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Abstract 

Understanding species’ geographic distributions constitutes a major priority in biodiversity 

science, biogeography, conservation biology, and evolutionary biology. Species’ geographic 

distribution are shaped by abiotic (climate) factors, biotic (e.g., resources for survival, 

competitors) factors, and dispersal factors. In this dissertation, I have used physiological 

parameters measured in the laboratory under controlled conditions to understand constraints on 

species’ distributions.  

 

In my first chapter, I explored how parameters documented in detailed physiological studies 

could be used to understand the constraints on the geographic distribution of Spansh moss 

(Tillandsia usneoides). I used four physiological parameters of Spanish moss that circumscribe 

optimal conditions for the species for survival and growth. Using high-temporal-resolution 

climate data, optimal and non-optimal areas in the species’ geographic distribution could be 

identified. My results indicated that Spanish moss survives under suboptimal conditions for few 

days in many parts of its geographic distribution, although numbers of days differed for various 

physiological parameters. This chapter was published in Global Ecology and Biogeography. 

 

Continuing from the first chapter’s results, I investigated whether optimal physiological 

parameters are available for Spanish moss populations specifically during the flowering/fruiting 

season. Flowering/fruiting season is an important life stage for plant species, as it is during this 

period that the plant produces new recruits for maintaining populations. Results in this chapter 

indicated that flowering/fruiting period of Spanish moss frequently is under suboptimal 
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conditions, but that the flowering period tends to be tuned such that Spanish moss populations 

receive at least one optimal physiological parameter, and generally the parameter emphasized is 

that of minimum temperature. This chapter has been reviewed for publication at AOB Plants, has 

been revised to meet the reviewers’ expectations, and is now again under consideration by the 

journal editors. 

 

In the third and final chapter, I analyzed 33 anuran species for the critical maximum temperature 

parameter (CTmax). CTmax plays a crucial role in larval stages of anuran species. I evaluated 

whether any part of the species’ distribution experiences CTmax, and whether this CTmax is being 

experienced more often in recent years as a consequence of warming climates. My analysis 

supported the idea that 70% of the anuran species experienced CTmax at some point over a 22-

year time period. However, only a single species saw CTmax being experienced across its 

distribution more often through time. This manuscript is in preparation for submission for 

publication. 
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Introduction 

Understanding geographic distributions of species represents a major priority in biodiversity 

science, biogeography, conservation biology, and evolutionary biology. Ecological niche 

modeling (ENM) and the related ideas termed “species distribution modeling” are techniques 

that have become popular in recent years, in light of their characterization of distributions and 

simplicity of implementation, as well as given broad availability of necessary data on species’ 

occurrences and environmental landscapes (Peterson et al., 2011). With these correlative 

approaches, known occurrences of species are related to suites of environmental variables to 

estimate species’ ecological niches and identify corresponding potential geographic distributions. 

As these methods estimate niches based solely on environmental associations of known 

occurrences of species, however, they make no use of information that may be available 

regarding physiological tolerances of species.  

 

A distinct set of approaches to understanding distributions of species makes explicit 

consideration of morphology, behavior, and physiological limits as they relate to distributional 

ecology. In these “biophysical” or “mechanistic” models, energy budgets and energy balance 

equations are developed as functions of characteristics of organisms under different conditions 

(Porter et al. 1973). These models are then related to maps of climate and other environmental 

features to identify areas as habitable or non-habitable under the assumptions of the models. For 

example, Niche Mapper™ (Porter & Mitchell 2006) incorporates aspects of behavior, 

morphology, and physiology, in relation to macro- and micro-scale environmental dimensions. 
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Heat-energy-balance equations are developed based on morphological, behavioral, and 

physiological traits of the species in question; through evaporation terms, water balance can be 

incorporated as well. Once these equations are established, available energy is calculated from 

microclimate models, and the potential distribution of the species can be estimated across the 

landscape (Porter et al. 1973; Porter et al. 2002; Kearney & Porter 2004; Porter & Mitchell 

2006). 

 

Both biophysical and correlative modeling approaches, however, have significant and 

substantive weaknesses. Biophysical models have been developed for relatively few species, are 

information-intensive, are highly parameterized owing to consideration of energy requirements, 

and require many assumptions, but represent a clear path to characterization of fundamental 

ecological niches of species (Peterson et al., 2011). Correlative models, on the other hand, are 

simple, and may ignore biologically relevant facts, but are informative if placed within an 

improving conceptual framework (Peterson et al., 2011). Model implementation in ENM is 

dependent on understanding configurations of relevant abiotic, biotic, and dispersal factors: 

using the conceptual framework referred as BAM (Soberón & Peterson, 2005; Soberón, 2007), 

model calibration is robust when the species’ distribution is limited by abiotic factors and not by 

dispersal ability (Saupe et al., 2012). Hence, neither of the two dominant approaches is entirely 

satisfactory, which demands exploration of additional approaches and ideas that can enrich and 

educate research efforts. 
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This dissertation is in effect a broad overview and series of case studies of the role of 

physiological constraints in delimiting species’ geographic distributions. The work centers on 

using detailed measurements of physiological parameters from other studies in tandem with 

high-temporal-resolution climate data. The result is an exploration of how physiological 

tolerances scale across many orders of magnitude to translate into limitations on geographic 

distributions of species. 

 

In the first two chapters, I investigated distributional constraints on Spanish moss (Tillandsia 

usneoides) using detailed physiological measurements performed in the laboratory by Craig 

Martin, and 6 hourly weather/climate data covering the period 1989-2010. I explored the 

geographic distribution of Spanish moss using traditional correlative niche modeling approaches, 

and then compared the outputs to results of temporal scaling of optimal physiological conditions 

in the climate data. In the second chapter, I examined the timing of flowering and fruiting by 

Spanish moss populations across the species’ broad geographic range, in relation to availability 

of optimal physiological conditions. I used herbarium specimen records of flowering and fruiting 

Spanish moss to identify population-specific flowering and fruiting periods, and tested detailed 

environmental data for associations with minimum temperature, maximum temperature, relative 

humidity, and rainless days requirements on a univariate basis. 

 

Finally, in my third chapter, I analyzed 33 anuran species in relation to their critical maximum 

temperature (CTmax) values during the breeding period across each species’ geographic range. 
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For anuran species, critical maximum temperature (CTmax) in larval stages represents an 

important constraint on life cycles. An individual experiencing conditions approaching CTmax has 

higher chances of death or abnormal larval development, which in turn is reflected in declining 

recruitment to reproductive populations. Little research has been done in regard to how often 

species experience CTmax temperatures in real life, or whether the frequency of exposure to 

CTmax is increasing over time as a consequence of climate change. Hence, this contribution, I 

used high-temporal-resolution climatic data to understand what parts of species’ distributions 

experience conditions approaching CTmax and whether species have been experiencing CTmax 

increasingly frequently over the past two decades. 
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Chapter 1 

 

 

 

The role of physiological optima in shaping 

the geographic distribution of Spanish moss
1
  

 

 

 

 

 

 

 

 

 

 

-------------------------------------------------------------------------- 

1
 Barve, N., Martin, C., Brunsell, N. A., & Peterson, A. T. (2014). The role of physiological 

optima in shaping the geographic distribution of Spanish moss. Global Ecology and 

Biogeography, 23(6), 633–645. http://doi.org/10.1111/geb.12150 
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Abstract 

To understand species’ geographic distributions, ecological niche modeling is seeing broad 

application, in spite of challenges regarding estimation of fundamental niches that limit model 

transferability over time and space. Mechanistic models are an alternative, but can be difficult to 

implement, owing to the detailed knowledge that they require about the organism for full 

parameterization. In this paper, we explore the geographic projection of physiological 

measurements of optimal temperature, precipitation, and relative humidity requirements, as 

measured under controlled conditions, using high temporal resolution climate dataset as a case 

study for Spanish moss (Tillandsia usneoides), and compare scaling effects with correlative 

niche models calibrated in Maxent. We used high-temporal-resolution climate data to understand 

how often and where Spanish moss populations occur under optimal and sub-optimal conditions 

with respect to different environmental variables across their geographic range. We used higher-

spatial-resolution weather station data for the United States to provide a finer-grained view. We 

also developed ecological niche model, to show how averaged climate data can present 

inaccurate views of physiological thresholds of the species. Few populations of Spanish moss are 

located at sites presenting sub-optimal conditions for more than two environmental parameters. 

The northern distributional limit of Spanish moss is set by minimum temperature requirements, 

whereas maximum temperatures are less limiting. However, when the same occurrences are 

analyzed with respect to averaged climate data, 95% of populations appear to fall within the 

optimal physiological intervals. Our analyses revealed that most Spanish moss populations do 

not experience optimal ecophysiological conditions for all environmental variables, even over 

long time scales. Physiological data may be of limited utility in delimiting suitable areas for 

populations of species, but offer unique perspectives on causes of range limitation.    
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Introduction 

Understanding geographic distributions of species represents a major priority in biodiversity 

science, biogeography, conservation biology, and evolutionary biology. Ecological niche 

modeling (ENM) and the related species distribution modeling are techniques that have become 

quite popular in recent years, in light of their characterization of distributions and simplicity of 

implementation, as well as given broad availability of necessary data on species’ occurrences and 

environmental landscapes (Peterson et al., 2011). With these correlative approaches, known 

occurrences of species are related to suites of environmental variables to estimate species’ 

ecological niches and identify corresponding potential geographic distributions. As these 

methods estimate niches based solely on environmental associations of known occurrences of 

species, however, they make no use of information that may be available regarding physiological 

tolerances of species.  

 

A distinct set of approaches to understanding distributions of species makes explicit 

consideration of morphology, behavior, and physiological limits as they relate to distributional 

ecology. In these biophysical or mechanistic models, energy budgets and energy balance 

equations are developed as functions of characteristics of organisms under different conditions 

(Porter et al. 1973). These models are then related to maps of climate and other environmental 

features to identify areas as habitable or non-habitable under the assumptions of the models. For 

example, Niche Mapper™ (Porter & Mitchell 2006) incorporates aspects of behavior, 

morphology, and physiology, in relation to macro- and micro-scale environmental dimensions. 

Heat-energy-balance equations are developed based on morphological, behavioral, and 
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physiological traits of the species in question; through evaporation terms, water balance can be 

incorporated as well. Once these equations are established, available energy is calculated from 

microclimate models, and the potential distribution of the species can be estimated across the 

landscape (Porter et al. 1973; Porter et al. 2002; Kearney & Porter 2004; Porter & Mitchell 

2006). 

 

Both biophysical and correlative models, however, have weaknesses. Biophysical models have 

been developed only for a relatively few species, are information-intensive, are highly 

parameterized due to consideration of energy requirements, and require many assumptions, but 

represent a clear path to characterization of fundamental ecological niches of species (Peterson et 

al., 2011).  Correlative models, on the other hand, are simple, and may ignore biologically 

relevant facts, but are informative if placed within an improving conceptual framework. Model 

implementation in ENM is dependent on understanding configurations of relevant abiotic, biotic, 

and dispersal factors: using the conceptual framework referred as BAM (Soberón & Peterson, 

2005; Soberón, 2007), model calibration is robust when the species’ distribution is limited by 

abiotic factors and not by dispersal ability (Saupe et al., 2012).  

 

In this paper, we examine the geographic distribution of Spanish moss (Tillandsia usneoides) 

using traditional correlative niche modeling approaches and then compare scaling effects with 

results from temporal scaling of optimal physiological conditions in the climate data. These 

physiological measurements were carried out under controlled environmental conditions; 
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implications of these measurements are explored over the species’ entire geographic distribution. 

Our goal was to extend micro-scale, individual-plant-based physiological measurements to 

continent-wide resolutions and extents. Specific questions were (1) what periods of time outside 

optimal threshold values of temperature and precipitation must be withstood for persistence, and 

(2) can physiological measurements taken at a single site near a distributional extreme be 

relevant to illuminate distributional constraints across a species’ entire geographic range. The 

result is a picture of what might be termed ‘expected physiological distribution’: a view of 

distributional constraints across multiple scales of time and space. Comparing results with 

ecological niche models developed using Maxent illustrates important scaling issues in climate 

data. 

 

Methods 

Study Organism 

Spanish moss (Tillandsia usneoides) is an epiphytic flowering plant of the family Bromeliaceae, 

is distributed between approximately 38°N and 38°S latitude. It typically grows in warm and 

humid climates on trees or other supporting structures, such as telephone or power cables 

(Billings, 1904; Garth, 1964; Callaway et al., 2002). Spanish moss occurs over a broad 

elevational range (about 100 to 3300 m), and associations with atmospheric moisture content and 

temperature vary significantly according to elevation (Gentry & Dodson, 1987; Kreft et al., 

2004). The species does not occur at very high elevations, which are apparently too cold for its 

persistence. No specific biotic interactions have been observed to affect Spanish moss 

distribution, except a possible association with a spider Metaphidippus tillandsiae in the 
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Mississippi Delta region (Young & Lockley, 1989). The general natural history of Spanish moss 

suggests that its distribution will prove to be highly constrained by climatic factors (Garth, 

1964), more or less in line with the “Hutchinson’s dream” scenario of Saupe et al., (2012).   

 

Temperature, humidity, and drought conditions are known to affect growth and persistence of 

Spanish moss (Garth, 1964; Martin & Siedow, 1981; Martin et al., 1981; Martin & Schmitt, 

1989). A year-long field experiment (May 1978 to May 1979) was performed by Martin et al. 

(1981) near Elizabethtown, North Carolina (78.594ºW, 34.682ºN), and found that Spanish moss 

growth is concentrated in summer months, whereas winter growth is almost negligible. Martin et 

al. (1981) showed that CO2 uptake is maximal when daytime temperature is 5–35ºC; CO2 uptake 

was eliminated at or below 0ºC and at or above 40ºC. Kluge et al. (1973) also performed 

experiments on Spanish moss in the laboratory, with similar results regarding CO2 uptake; 

however, they used greenhouse-grown Spanish moss, and their experiment was done in the 

laboratory under constant temperature and humidity.  Martin et al. (1985, 1986) assessed North 

Carolina Spanish moss populations with respect to irradiance effects on morphology and 

physiology, finding that Spanish moss responds to irradiance by adjusting physiology more than 

morphology. Studying Spanish moss populations from Newton, Georgia, Garth (1964) showed 

that, without periodic rain, Spanish moss cannot survive, even when water is supplied externally; 

he found that Spanish moss has optimal performance only with  ≤15 consecutive rainless days, 

and Martin et al. (1981) corroborated this result with additional information that CO2 uptake is 

minimal when Spanish moss is wet by rain, suggesting that Spanish moss does not prefer 

locations where it rains every day, but rather needs some dry periods. Overall, then, results from 



11 

 

these experiments suggest four parameters that could be analyzed at continental extents: 

minimum temperature ≥5ºC (Martin et al., 1981), maximum temperature ≤35ºC (Martin & 

Siedow, 1981), nighttime humidity ≥50% (Martin et al., 1981), and rainless days ≤15 (Garth, 

1964).  

 

Data 

We examined how these thresholds are met (or not) for Spanish moss across the Americas over a 

22 year period (Jan 1989 – Dec 2010). We used the ERA interim reanalysis climate data 

developed and supplied by the European Center for Medium-Range Weather Forecasts. These 

data are based on a combination of models and observations, with 3-hourly temporal resolution; 

every second datum is a forecast, whereas the other is a model result. We used only the model 

result data, thus reducing the 3-hourly dataset to a 6-hourly dataset. The dataset has a somewhat 

coarse native spatial resolution of 1.5° x 1.5°, or approximately 165 x 165 km at the Equator 

 

ERA interim data were processed to generate optimal and sub-optimal areas with respect to each 

variable through time. Data were downloaded from http://data-

portal.ecmwf.int/data/d/interim_daily/ for the following parameters: minimum temperature at 2 

m, maximum temperature at 2 m, mean temperature at 2 m, dew point temperature at 2 m, and 

precipitation. The ERA interim data are stored in NetCDF format 

(http://www.unidata.ucar.edu/packages/netcdf/index.html; Rew & Davis 1990); these data were 

processed via the “ncdf” package  in R (R Core Development Team 2008; Pierce 2011).  

http://data-portal.ecmwf.int/data/d/interim_daily/
http://data-portal.ecmwf.int/data/d/interim_daily/
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In the relatively coarse global climatic model data, details are averaged over broad areas and may 

be lost. For a finer-resolution view, we used data from the United States Historical Climate 

Network (USHCN, http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html), which are a subset of the 

Global Historical Climatology Network (GHCN) network. In total, weather station data were 

available from 1218 stations across the United States; these stations are also part of the 

Cooperative Observer (COOP) Network, which records precipitation details for the country. We 

buffered the United States portion of the Spanish moss range by 700 km, and data from the 608 

weather stations within that area were downloaded for analysis. We extracted daily data from 1 

Jan 1989 to 31 Dec 2010 for minimum temperature, maximum temperature, and precipitation.  

 

To develop daily surfaces for temperature and precipitation using USHCN weather station data, 

we used elevation as a covariate in simple kriging model. Elevational data were downloaded 

from (http://topotools.cr.usgs.gov/GMTED_viewer/) at a spatial resolution of 30” (i.e., about 1 

km at the equator), which were resampled to 5’ resolution (about 10 km) to match distances 

approximately among weather stations in the original data. Surfaces were fitted using variograms 

with R packages ncdf, raster, and geoR (Ribeiro & Diggle, 2001; Diggle et al., 2003; Diggle & 

Ribeiro Jr., 2007; Bivand et al., 2008; Hijmans & van Etten, 2012). These krigged surfaces for 

minimum temperature, maximum temperature, and precipitation were stored in NetCDF format 

(Pierce, 2011) for the entire time period. Root mean square (RMS) error was checked for 

interpolated data; RMS error measures error between observed values and values predicted by 

the model: 0 indicates perfect fit, while large values are considered bad model predictions. RMS 

http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html
http://topotools.cr.usgs.gov/GMTED_viewer/)
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errors were all ≤3, indicating robust predictions (Hyndman & Koehler, 2006).  

 

For the development of ecological niche models, we used ERA interim climate data for 

generation of ‘bioclimatic’ variables using the “dismo” package in R (Hijmans et al., 2012). To 

make niche models comparable with the physiological distribution model, we used only those 

variables used to analyze the physiological limits. We generated average relative humidity using 

dew point temperature and the mean temperature (Stull, 1988); we also generated maximum 

numbers of rainless days for each grid cell as a count from the data. Other bioclimatic variables 

used were annual mean temperature, maximum temperature of warmest month, minimum 

temperature of coldest month, mean temperature of warmest quarter, mean temperature of 

coldest quarter and annual precipitation. We employed Maxent (Phillips et al., 2006) to develop 

niche models with default settings, except that we used 50% random subsetting with 100 

bootstraps, and 2500 iterations for model calibration. The average of bootstrap models was 

thresholded by reclassifying the suitability of pixels to 0 below the highest suitability value that 

included 95% of occurrence points used in model calibration (Peterson et al., 2011).  

 

Data Analysis 

An R script was developed using the raster, ncdf, and sp packages (Bivand et al., 2008; Pierce, 

2011; Hijmans & van Etten, 2012) to identify suitable and unsuitable areas for Spanish moss in 

terms of its physiological thresholds. For the ERA interim data, for minimum and maximum 

temperatures, the script checks the value of each variable across four daily observations; a grid 

square was marked as unsuitable for a day whenever two consecutive observations were outside 
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the limit. For precipitation, whenever all four daily observations were 0 (i.e., no precipitation), it 

was considered as a day with no precipitation, and all consecutive sets of 15 days were checked; 

when any 15-day period had no precipitation, the grid square was considered as not suitable.  For 

relative humidity, dew point temperature and mean air temperature at 2 m were used, and 

relative humidity was calculated as Rh = es(Td)/es(Ta), or the ratio of saturation vapor pressure, es, 

at dew point (Td) to that at air temperature (Ta), where es for any temperature T is given by es(T) 

= 6.112*e
(17.502*T / (240.97 +T))

 (Stull, 1988). We identified grid cells as unsuitable whenever two 

consecutive observations fell below the humidity limit.  

 

For the USHCN data set, only single observations were available per day, and data were 

available only for minimum temperature, maximum temperature, and precipitation, so relative 

humidity data were not considered with this dataset. A grid cell was considered as non-suitable 

whenever a single temperature observation fell outside the limit in the given time period. For 

precipitation, any period of 15 consecutive days of no precipitation was considered as non-

suitable. 

 

Next, because optimal physiological measurements do not focus on population persistence, but 

rather on optimal individual performance, we explored relaxing temporal spans over which 

thresholds were applied. For example, initially, a grid cell was considered unsuitable for 

minimum temperature when two consecutive observations of the four daily observations fell 

below thresholds in ERA, or when a single daily observation fell below the threshold in USHCN. 
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We explored effects of increasing these time spans by 5-day intervals, and assessed at what point 

the key population in North Carolina fell in the suitable category: in both data sets, a grid cell 

was marked as unsuitable for minimum temperature over periods of 1, 5, 10, 15, 20, 25, and 30 

days; for maximum temperature, time spans explored were 1, 5, 10, 15, 20, 25, 30, up to 135 

days; for precipitation, time spans were 15, 20, 25, and 30 days; and for relative humidity, time 

spans were 1, 5, 10, 15,20,25,30, up to 70 days. 

 

To compare the actual distribution of Spanish moss with the suitability maps developed, 

occurrence data were downloaded from GBIF (http://www.gbif.org) and speciesLink 

(http://splink.cria.org.br/): 1632 records from GBIF and 580 from speciesLink. Records were 

curated for inconsistencies like (a) wrong place names, where the place name and geographic 

coordinates did not match; (b) wrong geographic locations wherein geographic coordinates fell 

in the ocean or on a different continent; and (c) duplicate records; these data were either 

corrected or deleted (Chapman, 2005). After curation, the data set had 776 records remaining 

from GBIF and 381 from speciesLink, totaling 1157 records, of which 295 fell within United 

States, with highest spatial density. These occurrences were overlaid on the suitability maps for 

each variable to understand how occurrences relate to optimal parameter values for Spanish 

moss. We used cumulative binomial probability tests to evaluate whether coincidence between 

occurrences and mapped suitable areas was better than would be expected at random (Peterson et 

al., 2011).  Finally, we averaged temperature data over the 22 years for each occurrence site and 

for all pixels in the study area to understand effects of averaging climate data.   

 

http://www.gbif.org/
http://splink.cria.org.br/
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Results 

Our results indicate that Spanish moss northern distributional limits are shaped by ability to 

tolerate low temperatures for long periods of time. In the south, however, relative humidity and 

rainless days appear more important in shaping the distribution (Figures 1, 2, 3). Central and 

northern South American populations always experience minimum temperatures of ≥5ºC, such 

that minimum temperatures do not constrain those populations. However, allowing a single day 

below minimum temperatures failed to identify known distributional areas at higher latitudes as 

suitable. Indeed, to include the location in North Carolina where plant was collected for the 

physiological measurements, it was necessary to allow up to ~30 days of sub-optimal minimum 

temperature. This calibrated temporal criterion (i.e., 30 days of minimum temperature) yielded a 

map that included almost all known populations of the species. Of the few occurrences that were 

omitted, the great majority fell along the edges of the coarse-resolution global ERA dataset. 

Similar approaches to the finer-resolution USHCN data suggested an appropriate temporal span 

for minimum temperature of ~45 days. However, averaging climate data over the 22-year period, 

temperatures at occurrence sites always fell within the optimal minimum temperature range 

(Figure 4a).   

 

Maximum temperature depicts (Figure 5) an intriguing constraint: areas presenting optimal 

maximum temperatures under single-day criteria were very small, with optimal maximum 

temperatures available continuously only in western South America. High-latitude areas were not 

affected by sub-optimal maximum temperatures, but tropical and sub-tropical areas were 

severely constrained in this dimension. Indeed, increasing the number of days outside of the 
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optimal range up to 135 days still did not include all occurrences (see, e.g., occurrences in 

Yucatan Peninsula and northern Brazil). The USHCN data similarly indicated that suitability for 

maximum temperature must “alleviate” sub-optimal conditions for longer periods (i.e., >30 days) 

to include most of the known occurrences of the species. However, 22-year average maximum 

temperatures almost always were below 35°C (Figure 4c, 4d, 6d). 

 

For precipitation, again, strict temporal limits (15 days) had to be relaxed, such that occurrences 

are seen where rain occurs only at least every 30 days (Figure 2). Although the ERA data showed 

the western edge of the distribution in the United States and Mexico as unsuitable even when the 

temporal criterion was relaxed to 30 days, the finer-resolution USHCN data suggested that a 

criterion of ~30 days suffices to include all occurrences. A period of ~20 days was required to 

include the site where physiological measurements were taken.   

 

For relative humidity (Figure 3), the initial 5-day temporal criterion identified few grid squares 

as suitable. The location where the physiological measurements were taken was within suitable 

conditions at 15 days. However, to cover almost all of the known occurrences, ~70 days were 

needed; even with a 70-day of temporal span, a few occurrences in Colombia, Peru, and Ecuador 

were not covered under suitable areas. This result suggests that the ERA data are at such a coarse 

resolution that the plants may encounter appropriate humidity microclimates.   

 



18 

 

To assess the result statistically, cumulative binomial probability tests assessing coincidence 

between single-variable climate suitability maps and known occurrences of the species were 

calculated in geographic space (Table 1). These probability values were significant for minimum 

temperature at all temporal scales in the ERA data, but only over broader temporal scales for the 

USHCN data. Probability values for rainless days were significant over all temporal scales for 

both climate datasets. For maximum temperature, probability values were significant only at 

single-day time scales in ERA, but also for longer scales in USHCN. Relative humidity showed 

significance only for temporal scales of 1 and 5 days.  

 

Our results also indicate that when temperatures are averaged, over long periods, populations 

appear to experience optimal physiological thresholds, and the resultant picture appears much 

more acceptable than when optimal conditions are assessed without averaging. Bar plots of 

averaged data suggest that occurrence sites always experienced minimum temperature above 5ºC 

and maximum temperatures below 35ºC (Figure 4) even when the raw data make clear that such 

is frequently not the case.   

 

Among seven variables which are used in niche model calibration, relative humidity was 

weighted most heavily in model calibration (See Figure S2 in supporting information). Viewing 

our niche models as responses to environments, we see that more than 95% of Spanish moss 

populations are always within optimal thresholds of temperature and relative humidity (Figure 

6a-d, Figure S3). However, in the case of rainless days, many populations are not within optimal 
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thresholds. This figure effectively shows the effect of averaged climate data used in niche 

models. Figure 4 (f) shows the potential distribution of Spanish moss populations throughout 

Americas, based on niche model results.  

 

Discussion 

In our simple univariate testing scheme, climate data were processed in various environmental 

dimensions to investigate temporal limits on Spanish moss occurrences. Physiological data are 

measured on very fine scales of time and space (e.g., 10
-3

-10
-2

 m), whereas climatic data are by 

nature averaged broadly (~10
5
 m) and can be difficult to develop at such fine scales for 

hemispheric extents, owing to limited data availability and computational power (Potter et al., 

2013). Applying the physiological data across a hemisphere (as in this study) requires scaling at 

two levels: scaling physiological thresholds from individuals to populations to global 

distributions, and scaling from microclimates to macroclimates. Effects of physiological limits 

on individuals could include reproductive failure, loss of mobility or shortened life spans. 

Ribeiro et al. (2012) showed that effects of critical thermal limits on the recovery process in leaf-

cutting ants (Atta sexdens rubropilosa) depended on the time over which critical temperatures 

were experienced, and how long and/or often those temperatures were experienced by the ants.  

At the scale of populations, one can see that extreme conditions outside physiological limits may 

affect population sizes, even causing local extirpation. At the species level, different 

environments manifested across geographic distribution of species may create distinct selective 

environments, under some circumstances leading to local physiological adaptation (Brady et al., 



20 

 

2005). Hence scaling individual physiological tolerances to species entire distributional areas via 

simple assumptions is likely to introduce error (Addo-Bediako et al., 2000).   

 

Scaling from microclimate to macroclimate requires another set of assumptions, because 

processes affecting microclimates are different from those affecting macroclimates. For example, 

turbulence flux plays a role at fine scales that can be ignored at broader scales. Also, in 

development of equations for scaling, parameters at fine scales may be well defined and 

parameter relationships linear, but at broad scales relationships may be non-linear, owing to 

influx of heat, moisture, and momentum over heterogeneous areas. Interactions between land and 

atmosphere vary according to the scale of analysis, such that choosing the “right” scale is 

impossible. If data are gathered from different localities, finding a proper method for data 

aggregation is also a challenge (Brunsell & Gillies, 2003).  Further, processes at different scales 

receive feedback from each other, which influences processes and in turn this complicates the 

system. Hence, while studies across diverse scales are essentials, integrating across these scales 

poses significant challenges (Wu & Li, 2009).  

 

As mentioned earlier, although microclimatic conditions affect individual organisms on quite 

fine scales, many issues surround translation from microclimate and individual performance to 

macroclimate and population persistence. In biophysical models, which are based on first 

principles of growth and reproduction, physiological measurements are scaled to match available 

climatic data (Kearney et al., 2008; Kearney & Porter, 2009). These approaches thus assume to 
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some degree that local landscapes are homogeneous. In reality, however, local landscapes are 

highly heterogeneous, demanding approximations of parameters or broad assumptions regarding 

parameter values (Lhomme, 1992), such that spatial resolution subsumes a major set of 

assumptions of first-principles approaches to these issues. For Spanish moss, being an epiphyte 

in tree canopies, heterogeneity of the landscape is particularly difficult to parameterize. The 

effect of scaling is seen by contrasting our coarse (~165 km) ERA results with our fine-

resolution (10 km) USHCN results (Figures 1-3,5): imagine if climate data were available at 

still-finer resolutions, such that we could capture these phenomena at biologically relevant 

resolutions. Generating fine resolution climate data is a challenge, requiring active collaboration 

among disciplines (Potter et al., 2013). 

 

In correlative niche model applications, environmental data are frequently averaged by month or 

year, and our results with such data indicated that modeled niches always tended to fall within 

measured physiological limits (Figure 6). That is, species did not encounter their physiological 

limits in correlative models owing to massive averaging of extremes in the climate data. On the 

other hand, with fine-temporal-resolution data, most populations encounter suboptimal 

conditions in at least one dimension. What is more, with these finer data, one can view the 

species’ response against a broader range of conditions; in the averaged data, however, many of 

the extremes are never manifested (see Figure 6, Figure S3), such that the existing fundamental 

niche (i.e., the set of conditions manifested on geography) is notably smaller than the true 

fundamental niche (i.e., that determined by the species’ physiology). Also, in many mechanistic 

models, climate data are used as monthly averages, thus ignoring temporal scale and allowing 
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considerable information loss regarding temporal sequences, and thereby not taking fullest 

advantage of the mechanistic approach (Buckley et al., 2010). The need for high temporal 

resolution in environmental data used in mechanistic models has been acknowledged previously 

(Kearney et al., 2012). 

 

Hence, in this analysis, we are making use of high temporal-resolution climate data, and we are 

not scaling physiological measurements in terms of particular environmental values, as any such 

values would be guesses at best. Rather, we scale them in temporal terms, to understand how 

long populations can persist under sub-optimal average conditions, at least in absence of local 

adaptation (Martin et al., 1985), and then overlay available occurrence data from GBIF and 

speciesLink to understand whether most populations are within suitable limits or not. Available 

occurrence data suffice to outline major features of the species’ distribution, even though not all 

populations are represented.  

 

Martin et al. (1986) evaluated a few individuals of Spanish moss from sunny and shady locations 

in South Carolina with different irradiance levels. Their research showed that these plants 

respond physiologically to various irradiance levels, suggesting that Spanish moss adjusts 

physiologically to the microclimates it inhabits, posing still more difficulty in generalizing 

physiological responses from a few populations to entire distributions. In this paper, we 

emphasize that, even when climate data are scaled temporally, not all populations appear to exist 

under optimal conditions. Our result suggests (1) that optimal thresholds may be different in 
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different places, (2) that tolerance limit may be quite broad, (3) that suitable microhabitats are 

not captured in the climate data, or (4) that temporal intervals of optimal conditions may need to 

be relaxed still further. Use of physiological parameters from a single population has caveats due 

to local adaptation or natural selection. To reduce the effect of local adaptation it is advisable to 

collect physiological data from populations from widely-scattered geographic locations that 

present distinct environmental conditions.   

 

For example, for minimum temperature (Figure 1b), populations in North Carolina are within the 

area presenting suitable conditions, but some populations in the southern Peruvian Andes fall 

outside the limit. The degree to which local adaptation is involved in this model “failure” cannot 

be assessed without direct experimentation, and to develop a robust model, physiological data 

from populations in the unsuitable category would be very informative. Buckley et al. (2008) 

compared performance of biophysical and correlative approaches in anticipating range shifts 

under climate change scenarios, and concluded that projected range shifts were more pronounced 

in mechanistic models as compared to correlational models. However, to parameterize 

mechanistic models, many assumptions were required, such that comparisons of these two 

approaches are perhaps best considered as speculative. In applying measured physiological 

thresholds from one or a few locations to broad distributional areas in this study, we see that 

ecophysiological approaches have significant limitations as well. Because physiological 

measurements are taken at one or a few sites only, any local adaptation will not be taken into 

account in estimates of distributions, and projections of parameters may frequently fail to include 

all populations.  
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Our results also suggest an interesting contrast: Spanish moss populations can persist outside of 

optimal minimum temperature ranges for a few days, but can withstand sub-optimal thresholds 

for maximum temperatures for longer periods. Clearly, sub-optimal conditions in the growing or 

flowering season might have different implications than at other times. For example, the specific 

importance of conditions during particular life stages of insect populations has long been 

appreciated (Wellington, 1956). Clearly, if the species cannot reproduce in a place, it is not going 

to occupy that region, so, non-optimal conditions in the growing season may constitute a more 

specific constraint on the distribution of Spanish moss (See Figure S1 in Supporting 

Information). When the occurrence data are plotted against the average climate data (Figure 6), 

about 95% of the populations come within optimal physiological ranges. Our approach thus 

stresses the importance of using temporally fine-scale climate data for analysis, particularly 

when integrating physiology of species in the model.  

 

The approach used here is not considering interaction of variables for a simple reason: as 

physiological limits data are usually assessed for different variables independently, these 

experiments assume other variables at constant value, although a few studies have attempted to 

assess physiological responses to multiple variables (Johnson et al., 1997). The difficulty in 

capturing multi-variable responses lies in time investment required for experiments. Also, many 

times, particular combinations of variable values may not exist in the real world, yet interaction 

of variables may play important roles in limiting distributions of species. Smith (2013) examined 

the role of interactions of temperature and precipitation in constraining ranges of 67 mammalian 
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species; their results indicated that interactions between the two climate dimensions play 

important roles in shaping the distributions of 85% of the species.  

 

Ecophysiologists measure either optimal thresholds or tolerance limits for environmental 

parameters (Martin & Siedow, 1981; Martin et al., 1981; Huey & Hertz, 1984; Angilletta et al., 

2010), which must be pondered if their results are to be used in these geographic views. Such 

studies cover only a few variables, and each variable is generally assessed independently of 

others, so using this information directly in biophysical models can be complex, because only a 

subset of key parameters is measured. Several studies have begun using biophysical data for 

estimating niches and distributions, yet physiological data are available from a relatively few 

species only. For example, Kearney et al. (2008), explored potential distributions of an invasive 

toad species in Australia based on biophysical parameters, but measurements were available only 

for adults, and only for invasive populations: characterizing these additional measurements 

would involve considerable time and resources. Hence, notwithstanding that biophysical 

measurements may be (in theory, at least) excellent ways to characterize fundamental niches, 

their application in practice is not straightforward.  

 

Although this approach can be used to understand the physiological constraints on the 

populations, but cannot be used so readily to predict the distributions of species per se, the 

approach used here provides valuable insights into, and leads to new questions about, the biology 

and ecophysiology of the species under investigation. For example, when populations of the 
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species occur well outside the physiologically optimal environmental conditions (e.g., Spanish 

moss populations in Brazil, Baja California, and central Mexico; Figures 4 and 5), are 

individuals in these populations under severe stress and growing poorly, or do these individuals 

possess unique ecophysiological features that prove adaptive in these putatively sub-optimal 

environments?  Answers to such questions may well provide novel views of the physiology and 

natural history that may otherwise be impossible to obtain. 
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Table 1: p-values of cumulative binomial probability tests used to assess coincidence between 

occurrences and suitable areas as per minimum temperature, maximum temperature, rainless 

days and relative humidity thresholds. – indicates no data availability, ERA = global interim 

reanalysis by European Center for Medium-Range Weather Forecast, USHCN = United States 

Historical Climate Network. 

  

 

Days 

Minimum 

temperature (5°C) 

Maximum 

temperature (35°C) 

Rainless days Relative 

humidity (50%) 

ERA USHCN ERA USHCN ERA USHCN ERA 

1 0.001 0.001 0.001 0.001 - - 0.001 

5 0.001 0.15 1.00 1.00 - - 0.067 

10 0.001 0.23 1.00 1.00 - - 1.00 

15 0.001 0.001 1.00 0.99 0.001 0.001 1.00 

20 0.001 0.001 1.00 0.69 0.001 0.001 1.00 

25 0.001 0.001 1.00 0.002 0.001 0.001 1.00 

30 0.001 0.001 1.00 0.011 0.001 0.001 1.00 

45 - 0.001 - - - - - 

70 - - - - - - 1.00 

135 - - 1.00 - - - - 
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Figure 1. Map of effects of minimum temperature thresholds (≥5°C) over different temporal spans on 

Spanish moss distributions. (a) – hemispheric extent (ERA = global interim reanalysis by European 

Center for Medium-Range Weather Forecast). (b) – United States extent (USHCN = United State 

Historical Climate Network data)  
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Figure 2. Map of effects of rainless days (≤15 days) over different temporal spans on Spanish moss distributions. (a) 

– hemispheric extent (ERA = global interim reanalysis by European Center for Medium-Range Weather Forecast). 

(b) – United States extent (USHCN = United States Historical Climate Network data).  
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Figure 3. Map of effects of nighttime relative humidity (≥50%) over different temporal spans on Spanish moss 

distributions. (a) – hemispheric extent (ERA = global interim reanalysis by European Center for Medium-Range 

Weather Forecast). (b) – United States extent (USHCN = United States Historical Network data)  
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Figure 4. (a-d) Bar plot of average temperatures in the study area (gray bars) and occurrence sites (black bars). 

Number of grid squares is log transformed. Dashed lines indicate physiological thresholds to which climate data are 

compared. 
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Figure 5. Map of effects of maximum temperature thresholds (≤35°C) over different temporal spans on Spanish 

moss distributions. (a) – hemispheric extent (ERA = global interim reanalysis by European Center for Medium-

Range Weather Forecast). (b) – United States extent (USHCN = United States Historical Climate Network data)  
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Figure 6. (a-e) Scatter plot of suitability and variables used in the correlative Maxent model. Gray dots show 

environments represented across the study area. Black dots show occurrences. The dotted lines show the location of 

95% of occurrences. The gray box outlines optimal physiological limits. Panel (f) shows the potential suitability of 

Spanish moss using Maxent.  
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Supplimentary figures   

 

Figure S1: Average minimum temperature in two different months for United States populations of 

Spanish moss. Blue color shows temperature in January and red color shows temperature in July. 

 

 

26.7 

23.7 

13.2 

10 
8.8 

7.7 

5.9 

0

5

10

15

20

25

30

Relative
humidity

Min.
temperature

of coldest
month

Rainless days Annual
precipitation

Max.
temperature
of warmest

month

Annual mean
temperature

Mean
tempeature
of coldest

quarter



40 

 

Figure S2 : Bar plot of variable contributions in the Maxent model. 

 

 

Figure S3. (a-b) Scatter plot of suitability and variables used in the correlative Maxent model. Gray dots 

show environments represented across the study area. Black dots show occurrences. The dotted lines 

show the location of 95% of occurrences. The gray box outlines optimal physiological limits.  
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Chapter 2 

 

 

 

Climatic Niches and Flowering and Fruiting 

Phenology of Spanish moss (Tillandsia 

usneoides) 

  



42 

 

Abstract 

Species have geographic distributions constrained by combinations of abiotic factors, biotic 

factors, and dispersal-related factors. Abiotic requirements vary across the life stages for a 

species; for plant species, a particularly important life stage is when the plant flowers and 

develops seeds. A previous year-long experiment showed that ambient temperature of 5-35°C, 

relative humidity of >50% and <15 consecutive rainless days are crucial abiotic conditions for 

Spanish moss (Tillandsia usneoides). Here, we explore whether these optimal physiological 

intervals relate to the timing of the flowering and fruiting period of Spanish moss across its 

range. As Spanish moss has a broad geographic range, we examined herbarium specimens to 

detect and characterize flowering/fruiting periods for the species across the Americas; we used 

high-temporal-resolution climatic data to assess the availability of optimal conditions for Spanish 

moss populations during each population’s flowering period. We explored how long populations 

experience sub-optimal conditions, and found that most populations experience sub-optimal 

conditions in at least one environmental dimension. Flowering and fruiting periods of Spanish 

moss populations are either being optimized for one or a few parameters, or may be adjusted 

such that all parameters are sub-optimal. Spanish moss populations appear to be constrained 

most closely by minimum temperature during this period. 
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Introduction 

Restricted geographic distributions of species are often a consequence of some set of 

constraints in terms of abiotic requirements, needs in terms of biotic interactions, and limitations 

to dispersal ability (Soberón, 2007). All species have a life cycle (be it simple or complex), and 

each stage in that cycle may have different requirements in terms of climate, soils, topography, 

other abiotic factors, and biotic requirements like food, competitors, or mutualisms. Grubb 

(1977) defined 4 components of ecological niches of plants: the habitat niche, life-form niche, 

phenological niche, and regeneration niche; much research has examined how regeneration 

niches may differ in different community assembly processes, and how these various niches act 

in different life stages (Fowler, 1988; Lavorel & Chesson, 1995; Miller-Rushing & Primack, 

2008; Tilman, 2014). Although several studies have used the regeneration niche concept to 

explore competition and understand rarity of species at local scales (Engelhardt & Anderson, 

2011; Ranieri et al., 2012), few studies have used the regeneration niche idea to understand 

species’ distributions in terms of their abiotic requirements at geographic scales (Pederson et al., 

2004; Sweeney et al., 2006; Wellenreuther & Arson, 2012).  

Phenological stages in plant life cycles comprise critical life stages, in which plants 

flower, produce seeds, grow, or remain dormant (Bond & Midgley, 2001; Silvertown, 2004). 

Plants have presumably evolved to flower in seasons and at intervals that ensure maximal 

reproductive success (Amasino, 2010). Considerable research has shown that plants sense and 

respond in complex ways to environmental cues (Garner, 1933; Lang, 1952; Bernier et al., 1993; 

Dennis et al., 1996). However, these factors have been investigated chiefly at local scales; at 

biogeographic scales, the question of whether phenology is optimized or not with respect to 
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physiological responses to abiotic factors like temperature and precipitation remains little 

investigated (Engelhardt & Anderson, 2011; Ranieri et al., 2012).  

Here, we examine the timing of flowering and fruiting by Spanish moss (Tillandsia 

usneoides) populations across the species’ broad geographic range in relation to availability of 

optimal physiological conditions (Barve et al., 2014). Physiological measurements have been 

made in yearlong field experiments (Martin & Siedow, 1981; Martin et al., 1981) to estimate 

ideal intervals of climate-related parameters. We used herbarium specimen records of flowering 

and fruiting Spanish moss to identify population-specific flowering and fruiting periods, and 

tested detailed environmental data for associations with minimum temperature, maximum 

temperature, relative humidity, and rainless days requirements on a univariate basis, building on 

our earlier analyses of physiological limits in relation to climate across the range of this species 

(Barve et al., 2014). We use these analyses to test whether (1) all four parameters are at optimal 

physiological values as measured in previous studies during flowering periods, and (2) which 

physiological parameter(s) is (are) optimized during the flowering periods, if not all are 

optimized.  

 

Methods 

Study Organism 

Spanish moss (Tillandsia usneoides) is an epiphytic flowering plant of the family 

Bromeliaceae, distributed approximately between 38°N and 38°S latitude. It typically grows in 

warm and humid climates on trees or other supporting structures, such as power cables (Billings, 
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1904; Garth, 1964; Callaway et al., 2002). Spanish moss occurs over a broad elevational range 

(0–3300 m), and associations with atmospheric moisture content and temperature vary 

significantly according with elevation (Gentry & Dodson, 1987; Kreft et al., 2004). The species 

does not occur at high elevations, which are apparently too cold for its persistence; indeed, its 

general natural history suggests that its distribution will prove to be highly constrained by 

climatic factors (Garth, 1964), more or less in line with the “Hutchinson’s dream” scenario of 

Saupe et al. (2012).  

 Temperature, humidity, and drought are known to affect growth and persistence of 

Spanish moss (Garth, 1964; Martin & Siedow, 1981; Martin et al., 1981; Martin & Schmitt, 

1989). A year-long field experiment (May 1978 to May 1979) was performed by Martin et al. 

(1981) near Elizabethtown, North Carolina (78.594°W, 34.682°N); it found that Spanish moss 

growth is concentrated in summer months, with winter growth almost negligible. Martin et al. 

(1981) showed that CO2 uptake was maximal when daytime temperature is 5–35ºC; CO2 uptake 

was eliminated at or below 0ºC and at or above 40ºC. Kluge et al. (1973) also experimented on 

Spanish moss, with similar results regarding CO2 uptake; however, they used greenhouse-grown 

Spanish moss, and their experiment was carried out in the laboratory under constant temperature 

and humidity. Martin et al. (1985, 1986) assessed North Carolina Spanish moss populations with 

respect to irradiance effects on morphology and physiology, finding that Spanish moss responds 

to irradiance by adjusting physiology more than morphology. Garth (1964) showed that Spanish 

moss cannot survive in Georgia without periodic rainfall, even when water is supplied externally; 

he found that Spanish moss achieves optimal performance in terms of growth only with ≤15 

consecutive rainless days. Martin et al. (1981) corroborated this latter result, with the additional 

information that CO2 uptake is minimal when Spanish moss is wet by rain, suggesting that 
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Spanish moss requires some dry periods for persistence. Overall, then, these experiments 

identified four parameters that can be analyzed at continental extents: minimum temperature 

≥5ºC (Martin et al., 1981), maximum temperature ≤35ºC (Martin & Siedow, 1981), nighttime 

humidity ≥50% (Martin et al., 1981), and ≤15 rainless days (Garth, 1964). 

 

Input Data 

We collected information on flowering and fruiting periods of Spanish moss populations 

by examining herbarium specimens. We photographed 430 specimens in the collections of the 

Missouri Botanical Garden and 504 specimens from the New York Botanical Garden collections 

using a 16 megapixel Nikon P510 camera. We took 3–4 photographs per specimen to capture 

various details: one of the label to permit capture of associated data, one of the whole specimen, 

and 2–3 zoomed photographs of flowers or fruits. In addition, we reviewed published floras for 

flowering dates, although most floras either did not offer sufficient detail about flowering period, 

or do not provide precise locality information. Finally, we downloaded images from various 

herbaria listed on the Index Herbariorum site 

(http://sciweb.nybg.org/science2/IndexHerbariorum.asp) and others 

(http://herbarium.bio.fsu.edu, http://apps.kew.org/herbcat/navigator.do). Flowering and fruiting 

periods were assumed to be unimodal, so we filled temporal gaps for analyses of optimal 

physiological conditions. The temporal resolution of flowering and fruiting times was kept at 

months, so that imprecise date information (e.g., “April 1914”) could be incorporated, and 

quantity of relevant data maximized. 

http://herbarium.bio.fsu.edu/
http://apps.kew.org/herbcat/navigator.do
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Information from specimen labels was digitized and stored in a Microsoft Access 

database. Some labels had geolocations in terms of latitude-longitude coordinates, whereas 

others had only textual locality information at various administrative levels. In the latter case, 

geolocations were attached to each record via queries in Google Earth. Overall, we were able to 

obtain information for 361 sites where both flowering date and geolocations information was 

available, which we used to profile flowering/fruiting periods at sites across the range of the 

species.  

We examined how physiological thresholds are met (or not) for Spanish moss across the 

Americas within empirically documented flowering intervals over a 22-year period (January 

1989 – December 2010) following Barve et al. (2014). We used the ERA interim reanalysis 

climate data developed and supplied by the European Center for Medium-Range Weather 

Forecasts, which are based on a combination of models and observations, with 3-hourly temporal 

resolution: every second datum is a forecast, whereas the other is a model result. We used only 

the model result data, thus coarsening the data from 3-hourly to 6-hourly resolution, but retaining 

an impressively fine temporal resolution. The dataset has a somewhat coarse native spatial 

resolution of 1.5° x 1.5° or approximately 165 x 165 km grid square resolution at the Equator. 

ERA Data were downloaded from http://apps.ecmwf.int/datasets/data/interim_full_daily/ 

for the following parameters: minimum temperature at 2 m, maximum temperature at 2 m, mean 

temperature at 2 m, dew point temperature at 2 m, and precipitation. The data are stored in 

NetCDF format (http://www.unidata.ucar.edu/packages/netcdf/index.html; Rew & Davis 1990); 

these data were manipulated and processed via the “ncdf” package in R (Pierce, 2011; R Core 

Development Team, 2012). ERA interim data were processed to identify optimal and sub-

http://apps.ecmwf.int/datasets/data/interim_full_daily/
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optimal areas and temporal duration of sub-optimal conditions with respect to each physiological 

variable through time.  

Overall, 136 1.5° grid squares held at least one Spanish moss record with flowering and 

fruiting information. As numbers of flowering records were not numerous with respect to so 

many grid squares, to improve data density, we coarsened the 1.5° grid to 3° grids only to 

characterize flowering periods, but climate data were kept at the original 1.5° resolution. We 

generated flowering and fruiting month ranges for each 3° grid square; we assumed single 

flowering/fruiting months in grid squares in which only single specimens were available, which 

may be a restrictive assumption in our analyses. We also generated non-flowering month datasets 

for each grid square for comparison; for example, for a grid square with a flowering/fruiting 

range of March-May, we generated the remaining 11 possible three-month sequences for 

comparison. We identified the average flowering/fruiting month, flowering/fruiting season start, 

and flowering/fruiting season end for each grid square. Average flowering/fruiting month was 

calculated as a weighted average based on number of flowering or fruiting specimens in each 

month.  

 

Data Analysis 

An R script was developed using the raster, ncdf, and sp packages (Bivand et al., 2008; 

Pierce, 2011; Hijmans & van Etten, 2012) to calculate the percentage of time over the 22-year 

span of the data set that Spanish moss populations experienced optimal conditions with respect to 

the physiological thresholds described above. For minimum and maximum temperatures, the 

script checks the value of each variable across four daily observations; a grid square was marked 
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as unsuitable for a day whenever two consecutive observations were outside the limit. For 

precipitation, whenever all four daily observations were 0 (i.e., no precipitation), it was 

considered as a day with no precipitation, and all consecutive sets of 15 days were checked; 

when any 15-day period had no precipitation, the grid square was considered as not suitable. For 

relative humidity, dew point temperature (Td) and mean air temperature at 2 m (Ta) were used, 

and relative humidity was calculated as Rh = es(Td)/es(Ta), or the ratio of saturation vapor 

pressure at dew point to that at air temperature, where es for any temperature T is given by es(T) = 

6.112*e
(17.502*T / (240.97 +T))

 (Stull, 1988). We identified grid cells as unsuitable whenever two 

consecutive observations fell below the humidity threshold. Likewise, we calculated the 

percentage of time that the grid square spent outside its optimal physiological thresholds within 

the flowering period for that grid square across the 22-year time span; for comparison, we also 

generated these percentages for all possible non-flowering periods of similar duration. 

 We ranked each grid square based on the percentage of time spent outside optimal values 

in flowering and fruiting periods and each other possible non-flowering period of similar 

duration. We calculated the rank of each of the observed flowering periods with respect to all 

other possible periods of the same duration as the number of time periods of non-flowering 

months that are more suitable. We used Kolmogorov-Smirnov test to compare distributions of 

the four variable ranks.  

 Based on ranks of each grid square for each of the variables, we compared the actual 

flowering period with the optimum flowering and fruiting period with respect to those variables. 

This distance was calculated as a Euclidian distance from an optimal rank of 1 for each of the 

variables, such that small distances indicate optimal flowering and fruiting periods for a 
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population, whereas large distances suggest that the population flowers during suboptimal 

periods. We averaged this distance across all 4 physiological parameters, and mapped these 

deviations from optimum. We tested for effects of number of herbarium specimen records in 

each grid square to these optimum distances. 

 

Results 

We were able to assemble 361 flowering or fruiting records for Spanish moss across the 

species’ range. Although records concentrated in the US portion of the species’ range (159 

records, or 44%), the remaining 202 (56%) records came from Latin America. Although 

densities of Latin American points were low at finer spatial resolutions (i.e., most grid squares 

had single or no flowering-period records), 3° spatial resolution was sufficient to create 83 grid 

squares, within which we had 1–28 flowering/fruiting records.  

Average flowering and fruiting month of Spanish moss populations across the species’ 

range is shown in Figure 1. The flowering and fruiting period in eastern Brazil was November to 

April, while the flowering and fruiting period in western South America was June to September, 

with a few exceptions extending to October-November. The flowering period in the US and 

Mexico was May to September, with a few exceptions in November-December. Because our 

identification of flowering and fruiting month(s) was in some sense dependent on numbers of 

specimens available, we suspect that insufficient data density may be driving the exceptions. 

Flowering periods invariably fell in time periods in which least one physiological 

parameter was optimal in a grid square. The “optimal” parameter was generally minimum 
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temperature: that is, in 212 of 262 cases, flowering and fruiting period coincided with months in 

which minimum temperature was within optimal ranges in at least 70% of grid square-month 

combinations. Very few populations experienced minimum temperatures below the 5°C criterion 

during their respective flowering and fruiting periods (Figure 2a). The remainder of Figure 2 

suggests that flowering and fruiting period depends less critically on parameters like maximum 

temperature, rainless periods, or relative humidity. Ranking months by their optimality for each 

parameter, a Kolmogorov-Smirnov test revealed that distributions of ranks for minimum 

temperature were significantly lower than those for the other three factors (P < 0.0001). The 

distribution of ranks among grid squares did not differ between maximum temperature and 

rainless days, whereas ranks of rainless days versus relative humidity showed the latter as 

significantly more optimal (P < 0.001).  

We identified the optimal month for each pixel across the Americas in terms of each 

dimension of Spanish moss physiology. Figure 3a shows the optimal flowering and fruiting 

month for minimum temperature, which centered on July at the northern limit of the distribution, 

but in January-April at the southwestern distributional limit. However, for maximum 

temperature, the average expected flowering/fruiting month was February-April at the northern 

limit of distribution, and April-August at the southwestern limit. Similar variation can be seen for 

relative humidity and rainless days: in short, no pixel had any period in which all four 

physiological parameters were in optimal states for flowering and fruiting to occur.  

To explore how far observed flowering and fruiting months departed from optimal 

months, we calculated average Euclidean distance in four-dimensional parameter space, ranking 

months by their suitability, standardizing each dimension to a range of 0–1 (thus creating an 
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index of distance that has rather unclear units but that is useful for visualization), and counting 

ranks as greater distance from optimal conditions (Figure 4). Most populations (46%) showed 

flowering and fruiting periods with Euclidean distances of <0.5. Only a few pixels were under 

extremely bad conditions and these higher-distance populations were arrayed at the extremes of 

the distribution (Figure 4). We tested whether number of available flowering/fruiting specimens 

affected these latter results (see scatterplot inset in Figure 4), but found no effect of sample size 

on distance to optimal month. 

 

Discussion 

In overview, we found that Spanish moss populations appear to ‘tune’ their phenological 

niches such that they experience optimum minimum temperatures for most of their respective 

flowering and fruiting periods. Among populations analyzed, flowering and fruiting periods of 

about 76% of Spanish moss populations experienced optimal minimum temperatures when 

compared with other time periods through the year. Conversely, Spanish moss populations 

appear to flower and fruit without much consideration of optimality of maximum temperature or 

relative humidity optimality, though rainless days do have some importance.  

Numerous recent studies have documented shifts in flowering and fruiting season as a 

consequence of climate change (Telemeco et al., 2013; Molau et al., 2005; Miller-Rushing & 

Primack, 2008). Veriankaite et al. (2010) explored optimum temperatures for flowering and 

fruiting by comparing air temperatures in climate models with long-term flowering data. 

However, for this study, we took advantage of known optimum physiological parameters (Martin 
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et al., 1981; Martin & Siedow, 1981; Martin & Schmitt, 1989), so we could explore the degree to 

which Spanish moss flowering and fruiting periods coincide with months presenting optimal 

physiological conditions for growth.  

Phenological differences are well documented as functions of elevation and latitude 

(Ruml et al., 2011; CaraDonna et al., 2014). However, we generated our phenological 

information from herbarium specimens: few had elevation information, so effects of elevation on 

flowering phenology cannot be examined particularly in light of the coarse spatial resolution of 

our weather data. Clearly, as the climate data are coarsened and averaged over broader extents, 

such details average out in the climate and become invisible to our analyses, as was noted in our 

previous analyses (Barve et al., 2014). Our analyses may also be compromised by our rather 

coarse characterization of flowering and fruiting periods (i.e., to month), and by our filling of 

temporal gaps in flowering periods under the assumption of a single, continuous flowering and 

fruiting period for each population. 

Hadley et al., (1984) observed that elevated maximum temperatures can delay flowering, 

in effect slowing down the reproduction in soybeans (Glycine max). However, for Spanish moss, 

we observed that flowering phenology does not generally depend much on maximum 

temperature. Rather, minimum temperature appears to play a major role (Figure 2). Comparisons 

with every other period of similar length in the year for each location suggested that Spanish 

moss flowering and fruiting periods are molded such that flowering populations experience 

optimal minimum temperatures. Hence, an interesting challenge for long-term studies would be 

to test whether Spanish moss flowering and fruiting advances temporally in relation to rising 

minimum temperatures, rather than other climate characteristics of warming climates.  
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In our trade-off maps (Figure 2, 4), we see that most Spanish moss populations show 

trade-off distances of 0.5 or less; nonetheless, some populations showed more substantial trade-

off distances. Spanish moss populations under such sub-optimal conditions likely face challenges 

to long-term persistence, suggesting that optimality of conditions in flowering period represents 

a constraint on Spanish moss geographic distributions. Although it is hard to say whether or to 

what degree climate change will change the geographic distributional potential of Spanish moss, 

Spanish moss may not flower and produce seeds successfully if climate change takes populations 

too far from optimal conditions. Even under present-day conditions, our approach can be used to 

locate where populations of the species will be under particular physiological stress.  

 

Conclusions 

We analyzed high-temporal-resolution (6-hour resolution) climate data over a 22 year 

span to assess the availability of optimal conditions during flowering and fruiting periods of 

Spanish moss populations. Our results indicate that Spanish moss populations appear to flower 

and produce fruit seasonally such that populations experience optimum minimum temperatures. 

Our finding also shows that the least optimal conditions are experienced by populations along the 

fringes of the species’ distribution. This research is novel in that we used herbarium specimens to 

assign flowering period to populations, that actual physiological measurements were used to 

assess optimality of conditions, and that high-temporal-resolution weather data were used to 

provide a near-real-time view of the environmental conditions experienced by the species. 
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Figure 1. Average flowering month of Spanish moss populations across the Americas calculated 

as weighted average of flowering or fruiting specimens recorded from each grid square.  
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Figure 2. Histogram of ranks based on how long populations in each grid square are outside 

optimal conditions for each of the four parameters during their flowering and fruiting periods. 

The box at the center shows results of Kolmogorov-Smirnov tests results for comparison of 

distributions. Dotted line indicates highly significant difference; dashed lines significant 

differences, and continuous lines for non-significant difference.  
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Figure 3. Optimal flowering and fruiting month for Spanish moss populations based on each 

physiological parameter in isolation.  
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Figure 4. Map of Euclidean distances from observed conditions for Spanish moss populations to 

the best available across the species’ distribution. Inset shows a frequency histogram of distances 

in grid squares (top) and relationship to numbers of specimens on which distance calculations 

were based (bottom).  
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Abstract 

Species populations are affected by diverse aspects of weather and climate when variation takes 

conditions out of normal tolerance ranges; particularly of concern may be increases in 

temperature. Projected mean temperature increases may induce increases in extreme values 

which can be detrimental for many populations, as it will often not be possible to adapt to these 

changes. Amphibians are particularly affected by climate change owing to their small body size 

and ectothermic physiology: critical maximum temperature CTmax is an important element at the 

larval stage. We use experimentally measured CTmax values for 33 anuran species and 6-hourly  

resolution ERA weather data from 1989-2010 to understand in which populations of each species 

may experience CTmax and be under physiological stress. We also explored how frequently 

CTmax has been reached, and whether that frequency is increasing. Our results indicate that about 

70% of the species have experienced CTmax at least for a single day during the last 22-year period 

somewhere in their ranges, but only one species experienced CTmax often during the 22-year time 

period. 
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Introduction 

Global warming and climate change more generally are causing significant changes in species’ 

geographic distributions. Many studies have demonstrated that species’ ranges are shifting 

polewards owing to effects of warming temperatures (Root et al. 2003; Burrows et al. 2011; 

Chen et al. 2011). The temperature increase of 0.6°C to date has not only already affected 

species’ distributions, but has also affected parameters of ecosystem function and timing of 

biological processes (Visser & Both 2005; Garrett et al. 2006). The projected change of 

temperature increase of 2.5°C over the next 100 years is anticipated to manifest significant 

changes in frequency of extreme climatic events, which will further affect species, and also may 

even cause extinctions (Wake & Vredenburg 2008; Moritz & Agudo 2013). Numerous research 

efforts have attempted to anticipate changes in distributions under future climatic scenarios using 

correlative, niche-based approaches (Pearson & Dawson 2003; Zurell et al. 2009; Poulos et al. 

2012). In the few studies to date, correlative and mechanistic approaches have yielded similar 

predictions for species’ distributions under future climatic conditions (Buckley 2008; Kearney et 

al. 2009, 2010). In this regard, it is essential to link geographic patterns of species’ distributions 

to known physiological tolerances of species to evaluate the impacts of the rapidly changing 

climate.  

 

Even though most species are experiencing climate change amphibians are particularly affected 

as a whole, and are experiencing a large-scale declines, which are at least partly climate-driven 

(Stuart et al. 2003; Wake 2006). An estimated 43% of amphibian species are declining (Stuart et 

al. 2003); indeed, 32% of the species are threatened with extinction, and this period could be 

considered a mass extinction event (Wake & Vredenburg 2008). Four major factors affecting 
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amphibian populations include climate change, environmental pollutants, habitat modification, 

and invasive species and pathogens (Hayes et al. 2010). Considering climate warming, 

amphibian populations may frequently be exposed to conditions close to critical maximum 

temperatures tolerance limits, and their ability to adapt to temperature increases may be limited 

(Huey & Berrigan 2001; Hayes et al. 2010; Burrows et al. 2011). In this regard, identifying 

species and populations living at sites manifesting conditions close to critical maximum 

temperatures and potentially causing physiological stress becomes crucial. 

 

For anuran species, critical maximum temperature (CTmax) in larval stages represents an 

important constraint in life cycles. An individual experiencing conditions approaching CTmax has 

higher chances of death or abnormal larval development, which in turn is reflected in declining 

recruitment to reproductive populations (Benard 2015). Little research has been done in regard to 

how often species experience CTmax temperatures in real life, or whether the frequency of 

exposure to CTmax is increasing over time as a consequence of climate change. Hence, this 

contribution, we use high-temporal-resolution climatic data to understand what parts of species’ 

distributions experience conditions approaching CTmax and whether species have been 

experiencing CTmax increasingly frequently over the past two decades. 

 

Methods 

Species Data 

Durate et al. (2012) studied 47 amphibian species at 3 locations presenting varied environmental 

conditions; we focus on the 41 anuran species included in that study. Study sites included (1) the 

Gran Chaco region of northern Argentina (23.8°–27.5°S), which has a warm subtropical climate; 
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(2) the Atlantic Forest biome of Misiones Province in northeastern Argentina (27.5°–27.1°S), 

with cooler subtropical environmental conditions; and (c) the Iberian Peninsula of Europe 

(36.9°–60.5°N), with cool temperate conditions. Duarte et al. (2012) derived critical maximum 

temperatures for each species following Hutchinson’s dynamic method. In this method, the 

endpoint is determined by onset of muscular spasms after heating the individual at a constant 

heating rate of 1°C min
-1 

(Hutchison 1961). (Details of parameters and procedures are in (Duarte 

et al. 2012).  

 

Of the initial 41 species, we discarded those species with areas of <10 1.5° grid squares, (about 

1650 x 1650 km
2
), leaving 33 species for analysis (Table 1), for each of which the original study 

had measured CTmax. We collected breeding season information for each species from the 

literature and from AmphibiaWeb (2015 (www.amphibiaweb.org; Table 1). In two cases, lacking 

breeding season information, we used the collection periods given in Duarte et al. (2012) as 

breeding period, in absence of more detailed information. 

 

We downloaded crude summaries of geographic distributions of each species from the Global 

Amphibian Assessment (http://www.iucnredlist.org/initiatives/amphibians; IUCN, (2009) This 

dataset was developed by herpetologists from their expert knowledge and provides a rough 

distributional summary for each species. We buffered the IUCN distributional polygon by 80 

km, to identify the set of grid squares that cover the entire distributional area for each species. 

We also downloaded occurrence data for each species from GBIF (www.gbif.org) and HerpNET 

(www.herpnet.org). Records of each species were assessed for inconsistencies such as (1) place 

name and geographic coordinates do not match; (2) geographic coordinates fall in the ocean or 

http://www.amphibiaweb.org/
http://www.iucnredlist.org/initiatives/amphibians
http://www.gbif.org/
http://www.herpnet.org/
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on a different continent; and (3) duplicate records. These data were corrected where possible, and 

otherwise deleted from analysis (Chapman 2005). 

 

Climate Data 

We examined how the maximum thermal temperature (CTmax) was or was not met for each 

species across its geographic distribution during the breeding season over a 22-year period 

(January 1989 – December 2010). To this end, we used the ERA Interim Reanalysis Climate 

Data developed and supplied by the European Center for Medium-Range Weather Forecasts. 

These data are based on a combination of models and observations, with 3-hourly temporal 

resolution: every second datum is a forecast, whereas the other is a model result. We used only 

the model result data, thus coarsening the data from 3-hourly to 6-hourly temporal resolution. 

The dataset has a somewhat coarse native spatial resolution of 1.5° x 1.5°, or approximately 165 

x 165 km grid square resolution at the Equator. 

 

ERA data were downloaded from http://apps.ecmwf.int/datasets/data/interim_full_daily/ for 

maximum temperature at 2 m above the ground. The ERA data are stored in NetCDF format 

(http://www.unidata.ucar.edu/packages/netcdf/index.html; Rew & Davis 1990); these data were 

manipulated and processed via the “ncdf” package in R (Pierce 2011; R Core Development 

Team, 2012  

 

Data Analysis 

An R script was developed using the raster, ncdf, and sp packages (Bivand et al. 2008; Pierce 

2011; Hijmans & van Etten 2012) to calculate the number of days above CTmax in each breeding 

http://apps.ecmwf.int/datasets/data/interim_full_daily/
http://www.unidata.ucar.edu/packages/netcdf/index.html
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season for each species over the 22-year span of the climate data set. The script checked the 

value of maximum temperature across four daily observations; a grid square was marked as 

“unsuitable” for a day whenever two consecutive observations were at or above the temperature 

limit. It also calculated maximum number of days in sequence outside physiological tolerance 

limits for each grid square in the distribution of each species. Maximum number of days outside 

the physiological niche for each grid square was stored for every breeding season. 

 

Using this information, we developed maps in which each grid square across the distribution is 

marked as unsuitable whenever a grid square is outside the physiological tolerance limit on at 

least one day, during any breeding season over the 22-year period. We calculated the proportion 

of the distributional area of each species outside the physiological niche. We overlaid the curated 

occurrence data (see above) on distributional maps and calculated proportions of occurrence 

points falling outside species’ distribution areas (i.e data problem), and proportion of  

occurrences falling outside the physiological niche but within the distributional area.  

 

We calculated, for each species in each year, the maximum temperature within the distribution 

area, maximum number of days in the distributional area above CTmax, and maximum number of 

grid squares above CTmax. For each species, we developed a linear regression model assessing 

the number of days outside the physiological niche, and the number of grid squares outside the 

physiological niche as a function of time.  
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Results 

Our analysis indicates that CTmax conditions have been experienced in at least one grid square 

during the breeding season by 23 (70%) of the 33 anuran species. For nine species, the number 

of grid squares going out of the physiological niche increased during the 22 years of this study. 

Among the 33 species analyzed, species’ ranges covered 16–800 grid squares (Figure 1a). Figure 

1(b) shows a summary of relationships between extent of distributional area and the proportion 

of the distribution experiencing CTmax for each of 33 anuran species during the 22 years. The 

maximum proportion of distribution area outside the physiological niche is for the species 

Ceratophrys cranwelli, which does not have particularly large distribution. The species with the 

largest distribution was Bufo bufo; 90% of the distributional area of this species was within the 

physiological niche limits for the entire study period. For ten species, none of the distributional 

area manifested temperatures was outside the physiological niche during the study period.  

 

Distributional areas within and outside the physiological niche are shown for four example 

species in Figure 2 (see also Supplementary Figure 2). For example, Bufo bufo (Figure 2c) has a 

broad distribution, and only a few peripheral grid squares were outside of the physiological 

niche. For Alytes cisternasii, no part of the distribution experienced critical maximum 

temperature on any day during the 22-year study period. In contrast, major parts of the 

distribution of Ceratophrys cranwelli experienced CTmax on at least one day in the 22-year 

period. Distributional summaries were coarse in nature, but in many cases the actual occurrence 

data fell outside tolerance limits. Occurrence data at sites manifesting conditions outside the 

physiological niche limits ranged 1-42% (Figure 3). For Rhinella ornata, no data were available 

on GBIF or HerpNet, as this species is vulnerable; none of the species had all occurrence data 
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falling within the IUCN distribution outline. For Phyllomedusa sauvagii, most of the occurrences 

fell under low–suitability physiological conditions. However, for Leptodactylus bufonius and 

Lepidobatrachus llanensis, even though the distributional area contained grid squares with low 

physiological suitability, known occurrences did not fell in those areas. 

 

Temporal trends in frequency of experiencing CTmax from year to year are summarized in Figure 

4. For Bufo bufo, the number of grid squares experiencing CTmax increased significantly over the 

study period (R
2
 = 0.26, P < 0.02). For Scinax fuscovarius, the number of consecutive days 

above CTmax and number of grid squares experiencing CTmax increased within the distribution 

(Figure 4b, Supplementary Figure 1). Overall, however, of the 33 anuran species analyzed, only 

Bufo bufo showed significant (P <0.05) temporal trends (Table 2).  

 

Discussion 

Physiological tolerance limits can be informative in understanding geographic distributions and 

range limits of species, and may be particularly relevant in climate change scenarios (Porter et al. 

2000; Pörtner & Farrell 2008). To understand how species may shift their geographic 

distributions, the frequency of exceptions to physiological tolerances can be projected on to 

geography. This approach is potentially important but has been implemented only for few 

ectothermic species (Kleidon & Harold 2000; Kearney & Porter 2004; Kearney et al. 2008; 

Buckley 2008; Helmuth 2009; Buckley et al. 2010). The correlational analog technique is to 

infer physiological limits from the occupied geographic distribution (Peterson 2001; Soberón & 

Peterson 2005; Elith & Leathwick 2009; La Sorte & Jetz 2010; Poulos et al. 2012; Bentlage et 
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al. 2013); this latter technique has become much more popular owing to ease of operation and 

convenient data availability.  

 

Physiological parameters are not available for most species, owing to time and cost constraints 

involved with obtaining estimates of key parameter values. However, when such data are 

available, they can be highly informative about how climate change may affect species’ 

distributions. We used CTmax estimates for 33 anuran species to understand which species will 

prove more vulnerable in light of warming climates, and how much of each species’ distribution 

is under unsuitable conditions in terms of maximum temperature. In overview, about 70% of the 

species experienced CTmax conditions during 22 years in at least part of their geographic 

distributions (Figures 1, 4). For only one species, the number of days with CTmax and proportion 

of the distribution experiencing CTmax increased dramatically and significantly over the study 

period.  

 

Duarte et al (2012) explored differences between the CTmax and maximum pond temperatures 

(Tmax) at three different localities with different environmental conditions. Their result suggests 

that the difference between CTmax and Tmax is less in subtropical warm locations, such that 

species in subtropical warm locations may have more narrow tolerances. Our results also 

supported this idea: species in subtropical locations appeared to experience CTmax more 

frequently than species in temperate regions. For some temperate species, the peripheral parts of 

the distribution were frequently outside of the physiological niche, such that populations in those 

regions may be more physiologically stressed.  
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We observed that these phenomenon of distributional areas outside of the physiological niche 

was particularly frequent at lower latitudes are from lower latitudes (Figure 2, Supplementary 

Figure 2) which may have particularly serious implications for these species’ geographic ranges. 

Besides anurans, many marine invertebrates and lizards are believed threatened by increases in 

temperatures, as they appear to live close to their thermal tolerance limits (Sinervo et al. 2010; 

Somero 2010). A few case studies suggest that species cannot adapt fast enough to keep up with 

warming climate (Hoffmann & Sgrò 2011), a few recent studies (Logan et al. 2014; Ferri-Yáñez 

& Araújo 2015) have demonstrated temperature adaptation in species of lizards with strong 

natural selection favoring individuals who could run faster in warmer environments. Whether 

similar process is happening or could happen in anuran species, or how targets of selection may 

differ, is not yet known.  

 

One concern about this study’s design is that the distributional areas used in this study (IUCN 

2009) are rather crude, such that our estimates or physiological stress across distribution areas 

may be rather noisy. For almost all (95%) of the species, we found that many populations occur 

outside the IUCN distribution region (and we checked taxanomic concepts carefully to avoid 

artifacts). It is important to validate these occurrences or update the distributional summaries, to 

make estimates of threat under climate change scenario more accurate. For example, for species 

Pseudis platensis more than 50% of available occurrences fell outside the IUCN distributional 

border. We could not validate the IUCN distributional area for species Rhinella ornata as no 

occurrences are available; as this species is considered vulnerable, geo-locations have not been 

made public.  
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Overall, our analysis revealed that, among 33 species of anurans, some part of the distributional 

areas for 23 of the species experienced CTmax during a 22-year time period.  However, our 

analysis of temporal trends during the 22-year time span showed only a single significant result. 

Only Bufo bufo showed that number of days experiencing CTmax , and number of pixels 

experiencing CTmax had increased. Using our approach, we could not conclude that climate 

change has already been affecting these species’ distributional areas significantly.   
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Figure 1. (Top) Distributional areas from IUCN (2009) for 33 anuran species. (Bottom) 

Summary of relationships between extent of distributional area expressing conditions of 

temperature within CTmax for each of 33 anuran species.   
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Figure 2. Four examples of species’ distributional areas within and outside physiological niches. 

Yellow shading indicates conditions inside physiological niche; and red shading represents 

conditions outside of the physiological niche  
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Figure 3. Summary of anuran species’ occurrence data in relation to IUCN (2009) range extent 

polygons and physiological tolerances. Black indicates occurrences falling outside distributional 

areas defined in the IUCN polygons; Dark gray summarizes proportion of occurrence points 

falling in areas with conditions outside of physiological niche. Light gray summarizes proportion 

of occurrence points falling in areas with conditions inside of physiological niche.  
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Figure 4. Summary of temporal trends for two example species. (Left): Number of days outside 

physiological niche (dark gray), number of grid squares outside physiological niche (light gray) 

(Middle): Relationship of number of days outside physiological niche and breeding year. (Right): 

Relationship of number of grid squares outside physiological niche in distributional areas and 

breeding year.  
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Table 1: List of anuran species with its respective CTmax and breeding seasons 

Name Code CTmax in 

(C) 

Community Breeding season 

Alytes cisternasii Aci 38.2 ± 0.2 Temperate September – March 

(AmphibiaWeb, 2015) 

Bufo bufo Bbu 38.3 ± 0.1 Temperate March – June (AmphibiaWeb, 

2015) 

Ceratophrys cranwelli Ccr 42.0 ± 0.1 Subtropical 

warm 

November – February (Duarte 

et al. 2012) 

 

Discoglossus galganoi Dga 38.4 ± 0.1 Temperate October – July 

(AmphibiaWeb, 2015) 

Dendropsophus minutus Dmi 40.6 ± 0.1 Subtropical 

cool 

September – February 

(AmphibiaWeb, 2015) 

Dermatonotus muelleri Dmu 43.6 ± 0.3 Subtropical 

warm 

September – February 

(AmphibiaWeb, 2015) 

Elachistocleis bicolor Ebi 41.7 ± 0.2 Subtropical 

warm 

September – March 

(Rodrigues et al. 2003) 

Epidalea calamita Eca 39.7 ± 0.1 Temperate September – May (“Froglife”) 

Hyla arborea Har 40.0 ± 0.1 Temperate April – July (Friedl & Klump 

1997) 

Hyla meridionalis Hme 39.8 ± 0.1 Temperate March –June (Diaz-Paniagua 

1988) 

Hypsiboas raniceps Hra 41.2 ± 0.2 Subtropical 

warm 

September – March (Haddad 

et al. 2005) 

Leptodactylus bufonius Lbu 43.3 ± 0.1 Subtropical 

warm 

December (Heyer & Bellin 

1973) 

Leptodactylus latinasus Lla 44.7 ± 0.2 Subtropical 

warm 

September – May (Diaz-

Paniagua 1988) 

Lepidobatrachus 

llanensis 

Lll 44.7 ± 0.2 Subtropical 

warm 

October – February (Cei 

1968) 

Leptodactylus latrans Llt 41.4 ± 0.2 Subtropical 

warm 

September – February 

(AmphibiaWeb, 2015) 

Limnomedusa 

macroglossa 

Lma 39.9 ± 0.2 Subtropical 

cool 

November – January (Both et 

al. 2008) 

Leptodactylus 

podicipinus 

Lpo 43.3 ± 0.3 Subtropical 

cool 

November – March (Almeida 

et al. 2015) 

Physalaemus albonotatus Pal 41.1 ± 0.2 Subtropical 

warm 

September –  

March(Rodrigues et al. 2004) 

Pelobates cultripes Pcu 39.4 ± 0.1 Temperate October – May (Tejedo 1993) 

Pelophylax lessonae Ple 38.6 ± 0.2 Temperate May – July (AmphibiaWeb, 

2015) 

Pseudis limellum  Pli 41.9 ± 0.1 Subtropical 

warm 

August – March 

Pelophylax perezi Ppe 39.6 ± 0.2 Temperate February – June(Gómez-

Rodríguez et al. 2009) 
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Pseudis platensis Ppl 42.3 ± 0.1 Subtropical 

warm 

November – April (South & 

Journal 2011) 

Phyllomedusa sauvagii Psa 42.1 ± 0.3 Subtropical 

warm 

October – February (Wogel et 

al. 2005) 

Phyllomedusa 

tetraploidea 

Pte 41.6 ± 0.2 Subtropical 

cool 

October – December (Dias et 

al. 2013) 

Rana arvalis Rar 35.8 ± 0.1 Temperate March – June (AmphibiaWeb, 

2015) 

Rhinella ornata Ror 40.7 ± 0.1 subtropical August – February (Toledo et 

al. 2012) 

Rhinella schneideri Rsc 42.5 ± 0.1 Subtropical 

warm 

October – April 

(AmphibiaWeb, 2015) 

Rana temporaria Rte 37.2 ± 0.1 Temperate March – June (AmphibiaWeb, 

2015) 

Scinax acuminatus Sac 43.0 ± 0.2 Subtropical 

warm 

October – March (Journal 

2003) 

Scinax fuscovarius Sfu 41.0 ± 0.3 Subtropical October – February 

(AmphibiaWeb, 2015)) 

Scinax nasicus  Sna 42.6 ± 0.2 Subtropical 

warm 

November – February (Peltzer 

et al. 2008) 

Trachycephalus 

venulosus 

Tve 41.9 ± 0.1 Subtropical 

warm 

November – February 

(AmphibiaWeb, 2015)) 

  



90 

 

Table 2: Summary of linear regression models assessing trends in maximum temperature as a 

function of time across species’ distributions 

Species 

P 

Number 

of  

days   

Number of  

grid squares 

Alytes cisternasii - - 

Bufo bufo 0.0195 0.0104 

Ceratophrys cranwelli 0.1802 0.3531 

Discoglossus galganoi 0.2274 0.2436 

Dendropsophus minutus - - 

Dermatonotus muelleri 0.0979 0.0979 

Elachistocleis bicolor 0.1675 0.4123 

Epidalea calamita - - 

Hyla arborea 0.2185 0.2721 

Hyla meridionalis 0.1047 0.2056 

Hypsiboas raniceps 0.1875 0.4053 

Leptodactylus bufonius - - 

Leptodactylus latinasus 0.3517 0.7616 

Lepidobatrachus 

llanensis 0.0979 0.0979 

Leptodactylus latrans 0.1777 0.3183 

Limnomedusa 

macroglossa - - 

Leptodactylus 

podicipinus 0.0979 0.0979 

Physalaemus albonotatus 0.1384 0.2548 

Pelobates cultripes - - 

Pelophylax lessonae 0.2272 0.2272 

Pseudis limellum 0.0979 0.0979 

Pelophylax perezi - - 

Pseudis platensis - - 

Phyllomedusa sauvagii 0.1542 0.2107 

Phyllomedusa 

tetraploidea - - 

Rana arvalis 0.9277 0.8067 

Rhinella ornata - - 

Rhinella schneideri 0.1513 0.1889 

Rana temporaria 0.2272 0.2272 

Scinax acuminatus 0.2091 0.2222 

Scinax fuscovarius 0.1608 0.3505 

Scinax nasicus 0.1731 0.212 

Trachycephalus 0.1923 0.4625 
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venulosus 
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Supplimentary figure 1 Summary of temporal trends for two example species. (Left): Number of 

days outside physiological niche (dark gray), number of grid squares outside physiological niche 

(light gray) (Middle): Relationship of number of days outside physiological niche and breeding 

year. (Right): Relationship of number of grid squares outside physiological niche in 

distributional areas and breeding year. 
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Supplimentary figure 2   Species’ distributional areas within and outside physiological niches. 

Yellow shading indicates conditions inside physiological niche; and red shading represents 

conditions outside of the physiological niche 
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