting 

with values averaged across simulation conditions, including sample size, before looking at auto-

effects and cross-effects for a subset based on a cross-effect of 0 and interactions between cross-

effects, and then a set of specific drift matrices. 

Bias 

As seen in Table 2, on average, EDM parameters with 0% measurement error were 

estimated with little absolute bias (< 0.003), while LDE over-estimated the auto-effects and 

under-estimated the cross-effects. As measurement error increased, EDM auto-effects became 

more biased in the negative direction while cross-effects became more biased in the positive 

direction, though at a slower rate. For LDE bias in auto-effects were larger than bias in cross-

effects. Because EDM provided very accurate estimates for models with 0% measurement error, 

all results for EDM will focus on conditions with added measurement error.  
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 Bias of Cross-effect at 0. A cross-effect of 0 is also 0 for a cross-lag in discrete time. A 

subset of simulation conditions with N = 150 and YX = 0 was selected as the first step in 

examining patterns in estimation. Figure 3 shows that EDM auto-effects were more biased as 

measurement error increased. These estimates were close to each other at 10% measurement 

error but started to take on a wider range of values as measurement error increased. On the other 

hand, LDE estimates were nearly consistent in their bias as measurement error increased. 

Table 2 and Figure 4 show that, in terms of absolute bias, cross-effect estimates were less 

biased than the auto-effect estimates. When the XY cross-effect was large and negative, both 

EDM and LDE produced values with little bias, and LDE was once again consistent at all levels 

of measurement error. Absolute bias increased for positive XY cross-effects in both models with 

the most biased estimates for EDM for large, positive values. 

Cross-effect interaction. Further examination of the cross-effect focused on positive YX 

cross-effects (0.2 and 0.4) at all four levels of the XY cross-effect. LDE and EDM estimates 

were most biased when both cross-effects were positive with EDM parameters more biased than 

LDE. If a negative cross-effect was paired with a positive cross-effect, the amount of bias 

between EDM and LDE were approximately equal though LDE estimates were clustered 

together more than EDM estimates as seen in Figure 5. 

Relative bias 

 The relative bias of LDE to EDM was computed for the 8 drift matrices listed in Table 3 

in order to examine how different values would influence the parameter estimates obtained from 

EDM and LDE. On each row, the diagonal values are the auto-regressive and auto-effects for X 

and Y. The off-diagonal elements contain the cross-lag and cross-effects between X and Y. 

Under the 0% measurement error condition, all bias values were greater than 1 indicating that 
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EDM produced less biased parameters than LDE. At 10% added error, half of the parameter 

estimates generated by EDM were less biased than LDE; though not shown here, at 15% added 

error EDM estimates were less biased in only 6 of the 32 parameters. This trend continued at the 

25% measurement error condition with only 3 of 32 cross-effect estimates less biased with EDM. 

The strength of the auto-effect influenced the EDM parameter estimates with the stronger 

auto-effects having more bias. With respect to relative bias, LDE produced less biased auto-

effects with the largest discrete time simulation conditions (0.95 and 0.92). Cross-effect bias was 

smallest if one or both of the parameters were negative. EDM estimates were positively biased 

across all conditions while LDE values were negatively biased with the exception of the XY = -

.30 and YX = -.40; in this case bias was close to 0 for stronger auto-effects and positive for the 

weaker auto-effects. Similar to the auto-effect estimates, LDE parameters were less biased when 

auto-effects were the largest (0.95 and 0.92). 

Relative efficiency 

Table 4 shows the relative efficiency of LDE to EDM for the 8 drift matrices with 10% 

and 25% added measurement error. The patterns of results are very similar to those for relative 

bias. At 0% measurement error, EDM is more efficient than LDE. With 10% added measurement 

error, approximately half of the auto-effect and cross-effect parameters estimated by LDE are 

more efficient. EDM cross-effects are more efficient except for small cross-effects values (0.00 

and 0.10) while LDE auto-effects are more efficient if they are strong (0.95 and 0.92) with mixed 

results with weaker auto-effects (0.80 and 0.77). With 25% added measurement error, EDM is 

only more efficient for strong, negative cross-effects (-0.30 and -0.40) paired with smaller auto-

effects (0.80 and 0.77). 
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Model Convergence 

Each simulation conditions was tested with 1000 data sets for a total of 6,400,000 models 

each for LDE and EDM. With regard to convergence rates, 100% of the EDM models 

converged. LDE failed to converge in 0.45% of the models, with more than half failing in the 0% 

measurement error condition. As measurement error increased, more models converged with 

only 0.004% failing when error was 25%. 

Discussion 

The goal of longitudinal studies is to understand how behave constructs over time. With 

panel models, the goal is to understand how two variables are influencing each other over time. 

But this analysis often utilizes imperfect data, such as data collected at non-optimal intervals or 

single indicators to represent constructs of interest. Sometimes researchers choose single 

indicators to represent a construct rather than multiple questions, but other times single indicators 

are the only option because of the how the data was collected. And depending on how the model 

is estimated, measurement error can result in biased and inefficient parameters. 

Similar to Oud’s (2007) simulation results that compared the EDM to LDE, the 0% 

measurement error condition as estimated by EDM produced accurate and efficient estimates; 

those estimates became more and more biased as measurement error increased. Across the range 

of simulation conditions, absolute bias for EDM parameters increased and one would anticipate 

that the estimates would continue in that linear trajectory in the presence of additional 

measurement error. LDE was able to effectively separate measurement error and estimates 

changed little as added measurement error varied from 0% – 25%. Although LDE parameters 

were biased, they were consistent. 
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Looking at cross-effects in more detail highlighted how the combination of cross-effects 

impact the parameters. For both EDM and LDE, cross-effects were the most biased when both 

values are positive, though LDE was less biased. For the combination of negative and positive 

cross-effects, LDE parameters are still less biased than EDM, but there is little difference in 

terms of absolute bias. For the last scenario of two negative cross-effects, absolute bias was 

smallest for strong values (-0.30, -0.40) for both estimation methods though the EDM was still 

more biased than LDE expect in the condition with weaker auto-effects. 

Recommendations 

If a researcher is making a decision between EDM and LDE in order to estimate a CTPM 

with single variables at each time point, and little is known about the parameter estimates that 

will be generated by the model, then level of expected measurement error may be the best 

information to use for model selection. In the case that less than 10% measurement error is 

expected, then EDM will provide less biased and more efficient results than LDE. For 

measurement error that ranges from 10-15%, either method can be used because each estimation 

method will produce better estimates on some of the parameters. If more than 15% error is 

expected in the data, then LDE will provide less biased estimates than EDM.  

If some information is known about strength of parameters and direction of cross-effects, 

then results from specific drift matrices can be used to select EDM or LDE. When measurement 

error is expected to be 15% or less, EDM should better estimates for weaker auto-effects (e.g. < 

0.80 in discrete time) and stronger, negative cross-effects (e.g. < -0.30 in discrete time). LDE 

will generate better estimates of auto-effects (e.g. > 0.90 in discrete time) and weaker cross-

effects (e.g. -0.20 – 0.20 in discrete time) once added measurement error exceeds 15%. 
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Limitations and Future Research 

This simulation study is only applicable for panel models when only one variable is being 

used to represent the construct. The situation where latent variables can be constructed for one of 

the two variables will likely result in different recommended cut-points with respect to 

measurement error. The impact of measurement error in the estimation of the DLO and other 

differential equation models is still an open question. It may also be possible to fix the 

measurement model error term to something other than 0 and correct the standard error (Oberski 

& Satorra, 2013), but further research needs to be conducted in order to evaluate this possible 

solution. 

Conclusion 

As anticipated, the first order differential equation as estimated by the EDM resulted in 

unbiased and efficient parameters at 0% measurement error; these parameters became 

increasingly biased and inefficient as more and more measurement error was added to the data. 

On the other hand, the impact of additional measurement error on LDE estimates was negligible. 

One surprising finding was the how the presence of negative cross-effects ameliorated the 

influence of measurement error on the parameters, and that the effect was seen in both the EDM 

and LDE. EDM is still a good choice if latent variables can be built instead of single indicator 

constructs, but if it is not possible to build a measurement model, LDE becomes the better 

model. LDE is more robust to the presence of measurement error, and because it is a LGC, a 

model familiar to many social scientists, ease of implementation may make this model a better 

choice for many applied researchers. 
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Tables and Figures 

Table 1.  

A-matrix conditions 

A Discrete Drift Continuous 

X1 to X2 0.95, 0.90, 0.85, 0.80 XX -0.331 to 0.019 

X1 to Y2 -0.30, -0.10, 0.10, 0.30 XY -0.410 to 0.410 

Y1 to X2 -0.40, -0.20, 0.00, 0.20, 0.40 YX -0.547 to 0.547 

Y1 to Y2 0.92, 0.87, 0.82, 0.77 YY -0.371 to -0.011 
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Table 2. 

Bias of Drift Matrix Parameters Across Levels of Added Measurement Error 

 EDM  LDE 

 Mean SD 95% CI  Mean SD 95% CI 

XX        

0% -0.0017 0.0023 [-0.0018, -0.0015]  0.0811 0.0344 [0.0792, 0.0829] 

10% -0.1124 0.0348 [-0.1143, -0.1105]  0.0800 0.0321 [0.0782, 0.0818] 

15% -0.1620 0.0488 [-0.1647, -0.1594]  0.0798 0.0318 [0.0781, 0.0816] 

20% -0.2086 0.0613 [-0.2119, -0.2052]  0.0797 0.0315 [0.0779, 0.0814] 

25% -0.2529 0.0730 [-0.2569, -0.2489]  0.0797 0.0315 [0.0779, 0.0814] 

XY        

0% 0.0008 0.0023 [0.0007, 0.0010]  -0.0416 0.0494 [-0.0443, -0.0389] 

10% 0.0585 0.0365 [0.0565, 0.0605]  -0.0449 0.0433 [-0.0473, -0.0425] 

15% 0.0828 0.0506 [0.0801, 0.0856]  -0.0451 0.0423 [-0.0475, -0.0428] 

20% 0.1049 0.0631 [0.1014, 0.1083]  -0.0453 0.0419 [-0.0476, -0.0430] 

25% 0.1250 0.0745 [0.1209, 0.1291]  -0.0453 0.0415 [-0.0476, -0.0431] 

YX        

0% 0.0009 0.0022 [0.0008, 0.0010]  -0.0424 0.0560 [-0.0455, -0.0393] 

10% 0.0584 0.0358 [0.0565, 0.0604]  -0.0457 0.0494 [-0.0484, -0.0430] 

15% 0.0827 0.0498 [0.0800, 0.0854]  -0.0460 0.0485 [-0.0486, -0.0433] 

20% 0.1048 0.0623 [0.1013, 0.1082]  -0.0461 0.0479 [-0.0487, -0.0434] 

25% 0.1252 0.0733 [0.1212, 0.1292]  -0.0461 0.0476 [-0.0487, -0.0435] 

YY        

0% -0.0020 0.0051 [-0.0023, -0.0017]  0.0905 0.0420 [0.0882, 0.0928] 

10% -0.1236 0.0393 [-0.1257, -0.1214]  0.0887 0.0389 [0.0866, 0.0908] 

15% -0.1777 0.0547 [-0.1807, -0.1747]  0.0883 0.0385 [0.0862, 0.0904] 

20% -0.2285 0.0686 [-0.2323, -0.2248]  0.0881 0.0383 [0.0860, 0.0902] 

25% -0.2768 0.0812 [-0.2812, -0.2723]  0.0879 0.0381 [0.0858, 0.0900] 
Note. Averages are reported to the fourth decimal to show the small change in bias for LDE as measurement error 
was added.  
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Table 3 

Relative Bias for Auto-effects and Cross-effects When Comparing LDE to the EDM 

True Value   Relative Bias 

A   Drift  10%  25% 

0.95 0.40  -0.12 0.45  -0.914 -1.043  -0.410 -0.486 

0.30 0.92   0.67 -0.16  -0.867 -0.784  -0.404 -0.359 

0.95 0.40  0.01 0.41  -0.832 -1.744  -0.330 -0.742 

-0.30 0.92   -0.31 -0.02  -1.116 -0.739  -0.555 -0.322 

0.95 -0.40  -0.12 -0.45  -0.741 2.523  -0.308 1.141 

-0.30 0.92   -0.34 -0.16  1.887 -0.742  0.789 -0.292 

0.95 0.00  -0.05 0.00  -0.573 -0.593  -0.253 -0.277 

0.10 0.92   0.11 -0.08  -0.679 -0.618  -0.316 -0.274 

0.80 0.40  -0.33 0.55  -1.339 -1.540  -0.604 -0.724 

0.30 0.77   0.41 -0.37  -1.297 -1.164  -0.612 -0.536 

0.80 0.40  -0.14 0.48  -0.375 -2.107  -0.162 -0.972 

-0.30 0.77   -0.36 -0.17  -1.233 -0.781  -0.657 -0.357 

0.80 -0.40  -0.33 -0.55  -1.241 4.752  -0.519 1.843 

-0.30 0.77   -0.41 -0.37  3.886 -1.256  1.433 -0.506 

0.80 0.00  -0.22 0.00  -0.689 -0.695  -0.319 -0.342 

0.10 0.77   0.13 -0.26   -0.863 -0.752  -0.405 -0.336 
Note. Each pair of rows and columns is a 2x2 matrix with the auto-regressive/auto-effects on the 
diagonal and cross-lag/cross-effects on the diagonal. 
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Table 4 

Relative Efficiency for Auto-effects and Cross-effects When Comparing LDE to the EDM 

True Value   Relative Efficiency 

A   Drift  10%  25% 

0.95 0.40  -0.12 0.45  0.829 1.055  0.183 0.254 

0.30 0.92   0.67 -0.16  0.743 0.615  0.176 0.140 

0.95 0.40  0.01 0.41  0.716 2.112  0.130 0.712 

-0.30 0.92   -0.31 -0.02  1.178 0.562  0.350 0.114 

0.95 -0.40  -0.12 -0.45  0.563 2.004  0.106 0.857 

-0.30 0.92   -0.34 -0.16  1.250 0.563  0.603 0.095 

0.95 0.00  -0.05 0.00  0.339 0.375  0.071 0.092 

0.10 0.92   0.11 -0.08  0.479 0.392  0.117 0.083 

0.80 0.40  -0.33 0.55  1.706 2.172  0.382 0.536 

0.30 0.77   0.41 -0.37  1.589 1.309  0.385 0.297 

0.80 0.40  -0.14 0.48  0.223 2.748  0.050 1.070 

-0.30 0.77   -0.36 -0.17  1.405 0.628  0.491 0.141 

0.80 -0.40  -0.33 -0.55  1.495 7.072  0.278 1.969 

-0.30 0.77   -0.41 -0.37  4.067 1.517  1.239 0.265 

0.80 0.00  -0.22 0.00  0.480 0.498  0.110 0.136 

0.10 0.77   0.13 -0.26   0.739 0.570  0.185 0.122 
Note. Each pair of rows and columns is a 2x2 matrix with the auto-regressive/auto-effects on the 
diagonal and cross-lag/cross-effects on the diagonal. 
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Figure 1. Panel model with four time points and correlated error terms. 
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Figure 2. Coupled latent differential equation. 
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Figure 3. True Value Versus Estimated Auto-effects for EDM and LDE (YX = 0 and N = 150). 
When the YX cross-effect equals 0 then X auto-effect has a one-to-one mapping between 
discrete and continuous time. 
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Figure 4. True Versus Estimated XY Cross-effects for EDM (black) and LDE (gray) for YX = 0. 
Each true value for a discrete time parameter represents a range of continuous time values. For a 
discrete time value of -0.30, continuous time values range from -0.382 to -0.321; -0.10 in 
discrete time ranges from -0.127 to -0.107; 0.10 in discrete time ranges from 0.107 to 0.127; and 
0.30 in discrete time ranges from 0.321 to 0.382.  
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Figure 5. Positive YX Cross-effects for All Values of XY as Estimated by EDM and LDE. The 
simulation sample size was N = 150 and 25% added measurement error. Each true value for a 
discrete time parameter represents a range of continuous time values. For a discrete YX = 0.2, 
continuous time values range from 0.209 to 0.264; and YX = 0.40 in discrete time ranges from 
0.450 to 0.547. For a discrete time XY = 0.30, continuous time values range from 0.328 to -
0.410; XY = 0.10 in discrete time ranges from 0.107 to 0.130; XY = -0.10 in discrete time ranges 
from -0.126 to -0.105; and XY = -0.30 in discrete time ranges from -0.370 to -0.307. 
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