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ABSTRACT 
 

Aggregation has been identified as one of the major degradation pathways that affect the quality 

and efficacy of protein therapeutics. Dimers are one of the predominant oligomeric species found 

in monoclonal antibody (mAb) based products, whose formation can occur both during 

processing and long-term storage, and following exposure to certain accelerated stress 

conditions. It has been hypothesized that these dimeric species could be the initial step on the 

mAb protein aggregation pathway, but this has been difficult to establish since mAb dimers can 

be a heterogeneous population of molecules. In this study, two mAb dimer species were 

generated and isolated from IgG2 monoclonal antibody samples, one upon long-term storage and 

the other from elevated stress conditions. The dimer-enriched fractions were characterized for 

protein conformation, morphology, structural integrity and bioactivity. The results revealed both 

common properties and unique differences between the two types of mAb dimers generated 

under these two different conditions. The findings of this study provide insights towards greater 

understanding of the possible causes of dimer formation under native storage and thermal stress 

conditions for this IgG2 mAb, and two possible mechanisms of dimer formation are proposed.  
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INTRODUCTION 
 

Importance of Understanding Monoclonal Antibody Aggregation  

 Monoclonal antibodies (mAbs), specifically those of the immunoglobulin G (IgG) 

subclass, have become important therapeutic options for a variety of diseases. As of 2014, more 

than ~50 mAb drug products have been approved by regulatory agencies in the US and 

Europe[1]. Compared to small molecule drugs, the structural complexity of IgG mAb-based drug 

products are orders of magnitude greater, due not only to their much higher molecular weight but 

also as a consequence of post-translational modifications and their folded, delicate three 

dimensional structure.  This results in significant challenges for biopharmaceutical 

manufacturers attempting to ensure the safety, efficacy and quality of their products during 

manufacturing, storage and administration.  

 Antibodies, which play a critical role in the functioning of the immune system, are 

produced in vivo by plasma cells and are classified by isotypes that differ in structure and 

function. Five major antibody isotypes have been identified in mammals: IgA, IgD, IgE, IgG and 

IgM. This work focuses on an IgG mAbs produced at large scale by cell culture. An IgG mAb is 

a large glycoprotein molecule formed by covalent and non-covalent interactions of four 

polypeptide chains. A schematic representation of an IgG2 mAb is shown in Figure 1. Each of 

two identical light chains (~25 kDa each) are attached to each of two identical heavy chains (~50 

kDa) by an inter-chain disulfide bond. The light chain contains two Ig domains (VL, CL) while 

the heavy chain has four Ig domains (VH, CH1, CH2, CH3). The two heavy chains are joined 

together by four inter-chain disulfide bonds, at a region known as the hinge, resulting in a 
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quaternary structure with two identical halves. The resulting homodimeric monomer has a 

molecular weight (MW) of approximately 150 kDa.  

A mAb molecule is commonly described by two biologically functional regions: the 

fragment antigen binding (Fab) domain and the fragment crystallizable (Fc) domain. The Fab 

domain, located above the hinge, consists of each of the two arms that form the characteristic 

“Y” shape of the IgG molecule. At the N-terminus of each Fab, the variable domains of the 

heavy (VH) and light (VL) pair together to form the binding sites (CDRs) specific to the targeted 

epitope of the antigen (See Figure 1). The Fc domain, located below the hinge, consists of the 

two heavy chain constant domains, CH2 and CH3, which interact pair-wise across the two 

identical heavy chains via non-covalent interactions. The Fc domain contains a carbohydrate 

chain attached to an N-glycosylation site in the CH2 domain. The carbohydrate chain is a post-

translational modification that has been shown to be important for mediating effector function 

activities in vivo [2].  

Of all the potential physicochemical degradation mechanisms associated with mAb 

therapeutics, controlling physical degradation due to aggregation is one of the biggest challenges 

facing biopharmaceutical development scientists [3-8]. Protein aggregates are commonly 

understood to encompass any assembly of protein species having higher molecular weight than 

the desired “native” species, in the case of an IgG mAb a single homodimeric monomer unit. 

Excessive protein aggregation has been viewed as a major threat to the quality of protein 

therapeutics, leading to the impurity of the active product and potential loss of efficacy and/or 

increase in immunogenicity upon administration [7, 9]. Throughout the manufacturing of protein 

therapeutics, environmental conditions pose significant stresses on the protein entity and may 

cause the protein to aggregate to non-native higher order structural forms [7, 10, 11]. Common 
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stress conditions include higher temperature, pH extremes, physical agitation, oxidation, etc. As 

advanced as cell culture and purification technologies have become at a manufacturing scale, it 

remains nearly impossible to completely exclude all the protein aggregates during the expression 

and purification of the protein product. Furthermore, long term storage and distribution process 

of the protein therapeutic dosage forms may cause additional aggregation to occur prior to or 

potentially even during administration to patients.  

 

Understanding the Causes of mAb Aggregation 

The molecular mechanisms that initiate and propagate mAb aggregation have been 

shown to be variable in nature: pre-existing chemical degradation of the protein (e.g., oxidation), 

partial unfolding, unpaired free cysteine residues, and overly exposed hydrophobic regions on 

the polypeptides.  In addition, colloidal stability is also very important in terms of the propensity 

to have random collisions between protein molecules [8, 12-16]. It is reasonable to assume that 

the precise mechanism of mAb aggregation highly depends on environmental stress, the 

formulation solution conditions and the vulnerability of the individual mAb molecule itself to 

undergo structural alterations preceding the aggregation event, i.e., chemical change, physical 

change or other degradations that already exist in the monomeric form. Developing a better 

understanding and deciphering the protein aggregation mechanisms will help to minimize its 

occurrence by circumventing conditions that are likely to trigger such events or avoiding mAb 

entities that have a greater tendency to aggregate.  

Many literature reports have hypothesized that reversible and irreversible dimerization 

formation, occurring via the joining of two mAb monomers through covalent or non-covalent 

interactions, serves as the initial step of protein aggregation. As shown in Figure 2, adapted from 
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Roberts, et al [17], protein aggregates are thought to form through a variety of steps, usually first 

involving a partial unfolding of the native protein structure. A partially unfolded monomer may 

interact with the native monomers, or other partially unfolded monomers in solution, to form 

reversible self-associated oligomers. Associations of two, three or four monomer units are 

referred to as a dimer, trimer, tetramer, respectively. At some point, structural or conformational 

changes to the self-associated oligomers may occur, leading to intermolecular interactions that 

are non-reversible. At this stage, the protein oligomers exist as a soluble aggregate containing a 

number of monomer units. The formation of an irreversible dimer species of an IgG2 mAb is the 

focus of this work.  As shown in Figure 2, monomers, with either native or partially unfolded 

structure, may continue adding to the soluble aggregate to grow the aggregate structure into a 

high molecular weight (HMW) species. Likewise, soluble aggregates may interact with each 

other in solution to form even larger HMW species. When growth of aggregate species causes a 

change in the solubility of the protein, it may precipitate out of solution via phase separation 

leading to the formation protein particles of varying size and physical characteristics (e.g., 

submicron, sub-visible and visible particles)[18].    

Not all multimeric species of immunoglobulin are necessarily detrimental, especially 

forms produced in vivo as part of the immune system. Indeed, IgA and IgM antibody isotypes 

are known to form naturally occurring oligomers that have important roles as a first line of 

immune defense secretory immune system [19]. The biosynthesis of the IgA and IgM monomers 

typically occur in secretory epithelial cells through the involvement of a small joining peptide, 

known as the J-chain. The J-chain forms disulfide bonds with cysteine residues near the C-

terminal ends of the Fc domains of two IgA monomers. In the case of IgM, one J-chain is 

responsible for forming a dimer of two IgM monomers, and the remaining monomers that form 
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the IgM pentamer are linked together through additional disulfide bonding at the tail end of the 

Fc domains. In both cases, IgA and IgM molecules are joined at the tail ends of the Ig 

monomers, resulting in the outward orientation of the antigen-binding domains. One of the main 

features of polymeric IgA and IgM antibodies is the increased valency of the antigen-binding 

domains. The close proximity of multiple antigen-binding sites improves the probability of 

epitope binding. Additionally, multiple bacterial or viral cells may be clumped together by the 

same polymeric antibody, thus preventing permeation of the pathogens through mucosal 

membranes. Because secretory IgA and IgM oligomers are joined through the Fc regions, they 

show little to no activation of the complement immune system, which allows the clearance of 

pathogens from mucosal membrane surfaces without inducing an inflammatory response. The 

features of naturally occurring IgA and IgM oligomers may, in theory, have practical 

implications for therapeutic IgG oligomers. For example, an improved therapeutic potency could 

be observed in IgG mAb oligomers if the additional valency of the Fab domains results in a 

greater probability for antigen binding relative to the IgG mAb monomer.  

Since in the case of IgG mAbs, dimer populations have been shown to be quite 

heterogeneous in nature, it is unclear whether some types of IgG dimers are more prone to 

growing into larger oligomers than others [4, 20-23]. Several studies have implicated non-

covalent interactions between the Fab domains as a root cause of dimer formation [21, 24-27]. 

Others have shown that covalent interactions caused by disulfide bond rearrangements are to 

blame for dimer formation [12, 16, 23, 28]. Van Buren et al found that, depending on the pH of 

the mAb solution, distinct dimer formation pathways could be detected [23]. Recently, Paul et al 

showed detailed characterization of mAb dimers induced by purification stress, low pH and 

photo exposure [29]. The study demonstrated, although similar in size, mAb dimers exhibit 
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drastically different physical and chemical properties, which may also impact biological 

functions.  

Recently, investigations of IgG dimers by Hydrogen/Deuterium Exchange Mass 

Spectrometry (H/D-MS) has emerged as a very sensitive, high-resolution approach to 

understanding the interaction sites between two monomers at the dimer interface. For example, 

Iacob, et al have investigated the properties of IgG dimers formed after manufacturing from 

IgG1 and IgG2 solutions [30], and were able to identify the role of CH2 domain disulfide bonds 

as the cause of dimer formation in an IgG2 mAb. Interestingly, Zhang, et al, were able to identify 

regions in the Fab domain of an IgG1 mAb that were susceptible to protein aggregation upon 

thermal and freeze-thaw stress [31]. 

 
The Problem—The Causes of IgG Dimer Formation in Monoclonal Antibody Formulations 

Remain Ambiguous 

 Although many analytical methods are routinely employed for the detection and 

quantification of protein aggregates, such methods are often limited in their ability to 

characterize the detailed structural differences that lead to their formation and to subsequent 

larger protein aggregates. Various pathways for mAb aggregation have been proposed in the 

literature, but knowledge about the mechanisms that control of mAb aggregation remains 

limited. Furthermore, the structural aspects of dimer formation, the smallest form of protein 

aggregate, and their role in the overall protein aggregation pathway, are not well understood. It is 

hoped that upon identifying the detailed properties of the aggregated mAb dimer formed by 

different stresses, the causes and mechanisms of protein aggregation can be better characterized 

and controlled during the formulation development cycles (from lab to clinical trials to 

commercial manufacturing).   



 
 
7 

  

The Hypothesis 

Formulation scientists are responsible for developing pharmaceutical dosage forms that 

preserve the physiochemical properties of therapeutic mAb solutions for an extended period of 

time, usually greater than two years, in order to satisfy the demand for clinical trial material, and 

upon approval, to offer favorable supply-chain conditions. Successful protein therapeutic 

formulations are highly robust under a variety of handling conditions, show lower relative rates 

of protein degradations and provide the longest possible expiry for the drug product. Typically, 

mAb formulations are compared for their relative rates of degradation under a variety of storage 

temperatures as a function of time. One of the primary degradation mechanisms observed during 

formulation development is protein aggregation, with mAb dimer being the primary type of mAb 

aggregate found under both low temperature storage and accelerated stability evaluations at 

higher temperatures. Since the role dimer plays in the overall protein aggregation pathway of 

monoclonal antibodies is not well understood, the focus of this investigation is to isolate two 

types of dimers from a specific IgG2 mAb: one formed during long-term storage at low 

temperature and the other formed during short exposure to high temperature stress. Because low 

and high temperatures are commonly evaluated during formulation development for protein 

therapeutic physiochemical stability, it is hoped that any observed similarities or differences 

between the isolated dimers will lead to better understanding of the potential mechanisms of 

mAb dimer/ aggregate formation under such conditions.   

Upon successful isolation of dimeric mAb species, a number of physical, chemical and 

biological methods can be employed to understand the similarities and differences of the IgG2 

mAb dimer types and how they compare to the native mAb monomer. A through analytical 
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characterization of the IgG2 dimer fractions may help to elucidate potential mechanisms of 

dimer formation for this IgG2 mAb under these two conditions. The results presented here will 

provide insights into the role of protein conformational changes may play during the aggregation 

of this IgG2 mAb monomer into dimers.  

 

 
Analytical Techniques Utilized to Monitor Protein Aggregation 

 During biotherapeutic formulation development, protein product candidates are subjected 

to numerous stress conditions in order to accelerate the onset of protein aggregation. The results 

of these stress studies are often used to (1) identify stabilizing excipients and formulations, (2) 

confirm stability indication of analytical methods, and (3) to help predict the overall aggregation 

of a product prior to reaching the expiry. While the stress conditions vary, the detection and 

characterization of protein aggregates is mainly achieved by employing a standard set of 

qualitative and quantitative methods. For example, der Engelsman, et al have provided a 

comprehensive overview of the common analytical methods used to analyze protein aggregates 

along with their respective advantages and disadvantages[32]. In this study, a variety of 

analytical techniques are employed to assess protein size, structure, biological activity and 

chemical modifications of the dimer species of a model IgG2 mAb.  

Size exclusion chromatography (SEC) is the workhorse for quantification of soluble 

protein aggregates. SEC, which measures the hydrodynamic radius of solute molecules, separates 

monomer from aggregate species by gel filtration. Assuming protein monomer and soluble 

aggregates have the same extinction coefficient, it is possible to quantify the extent of 

aggregation for a given sample by measuring UV absorption of the eluting protein species. 

Calibrating a column used in SEC with a reference solution containing protein molecules of 
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known molecular weight (MW) can be used to give an estimate of the mass of an unknown 

protein based upon elution position. Combining a SEC method with specialized light scattering 

equipment, a method known as size exclusion chromatography coupled with on-line multi angle 

light scattering (SEC-MALS), can provide accurate MW measurements for the monomeric and 

aggregated species in a protein solution. Sedimentation Velocity Analytical Ultracentrifugation 

(SV-AUC) is a size distribution technique that has been shown to be useful as an complimentary 

technique to SEC for detecting aggregated proteins[33]. SV-AUC has several advantages over 

SEC, including the ability to detect a larger size range of protein aggregates and reduces the 

potential for aggregate disruption by limiting buffer composition differences and surface 

interactions. SV-AUC has also been shown to distinguish different orientations of dimer species 

[29, 34]. In addition to separating proteins based on size distribution under native-like 

conditions, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) can provide 

information on the MW size of the denatured forms of the proteins including the nature of 

bonding between protein oligomers [35].  

Biophysical techniques such as Circular dichroism (CD) spectroscopy, Fourier transform 

infrared (FT-IR) spectroscopy and extrinsic fluorescence spectroscopy are commonly used for 

probing the higher-order structural integrity of mAbs. CD, which measures the difference in 

absorption of left-handed and right-handed circularly polarized light, has been widely used to 

study a protein’s overall secondary and tertiary structure as an indicator of protein stability in 

solution [14, 36-41]. In the far-UV wavelength region, typically measured from 190-240 nm, 

amide bonds that form the peptide backbone are monitored as chromophores and the resulting 

CD absorption spectra are reflective of various secondary structural elements in proteins, such as 

α-helices, ß-sheets, ß-turns and unordered (or random coil) conformations.  CD spectra obtained 
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in the near-UV wavelength region (250-350 nm) are the result of aromatic amino acids (i.e., 

tryptophan, phenylalanine and tyrosine) and disulfide bonds acting as chromophores. Because 

the features of a near-UV CD signal, such as intensity and sign (positive or negative), are 

dependent on the three-dimensional (3D) orientation of the chromophores within the protein 

structure, near-UV CD spectra provide tertiary structural information. Unlike far-UV CD, 

features of near-UV CD spectra cannot be assigned to a specific 3D structure. Rather, near-UV 

CD provides a spectral fingerprint for the native, folded protein that can be used to observe the 

impacts of any variety of alterations to the protein structure or its environment. For example, Li 

et al demonstrated the use of near-UV CD in manufacturability assessment screening by 

comparing the relative changes in tertiary structure of protein candidates induced by exposure to 

low pH [42].  

FTIR spectroscopy is a type of absorption spectroscopy that is commonly applied for the 

investigation of a protein molecule’s overall secondary structure content in solution as well as in 

the solid state. FTIR spectra result from passing a range of infrared light through a sample and 

measuring the amount of light absorbed at each frequency. The infrared light is absorbed when 

its frequency is equivalent to the vibrational frequency of a particular bond. FTIR is especially 

useful for observing the vibrational states associated of the protein backbone, particularly the 

amide I bond, which has been shown to exhibit characteristic absorption spectral features for 

different secondary structures, such as α-helices, ß-sheets and ß-turns [43].  FTIR has been 

shown to be useful for observing changes in a protein molecule’s secondary structure content 

caused by chemical, thermal and mechanical stresses in both the liquid and solid states [4, 16, 38, 

44-48]. 
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Extrinsic fluorescence spectroscopy is a highly sensitive technique with many 

applications for use in the formulation development of biopharmaceutical drug products [49]. 

Extrinsic fluorescence spectroscopy measures the interaction of fluorescent probes with the 

protein of interest. Such probes, often small molecule dyes, can form covalent or non-covalent 

associations with the protein structure to reveal, depending on the dye, different properties of 

protein structure[50]. SYPRO® Orange has been demonstrated as a useful dye for monitoring 

protein unfolding and protein stability under thermal stress, as well as its ability to detect IgG 

aggregates during therapeutic protein development[51, 52]. In aqueous solutions, the fluorescent 

emission of SYPRO® Orange is insignificant. When the dye is able to bind or interact with 

hydrophobic amino acid residues or hydrophobic regions in a protein, a significant increase in 

fluorescent emission can be detected. It is generally accepted that, for a protein in its native state, 

thermodynamics of protein folding favor the hydrophobic amino acid residues be oriented 

toward the interior of the tertiary protein structure and away from the surface exposed to aqueous 

solvents (i.e., hydrophobic collapse). Therefore, fluorescent emission spectra increases of 

SYPRO® Orange dye upon heat exposure can be interpreted as a measure of protein unfolding. 

Differential scanning calorimetry (DSC) is a tool used for measuring the thermal melting 

behavior of proteins, and many applications have been demonstrated that are specific to the 

development of biopharmaceutical drugs and their formulations [53]. DSC measures the 

difference in heat required to maintain synchronous temperature between a protein sample 

solution and a reference solution (containing only the formulation buffer) as the temperature is 

raised across the range being studied. The amount of energy necessary for maintaining constant 

temperature between the protein sample and reference is the heat capacity (Cp).  Typically, molar 

Cp is plotted as a function of temperature (T), which provides the enthalpy (∆H) of unfolding 
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caused by heat denaturation (assuming the unfolding event is reversible in nature).  For either 

reversible or irreversible thermal transitions, the transition midpoint(s), (Tm) of thermal 

unfolding events, can be monitored. For protein molecules, Tm represents the temperature at 

which 50% of the protein retains its native conformation and 50% of the protein is heat-

denatured. DSC analysis of mAbs have been shown the IgG molecules to exhibit multiple Tm 

values and can be attributed to the unfolding of specific domains, such as the CH2 or Fab 

domains [54]. Generally, higher Tm values can be indicative of improved conformational 

stability, and consequently, DSC has been established as a vital tool in biopharmaceutical 

development. Examples of DSC applications include assessing the impacts of primary sequence 

mutations, protein candidate screening in early development, and formulation excipient 

screening, to name a few examples [55-58].   

Most of the biophysical assays used to characterize protein aggregation are limited in 

their ability to identify the mechanism or pathways of protein aggregation because they generally 

provide global information averaged across the entire molecule, and are not sensitive enough to 

observe small changes in the molecular structures of proteins. Hydrogen–Deuterium Exchange 

Mass Spectrometry (H/D-MS) has emerged as a fast, high-resolution tool for detecting minor 

conformational changes in the structural dynamics of proteins at the molecular level [24, 30, 59-

63]. H/D-MS has been proven capable of detecting chances in structural dynamics of mAbs that 

result from changes in formulation excipients[64, 65], characterizing protein aggregates[30, 66], 

impacts of chemical modifications on protein structure[31] and the effects of charge mutations 

on protein conformation[67], to name a few examples from the recent scientific literature. 

The fundamental principle underlying H/D-MS analysis is ability to observe differences 

in the rates of deuterium exchange with amide hydrogen of the polypeptide backbone. For 



 
 
13 

example, hydrogen atoms in a random coil peptide (without higher-order structure), which is 

highly exposed to the solvent, will exchange with deuterium almost instantaneously (depending 

on solution pH and the inherent chemical exchange rate), whereas the hydrogen bonds of the 

amide backbone in a folded protein under the same conditions will exchange with deuterium at 

rates heavily influenced by the folded structure of the protein (as well as the inherent chemical 

exchange rate)[68]. When a protein structure is altered in such a way that it results in a 

conformational change with altered local flexibility, deuterium may exchange with the hydrogen 

of polypeptide backbone in a particular peptide segment at a faster rate compared to the same 

peptide segment within the protein in its native state. These differences in exchange rates, when 

combined with protein sequence analysis and homology modeling, can provide key insights into 

changes in local protein dynamics due to structural perturbations at peptide resolution.   

MATERIALS AND METHODS 
 

Sample Preparation 

 Monoclonal antibody mAb1 (IgG2, calculated pI of 8.7) was obtained from the 

purification group within Amgen, Inc. The purified mAb1 bulk material at 150 mg/mL was 

stored frozen in a mildly acidic buffer. The purified mAb1 solution was thawed and buffer 

exchanged into 20 mM acetic acid (pH 5.0 @ 20C) using Slide-A-Lyzer™ Dialysis Cassettes 

(Life Technologies, Grand Island, NY) and then diluted to 20 mg/mL using the same buffer. 

After dilution, a portion of mAb1 bulk material was stored in 125 mL media bottles and kept at 

2° -8°C for two years for use in assessing the properties of mAb1 dimer species that were present 

after long-term storage. The remaining material was used to generate thermal stressed induced 

dimer species. Thermal-induced dimer material was prepared by placing 30 mL aliquots of 
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mAb1 bulk material, stored in 50 mL FalconTM conical centrifuge tubes, in a VWR Gravity 

Convection Incubator (VWR, Radnor, PA) set to 50°C for 3 days. Additionally, 50 µL aliquots 

of the original mAb1 purified bulk material (at 150 mg/mL) were stored frozen at -70°C in 0.5 

mL Eppendorf® Snap-Cap Microcentrifuge tubes (Fisher Scientific, Pittsburgh, PA) for use as a 

reference standard. 

Analytical size exclusion chromatography (SEC) 

 The relative size distribution of mAb monomers and dimers were determined by SEC 

using a Waters H-Class UHPLC System (Waters Corporation, Milford, Massachusetts) equipped 

with an ultraviolet (UV) diode array detector. For each sample, 60 µg of protein was injected 

onto a gel filtration column (ACQUITY UPLC PrST SEC Column, 200Å, 1.7 µm, 4.6 mm X 

300 mm; Waters Corporation, Milford, Massachusetts) equilibrated in a running buffer mobile 

phase comprised of 100 mM sodium phosphate, 250 mM NaCl at pH 6.8 at a flow rate of 0.4 

mL/min. Chromeleon® 7.2 Chromatography Data System (Dionex, Sunnyvale, California) was 

used to analyze results and peak integration was calculated using the UV absorbance of 280 nm. 

Reference standard mAb solutions were injected in triplicate at the beginning and end of each 

sequence to determine the SEC assay variability.  

Protein fractionation using SEC 

 Monomer and dimer samples of mAb1 were purified via using an ÄKTAexplorer 100 

FPLC instrument equipped with a fraction collector (GE Healthcare Bio-Sciences, Pittsburgh, 

PA). Five mL aliquots of each mAb1 sample type (stored at either 2° -8°C or 50°C) were 

injected onto a HPLC gel filtration column (TSKgel G3000SW, 250Å, 13 µm, 21 mm X 60 cm, 

TOSOH Bioscience LLC, King of Prussia, PA) and run at a flow rate of 2 mL/min using the 

same mobile phase described above for analytical SEC. The instrument was programmed to 
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begin collection of 1 mL fractions into a 96 deep well plate when the absorbance at 280 nm 

exceeded 0.20 mAU. Multiple injections were made for each mAb1 sample type to generate a 

sufficient supply of mAb1 monomer and dimer fractions. Upon completion of all injections, 

individual wells corresponding to the apexes of either monomer or dimer peaks were pooled 

together and concentrated to ≥ 1 mg/mL protein using Amicon Ultra-15 Centrifugal Filter Units 

(EMD Millipore, Billerica, MA). Monomer and dimer fractions of mAb1 were either used 

immediately in the phosphate containing buffer (SEC mobile phase), or were buffer exchanged 

to an acetate buffer containing sucrose, pH 5.0 to provide cryoprotection via dialysis as described 

previously, and stored frozen for future analysis. The fraction collection process resulted in four 

distinct samples: mAb1 dimer from long-term 2° -8°C storage, mAb1 monomer long-term 2° -

8°C storage, mAb1 dimer from 50°C incubation, and mAb1 monomer from 50°C incubation.   

 

Size Exclusion Chromatography Coupled with On Line Multi-Angle Light Scattering Detection 

(SEC-MALS) 

SEC-MALS analysis was performed to determine the molecular weight (MW) of monomer and 

dimer species using an Agilent 1100 HPLC system with a TSK-GEL G3000SWxl column (5 µm 

particle size, 7.8 mm ID x 300 mm length; Tosoh Biosep, 08541) with a Metasaver 0.5 µm pre-

column filter (Varian, A6005). The three detectors used included a Wyatt HELEOS MALS 

detector (light scattering), a Wyatt Optilab rEX RI detector (refractive index), and an Agilent UV 

detector with wavelength set at 280 nm. The SEC-MALS runs were performed at room 

temperature, with 100 mM sodium phosphate, 250 mM sodium chloride, pH 6.8 buffer used as 

the mobile phase, with a flow rate was 0.5 mL/min. Samples volumes were adjusted as necessary 

to ensure 300 µg of each sample were injected, without dilution, into the SEC-LS system. For 
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molecular weight (MW) calculation, instrument software was used with an extinction coefficient 

value for the mAb species of 1.5 mL/(mg*cm) at 280 nm.  SEC-MALS analysis was performed 

in triplicate and the average and standard deviations for MW in kDa were reported. 

 

Atomic Force Microscopy 

 
AFM experiments were conducted with a commercial MultiMode 8 Scanning Probe Microscope 

and operated using ScanAsyst mode (Bruker Corporation, Billerica, MA). All measurements 

were performed in air using a Veeco ScanAsyst-Air Silicon Tip on Nitride cantilever (Bruker, 

Billerica, MA). The scan size was 500 nm, the sample size was 1024 samples/line and the scan 

rate was 0.4 Hz. For each sample, 20 µL of the protein solution, diluted 500x using deionized 

water, was incubated on a freshly cleaved mica sample disk (Bruker, Billerica, MA) for 

approximately 5 seconds at room temperature. After incubation, the silica surface was carefully 

rinsed with deionized water 10 times (100 µL each) and then dried with nitrogen gas. After 

drying, each sample was analyzed immediately. 

Potency Assay 

The potency assay for mAb-1 is a reporter gene bioassay utilizing a human 

erythroleukemic cell line transfected with a reporter gene construct. These cells express mAb1 

antigen receptor and are activated in the presence of the antigen. Upon antigen binding to the 

receptor, transcription factors are activated which lead to the transcription of luciferase reporter 

gene.  Steady-Glo® luciferase assay substrate reagent was added to the plates and read in a 

luminometer (EnVision). The amount of luciferase activity is directly proportional to the amount 

of antigen and inversely proportional to the concentration of mAb1. The biological activity of 

mAb1 is determined by comparing test samples to the mAb-1 reference standard. The potency 
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assay is performed in triplicate for each sample and the relative potency (%) and standard 

deviation are reported.  

 

FcRn Binding Activity 

The cell-based FcRn binding assay was developed in a competitive binding format to test 

the binding of the Fc moiety of monoclonal antibodies to FcRn. The assay utilized a variant of 

human embryonic kidney cell line, 293T (293 cells expressing SV40 large T antigen), developed 

internally by Amgen, which expressed FcRn on the cell surface. Varying concentrations of the 

mAb1 test samples and reference standard were incubated with FcRn-expressing cells and a 

fixed concentration of Alexa488®-labeled IgG-Fc at room temperature and at pH 6. After the 

incubation, the assay plate was read on a acumen® Cellista laser scanning imaging cytometer 

(TPP Labtech Inc, Cambridge, MA) for cell bound fluorescence. Fluorescence data from each 

well were recorded and analyzed using Softmax Pro version 5.4.1 (Molecular Devices, LLC, 

Sunnyvale, CA). After assessing similarity between response curves of test sample and reference 

standard, the test sample binding relative to the reference standard was determined and the 

results were reported as percent relative binding (% relative binding). Each sample test was 

performed in triplicate and the averaged % relative binding and standard deviation were reported. 

Sedimentation Velocity measured by Analytical Ultracentrifugation (SV-AUC) 

Sedimentation velocity was measured as an orthogonal approach to SEC for size distribution 

analysis using a Proteomelab XL-I analytical ultracentrifuge instrument (Beckman Coulter, 

Fullerton, CA). 12-mm charcoal-filled Epon 2-channel centerpieces (Beckman Coulter) and 4-

hole An60 Ti analytical rotor pre-equilibrated to 20.0 °C were used. Experiments were 

conducted at a temperature of 20.0 °C and absorbance was recorded at 280 nm with radial scan 



 
 
18 

increment of 0.003 cm. The rotor angular velocity was 45,000 rpm. The data were analyzed by 

the continuous c(s) distribution model in Sedfit (version 9.4) [69] using fitting parameters 

described previously for monoclonal antibodies [70].  

Differential Scanning Calorimetry (DSC) 

 The thermal unfolding (or melting) temperature (Tm) was measured by differential 

scanning calorimetry (DSC). The energy needed to maintain the temperature between the 

reference cell (buffer) and the sample cell (protein) was recorded using a MicroCal VP-Capillary 

DSC system (GE Healthcare, Piscataway, NJ) equipped with an auto-sampler. The DSC 

experiments were employed using 0.5 mg/mL protein samples from 20 to 110 °C at a heating 

rate of 60 °C per hour. The baseline was established by subtracting the buffer-buffer scan using 

the Origin 7.0 software (OriginLab® Corporation, Northampton, MA). The results were 

presented as the change in heat capacity normalized over protein concentration.   

Fourier Transform Infrared Spectroscopy (FTIR) 

 The overall secondary structure of mAb1 monomer and dimers were assessed by Fourier 

transform infrared (FTIR) spectroscopy using a Bruker TensorTM 27 spectrometer equipped with 

a BioATRcellTM that is equivalent to 6 µm in path length (Bruker Corporation, Billerica, MA). 

The FTIR spectra were collected at room temperature with a 4 cm-1 interval over a range of 4000 

– 800 cm-1 using single beam mode. Protein concentration was 1 mg/mL and each spectrum was 

calculated by averaging 256 consecutive scans. The buffer signal was subtracted from sample 

scans and the second derivative spectrum was calculated using the OPUSTM software by 

employing a Gaussian-Lorentzian method with a 7-point interpolation and a 9-point smoothing 

function.  

Near and Far Ultraviolet Circular Dichroism (UV-CD) 
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 A Jasco J-815 spectropolarimeter (Jasco Inc, Easton, MD) was used to measure near-UV 

circular dichroism (UV-CD) absorbance as an indication of protein tertiary structure. The CD 

spectrum was recorded over 240 – 340 nm using a square quartz cuvette with a 1 cm path length. 

All spectra were averaged over 3 scans at a 10 nm/min scanning speed and a 0.5 nm step size. 

Data were collected with protein samples at 0.5 mg/mL and the corresponding buffer at room 

temperature. The buffer signal subtraction was performed in the Spectra ManagerTM software 

(Jasco Inc., Easton, MD) and the CD signal in mean residue ellipticity was reported. Far-UV CD 

applied the same conditions to measure protein secondary structure, with the exception that the 

absorbance spectrum was recorded over 190-240 nm. 

Extrinsic Fluorescence using SYPRO® Orange Dye 

 Extrinsic fluorescence was applied to assess the hydrophobicity of protein samples using 

SYPRO® Orange dye, obtained from Invitrogen, Inc. (Carlsbad, CA), as described 

previously[71]. Protein samples (200 µL) were measured in 96-well microplates at 1 mg/mL 

with a final SYPRO® Orange concentration equivalent to 1:5000 of the original concentration. 

The fluorescence emission spectra were collected using a Varian Cary Eclipse Fluorescence 

Spectrophotometer (Varian Inc., Palo Alto, CA) equipped with a microplate reader. The 

excitation was 495 nm and the emission was measured from 550 to 650 nm. The slit width was 

set to 5 nm and the detector power was 600 volts. Three consecutive scans at a 60 nm/min 

scanning speed were averaged for all samples and the buffer signal was subtracted from the 

emission spectra.  

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)  

SDS-PAGE was performed using 4-20% Tris-Glycine Gel from Bio-Rad Laboratories, 

Inc. (Hercules, CA). All four mAb1 samples were prepared in non-reduced and reduced forms. 
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For each sample, 10 µg of protein was mixed with 2x Tris-Glycine SDS sample buffer at 1:1 

ratio in the presence of 15 mM iodoacetimide for non-reduced sample preparation and 25 mM 

dithiothreitol (DTT) for reduced sample preparation. All sample mixtures were then heated at 

70oC for 10 minutes. A constant voltage of 150V was applied for 40 minutes. The gel was then 

stained with Simply Blue Safe Stain from Life Technologies (Grand Island, NY) and destained 

with water. 

 

Hydrogen/Deuterium Exchange Reactions and Mass Spectrometric Analysis (H/D-MS) 

H/D-MS experiments were performed with a Twin HTS PAL liquid handling robot (LEAP 

Technologies, Carrboro. NC) interfaced with an Orbitrap mass spectrometer (Elite, 

ThermoFisher Scientific, San Jose, CA), as previously described [60, 63]. The protein 

concentration was adjusted with 10 mM acetate (pH 5.2) to 3 mg/mL. The H/D exchange 

reaction was initiated by 5-fold dilution of 3 mg/mL protein samples with 10 mM acetate in D2O 

(pD 5.2) as indicated for a predetermined time (10, 30 s, 1, 10 min, 1, and 4 h) at 25 °C. The 

exchange reaction was quenched by mixing 1:1 with ice-cold 200 mM sodium phosphate, 4 M 

guanidine HCl, 0.5 M Tris(2-carboxyethyl)phosphine (TCEP), pH 2.4. The quenched protein 

mixture was passed over a custom-packed 2 mm × 2 cm pepsin (Fisher Scientific, Pittsburgh, 

PA) column (Agilent Technologies, Santa Clara, CA) at a flow rate of 200 µL/min. Digested 

peptides were captured on a 2 mm × 1 cm C18 trap column (Waters Corporation, Milford, MA) 

and desalted for 3 minutes at a flow rate of 0.2 mL/min. Peptides were then separated by using a 

2.1 mm × 5 cm C18 column (1.9 µm Hypersil Gold; Thermo Fisher Scientific, Waltham, MA) 

with a 9.5 minute linear gradient of 5–40 % acetonitrile in 0.1% formic acid at a flow rate of 0.2 

mL/min. Protein digestion and peptide separation were carried out in thermal chamber 
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maintained at 1°C to reduce back exchange. LC-MS data were acquired with a mass resolving 

power of 120,000 for ions of m/z 400. Each experiment was performed in duplicate to provide an 

estimate of variation.  

Tandem mass spectrometry (MS/MS) experiments were performed under the same conditions as 

described above. Product-ion spectra were acquired in a data-dependent mode, and the 10 most 

abundant ions were selected for product-ion analysis. All data were processed with the software 

MassAnalyzer[62] for the peptide identification and the deuterium level calculation. 

Approximately 500 peptides were analyzed with sequence coverage of at least 97% for all mAb1 

polypeptide chains. All H/D-MS data were normalized to 100% deuterium incorporation and the 

percent deuterium incorporation was plotted against labeling time in log scale with Prism v 6.02 

(Graphpad Software, La Jolla, CA). See Zhang, et al (manuscript in preparation) for a more 

detailed explanation of the H/D-MS protocol.  

Limited Proteolysis by FabRICATOR® Enzyme 

Approximately 60 µg of each sample was digested in 30 µL of 10 mM acetate, pH 5.2 containing 

60 units of FabRICATOR enzyme.  The reaction was incubated at 37°C overnight. For reduced 

samples, the digested material was treated with a buffer containing 4 M Guanidine-HCl, 50 mM 

Tris, pH 8.3, with 50 mM DTT. Reduced and non-reduced digests were directly separated by 

reverse phase chromatography with a BEH Phenyl 2.1 X 150 mm column (Waters Corporation, 

Milford, Massachusetts) and the mass measurements were obtained in-line using a Waters 

Premier Q-Tof mass spectrometer.  

Disulfide peptide mapping with mass spectrometry 

The mAb1 samples were denatured by diluting 33 µL of 3 mg/mL proteins in 90 µL of 8 M 

Guanidine-HCl, 10 mM N-Ethylmaleimide with 100 mM sodium acetate, pH 5.2, and incubated 
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at 37 C for 3 hours. The mixture was then diluted with 325 µL of 4 M urea, 20 mM 

hydroxylamine, 100 mM Tris, pH 7.0, and Lys-C was added to the mixture to achieve an enzyme 

to substrate ratio of 1:20. To prepare reduced digested samples, 200 µL of each digests were 

added with 4 µL of 0.5 M TCEP solution and incubated at room temperature for 30 min. The 

reduced and non-reduced Lys-C digests were analyzed by reversed phase HPLC with mass 

spectrometry using a Waters Acquity UPLC with an Orbitrap mass spectrometer (Elite, 

ThermoFisher Scientific, San Jose, CA). Approximately, 30 µg of protein digest was injected 

onto a Waters Acquity UPLC BEH300 C4 2.1 X 150 mm column. Mobile phase A was 0.1 % 

TFA in water and mobile phase B was 0.1% TFA in 90% acetonitrile. The column was 

equilibrated with 2% B using a flow rate of 0.2 mL/min. After sample injection, the column was 

washed with 2% mobile phase B for 5 minutes. A linear gradient to 20% mobile phase B over 35 

minutes was applied. This was followed by another linear gradient of 20 to 40% B over next 80 

minutes.  

mAb1 IgG2 Three-Dimensional Homology Modeling  

To illustrate the peptides showing conformational differences by H/D-MS analysis, the 

recombinant mAb1 IgG2 amino acid sequence was modeled against the known structure of a 

full-length human antibody IgG1 (Protein Data Bank entry 1HZH)[72] to create a molecular 

model representative of the mAb1 structure. Sequence alignments focused solely on the highly 

conserved (>96%) constant regions of the heavy chain. Three-dimensional modeling was 

performed using the Antibody Modeler component of Molecular Operating Environment 

software (Chemical Computing Group, Montreal, Quebec, Canada), and the final three-

dimensional homology model highlighting the structural features of interest was produced using 

the PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, CA).  
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RESULTS  
 
Size distribution analysis of monomer and dimer species 

A schematic overview of the process employed to purify monomer and dimer samples 

from mAb1 bulk material is given in Figure 3. Representative analytical SEC chromatograms for 

mAb1 material, before and after purification by SEC fractionation, are shown in Figure 4. 

Thermal incubation of mAb1 bulk solution at 50°C for 3 days resulted in a 4.5% increase in 

dimer peak area relative to the mAb1 bulk solution stored at 2° -8°C for 2 years (1% vs. 5.5%).  

A small decrease in total peak area (6.1%) was observed for the thermal incubated sample 

compared to the sample stored at 2°C-8°C for 2 years. Reference standard injections of the 

mAb1 purified bulk material showed variability for the SEC method was only ± 0.3%, 

suggesting that, other than possible sample handling error, the decrease in peak area for the 

thermally incubated protein solution could be caused by formation of mAb aggregates or 

particles too large for detection by the SEC method. In other words, this result suggests that in 

addition to dimer formation, some larger, insoluble aggregates were formed which could not pass 

through the SEC column.  Total peak area differences were also observed for the fractionated 

dimer and monomer samples, but these differences are likely the result of differences in protein 

load due to the varying concentrations of protein fractions after collection. SEC fractionation of 

mab1 bulk material both before and after thermal incubation resulted in monomer and dimer 

fractions that contained greater than 80% peak area for each respective species. Dimer fractions, 

regardless of the condition by which they were generated, retained a certain portion of monomer, 

and thus were enriched in dimer but not completely purified. It is unclear whether the monomer 

present in the dimer fractions is a result of co-purification or due to disassociation of dimer upon 

purification.  
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The monomer and dimer fractions collected from mAb1 bulk material stored at 2° -8°C 

for 2 years and mAb1 bulk material incubated at 50°C for 3 days were used for all subsequent 

characterization work. For simplicity in nomenclature, monomer and dimer fractions collected 

from mAb1 bulk stored at 2° -8°C for 2 years will be referred to as “native monomer” and 

“native dimer”, respectively, in all subsequent discussions. Likewise, monomer and dimer 

fractions collected after thermal incubation at 50°C for 3 days will be denoted “thermal 

monomer” and “thermal dimer”. The entire process, outlined in Figure 3, was repeated as 

required to generate sufficient material for additional analysis.  

Size Exclusion Chromatography coupled with on-line Multi-Angle Light Scattering 

(SEC-MALS) was used to confirm peaks eluting by SEC corresponded to the expected mass of 

mAb-1 monomer and dimer (~150 and ~300 kDa, respectively) (Table 2). Measurements were 

performed in triplicate for each sample to assess variability. While SEC-MALS is effective at 

distinguishing monomer from dimer species, it is not sensitive enough to distinguish potential 

mass differences between the native dimer versus thermal dimer. 

Sedimentation Velocity measurements by Analytical Ultracentrifugation (SV-AUC) was 

performed as an orthogonal approach to SEC for measuring size-distribution. Results for the 

monomer and dimer fractions are shown in Figure 5 as continuous c(S) distributions. Although 

SV-AUC was able to distinguish the monomer species (S=6.4) from the thermal dimer (S=9.32) 

and native dimer (S=9.26), no meaningful observations can be made with regard to differences 

between the two dimer types. No other species, either larger aggregates or protein fragments, 

were detected by SV-AUC. These results suggest that the apparent loss of total peak area by SEC 

for the thermal incubated mAb1 bulk material is attributable (1) formation of aggregates too 
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large to be seen by SV-AUC, or (2) to some other type of error, rather than a loss of protein 

aggregates too large for SEC analysis.   

 

Biophysical and Functional Characterization of Dimer Species 

Representative images obtained by atomic force microscopy (AFM), used to observe the 

spatial orientation of the native monomer relative to the native dimer and thermal dimer, are 

shown in Figure 6. AFM was able to show qualitative differences in the spatial orientation of 

monomer species from dimer species, as well as between the thermal dimer from the native 

dimer. The AFM image of the thermal monomer was similar to native monomer by AFM (data 

not shown). The AFM image of the thermal dimer shows closer association between the 

monomer units than does the native dimer, which suggests more contact points, and perhaps 

stronger intermolecular interactions, are forming upon thermal stress formation of dimers.  

Potency and FcRn binding, used to gauge the impacts of the dimer formation on 

biological activity of mAb1, were assessed for monomer, native dimer and thermal dimer. The 

results are shown in Table 3. Both the native and thermal mAb1 dimer species were found to 

have significantly reduced potency (49% and 28%, respectively) compared to the native 

monomer control, suggesting the Fab domain is unable to bind its target in both cases. The native 

dimer exhibited an increase in FcRn binding relative to the monomer control (128% versus 

99%), which is potentially indicative of increased avidity caused by multivalent binding of Fc 

portions of mAb1 native dimer species to the FcRn receptors expressed on the cell surfaces. 

Similar results have been reported in the literature for other IgG mAb oligomers [73-76]. It is of 

note, that unlike the native dimer, the thermal dimer showed a reduced ability to bind FcRn 
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receptors (44%) compared to the monomer control (99%), suggesting that the Fc regions have 

altered structures that affect receptor binding. 

Differential Scanning Calorimetry (DSC) analysis was performed to assess thermal 

stability of mAb1 monomer and dimer fractions. Interestingly, no differences were detected in 

thermal melting behavior for any of the samples tested. Only one transition midpoint (Tm) of 

thermal unfolding was observed, and the average Tm value based on duplicate runs was 75.2°C 

+/- 0.3°C. Representative DSC curves are shown in Figure 7.  

Several spectroscopic based techniques were employed to detect possible structural 

differences between monomer, native dimer and thermal dimer species (Figure 8). Secondary 

structure analysis of monomer and dimer species was assessed using far-UV CD (Figure 8A) and 

FT-IR (Figure 8C) spectroscopy, and no significant differences between monomer and dimer, 

between monomer types, or dimer types were observed using these techniques. Likewise, near-

UV CD (Figure 8B) proved to be insufficient mean of identifying potential tertiary structural 

differences between the monomer and dimer species. Extrinsic fluorescence results using 

SYPRO® Orange dye are shown in Figure 8D. A large increase in fluorescent signal intensity 

for the thermal dimer compared to the other three samples was observed. Since it has been 

demonstrated that SYPRO® Orange dye only fluoresces in hydrophobic environments [51, 52, 

77, 78], these results indicate solvent exposed hydrophobic residues are relatively more present, 

and that thermal dimer samples thus undergo conformational changes or associations leading to 

exposure of more hydrophobic surfaces compared to both monomer types or native dimer.   

SDS-PAGE was performed under both reducing and non-reducing conditions to 

understand the nature of bonding between dimer species. Reduced and non-reduced SDS-PAGE 

results are shown in Figure 9. Both types of dimer showed a mixture of covalent and non-
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covalent associations, but the thermal dimer species have a more abundant population of 

covalent species compared to the native dimer sample, as evidenced by the apparent 

disassociation of native dimer under the denaturing conditions of the non-reducing SDS-PAGE 

gel. Both dimer types reduce to form bands corresponding to heavy and light chains upon the 

addition of the reducing agent, as expected, indicating that the formation of these dimer species 

likely involve disulfide bond rearrangements.  The thermal dimer, however, showed a small 

amount of protein that remained as higher MW species, even after reduction, by SDS PAGE 

suggesting (1) incomplete reducing conditions, or (2) the formation of non-disulfide, covalent 

cross-linked dimers.  

 

Understanding the mechanisms of dimer formation  

Understanding the mechanism of dimer formation began by attempting to identify the 

specific regions of the mAb1 structure that contain induced conformational perturbations in mA1 

dimer fractions using hydrogen-deuterium exchange mass spectrometry (H/D-MS). In order to 

establish a baseline for comparison of H/D-MS results, H/D-MS was first performed for the 

mAb1 native monomer sample, assuming that it closely represents the native conformation of 

mAb1. Duplicate H/D exchange rate measurements were made for more than 500 peptic 

peptides, accounting for 97% of the entire mAb1 amino acid sequence, at time-points ranging 

from 10 seconds to 4 hours (data not shown). Interestingly, the only peptide segments that were 

not recovered by H/D-MS analysis was an area of the protein that corresponds to the hinge 

region, which contains 4 inter-chain disulfide bonds that link the two heavy chains together. 

Incomplete reduction of these disulfide bonds may explain the lack of recovery for this portion 

of the sequence (data not shown).  
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The H/D-MS experiments were repeated, in duplicate, for the native dimer, the thermal 

dimer, and the thermal monomer, and the deuterium incorporation as a function of time for each 

peptide was compared to the matching peptides from the native monomer. Statistical significance 

was determined by applying a two-way ANOVA between consecutive time points (p < 0.05) 

(data not shown; see Zhang, et al, manuscript in preparation). Differences in deuterium 

incorporation were not observed for any of the peptic peptides between the native monomer and 

thermal monomer or between the native monomer and native dimer (data not shown: see Zhang, 

et al, manuscript in preparation). Compared to the native monomer, H/D-MS was able to detect 

four peptic peptides with faster deuterium incorporation rates for the thermal dimer, as shown in 

Figure 10A-D. The peptic peptides with faster deuterium incorporation rates in the thermal dimer 

sample correspond to the region of mAb1 sequence covering residues at positions 235-255 and 

313-342, which are adjacent to the hinge region and consist of anti-parallel beta sheets. 

Interestingly, these peptides also contain the cysteine residues responsible for the formation of 

the intramolecular disulfide bond in the CH2 domain. Panels A-D in Figure 10 show the 

deuterium uptake rate curves for the four peptic peptides from the thermal dimer sample 

compared to the same peptic peptides from the native monomer, and each peptic peptide is 

shown with its corresponding portion of the mAb1 sequence. Panels E-F in Figure 10 show the 

deuterium rate curves for the native dimer compared to the native monomer for the same peptic 

peptides shown in Figure 10A-D. It is worth noting that the peptic peptides from the thermal 

dimer sample that showed the largest differences in deuterium incorporation rates (the peptic 

peptides containing residues at positions 246-255 and 313-342) each contain one cysteine residue 

that together form the intramolecular disulfide bond within the CH2 domain. 
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A 3D homology model of mAb1, as shown in Figure 11, was created to highlight (in red) 

the portions of the thermal dimer showing faster rates of deuterium incorporation by H/D-MS 

analysis. The 3D homology model for the entire mAb1 molecule is shown in Figure 11A. The 

portions of mAb1 showing increased structural flexibility were localized to the CH2 domain, just 

below the hinge region, as shown in the zoomed-in view of the 3D model Figure 11B. The 

cysteine residues that form the intramolecular disulfide bond and the N-glycans are highlighted 

in cyan and blue, respectively. Portions of the mAb1 molecule that showed no differences in 

deuterium incorporation are colored gray.  

To better understand these results, the thermal dimer was analyzed in greater detail.  The 

3D homology model for mAb1 shows that the regions with increased flexibility in the thermal 

dimer sample surround the intramolecular disulfide bond located in the CH2 domain. The SDS-

PAGE analysis suggested that significant amounts of thermal dimers are disulfide linked. On the 

basis of the SDS-PAGE and H/D-MS data, it was hypothesized that mAb1 thermal dimer 

formation involves the intramolecular disulfide bond of the CH2 domain. This possibility was 

examined with the thermal dimer by several mass spectrometry techniques. 

First, limited proteolysis was performed using FabRICATOR enzyme. FabRICATOR 

enzyme is a protease with one specific cleavage site in all human IgG subclasses below the hinge 

region. Enzymatic digestion of an IgG with FabRICATOR produces a divalent Fab (Fab’2) 

fragment and two half-Fc (Fc/2) fragments[79]. Reduction of the Fab’2 fragment results in two 

light chain (LC) fragments and two Fd fragments. Reversed phase liquid chromatography 

followed by mass analysis was performed on both non-reduced and reduced digests of mAb1 

monomer and dimer fractions, shown in Figure 12. Figure 12A shows the reversed phase 

chromatograms for the native monomer and native dimer samples under reducing and non-
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reducing conditions after FabRICATOR digestion. Under non-reducing conditions, the native 

monomer and native dimer samples (shown in red and blue, respectively) follow expected 

reversed phase chromatogram profiles; two major peaks with masses of 25232.5 Da and 95936 

Da, corresponding to the Fc/2 (Peak 1) and Fab’2 (Peak 5) fragments, respectively.  Upon 

reduction of the native monomer and native dimer FabRICATOR fragments (shown by the black 

and cyan colored traces, respectively), the Fab’2 is reduced to Fd (Peak 7) and LC fragments 

(Peak 3). The Fd fragments consist of the VH, CH1 and hinge portions of the heavy chains. A 

significant retention time shift is observed between the non-reduced and reduced Fc/2 fragments 

due to the significant structural change that occurs upon reduction of the intramolecular disulfide 

bonds located within the CH2 and CH3 domains. A mass increase of 4.5 Da is observed in the 

peak corresponding to the reduced Fc/2 fragments (Peak 2), which corresponds to the reduction 

of all four cysteine residues in each Fc/2.  

Figure 12B shows the reversed phase chromatograms resulting from FabRICATOR 

digestion under non-reducing and reducing conditions for the thermal monomer and thermal 

dimer samples. The thermal monomer showed comparable profiles to the native monomer and 

native dimer samples under both non-reducing and reducing conditions. Under non-reducing 

conditions, the thermal dimer (blue trace) shows peaks corresponding to Fc/2 (Peak 1) and Fab’2 

(Peak 5) fragments, albeit with much lower intensities compared to the thermal monomer sample 

(red trace). Interestingly, the thermal dimer sample also produced a shoulder peak next to the 

Fab’2 peak (Peak 4) that was too large for mass determination. Upon reduction, as shown by the 

cyan-colored trace in Figure 12B, this shoulder peak disappears and a peak corresponding to the 

mass of a single HC (49770 Da, Peak 6) is observed alongside the reduced Fc/2 (Peak 2), LC 
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(Peak 3) and Fd (Peak 7). Thus, it is inferred that the shoulder peak represents mAb1 material 

that was resistant to FabRICATOR cleavage.  

The FabRICATOR cleavage site was confirmed by mass analysis for mAb1 monomer 

(data not shown) to be located in the hinge region at a glycine residue at position 231 of the 

mAb1 sequence. The 3D model of the mAb1 CH2 domain structure is shown again in Figure 

13A, highlighting in red the peptides where conformational flexibility was detected in the 

thermal dimer sample by H/D-MS analysis as well as the cleavage site, highlighted in green. The 

FabRICATOR cleavage site is located directly upstream from the regions that H/D-MS indicated 

having conformational flexibility. Indeed, a very small difference in deuterium incorporation rate 

was also observed for a five peptide long peptic peptide (covering residues 229-234) containing 

the FabRICATOR cleavage site (Figure 13C). Thus, it is proposed that the increase in 

conformational flexibility in the CH2 domain observed by H/D-MS is responsible for preventing 

the full FabRICATOR enzyme digestion of mAb1 thermal dimer species.  

LC/MS disulfide peptide mapping was employed to detect the differences in disulfide 

bonding among the mAb1 monomer or dimer samples. The profiles of reduced and non-reduced 

peptide map mass spectra for the mAb1 fractions studied (native monomer, native dimer, thermal 

monomer and thermal dimer) are shown in Figure 14. The four species produced comparable 

LC/MS peptide map results under both reducing and non-reducing conditions. All expected 

peptides were recovered and no new peptides were detected in any of the four samples. In sum, 

the disulfide peptide mapping revealed no evidence of a change in disulfide bonding patterns 

from the native mAb1 structure for either type of dimer. Although some peptides do show minor 

differences in peak heights, this is likely attributable to variability in digestion efficiency, 

variability of the chromatography method itself, or a combination thereof.   These results appear 
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to be inconsistent with the SDS-PAGE results, which implicated disulfide bonding as a possible 

mechanism of dimer formation. Additionally, the H/D-MS data is highly suggestive of the CH2 

domain intramolecular disulfide bond as having a role in dimer formation. Limited proteolysis 

using FabRICATOR enzyme also indicated that the CH2 has an altered structure in the thermal 

dimer sample that prevents full enzymatic cleavage. These apparent inconsistencies will be 

addressed in the following discussion.  
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DISCUSSION AND CONCLUSIONS 
 
Summary of Findings 

The analytical characterization of the two IgG2 mAb dimer types, one formed after long-

term storage at 2°-8°C, the other formed upon thermal incubation, provided meaningful insights 

into the nature of dimer formation for this mAb.  Two orthogonal methods used to assess protein 

size distribution, SEC-MALS and AUC, were able to differentiate monomer from dimer species, 

but could not demonstrate meaningful differences in hydrodynamic size between native and 

thermal dimers. AFM analysis showed qualitative differences in the physical orientation between 

the monomers, native dimers and thermal dimers. Interestingly, several other lower resolution 

biophysical techniques, including DSC, FT-IR and CD were unable to detect differences in the 

structural integrity for any of the IgG2 mAb samples.  

The mAb1 native dimer is mostly disassociated upon exposure to the denaturant (in this 

case SDS). The mAb1 native dimer fraction contained greater than 90% dimer species via SEC, 

but showed a much fainter band corresponding to the dimer oligomer in the non-reducing SDS-

PAGE gel. For the thermal dimer sample, approximately 82% of species being dimer by SEC 

with a higher percentage (compared to the native dimer) being covalently linked as observed 

qualitatively by SDS-PAGE. The mAb1 native dimer was fully reducible to HC and LC 

fragments with the addition of DTT. The biological activity results suggest that the Fab region 

has a significantly reduced ability to bind to its antigen target, however, the Fc remains 

biological active and presumably structurally intact. AFM shows that native dimer is comprised 

of individual monomeric units that are closely associated but not overlapping. H/D -MS results 

were unable to explain the reduction in potency for mAb1 native dimer species because no 

differences in structural flexibility were identified in the Fab portion of mAb1 native dimer 
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compared to the monomer control. It is presumed that the interactions between Fab domains at 

the dimer interface, which result in a reduced binding affinity for the antigen, involve surface 

exposed, flexible peptide segments where deuterium incorporation is relatively rapid or that any 

structural differences between the native dimer and monomer are too subtle even for detection by 

H/D-MS. 

Similar to the native dimer, the thermal dimer samples showed potency assay results that 

indicated a reduced ability of the Fab to bind its antigen target. Unlike the native dimer, 

however, the thermal dimer showed a reduction in FcRn binding ability, suggesting the Fc 

domain of these species are also compromised. Again, AFM results support these findings as 

they show a thermal dimer with two more closely associated monomer units. Extrinsic 

fluorescence with SYPRO® Orange was able to detect the presence of increased surface 

hydrophobic patches. This result indicates more structural differences exist between the thermal 

dimer and the native dimer, as compared to the native monomer and thermal monomer species. 

SDS-PAGE analysis revealed that, compared to the native dimer species, a larger portion of 

mAb1 thermal dimer species are covalently linked. Most of the thermal dimer samples were 

reducible to HC and LC chains, suggesting disulfide bonds play a role in thermal dimer 

formation. The mAb1 thermal dimer sample also showed a small amount of higher MW species, 

even after reduction, which suggests the possibility of the incomplete reducing conditions, or that 

the mAb1 thermal dimer sample contained some portion of dimer with non-disulfide covalent 

cross-linkages.  

 More detailed analysis of the thermal dimer species using mass spectrometry based 

methods revealed additional details about the possible cause of dimer formation. H/D-MS was 

able to provide insight into the parts of mAb1 with induced conformational differences by 
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probing the entire structure. Similar to the native dimer, even though there was a significant 

reduction in potency, no differences in deuterium uptake were observed in the Fab domain for 

the thermal dimer. H/D-MS did, however, implicate the CH2 domain as a potential interface for 

dimer formation, with limited proteolysis using FabRICATOR enzyme provided further 

evidence that mAb1 thermal dimer involved interactions of the CH2 domains at the dimer 

interface. Finally, disulfide peptide mapping mass spectrometry showed that even though all 

prior results implicated the involvement of disulfide bonds in the formation of the thermal dimer, 

there was no indication of deviations from native disulfide bonding patterns.  

Based on the data presented here, it is reasonable to conclude that the mechanisms of 

dimer formation in mAb1 material involve many types of covalent and non-covalent protein-

protein interactions under both types of storage conditions assessed. Indeed, substantial 

quantities of both native and thermal dimer were readily disassociated by the denaturing 

conditions of the SDS-PAGE gel. Like the thermal dimer, the native dimer also showed evidence 

of disulfide linked covalent bonding by SDS-PAGE, but those results could not be explained by 

any conformational differences by H/D-MS analysis.  

However, two potential mechanisms of mAb1 dimer formation, demonstrated in Figure 

15, are proposed to help explain the results from this work. For mAb1 material subjected to 

thermal incubation, we suggest one possible mechanism of dimer formation, supported by the 

data, that occurs via domain swapping of intramolecular CH2 disulfide bonds to form a covalent 

disulfide linkage between two mAb1 monomers (Figure 15A). Although there is little direct 

evidence explaining the formation of the native dimer in mAb1 material stored long term at 2° -

8°C, indirect evidence is suggestive of a mixture of covalent and non-covalent surface 

interactions at or near the Fab domains (Figure 15B). In both cases, dimer species retain a 
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substantial level of the native mAb1 monomer structure as evidenced by the CD, FTIR and H/D-

MS results.  

Since, for the mAb1 thermal dimer, all of the expected peptides and disulfide-linked 

peptides were recovered, and there was no evidence of unbound cysteine residues and or 

scrambled disulfide bonds, the disulfide peptide mapping results appear to contradict the SDS-

PAGE and FabRICATOR results that implicated increased covalent disulfide bonding in the 

thermal dimer sample compared to the native monomer and native dimer samples.  Recently, 

Iacob et al observed a similar phenomena for a different IgG mAb [30]. The authors invoked the 

concept of domain swapping dimerization, previously reported as aggregation mechanisms for 

several protein types, including an IgG1 [80-84], to explain the discrepancies that were observed 

between SDS-PAGE and LC/MS disulfide peptide map results. In short, domain swapping 

occurs when a covalent or non-covalent interaction, native to one protein domain, is disrupted 

and the same interaction is reformed between two protein monomers at the same position on a 

neighboring, but identical, domain resulting in the formation of a dimer aggregate.  

The evidence presented in this thesis suggests that a similar mechanism of domain 

swapping dimer formation occurs under thermal stress conditions for mAb1. It is proposed that 

during thermal incubation of mAb1 solution, the intramolecular disulfide bond of the CH2 

domain disassociates in several mAb1 monomers within the same timescale. Subsequently, the 

unpaired cysteine residues form a new disulfide bond, but intermolecularly, with the same 

unpaired cysteine residue on two adjacent mAb1 monomers in solution. Looking back to the 

H/D-MS results that identified the cysteine containing peptides with increased flexibility in the 

CH2 domain as an example, it is known that the intramolecular disulfide bond is formed between 

the cysteine residue contained within positions 246-255 and the cysteine residue contained 
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within positions 313-342 of the mAb1 sequence for the native mAb1 molecule. The formation of 

the thermal dimer via domain swapping would result from the pairing of same cysteine residues, 

but between two monomers, such that the cysteine (246-255) on Monomer 1 pairs with the 

cysteine (313-342) on Monomer 2, or conversely, between the cysteine (246-255) on Monomer 2 

and cysteine (313-342) on Monomer 1. The apparent inconsistencies arising from the disulfide 

peptide mapping results are thus explained: a difference between the intermolecular disulfide 

bonds of the thermal mAb1 dimer compared to the native mAb1 intramolecular disulfide bonds 

would not be observed because the same overall cysteine-cysteine connectivity is maintained 

after proteolysis by the enzyme. 

The result of this domain swapping dimerization is that most of the higher order structure 

is maintained, and very sensitive and specific techniques are needed to detect the resulting minor 

conformational changes, as was demonstrated from the SYPRO® Orange Fluorescence and H/D-

MS results. This helps to explain why methods measuring protein secondary and tertiary 

structure by CD and FTIR were unable to detect structural differences between any of the 

samples: structural measurements by such techniques provide globally averaged values that 

overwhelm any the relatively minor spectral contributions from the altered structure. The H/D-

MS results were only able to show increases in conformational flexibility in peptides localized to 

the CH2 domain in the thermal dimer sample, specifically in peptides containing the cysteine 

residues that form an intramolecular disulfide bond within the CH2 domain. The limited 

proteolysis via FabRICATOR enzyme resulted in incomplete digestion ofmAb1 thermal dimer 

species, which can be explained by the blocking of the cleavage site by the closely interacting 

disulfide linked Fc regions of the two mAb1 molecules. 
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Further evidence supporting the models of aggregation mechanisms for mAb1 native and 

thermal dimer samples resides in the AFM, FcRn binding and potency results. Both the native 

and thermal dimer species showed reduced potency, suggesting both conformations have Fab 

orientations that prevent binding to the surface expressed antigen. The potency of the native 

dimer was reduced by approximately 50% relative to the mAb1 control. The thermal dimer was 

even less potent (28%). It is suggested that the Fab regions for these two dimer types are 

interacting, covalently or non-covalently, via solvent-exposed residues in such a way that the 

CDRs are prevented from binding to the antigen receptors.  

The native dimer showed an increase in FcRn binding compared to control while the 

thermal dimer showed significantly reduced FcRn binding. It has been demonstrated that the 

structural integrity of the CH2 domain plays a key role in FcRn binding[85-87]. If indeed the 

thermal dimer is formed via CH2 domain disulfide swapping, then the lack of proper FcRn 

binding is expected. Likewise, if the native dimer is mostly the result of interacting Fab regions, 

it is reasonable to assume that the Fc portions of each monomer unit of the dimer would have 

sufficient freedom to bind with the cell receptor, resulting in the avidity that was observed. AFM 

provided representative images showing protein orientations that align with the potency and 

FcRn results. 

Even though H/D-MS results implicated the increased flexibility the CH2 domain, 

specifically around the intramolecular disulfide bond, as a contributor to formation of the thermal 

dimer, it is possible that other protein-protein interactions occur in this region that lead to dimer 

formation. Certainly, the proposed mechanism of disulfide bond domain swapping cannot 

account for the formation of all dimer species in the enriched thermal dimer fraction, as 

evidenced by the SDS-PAGE and FabRICATOR proteolysis results. SDS-PAGE results showed 
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the presence of a significant non-covalent dimer population, as well as possible non-disulfide 

covalently linked species in the thermal dimer sample. The limited proteolysis data showed that 

FabRICATOR enzyme was partially able to cleave the mAb1 species in the thermal dimer 

sample, indicating that a portion of mAb1 molecules in solution had cleavage sites that were 

accessible and/or sufficiently structurally intact. At this point, there is not sufficient evidence to 

definitively prove domain swapping as a mechanism of dimer formation in mAb1, and therefore, 

it is reasonable to conclude that, for mAb1 molecules, dimer species are a heterogeneous 

population that result from a variety of mechanisms involving covalent and non-covalent 

interactions.  

The hinge region was not fully recovered by H/D-MS analysis, thus we can not rule out 

that it may also be playing a role in the formation of mAb1 dimers. For both naturally occurring 

and recombinant IgG2 mAbs, several interconverting isoforms that involve intermolecular 

disulfide bonds between the Fab arms and the hinge region have been observed [88]. 

Interconverting IgG2 disulfide isoforms require the breaking and reformation of disulfide bonds 

at the hinge region, and therefore, it is reasonable to hypothesize that some IgG2 dimers may 

form as a result of this naturally occurring process. Recently, Zhang et al were able to show 

differences in conformational flexibility by H/D-MS for different IgG2 disulfide isoforms [89]. It 

is possible that differences in IgG2 disulfide isoform conformational flexibility contributes to 

their aggregation propensity, but this is an area of study that has not been fully explored to date. 

Additionally, it is possible that mAb1 may contain trace levels of free sulfhydryl groups that lead 

to the formation of intermolecular disulfide bonded dimer species.  

In a recent review, Majumdar et al showed that a potential aggregation hotspot in the CH2 

domain of IgG1 mAbs. This highly conserved sequence, FLFPPKPKDTLM, showed remarkable 
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similarities for increased deuterium incorporation by H/D-MS analysis for a variety of IgG mAbs 

from different laboratories when exposed to a variety of different stress conditions [68]. The 

increased conformational flexibility of this peptide segment suggests that this portion of the CH2 

domain is particularly susceptible to partial unfolding (i.e., increased local flexibility), leading to 

an exposure of buried hydrophobic amino acid residues, and triggering covalent and non-

covalent protein aggregation. Indeed, mAb1 contains the same sequence, FLFPPKPKDTLM, at 

positions 235-246, and also showed increased deuterium incorporation, as shown in Figure 10A. 

Thus it is possible that, as with the similar reports cited by Majumdar et al, this peptide segment 

contributes to the dimer formation observed in mAb1 under both thermal and native storage 

conditions. A partial unfolding at this portion of the CH2 domain could certainly potentially lead 

to solvent exposure of hydrophobic residues, which could drive protein-protein interactions 

between monomers due to non-covalent interactions between the hydrophobic residues of the 

FLFPPKPKDTLM peptide segments. Such non-covalent hydrophobic interactions could play a 

role in dimer formation that does not involve covalent crosslinking via disulfide bonds, and thus 

would be readily reversible under denaturing conditions as observed by SDS-PAGE. At the same 

time, it is reasonable to envision that for mAb1, covalent dimer formation via intermolecular 

disulfide bonds could also be mediated by increased interactions between these same solvent 

exposed hydrophobic regions in the CH2 domain.   

 

 
 
Future Work 

 In this study we successfully demonstrated one mechanism of mAb dimerization for one 

specific IgG2 mAb formed under thermal stress conditions. While this work provides meaningful 



 
 
42 

insights toward understanding the role of domain swapping via disulfide bond rearrangements in 

mAb aggregation, much more work must be done in order to demonstrate if any broader 

implications of this aggregation pathway exist. Several experiments are proposed to continue 

evaluating the cause of dimer formation and the role of dimer in the overall aggregation pathway.  

 

Can domain swapping caused by disulfide bond rearrangement be demonstrated in other IgG 

mAbs, and under what specific environmental conditions? 

  

At this point, the proposed mechanism of dimer formation via domain swapping caused 

by rearrangements of the intramolecular CH2 domain disulfide bonds should only be understood 

in the context of the specific mAb IgG2 used in this research, and only under the specific stress 

conditions under which the dimer was generated. To date, only one other report has reported 

similar results for an IgG2 mAb[30]. To understand how universally applicable such a 

mechanism of mAb dimer formation is, various mAbs of different IgG subclasses should be 

studied using H/D-MS to identify the regions involved in dimer formation. A variety of 

environmental stress conditions, including low-pH, UV-light exposure, mechanical stress, to 

name a few, should be examined to see how dimer is formed under those conditions. In addition, 

the role of formulation with respect to pH, buffer and excipients should be factored in to such 

experiments.  

 

Is it possible to block, and thus prove, the proposed mechanism of dimer formation under 

thermal stress conditions?  
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If a molecule can be introduced into the solution environment that competitively binds 

free cysteine residues once CH2 disulfide bonds are reduced, it could be possible to prevent the 

dimer formation.  One example of such an experiment would involve repeating the thermal 

incubation conditions leading to domain swapping via covalent disulfide bond rearrangement in 

the presence of N-ethylmaleimide (NEM). NEM is reactive with thiol groups and is commonly 

used to detect unpaired cysteine residues and block the formation of artifacts due to disulfide 

scrambling during non-reducing SDS-PAGE analysis[90]. Because NEM forms a highly 

irreversible bond with the thiol group of cysteine residues, subsequent mass analysis could used 

to confirm the mechanism of disulfide shuffling and potentially measure the kinetics of such a 

reaction under different environmental stress and formulation conditions.  

 

Is it possible to observe the fate of dimer species in the overall aggregation pathway?  

 

A proposed an experiment designed to study the role of dimer in the overall aggregation 

pathway was supported with the help of Amgen. A mAb IgG2 was successfully produced in 

media where the only available cysteine is 13C-15N labeled. As a result, all cysteine residues have 

a +2 Da mass shift, and the intact mAb has a mass increase of 36 Da. It is proposed, as a 

consequence of the mAb mass difference, that this cysteine-labeled mAb can be used a tracer in 

a solution of the same unlabeled mAb produced in normal media (i.e. with a normal MW). For 

example, dimer fractions collected from the cysteine-labeled mAb could be introduced into 

unlabeled mAb solution and the fate of the labeled dimer—including the formation of higher-

order oligomers, remaining in solution as a dimer, or disassociating back to its monomer form—
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could be observed over time and under various solution conditions. To date, the experiment 

remains in the planning phase.  

 

Understanding the threshold of structural changes required to predict biological consequences 

of mAb aggregates. 

 

The CD, FTIR and H/D-MS methods were unable to detect differences in Fab domain 

structure even though more than a 50% loss in potency was observed for both thermal and native 

dimer species.  It was hypothesized that dimerization involves surface interactions between Fab 

domains that impede the mAb1 dimer from binding to the antigen receptor. However, if such 

interactions do not alter underlying protein secondary or tertiary structure, then it is very difficult 

to measure differences between conformations using the aforementioned techniques and may not 

be useful for predicting the biological consequences of protein aggregates that retain a significant 

amount of native structure.  

Previously, work by Zhang et al demonstrated an ability to detect structural differences 

by H/D-MS analysis in the Fab regions of aggregated IgGs resulting from a different thermal 

stress and repeated freeze-thaw cycles, implicating portions of the HC variable domains as the 

interacting sites of the protein aggregates[91]. Future work should address these discrepancies by 

attempting to identify the minimum threshold of conformational changes that are required to be 

detectable by H/D-MS, and to correlate those changes back to the biological activity of the 

altered structural forms.  
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FIGURES 

   
 
Figure 1—Two-dimensional (2D) line drawing highlighting the features of a typical IgG2 
monoclonal antibody.  The 2D line drawing shows the four polypeptide chains that make up the 
Y-shaped homodimeric mAb monomer. Heavy chains (dark blue) are covalently linked together 
at the hinge region by four inter-chain disulfide bonds (magenta lines). The light chains (green) 
are covalently linked to the each heavy chain by an inter-chain disulfide bond as well. In total, 12 
globular domains (CH2, VL, etc.) are formed upon folding with the help of intramolecular 
disulfide bond (cyan lines) and other non-covalent interactions. The two Fab arms, responsible 
for antigen binding, contain the variable domains for the heavy (VH) and light (VL) chains 
beginning at the N-terminus. The variable domains contain highly specific amino acid sequences 
that form loops, known as CDRs, are responsible for binding the epitope on the antigen surface. 
The Fc region, located below the hinge, has a highly conserved primary sequence in human IgGs 
and its primary role is for effector binding that initiating immune response.  A carbohydrate 
chain is attached to the N-glycosylation site in the CH2 domain. The 2D figure was created using 
a simple drawing software program, “Paint 2 for Mac, Version 5.1.10” (TryBest Studio).  
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Figure 2—Schematic representation of the key steps in non-native protein aggregation. In 
step 1, a protein monomer in its native, folded conformation (F) may undergo a structural change 
that results in a partially unfolded conformation (R). (2) Reversible self-association of folded or 
partially unfolded monomers to form reversible oligomers containing x-number of monomer 
units (Rx). (3) Structural or conformational rearrangement of otherwise reversible oligomers 
create stabilizing intermolecular interactions that result in the formation of irreversible soluble 
aggregates containing x-number of monomer sub-units (Ax). Growth of the aggregate via 
addition of monomer subunits (4) or via interaction of multiple aggregates forms (5) may form 
large, high molecular weight (HMW) soluble aggregates. Growth of aggregates via phase-
separation results in the formation of insoluble aggregates, such as particulates (6). 
Adapted with permission from Roberts, et al, Copyright 2011, International Journal of 
Pharmaceutics[17].   
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Figure 3—Schematic overview of monomer and dimer purification from mAb1 material. 
SEC buffer was composed of 100 mM sodium phosphate, 250 mM sodium chloride, pH 6.8. 
ASu buffer was composed of 20 mM acetic acid, 200 mM sucrose, pH 5.0.  
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Figure 4—Representative Analytical Size Exclusion Chromatography (SEC) 
chromatograms for mAb1 material before (A) and after (B) purification by preparative 
scale SEC. Figure 1A shows results for mAb1 bulk solution after long term storage (2 years at 
2°C-8°C) (black) and after thermal incubation (t=3d 50°C) (red). Figure 1B shows results for 
mAb1 native dimer (dashed black trace), native monomer (solid black trace), thermal dimer 
(dashed red trace) and thermal monomer (solid red trace). The absorbance in mAU at 280 nm is 
shown.  
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mAb1 Bulk mAb1 Fractions after SEC Purification 

Peak Area 
Percentage 

(%) 
t=2y, 4°C t=3d, 50°C Native 

dimer 
Thermal 

dimer 
Native 

monomer 
Thermal 
monomer 

Dimer 1.0 5.5 91.1 82.3 0.1 0.2 

Monomer 98.9 94.0 8.9 17.7 99.9 99.8 

Table 1—Peak area percentages (%) by analytical SEC of dimer and monomer species in 
mAb1 bulk solution after long-term storage (2 years at 4°C) and after thermal incubation 
(3 days at 50°C), as well as native and thermal monomer and dimer fractions after SEC 
purification. The values listed in the table are representative of one protein fraction 
collection process, overviewed in Figure 3. The error of the SEC method calculated using 
multiple injections of a reference standard was ±  0.3%. 

 
 
Sample Molecular Weight (kDa) 

Native Dimer 288 ± 1.7 

Thermal Dimer 293 ± 1.6 

Native Monomer 150 ± 0.8 

Thermal Monomer 156 ± 0.9 
Table 2—Molecular Weight (kDa) of mAb1 dimer and monomer samples determined by 
SEC-MALS. Each sample was analyzed in SEC mobile phase. Testing was performed in 
triplicate to determine standard deviations.  
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Figure 5—Size distribution by sedimentation velocity using Analytical Ultracentrifugation 
(AUC). Representative continuous c(s) distributions are shown for mAb1 reference standatrd (1, 
S=6.4), native monomer (2, S=6.4), native dimer (3, S=9.26) and thermal dimer (4, S=9.32).   

 
 

Figure 6—Representative Atomic Force Microscopy (AFM) images of mAb1 native 
monomer (A), native dimer (B) and thermal dimer (C).  
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Native Monomer Native Dimer Thermal Dimer 

Average Relative 
Potency (%) 114 ± 13 49 ± 3 28 ± 1 

Average Relative 
FcRn Binding (%) 99 ± 14 128 ± 8 44 ± 8 

Table 3—Potency and FcRn Binding results for mAb1 native monomer, native dimer and 
thermal dimer samples. Both potency and FcRn binding assays were performed in 
triplicate and the values presented in the table represent the average values and standard 
deviation.  

  

Figure 7—Protein unfolding upon temperature melting by Differential Scanning 
Calorimetry (DSC). Representative DSC curves are shown as plots of heat capacity (cP) versus 
temperature (°C) for native monomer (black trace), native dimer (red trace) and thermal dimer 
(green trace). Traces are normalized for protein concentration.   
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Figure 8—Representative spectra of mAb1 native monomer (black), native dimer (red) and 
thermal dimer (green) by Far UV-CD (A), Near UV-CD (B), FT-IR (C) and Extrinsic 
Fluorescence by SYPRO® Orange techniques. The CD spectra are presented as mean residue 
molar ellipticity. The second derivative FT-IR absorbance spectra are shown. Fluorescence 
intensity for the emission range resulting from excitation at 495 nm is shown.  
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Figure 9—SDS-PAGE of mAb1 monomer and dimer fractions under non-reducing and 
reducing conditions. SeeBlue Standard Plus2 molecular weight ladder is shown in lane 1. Non-
reduced mAb1 thermal monomer, thermal dimer, native monomer and native dimer are shown in 
lanes 3, 4, 5 and 6, respectively. Reduced mAb1 thermal monomer, thermal dimer, native 
monomer and native dimer are shown in lanes 9, 10, 11 and 12, respectively. Lanes 2, 7 and 8 
are blank controls.   
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Figure 10—Differences in peptide conformation detected by Hydrogen/Deuterium 
Exchange Mass Spectrometry (H/D-MS) results. Panels A-D represent peptic peptides for 
the thermal dimer (red) compared to the native monomer (black). Panels E-H represent 
same peptic peptides as shown in panels A-D, but for the native dimer (red) compared to 
the native monomer (black). Amino acid sequence residue numbers are shown for each 
peptide. The peptides shown in B and D, (with sequences covering residues 246-255 and 
313-342, respectively) showed the largest differences in deuterium incorporation and both 
contain a single cysteine residue responsible for the formation of an intramolecular 
disulfide bond in the CH2 domain. The four peptic peptides shown in Panels A-D represent 
the only peptic peptides with differences in deuterium incorporation rates for all peptides 
recovered from mAb1 thermal dimer samples compared to mAb1 native monomer.  
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Figure 11—A three-dimensional (3D) homology model representative of (A) the entire 
mAb1 structure and (B) the CH2 domain (see methods section). Peptides showing differences 
in the rate of deuterium uptake in the thermal dimer sample compared to the native monomer are 
highlighted (red) in the model and identified by their sequence position numbers. The cysteine 
residues that form the CH2 intramolecular disulfide bond (cyan) and glycans (blue) are also 
shown.  
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Figure 13—3D model of mAb1 highlighting the CH2 domain peptides with increased 
conformational flexibility are located close in proximity to the FabRICATOR enzyme 
cleavage site. FabRICATOR enzymatic cleavage site (green) is located upstream from the 
region showing increased flexibility from the H/D-MS results (red). The intramolecular disulfide 
bond (cyan) and glycans (blue) are highlighted in the 3D homology model shown in panel A. 
Deuterium uptake rate curves comparing the thermal dimer (red) to native monomer (black) are 
shown for the peptic peptides corresponding to portions of the mAb1 sequence containing (B) 
residues 313-342, (C) residues 229-234, (D) residues 235-246 and (E) residues 246-255.  
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Figure 14—Disulfide bond peptide mapping mass spectra. Reduced and non-reduced peptide 
maps resulting from Lys-C digests of mAb1 native and thermal monomer and native and thermal 
dimer fractions.  Plots represent normalized intensity as a function of time. Overall, reduced and 
non-reduced peptide maps of mAb1 monomer and dimer fractions were comparable for both the 
native species and thermal species. Small differences in intensity are observed, likely attributable 
to method variability.  
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Figure 15—Illustrations explaining potential dimerization mechanisms of mAb1: (a) 
Domain swapping via the intramolecular disulfide bond of the CH2 domain and (b) via 
surface interactions between Fab domains. Intramolecular CH2 disulfide bonds are highlighted 
on each mAb monomer and in the intermolecular disulfide bonds in the mAb dimer. It is 
proposed that during thermal incubation of mAb1 solution, the intramolecular disulfide bond of 
the CH2 domain disassociates in several mAb1 monomers within the same timescale. As a 
consequence, the unpaired cysteine residues on one mAb1 monomer forms the same disulfide 
bond, but intermolecularly, its respective cysteine residue on a different, adjacent mAb1 
monomer in solution. If the disulfide bond domain swapping mechanism leads to the orientation 
shown in Panel A, then other results of this study, such as the observed spatial orientation by 
AFM, loss in potency and FcRn binding ability, can be explained. Surface interactions, possibly 
covalent or non-covalent, between the Fab domain are proposed as being responsible for the 
observed behavior of mAb1 native dimer species. Since mAb1 native dimer showed reduced 
potency, it is likely that the Fab domain is structurally altered in such a way as to prevent 
binding. H/D-MS results indicated that no significant alterations to the protein structure were 
detected in the Fab region for mAb1 native dimer. Therefore, it is likely that the interactions 
leading to dimer formation under these conditions involve solvent exposed surface interactions. 
It was observed that mAb1 native dimer not only retained Fc binding ability, but also showed an 
increase in binding relative to the mAb1 monomer control. Thus, the model showing two 
adjacent, but not overlapping Fc portions is consistent with the avidity observed in the FcRn 
assay. Additionally, such an orientation is consistent with the ~50% reduction in potency and 
spatial orientation results by AFM.  
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