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Abstract 

The purpose of this study was to test the sensitivity of system parameters of the Center of 

Pressure velocity (COPv) time series using Detrended Fluctuation Analysis to pre-clinical 

postural instability (PI) in PD, the progression of PI due to PD progression, and ultimately fall 

risk. The long term goal is to create quantitative clinically significant measures of pre-clinical 

PD PI, the progression of PI due to PD progression, and fall risk. Postural sway data collected in 

a previous study, including participants with mild PD (PD-Mi), moderate PD (PD-Mo) and age-

range-matched healthy controls (HC), were analyzed in this study. Ground reaction forces and 

moments were collected from subjects standing on force plates in quiet postural sway in eyes 

open (EO) and eyes closed (EC) conditions. COPv was calculated and analyzed as a non-

stationary time series. We investigated the temporal parameter of Absolute Average Maximal 

Velocity (AAMV), the system order parameter of Approximate Entropy (ApEn), and fractal 

parameters from the DFA which were the short (α1) and long (α2) term scaling behavior of the 

time series and the time scale at which the behavior changes – the crossover index (CrI).  

AAMV showed significant group differences between HC and PD-Mo and significant 

condition differences. In the fractal analysis, α1 showed significant group differences between 

HC and PD-Mo and α2 showed significant differences between conditions. Due to the pilot 

nature of the study, power analysis was conducted on all non-significant measures in order to 

investigate required subject numbers for significance. Feasible subject numbers were found for 

many of the measures. These results suggest that the temporal and fractal analysis of the COPv 

time series are sensitive measures of the differences between PD and HC and can be used in 

concert with traditional measures to further benefit clinical analysis, understanding of disease 

pathology, and development of computer simulation models of postural control in PD. 
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Background and Motivation 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by tremor, 

rigidity, bradykinesia and postural instability (Bartolić, Šantić, & Ribarič, 2009). PD is caused by 

a loss of dopamine producing cells in the Basal Ganglia (BG) which can ultimately effect motor 

planning and motor skills (Centonze, Calabresi, Giacomini, & Bernardi, 1999). While there is no 

known cure for PD, there are several treatment options, the most popular of which is levodopa, a 

dopamine delivering drug which is known to ameliorate the symptoms of PD.  

Postural instability significantly increases the fall risk of those with PD compared to age 

matched healthy controls (HC) (Bloem, Grimbergen, Cramer, Willemsen, & Zwinderman, 2001; 

Dibble & Lange, 2006; Grimbergen, Munneke, & Bloem, 2004). A fall often significantly 

reduces quality of life since it is often accompanied by extended hospital stays, general wariness 

of one’s balance (Bloem et al., 2001), and depression (Cummings & Masterman, 1999). Current 

clinical diagnoses and measures of PD severity are not sufficiently sensitive to detect postural 

instability prior to a first fall or robustly distinguish between severity levels. According to Visser 

et al, the most accurate clinical measure of postural stability is retropulsion (UPDRS item 

30)(Fahn, 1986), where a backward shoulder pull is performed unexpectedly and only once. A 

two-step recovery from this perturbation is considered to be an abnormal response (Visser et al.). 

Given the progressive nature of the disease and the often late diagnosis of postural instability, 

accurate clinical assessment is crucial in order to ensure appropriate treatment or therapy.  

Other more quantitative measures of postural stability have focused on postural sway. 

Center of Pressure (COP) measures such as sway path length, area, range, peak velocity and 

maximal direction (Schoneburg, Mancini, Horak, & Nutt, 2013; Stylianou, McVey, Lyons, 

Pahwa, & Luchies, 2011) have been shown to accurately characterize hallmark tendencies in PD 
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during postural sway. While these measures have proved useful, they assume the COP time 

series is a stationary signal, however there is growing consensus in the literature which claims 

that COP is a non-stationary with time varying statistical properties (Carroll & Freedman, 1993; 

Loughlin, Redfern, & Furman, 2003; Newell, Slobounov, Slobounova, & Molenaar, 1997; 

Ramdani, Seigle, Lagarde, Bouchara, & Bernard, 2009; Riley, Balasubramaniam, & Turvey, 

1999; Schumann, Redfern, Furman, el-Jaroudi, & Chaparro, 1995). While this knowledge does 

not necessarily refute conclusions drawn from stationary analyses, it does suggest that there is a 

potential wealth of data hidden in the non-stationary structure which could further describe the 

postural instability of PD.  

Previous research has also indicated that velocity is an important characteristic of 

postural sway that distinguishes PD from HC (Stylianou et al., 2011). Other studies have pointed 

to a control model of postural sway that is based on intermittent velocity based control 

(Delignières, Torre, & Bernard, 2011; Jeka, Kiemel, Creath, Horak, & Peterka, 2004). 

Deligniéres et al. used Detrended Fluctuation Analysis (DFA) as introduced by Peng et al. (Peng, 

Havlin, Stanley, & Goldberger, 1995) to describe the power law scaling behavior of the COP 

velocity time series (COPv). It was shown that the bi-logarithmic plot of fluctuation vs. time 

scale exemplified crossover behavior consistent with open loop and closed loop control (Collins 

& De Luca, 1993). Taken together and based on this literature, we can consider postural sway to 

be an intermittent velocity based control process with both open loop (reflexive) and closed loop 

(somatosensory feedback) structures.  
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Specific Aims 

The purpose of this study was to test the sensitivity of system parameters of the COPv 

time series to pre-clinical PI in PD, the progression of PI due to PD progression, and ultimately 

fall risk using DFA. We hypothesize that both short term and long term scaling behavior will be 

modulated by PD vs. HC and by PD progression. A secondary goal of this study is to investigate 

the implications the scaling behavior has on postural control as suggested by Collins et 

al.(Collins & De Luca, 1993). Further understanding of the controls system may not only benefit 

clinical assessment of PD, but may also help with the development of a computer simulated 

model of postural sway.  

Thesis Content 

This document contains four chapters. Chapter 1 contains an introduction to the field of 

study. Chapter 2 contains a detailed background of relevant literature on which the current study 

stands. Chapter 3 contains a manuscript of the background, motivation, methods, and results of 

the study on the effectiveness of fractal analysis in identifying clinically significant scaling 

behavior of the non-stationary Center of Pressure velocity time series. Chapter 4 summarizes the 

current study and makes recommendations for future directions. 
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Parkinson’s Disease: Symptoms and Behavior 

Parkinson’s disease (PD) is a neurodegenerative disease which affects 1-2% of people 

over the age of 60, which is an estimated 5 million people throughout the world (1 million in the 

USA). With the currently aging population it is expected that these numbers will increase 

(Olanow, Stern, & Sethi, 2009). PD has a significant negative effect on the daily lives of those 

who suffer from it, especially in the context of motor tasks and motor planning. The disease is 

characterized by tremor, rigidity, bradykinesia and postural instability (Bartolić, Šantić, & 

Ribarič, 2009; Kerr, Morrison, & Silburn, 2008). Disease severity largely determines quality of 

life experienced by those with PD as stability and mobility become impaired. A significant 

decrease in quality of life accompanies an increase in fall risk, with falls occurring more often in 

people with PD compared to age matched controls (Dibble & Lange, 2006; Grimbergen, 

Munneke, & Bloem, 2004) (Bloem, Grimbergen, Cramer, Willemsen, & Zwinderman, 2001). 

Falling can culminate in long term hospital care and decreased mobility due to injuries sustained. 

There is also a significant mental effect that comes from no longer trusting one’s balance after a 

fall (Bloem et al., 2001), which is compounded by an up to 90% depression rate in those with PD 

(Cummings & Masterman, 1999; Reijnders, Ehrt, Weber, Aarsland, & Leentjens, 2008) . It can 

be very disconcerting to no longer be able to trust one’s own balance, which can lead to fearful 

behavior that further limits mobility beyond what may actually be dictated by physiological 

symptoms.  

There is no known cure for PD, and as such therapies focus on mitigating the symptoms 

of PD in order to improve the quality of life for those afflicted. While there are a large number of 

caring and skilled individuals who contribute greatly to the care of those with PD, current 

clinical diagnosis and objective measures of PD severity fail to adequately characterize the 
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disease or robustly distinguish between severity levels. Clinicians are highly skilled at 

experience driven PD level assessment, however the tasks that lead to severity level scores are 

largely subjective and lack the quantitative data that accompany many scientific assessments in 

modern medicine.  

The Unified Parkinson’s Disease Rating Scale (UPDRS) (Fahn, 1986)and Hoehn and 

Yahr (H&Y) (Hoehn MM, 1967) are the two methods currently used to assess PD severity. 

UPDRS involves four scoring stages: 1) Mentation, behavior and mood; 2) Activities of daily 

living; 3) Motor examination; and 4) Complications of therapy. The first two and the fourth are 

written questions which must be completed by the patient and the third stage is a clinical 

assessment of various motor capabilities that encompass many aspects of movement, expression 

and speech.    

H&Y is a more targeted assessment of postural stability consisting of 0-5 severity levels 

as seen below: 

0. No symptoms 

1. Unilateral involvement only, usually with minimal or no functional disability 

bilateral involvement, without impairment of balance 

2. Bilateral or midline involvement without impairment of balance 

3. Bilateral disease: mild to moderate disability with impaired postural reflexes; 

physically independent 

4. Severely disabling disease; still able to walk or stand unassisted 

5. Confinement to bed or wheelchair unless aided 
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As can be seen, while the scales are descriptive, they lack the sensitivity that would be required 

to quantitatively describe the complex progression of a neurodegenerative disease.  

Postural instability is one of the most quality of life threatening symptoms of PD since it 

is most closely linked with fall risk. However, it is a complex issue that is affected by the other 

hallmark PD symptoms as well (bradykinesia, rigidity, and tremor). In a cross sectional 

reliability and validity study, Visser et al. found that the most reliable test for postural instability 

in PD is the unexpected shoulder pull (UPDRS item 30), executed once. If the subject takes two 

steps backward to recover, it is considered an abnormal response (Visser et al.). While this 

coarse measure may be capable of identifying a person with moderate Parkinsonian symptoms, it 

is unlikely that it is sensitive enough to distinguish small changes associated with the onset of 

postural instability that happens during PD progression. Furthermore, the likelihood that this 

measure would distinguish between PD and other diseases which cause postural instability is 

unknown. Sensitive, accurate and reliable measures of postural instability are needed in clinical 

assessments of PD in order to assess fall riska and to justify introducing an intervention to reduce 

fall risk.  

While there is no known cure for PD, there are several treatments that successfully 

ameliorate PD symptoms. The most common is levodopa, although deep brain stimulation is also 

used in advanced cases. PD is thought to be caused by a dopamine deficiency in the substantia 

nigra (SNc) of the basal ganglia (BG). The main effect of this deficiency is decreased stimulation 

of the motor cortex (Centonze, Calabresi, Giacomini, & Bernardi, 1999). The BG is associated 

with both motor control and cognitive function depending on the connectivity considered 

(Middleton & Strick, 2000). Levodopa provides a dose of the missing dopamine and effectively 

reduces the severity of PD symptoms. Studies show that patients on vs. off levodopa exhibit 
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significantly different postural and tremor behavior, indicating the effectiveness of the 

medication (Morrison, Kerr, Newell, & Silburn, 2008; Rocchi, Chiari, Cappello, & Horak, 

2006). However, PD patients on levodopa still exhibit parkinsonian tendencies in postural sway 

when compared to age matched, healthy controls (HC) (Beuter, Barbo, Rigal, & Blanchet, 2005).  

Levodopa treatment may mask changes caused by PD, compared to HC, during postural 

instability assessment. Allowing patients to maintain a regular dosing schedule is easier on 

patients. Thus clinical measures of postural instability that do not require patients to go off 

levodopa and still distinguish PD related deficits should be pursued.  

Parkinson’s Disease and Center of Pressure 

The effect of PD on postural stability during postural sway is well documented in the 

literature (Bartolić, Pirtošek, Rozman, & Ribarič, 2005; Kerr et al., 2008; Morrison et al., 2008). 

One common measure that provides robust contrast between PD and HC during postural sway is 

the Center of Pressure (COP) (Schmit et al., 2006). Through calculations involving the forces 

and moments exerted on the floor by the base of support (feet), the resultant COP is the point 

location of the resultant force of the feet during stance. The COP can be viewed as the 

neuromuscular response to fluctuations in the COM. COP can be measured by having someone 

stand on a force plate or an array of force plates in quiet stance.  COP in the x-y plane can be 

calculated using the following equations: 

𝐶𝑂𝑃𝑥 =  
𝑀𝑦 + 𝐹𝑥 × 𝑑𝑧

𝐹𝑧
    

 𝐶𝑂𝑃𝑦 =
𝑀𝑥 + 𝐹𝑦 × 𝑑𝑧

𝐹𝑧
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where COPx is the COP position in the x direction, COPy is the COP position in the y direction, 

𝐹𝑥 and 𝐹𝑦 are the forces parallel to the top of the force plate, 𝐹𝑧 is the force normal to the force 

plate, 𝑀𝑥 and 𝑀𝑦 are the moments parallel to the force plate and 𝑑𝑧 is the distance below the 

surface of the force plate at which the origin is located. 

COP is also indicative of the postural control system which provides sensory input from 

visual, somatosensory and vestibular systems (Mancini et al., 2011; David A Winter, Patla, & 

Frank, 1990). Many studies have focused on COP parameters in an attempt to accurately 

characterize hallmark tendencies of PD during postural sway for use in a clinical setting, such as 

sway path length, area and range (Stylianou, McVey, Lyons, Pahwa, & Luchies, 2011), as well 

as velocity and maximal direction (Schoneburg, Mancini, Horak, & Nutt, 2013) (Rocchi et al., 

2006). These studies report larger sway path length, larger sway area and range and larger 

velocity in the COP of PD subjects when compared with age matched HC. It is relatively 

intuitive to believe that postural instability in PD could lead to such findings, however there is an 

argument for postural control being a function of stability alone without consideration for sway 

minimization (T. Kiemel, Zhang, & Jeka, 2011). Kiemel et al. argue that control models which 

minimize muscle activation better predict characteristics of postural sway than those which seek 

to minimize sway.  

 Other hallmark PD symptoms have been shown to affect COP as well. Sasagawa et al. 

report the effect of hip motion during quiet standing as having a substantial effect on body 

kinematics (Sasagawa, Ushiyama, Kouzaki, & Kanehisa, 2009). Increased rigidity that comes 

with PD could reduce or eliminate hip joint movement which would, in turn, lead to a more 

unstable system. Kerr et al. also show the effect of limb tremor on postural sway. Coherence 

analysis of COP signals for PD participants on and off levodopa show a significant coupling 
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between a 4-7 Hz tremor in an extended limb and a 4-7 Hz peak in the spectral analysis of COP 

(Kerr et al., 2008). The results show the potential effect of tremor on sway dynamics. Despite 

observed differences between COP parameters in PD and HC, the sensitivity of these measures 

has not been shown to distinguish between severity levels in PD or to distinguish early postural 

instability in PD, compared to HC.  

In addition to the clinical significance of COP parameters that distinguish PD and HC, 

these very parameters may be a window into the differences in neural control of postural stability 

between the two groups. Consideration of differences in control parameters could potentially be 

useful in a clinical setting, but may also shed light on the specific regions of the brain or 

physiological operations that are affected by PD. Bartolić et al. studied tremor amplitude as an 

effect of activity and synchronization of central oscillators in the BG (Bartolic, Pirtosek, 

Rozman, & Ribaric, 2010). The results showed that the reduction in tremor amplitude widened 

the spectrum of tremor frequency in rest tremor, and vice versa. Subjects with PD were tested 

without medication where a clinically visible hand rest tremor was evident. Amplitude and 

frequency of tremor were monitored in real time for the duration of the test. At the beginning of 

the test, amplitude was high and frequency had a small bandwidth. The subjects were given 

apomorphine (APO), which is a drug that is known to dramatically and quickly reduce or 

eliminate pakinsonian tremor, and the tremor amplitude dropped to nearly zero while the 

frequency spectrum increased significantly in bandwidth. Once the drug lost effectiveness the 

amplitude increased again and the frequency bandwidth decreased dramatically. The results 

suggest that increased amplitude of tremor is a product of synchronization and activity of central 

oscillators in the BG, whereas dopaminergic effects are seen to de-couple the synchronicity. 
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Vaillancourt et al. extended this research by showing that the effect of synchronization 

can be seen in PD subjects who have no clinical signs of PD tremor in postural finger, postural 

hand and resting hand positions (Vaillancourt & Newell, 2000). They compared finger 

accelerations and EMG activity between mild to moderate PD subjects and HC. Through a 

measurement of approximate entropy (ApEn), which shows the regularity of a time series, it was 

demonstrated that PD tremor is more regular than physiological tremor in HC. It is suggested 

that this increased regularity comes from greater motor unit synchrony and reduction in neuronal 

activity consistent with loss of independent sources of control in PD.  

While the previous studies focused on limb tremor in PD, Morrison et al. extended the 

research to postural sway. An experiment was developed and performed to compare postural 

limb tremor time series structure with that of postural sway in HC controls vs. age matched PD 

patients on and off medication. They also used ApEn to measure the regularity of the data. The 

results confirmed previous ApEn results in postural tremor between PD and HC (i.e. there is 

greater regularity in PD data), but also revealed the opposite effect in postural sway. PD subjects 

displayed greater ApEn and, thus, less regularity in postural sway when compared to HC. This 

phenomenon is attributed to the fact that there is coupling between limb tremor and postural 

sway and, as such, postural sway in PD represents the additive effect of the normal sway pattern 

coupled with the postural tremor. Morrison et al. went on to show that there is a lack of inter-

limb tremor relation in PD, which implies that the coupling between postural tremor and postural 

sway is likely a result of neural control signals rather than mechanical wave transmission. This 

implication highlights the effect PD has on the postural control system through alteration of 

control commands or parameters involved in postural control, not merely as an additive effect of 

symptom based mechanical transmission throughout the body. This means that the differences 
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witnessed in COP parameters between PD and HC as well as the documented symptom of 

postural instability in PD is not merely a collection of effects driven by bradykinesia, tremor or 

rigidity, but a fundamental deficit or change in control properties governing postural sway.  

Non-stationarity of COP 

In many of the previously mentioned studies, COP parameters have been a significant 

indicator of PD postural dynamics vs. HC postural dynamics, however little consideration has 

been given to the fact that sway is a time series and not a constant measure that can be averaged 

across trials without unwanted filtering of potentially valuable information. There has been much 

documentation on the non-stationary nature of postural sway (Carroll & Freedman, 1993; 

Loughlin, Redfern, & Furman, 2003; Newell, Slobounov, Slobounova, & Molenaar, 1997; 

Ramdani, Seigle, Lagarde, Bouchara, & Bernard, 2009; Riley, Balasubramaniam, & Turvey, 

1999; Schumann, Redfern, Furman, el-Jaroudi, & Chaparro, 1995). A non-stationary signal is 

considered to be one which has time varying statistical properties (e.g. mean and standard 

deviation).The reality of COP as a non-stationary signal casts doubt on many of the traditional 

measures taken to characterize postural sway or at least forces a re-evaluation of the conclusions 

drawn from these measures. Reducing a non-stationary signal to a single characteristic value is 

the equivalent of filtering out all signal sources except one and expecting that measure to 

characterize the process. Although great strides have been made in understanding postural sway 

and particularly postural sway deficits in diseased states using these methods, the knowledge of 

the non-stationarity of COP allows researchers to investigate COP not merely as a stochastic 

entity, but as a highly sophisticated time series output of postural control, the fluctuations of 

which hold important information regarding system properties and control structure.   
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COP Velocity 

While many studies have investigated the non-stationary properties of COP position 

(Loughlin, Redfern, & Tacer, 1996; Sabatini, 2000; Schumann et al., 1995; Tacer & Loughlin, 

1998), few have investigated COP velocity as a non-stationary time series and, to the best of our 

knowledge; none have investigated this in PD. Furthermore, it is known from the previously 

mentioned studies which performed stationary analysis of COP with traditional measures that 

COP velocity is a good differentiator between PD and HC. From this point on, “COP time 

series” will be used to refer to non-stationary COP analysis.  

Ramdani et al. investigated the entropy of the COP velocity time series in eyes open (EO) 

and eyes closed (EC) conditions of young healthy subjects (Ramdani et al., 2009). Statistically 

significant effects were seen between the two conditions, indicating a change in the organized 

quality of information when there is no visual feedback. Jeka et al. also report that between 

position, velocity and acceleration feedback, velocity is the most sensitive form of information in 

postural sway feedback control (Jeka, Kiemel, Creath, Horak, & Peterka, 2004). Further studies 

echo this conclusion that velocity information is the most accurate in postural control and offer 

several different control models that display similar behavior to experimental data and highlight 

the importance of velocity feedback (Tim Kiemel, Oie, & Jeka, 2002). There is also much 

evidence in the literature to suggest that postural control can be modeled as an inverted 

pendulum (Gage, Winter, Frank, & Adkin, 2004; Gawthrop & Wang, 2006; D. A. Winter, 1995), 

although there is some discussion about the number of segments necessary to construct an 

accurate model (Pinter, Van Swigchem, van Soest, & Rozendaal, 2008; Sasagawa et al., 2009).  

Thus far we have shown that the literature supports COP as a non-stationary time series, 

that postural sway can be modeled as an inverted pendulum and that COP velocity can be 
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considered the most accurate and sensitive feedback delivered to the neural controller. 

Furthermore we have shown that certain conditions, such as EO vs. EC, as well as neurological 

disorders, such as PD, can alter the control properties of the postural sway dynamics by 

increasing traditional COP parameters when compared with HC (assuming stationary signals) 

and by altering the complexity of the COP time series data. Deligniéres et al. extended the 

assertion that velocity feedback information is the most accurate and sensitive by arguing that 

postural sway is really a process governed by velocity based, intermittent control (Delignières, 

Torre, & Bernard, 2011). They argue that a transition from persistent to anti-persistent 

correlations in the COP velocity time series indicate a bounded interval over which velocity 

based control operates using a fractal method of analysis called Detrended Fluctuation Analysis 

(DFA). They also compare these results to a Stabilogram-Diffusion Analysis (SDA) used by 

Collins et al. (Collins & De Luca, 1993) and a modified version of Spectral Analysis. 

 The results from all three were consistent in showing that velocity, not position, are 

instrumental in postural control. Deligniéres et al. also introduced a new type of velocity measure 

called Average Absolute Maximal Velocity (AAMV). This measure is similar to a traditional 

COP measure in that it averages across the time series, however it is different in that it splits the 

time series into n segments, takes the average of the rectified peaks of each segment, then takes 

the grand average of all the n segment averages of peak velocity. In this way the non-stationary 

aspect of the COP velocity time series is somewhat accounted for when compared to reporting 

the average velocity or the maximum velocity as with traditional measures previously discussed. 

In their study, Deligniéres et al. showed with statistical significance that AAMV increases with 

age and in the absence of vision. To the best of our knowledge, neither AAMV nor DFA have 

been applied to the COP velocity time series of PD.  
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Fractal Analysis of Physiological Systems  

  Recent advances in understanding of fractal methods have revealed that there is strong 

evidence for the existence of fractal structures within physiological processes. There are two 

types of discretely sampled pure fractal signals: 1) fractional Gaussian noise (fGn) and 2) 

fractional Brownian motion (fBm) where fGn is considered to be a stationary signal and fBm is 

considered to be non-stationary. These signals are often defined by a power law scaling 

parameter, the Hurst exponent (H). The power law scaling equation is in the form: 

𝑆𝐷(∆𝑥) ∝ ∆𝑡𝐻 

where 𝑆𝐷(∆𝑥) is the variance of displacement of the time series and ∆𝑡𝐻 represents the power 

law scaling of various time scales with H being the Hurst exponent (Delignières et al., 2011).  

Often physiological signals are viewed as random and summary statistics such as mean 

and standard deviation are considered to be a good description of the witnessed phenomenon. 

There is growing evidence that physiological systems that may look random in fact display self-

similar characteristics that lend themselves better to fractal analysis methods (Eke et al., 2000). 

Fractal methods are also superior to spectral analysis in the case of self-similar time series 

because they are capable of handling non-stationary as well as stationary signals. Fractal analysis 

allows researchers to view a system as its properties change over time. As Deligniéres et al. 

points out (Delignieres et al., 2006), this has been used in many different fields of physiological 

research for processes which have long been considered to be stationary such as self-esteem 

(Delignières, Fortes, & Ninot, 2004), finger tapping (Gilden, Thornton, & Mallon, 1995), and, as 

previously mentioned, COP displacement and velocity in upright stance (Collins & De Luca, 

1993; Delignières et al., 2011). Glenny et al. offer an in depth review of the various applications 
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and methods of fractal analysis to physiology (Glenny, Robertson, Yamashiro, & 

Bassingthwaighte, 1991). Most importantly, fractal analysis is useful to physiology in that it 

describes the temporal or spatial correlations in the irregularity of physiological systems rather 

than simply treating the irregularity as randomness.  

 Peng et al. first introduced Detrended Fluctuation Analysis (DFA) as a way to analyze the 

fluctuations of the interbeat intervals of the heart in healthy and diseased patients. The interbeat 

interval time series is a highly irregular process that is known to be non-stationary. Through this 

analysis, they were able to characterize statistical differences in the scaling behavior over short 

and long ranges between healthy hearts and those with congestive heart failure using the Hurst 

exponent (H). This analysis is meant to extend the classical random walk analysis (Peng, Havlin, 

Stanley, & Goldberger, 1995). (The classical random walk analysis is used by Collins et al. to 

investigate COP position time series (Collins & De Luca, 1993)). In this analysis, a crossover 

point was witnessed in the bi-logarithmic plot of fluctuation vs. scale where H changed 

significantly for short range vs. long range. A Hurst exponent from 0.5 < 𝐻 < 1 is considered to 

be fBm while a Hurst exponent from 0 < 𝐻 < 0.5 is considered to be fGn in when using DFA.  

The crossover in Peng et al. exhibited opposite behavior for healthy vs. diseased hearts. For 

healthy hearts, H changed from 1.5 to 1, while for diseased hearts H changed from 0.5 to 1.3.  

DFA has also been applied to the COP trajectory and the Hurst exponent calculated for 

HC vs. PD subjects in a study conducted by Stylianou et al. (Stylianou et al., 2011). In this study, 

the COP position time series was used to classify the Hurst exponent between the two groups. 

Results showed a statistical difference between HC and PD in both anterior-posterior (AP) and 

medio-lateral (ML) directions and in eyes opened and eyes closed conditions. The study did not 
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striate different degrees of PD severity, but compared a group of PD subjects with young HC and 

age matched HC. No crossover phenomenon were found.  

Deligniéres et al. showed that DFA could be applied to the COP velocity time series 

(Delignières et al., 2011). In this analysis, the same crossover phenomenon witnessed by Peng et 

al. was witnessed in the COP velocity time series. This suggests that the COP velocity scales 

differently in the short range than in the long range. In fact, H in the short range resembles fBm 

and H in the long range resembles fGn. This implies that short range COP velocity is non-

stationary and long range COP velocity is stationary. Furthermore, it shows that long range COP 

velocity is anit-persistent; meaning the evolution of the series reverses direction at some upper 

and lower limit. Deligniéres et al. go on to argue that this implies intermittent velocity based 

control for postural sway since there is a threshold boundary at which the signal reverses 

direction, there must be a control scheme driving this reversal. DFA for COP position does not 

yield these bounded results, rather there is no crossover phenomenon and H remains fBm. This is 

consistent with a random walk model (Stylianou et al., 2011).  

Limitations to Fractal Analysis 

 Although the value of fractal analysis in physiological systems is evident in the literature, 

there are some limitations that must be considered. DFA can be sensitive to certain types of non-

stationarities as reported by Chen et al. (Chen, Ivanov, Hu, & Stanley, 2002). The first point of 

concern is signals with data missing which must be patched together, the second is data with 

random spikes and the third is data with different properties at different times. While these non-

stationarities can cause problems if they are not considered in the analysis, they do not render the 

method useless and should be dealt with in accordance to the recommendations proposed by 
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Chen et al. As is true with all computationally heavy analysis, great care should be taken to 

logically and intentionally define all parameters used to obtain analysis results. With proper 

attention to detail, correct and meaningful conclusions can be drawn as see in the literature 

previously mentioned. 

Summary 

Parkinson’s disease (PD) is a debilitative, neurodegenerative disease that, among other 

things, causes postural instability. The most significant impact of postural instability on quality 

of life is fall risk, which is linked with extended hospital stays, large economic costs, and 

demobilizing fear. While clinical methods of PD diagnosis and severity assessment are used with 

great skill and accomplishment by clinicians, they fail to adequately indicate fall risk and how it 

relates to disease progression. Furthermore, traditional measures of postural sway assuming a 

stationary COP signal are inadvertently filtering valuable system information which could be 

used to improve clinical assessment or understand the underlying control scheme which governs 

postural stability. Fractal methods of analysis have been shown to be relevant to physiological 

systems, including COP measurements, and are capable of robustly describing non-stationary 

processes. While COP position is most often studied, COP velocity has been shown to be more 

important to postural control and, through traditional measures, has been shown to distinguish 

PD from HC. To the best of our knowledge, fractal methods have not been applied to COP 

velocity in PD. 
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Abstract 

Background: Postural instability (PI) is a hallmark symptom of Parkinson’s disease (PD) with 

associated decreases in quality of life, largely due to falls. No current clinical method exists 

which is sensitive enough to detect and accurate enough to quantify PI as PD progresses. 

Assessment of postural control through the quantitative analysis of the Center of Pressure (COP) 

time series has been proposed as a solution to this unmet need. This study investigates the use of 

the fractal behavior of COP velocity (COPv) in mild and moderate PD and age-range matched 

healthy controls to quantify the development of PI.  

Methods: Data were analyzed from a previous study that measured quiet postural sway in mild 

PD (n=13), moderate PD (n=10) and age-range matched healthy controls (n=21) in eyes open 

(EO) and eyes closed (EC) conditions. Foot to floor reaction forces and moments were measured 

to calculate COP and COPv. The following parameters were determined: the COPv power law 

scaling exponents and associated crossover index using Detrended Fluctuation Analysis (DFA), 

the Absolute Average Maximal Velocity (AAMV) and Approximate Entropy (ApEn). ANOVA 

was used to determine the effects of group, condition, and group*condition on all parameters.  

Findings: Scaling behavior showed significant group effects in the short term and condition 

effects in the long term in PD-Mo versus HC. Absolute Average Maximal Velocity (AAMV) 

was significantly higher in PD-Mo versus HC. ApEn had no significant effect. 

Interpretation: Velocity information is an important part of postural control and a sensitive 

measure of PD versus HC. AAMV has clinical value as it shows group and condition effects. 

Fractal analysis identifies group and condition effects in short and long term scaling behavior 

respectively. Given the proper study power, these measures could be useful as a clinical 

assessment tool of early PD, disease progression and fall risk.  
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Introduction 

 Parkinson’s disease (PD) is a neurodegenerative disorder characterized by tremor, 

rigidity, bradykinesia and postural instability (Bartolić, Šantić, & Ribarič, 2009). Postural 

instability (PI) significantly increases the fall risk of those with PD compared to age matched 

healthy controls (HC) (Bloem, Grimbergen, Cramer, Willemsen, & Zwinderman, 2001; Dibble 

& Lange, 2006; Grimbergen, Munneke, & Bloem, 2004). A fall can significantly impact quality 

of life since it is often accompanied by extended hospital stays, general wariness of one’s 

balance (Bloem et al., 2001), and depression (Cummings & Masterman, 1999). PD is caused by a 

loss of dopamine producing cells in the Basal Ganglia (BG) which can ultimately effect motor 

planning and motor skills (Centonze, Calabresi, Giacomini, & Bernardi, 1999). While there is no 

known cure for PD, there are several treatment options focused on symptom management, the 

most popular of which is levodopa, a dopamine delivering drug which is known to ameliorate PD 

symptoms.  

Given the progressive nature of the disease and the often late diagnosis of postural 

instability, accurate clinical assessment is crucial in order to ensure a timely and appropriate 

treatment or therapy. The most accurate clinical measure of postural stability is retropulsion 

(UPDRS item 30), where a backward shoulder pull is performed unexpectedly and only once 

(Visser et al.). A two-step recovery from this perturbation is considered to be an abnormal 

response (Visser et al.). Current clinical diagnoses and measures of PD severity are not 

sufficiently sensitive to detect the onset of postural instability prior to the first fall or robustly 

quantify the change in PI as a result of PD progression (increasing trend) or an intervention 

(decreasing trend). 



29 

 

Other more quantitative measures of postural stability have focused on postural sway. 

The Center of Pressure (COP) time series is often quantified using measures, such as the total 

sway path length, area, range, peak velocity and maximal direction (Schoneburg, Mancini, 

Horak, & Nutt, 2013; Stylianou, McVey, Lyons, Pahwa, & Luchies, 2011), that have been shown 

to accurately characterize hallmark tendencies in PD during postural sway. While these measures 

have proved useful, they assume the COP time series is a stationary signal, however there is 

growing consensus in the literature which claims that COP is a non-stationary signal, meaning 

statistical properties such as mean and standard deviation (SD) vary with time (Carroll & 

Freedman, 1993; Loughlin, Redfern, & Furman, 2003; Newell, Slobounov, Slobounova, & 

Molenaar, 1997; Ramdani, Seigle, Lagarde, Bouchara, & Bernard, 2009; Riley, 

Balasubramaniam, & Turvey, 1999; Schumann, Redfern, Furman, el-Jaroudi, & Chaparro, 

1995). While this knowledge does not necessarily refute conclusions drawn from stationary 

analyses, it does suggest that there is a potential wealth of information hidden within the non-

stationary structure which could further describe the postural instability of PD.  

Previous research has also indicated that velocity is an important characteristic of 

postural sway that distinguishes PD from HC (Stylianou et al., 2011). Other studies have pointed 

to a control model of postural sway that is based on intermittent velocity based control 

(Delignières, Torre, & Bernard, 2011; Jeka, Kiemel, Creath, Horak, & Peterka, 2004). 

Deligniéres et al. also used Detrended Fluctuation Analysis (DFA) as introduced by Peng et al. 

(Peng, Havlin, Stanley, & Goldberger, 1995) to describe the power law scaling behavior of the 

COP velocity time series (COPv). It was shown that the bi-logarithmic plot of fluctuation versus 

time scale exemplified crossover behavior consistent with open loop and closed loop control 

(Collins & De Luca, 1993). Taken together and based on this literature, we can consider postural 
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sway to be an intermittent velocity based control process with both open loop (reflexive) and 

closed loop (somatosensory feedback) structures.  

The purpose of this study is to test the sensitivity of system parameters of the COPv time 

series to onset of postural instability (i.e. pre-clinical assessment), the postural instability 

development associated with PD progression, postural instability reduction resulting from a 

successful intervention, and ultimately the assessment of fall risk using DFA. Power analyses 

will be performed where necessary on the pilot data in order to determine the number of subjects 

required to find significance, which provides information that is necessary to design a full scale 

study. We hypothesize that both short term and long term scaling behavior will be modulated by 

PD versus HC and by PD progression. A secondary goal of this study is to investigate the 

implications the scaling behavior has on postural control as suggested by Collins et al. (Collins & 

De Luca, 1993). Further understanding of the controls system may not only benefit clinical 

assessment of PD, but may also help with the development of a computer simulated model of 

postural sway.  

 

Methods 

Participants 

As reported previously by Barnds et al. (Barnds, 2015), twenty-three patients with PD 

and twenty-one age matched healthy controls (HC) participated in this study of a postural sway 

task. The data was compiled from two previous studies which investigated the differences 

between HC and PD in postural sway (Barnds, 2015; Stylianou et al., 2011). All individuals gave 

informed, written consent as approved by the University’s Institutional Review Board. PD 

patients were further divided into the two sub-categories of Mild PD (PD-Mi) in which no 
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postural deficits were apparent and Moderate PD (PD-Mo) in which postural deficits were 

present. Placement into the two PD groups was based on clinically assessment performed by a 

movement disorders specialist, as discussed in Barnds et al. 

All PD patients were recruited from the University of Kansas Medical Center (KUMC) 

Parkinson’s disease and Movement Disorder Center. All patients who had PD were confirmed by 

a neurologist specializing in movement disorders (RP). PD participants were able to walk 

without assistance, were without severe depression (BDI<30/63), dementia (MMSE>24/30), and 

musculoskeletal or neurologic impairments unrelated to PD, had an H&Y score of 2 (PD-Mi) or 

3 (PD-Mo) and had not had neurosurgery for PD. HC participants were recruited from the 

surrounding community and were without any significant cognitive, musculoskeletal or 

neurologic impairment.  

Task 

 The task used for this study has been discussed in detail in a previously published paper 

(Stylianou et al., 2011). Postural sway task details are summarized in the following. Participants 

wearing standardized footwear were asked to stand on a force plate with naturally selected stance 

width, with their arms at their side and looking forward. Six trials of data were collected in 30 

second epochs. Three trials each of Eyes Opened (EO) and Eyes Closed (EC) conditions were 

randomly selected for order.  PD participants were instructed to maintain their normal 

medication schedule and were tested on medication (mean (SD) time since last antiparkinsonian 

dosage: 2.1 (1.0) hours). 

Experimental Measurements and Data Analysis 

 Postural sway kinetic data were collected using AMTI six-channel force plates 

(Advanced Mechanical Technology Inc., Watertown, MA, USA) and sampled at 1000 Hz using 
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a 16-bit A/D data acquisition system (National Instruments, Austin, TX, USA). Video data were 

used to ensure subject compliance with postural sway task instructions.  

 Kinetic data were low pass filtered with a fourth-order, zero phase shift, Butterworth 

filter with a cut-off frequency of 10 Hz. COP path (COPp) was then calculated in the anterior-

posterior (AP) direction and COP velocity (COPv) was calculated with a fourth order accuracy 

numerical derivative of the COP. COP velocity was then down sampled to 100 Hz. Each 

participant’s set of three trials per condition were concatenated to form a single COPv time series 

for each condition. This was preferred over averaging across trials since averaging would be a 

form of filtering the data towards the mean. Whereas, concatenation of similar epochs of an 

infinite time series (i.e. taken from the same steady state, non-fatigued period) is assumed to 

have little effect on the structure of the data. The cautions issued in Chen et al. (Chen, Ivanov, 

Hu, & Stanley, 2002) were considered and followed for data with missing sections. All data 

analysis was completed using MATLAB (MATLAB, Natick, MA, USA). 

Temporal Analysis 

 Absolute Average Maximal Velocity (AAMV) was used to analyze the temporal aspect 

of the non-stationary COP velocity time series (Delignières et al., 2011). We calculated AAMV 

using the following steps with n = 24 and m =375: 

1. From the COP Velocity, rectify the signal and divide into n divisions of m data points. 

2. Find the peaks of each n divisions. This will give you the local maxima for each division. 

3. Find the average value of the peaks for each n division. This will give an average 

maximal velocity per division. 

4. Find the average of each of the n averages. This value is the AAMV. 
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System Order Analysis 

 Approximate Entropy (ApEn) analysis was used to assess the order/disorder of the time 

series data (Pincus & Goldberger, 1994; Slifkin & Newell, 1999; Vaillancourt & Newell, 2000). 

Details of the calculation of ApEn can be found in Pincus et al. and Slifkin et al. ApEn 

characterizes the regularity of the time series. Two parameters m and r must be set before 

starting the analysis. We chose m = 2 and r = 0.2 in accordance with Slifkin et al. The quantity 

m determines the length of the template and condition vectors to be used, and the quantity r 

determines the quantity by which the standard deviation of the time series is multiplied to create 

an acceptable similarity range with the template vector. The process of ApEn calculation is 

summarized below. 

There is considered to be a vector connecting each data point in the time series, such that 

if there are 1000 points in the series, there are 999 vectors. For each step in the iteration i, each 

vector in the time series is compared to a template vector [u(i,), u(i+1)]. Vectors that fall within 

the range of similarity determined by r x SD become conditioning vectors. The number of 

conditioning vectors found becomes the denominator term B. A third point is considered in the 

construction of vectors using the second point of the conditioning vectors and the next adjacent 

point in the series (e.g. if a conditioning vector is of the form [u(4), u(5)] then the vector 

constructed for this portion of the calculation will be [u(5), u(6)]). The number of these vectors 

which still fall within the similarity criterion are recorded as the numerator term A. The ratio A/B 

is constructed and the absolute value of the log of A/B is reported as the conditional probability 

that all the vectors in the series will be the same as the template vector. This process is then 

iterated for the entire length of the series and the average of the conditional probabilities is 
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reported as the ApEn. This value can range from 0 showing no order, which is apparent in white 

Gaussian noise, to 1 showing a highly ordered system, which is apparent in a sine wave.  

Fractal Analysis 

 Detrended Fluctuation Analysis (DFA) was performed on the COPv time series as 

consistent with Peng et al. and Deligniéres et al. (Delignières et al., 2011; Peng et al., 1995). 

DFA is a method of analysis that measures the fluctuation of the time series data at specific time 

scales defined by the user. In the present study, we used a time scale range from 10 ms to the 

time length of the full data (9000 ms) increasing by 10 ms at each step. DFA is completed in the 

four steps outlined below and derived from Deligniéres et al.: 

1. Integrate the signal of length N using the equation: 𝑦(𝑘) = ∑ [𝐵(𝑖) − 𝐵𝑎𝑣𝑒]𝑘
𝑖=1  where 

𝐵(𝑖) is the ith interval and 𝐵𝑎𝑣𝑒 is the average interval.  

2. Divide the integrated time series into non-overlapping boxes of equal length n. Fit a least 

squares line to the data in the box. This line represents the trend in the box. The y 

coordinate of the straight line segment is denoted by 𝑦𝑛(𝑘). 

3. De-trend the integrated time series,𝑦(𝑘), by subtracting the local trend, 𝑦𝑛(𝑘), in each 

box.  

4. Calculate the root-mean-square fluctuation using the following equation 

𝐹(𝑛) = √
1

𝑁
∑[𝑦(𝑘) − 𝑦𝑛(𝑘)]2

𝑁

𝑘=1

 

5. Plot 𝐹(𝑛) 𝑣𝑠. 𝑛 (fluctuation vs. scale) on a bi-logarithmic plot.  

A linear relationship on the fluctuation vs. scale plot indicates a power scaling behavior of 

the time series. The quantity 𝛼 represents the slope of the least squares fit regression line relating 
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F(n) to n on the bi-logarithmic plot. It is analogous to the Hurst exponent (H) in other fractal 

methods of power law scaling behavior following the equation:  

𝑆𝐷(∆𝑥) ∝ ∆𝑡𝐻 

where 𝑆𝐷(∆𝑥) is the variance of displacement of the time series and ∆𝑡𝐻 represents the power 

law scaling of various time scales with H being the Hurst exponent (Delignières et al., 2011).  

 As seen in Figure 2 and previously reported in Deligniéres et al. and Peng et al., there 

exists two distinct regions of power law scaling in the COPv time series: 1) α1- representing the 

short range time scaling behavior, and 2) α2 representing the long range time scaling behavior. 

Both quantities were calculated using a least squares linear fit to the respective portions of the 

𝐹(𝑛) 𝑣𝑠. 𝑛 plot with a correlation coefficient of at least 𝑅2 = 0.8. The Crossover Index (CrI) was 

calculated as the scale n at which the lines defined by α1 and α2 intersect as shown in Figure 2.  

Statistical Analysis 

 A 3-way Analysis of Variance was used to compare effects of Group (HC, PD-Mi, PD-

Mo), Condition (EO, EC) and the interaction between group and condition (group*condition) for 

each of the five analysis parameters (AAMV, ApEn, α1, α2, CrI). Significance was considered 

for p<0.05. Post-hoc Tukey-Kramer analysis was used on measures which showed statistical 

significance (p<0.05) to identify which group comparisons within the ANOVA were driving the 

main effect differences. All statistical analyses were completed using MATLAB (MATLAB, 

Natick, MA, USA). 

 

Results 

 Anthropometric data (age, height and mass) were analyzed in a previous study (Barnds et 

al.) and no significant differences between groups were reported.  
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Temporal Analysis 

AAMV: Significant main effects were found in groups between HC and PD-Mo and 

across conditions (p<0.05). In EO and EC conditions, PD-Mo had significantly higher AAMV 

than HC (p<0.001). PD-Mi tended to have higher AAMV than HC and lower AAMV than PD-

Mo in both conditions; however there was no statistical significance (Table 1, Figure 3). Power 

analysis revealed the need for a sample size of n=22 in order to differentiate between the means 

of PD-Mi and HC (p<0.05), and n = 25 for PD-Mi and PD-Mo (p<0.05) (Table 2).  

System Order Analysis 

 ApEn: No significant main effects were found, however EO, compared to EC, tended to 

have higher mean values (Table 1, Figure 4). Power analysis showed the need for sample size of 

n >> 200 for significance (Table 2). 

Fractal Analysis 

Alpha1: Significant main effects were found in Groups between HC and PD-Mo 

(p<0.05). In EO and EC conditions, PD-Mo had significantly lower α1 than in HC (p<0.05). PD-

Mo also had lower α1 than PD-Mi, but there was no statistical significance. Power analysis 

revealed the need for a sample size of n = 194 to differentiate between PD-Mo and PD-Mi 

(p<0.05) (Table 2). PD-Mi had lower α1 than HC in both conditions; however there was no 

statistical significance. Power analysis showed the need for a sample size of n = 39 in order to 

differentiate between PD-Mi and HC (p<0.5) (Table 1, Figure 5).  

Alpha2: Significant main effects were found in condition (p<0.05). EC, compared to EO 

condition, had significantly lower group means (p<0.05). Power analysis showed the need for a 

sample size of n = 72 to differentiate HC from PD-Mo, n = 56 to differentiate between PD-Mi 

and PD-Mo, and n >> 200 for HC from PD-Mi. While there was no statistical significant 
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group*condition interaction effect, condition did appear to have a larger effect on PD-Mo than 

the other two groups (Table 1 & 2, Figure 6). 

CrI: No significant main effects were found. There was a consistent trend in group and 

condition. EC CrI tended to be lower than EO CrI. The HC CrI tended to be lower than in PD-

Mi, with a sample size of n = 79 necessary for significance (p<0.05), and the HC CrI tended to 

be higher than PD-Mo with a sample size of n = 76 necessary for significance (p<0.05). PD-Mi 

tended to have a higher CrI than PD-Mo with a sample size of n = 22 necessary for significance 

(p<0.05) (see Table 1, Table 2 and Figure 7). 

 

Discussion 

The purpose of this study was to identify specific system characteristics of the COPv time 

series for use in clinical assessment of postural instability resulting from PD. More specifically, 

with the consideration of COPv time series as a non-stationary signal, these measures should 

provide a higher degree of information density than previous clinical measures (e.g. Retropulsion 

test) or traditional COPp measures (e.g. sway path, range, peak velocity). This could allow for 

earlier detection of PD induced postural instability and/or tracking the development of postural 

instability. As previously stated, fall risk is a major concern for PD patients as it often leads to a 

significant decrease in quality of life. Quantitative clinical measures would be a very useful tool 

in identifying those at risk for a fall earlier, and thus in need of therapeutic or compensatory 

intervention.  

The results of this study also have application to the differences in neural control 

properties of PD vs. HC, especially as it relates to the combination of open and closed loop 

velocity based control, which is argued to be important in postural sway (Collins & De Luca, 
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1993). While this knowledge alone may not be a direct measure for use in a clinical setting, it 

can help to guide future research into computer simulation of Parkinsonian postural sway, which 

would be a valuable clinical tool in itself.  

Temporal Analysis 

 AAMV proved to be the most clinically significant measure taken, showing significant 

differences between groups and conditions. The calculation method of the AAMV more 

accurately reflects the time varying, non-stationary nature of the COP signal in that it more 

accurately accounts for the time varying mean of the COP trajectory. As PD progression 

increases, AAMV also increases. Removal of visual feedback also increases AAMV across 

groups in a fairly uniform manner. It is interesting to note that removal of visual feedback 

increases the HC AAMV to a value very near the PD-Mi AAMV in the EO condition (Figure 3). 

Similarly, PD-Mi in the EC condition is comparable to PD-Mo AAMV in the EO.  

 The increase in AAMV from HC to PD-Mi to PD-Mo is to be expected given the volume 

of research showing larger sway range, area, and peak velocities as previously mentioned 

(Rocchi, Chiari, Cappello, & Horak, 2006; Schoneburg et al., 2013; Stylianou et al., 2011). In 

order to cover more distance in the same amount of time, it is logical to assume that velocity 

would have to increase, however it is not obvious whether this increase is driven by a trend that 

persists throughout the entire trial, or several large peak changes in trajectory. The AAMV 

measure shows that the increase in velocity is consistent over the entire trial duration. 

 The relative sensitivity of the AAMV calculation offers much potential use to clinical 

assessment of PD. The pilot nature of this study does not have the power to distinguish between 

HC and PD-Mi means, but power analysis reveals a feasible sample size in order to gain 

significance between these two subgroups (Table 2). This shows that AAMV could be a useful 
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tool in pre-clinical determination of postural instability as well as an indicator of disease 

progression. AAMV is also a simple calculation which could easily be implemented into clinical 

instrumentation, allowing for fast results and intuitive interpretations.  

 AAMV is also considered to be the velocity boundary condition of the controller, 

assuming intermittent velocity based control (Delignières et al., 2011). A steady increase in 

AAMV from HC to PD-Mo indicates an increase in the acceptable boundary condition prior to 

controlled stabilization around a set point. This means, as PD progressives, the velocity of sway 

is allowed to reach higher values before the system takes corrective action to restore the system 

toward the fully “upright” configuration. From AAMV alone, it is difficult to speculate what 

could be causing this change, since the control system is known to have both open loop and 

closed loop components (Collins & De Luca, 1993; Delignières et al., 2011; Mitchell, Collin, De 

Luca, Burrows, & Lipsitz, 1995). Furthermore, the effect of condition was consistent across 

groups which could suggest that visual feedback sensory information is not corrupted in PD. 

System Order Analysis 

 ApEn: The lack of statistical significance in the ApEn analysis between groups and 

across conditions reveals that, across the groups tested, the regularity of the COPv is similar. 

There were clearly visible trends; however sample sizes necessary to find significance between 

the means of groups or across conditions were too large to consider the measure to have much 

power as a clinical tool. The means fell between 0.5 and 0.6 (𝑆𝐷 ≅ 0.05) (Table 1) which shows 

a moderate level of regularity in the data when compared to a value of zero which represents 

white Gaussian noise. The lack of significant difference shows that, although there is evidence 

for a difference in control strategy between HC and PD in both the literature and in this study, 

there is still much control occurring at this stage in the disease. The lack of significance could 



40 

 

also be indicative of the fact that the PD groups in this study were individuals who had only 

moderate postural instability at worst. The ApEn measure may not be sensitive enough to 

moderate and mild PD to be used successfully as a pre-clinical assessment tool.  

Fractal Analysis 

 Crossover Index: Although there is no statistical difference between groups or between 

conditions at the current power of the study, the existence of the crossover point is evident from 

the bi-logarithmic plots (Figure 1). The crossover index (CrI) exists for all subjects and defines 

the time scale at which the data changes scaling behavior from α1 to α2. The implication of a CrI 

is that the time series changes scaling behavior at a particular time scale. Clinically speaking, this 

may not be a useful measure since it is indicative of the exchange of open loop control (short 

time scale) for closed loop control (long time scale) (Collins & De Luca, 1993), however power 

analysis does reveal the sample size necessary to distinguish means (Table 2).  

The suggestion that CrI indicates transition from open loop to closed loop control is 

consistent with this study since the CrI occurs between 100-150 ms for all groups. Miall et al. 

(Miall & Wolpert, 1996) suggests that delays in spinal reflex tasks could be around 30 ms while 

delays in visually guided feedback tasks could be around 200-300 ms. A CrI between 100-150 

ms is consistent with the transition from spinal reflex, or open loop, to feedback guided (with 

vision or without) closed loop control.  

 Alpha1: The group differences seen in α1 are indicative of a change in short range scaling 

behavior between HC and PD-Mo and between the two PD groups. In fractal analysis of this 

type, there are two types of classification of time series: fractional Gaussian noise (fGn) (α<0.5) 

and fractional Brownian motion (fBm) (α>0.5) with α = 1 being pure fractional Brownian 

motion. In EO and EC, α1 >0.5 for all groups meaning in the short range the data behaves like 
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fBm. This also suggests positively correlated fBm, meaning each successive value of COP 

velocity is likely to move in the same direction as the previous value (e.g. if it is increasing it is 

likely to keep increasing).  

 Furthermore, increasing severity of PD leads to decreasing values of α1 with no effect of 

condition (Figure 8). Since α1 is considered to be the short term scaling behavior of the series, it 

is no surprise that loss of visual feedback would not affect the scaling behavior since short term 

is linked with open loop control. Decreasing values of α1 are also indicative of a slight move 

toward fGn compared to higher values of α1. This could indicate less positively correlated trends 

in the scaling behavior which may have unknown effects on system dynamics. Whether this 

could lead to more postural instability can only be determined analogously since PD groups 

portray this behavior and are known to have less postural stability. Further analysis is needed to 

understand the stability effects of decreasing α1 values on an open loop/closed loop velocity 

based control inverted pendulum system. 

 Alpha2: The significant differences in α2 between the groups and across the conditions 

without the cross term shows that removal of visual feedback has a common effect across the 

groups on the longer time scaling behavior of the COP velocity (see Figure 9). This is consistent 

with the idea that α2 is indicative of closed loop control, and it is no surprise that removal of one 

of these feedback sources would move the system behavior more toward pure fGn since less 

information is being delivered to the controller. What is surprising is the common effect this has 

on group regardless of diseased state. This is not definitive evidence that loss of visual feedback 

effects PD and HC alike, but in terms of scaling behavior, there is no measureable difference.  

 For EO condition, the group means were α2 = 0.270 and for EC condition the group 

means were α2 = .211 (Table 1), indicating strong evidence for fGn with negative correlations, 
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meaning each successive value of COP velocity is likely to move in the opposite direction as the 

previous value (e.g. if it is increasing it is likely to start decreasing). This is also consistent with 

the behavior of closed loop, intermittent control in steady state behavior. 

 Combined Effects: The result of the DFA analysis must be considered as a whole and in 

combination with other measures in order to draw an appropriate conclusion. The α1 group affect 

coupled with the α2 condition effect suggests that PD has a greater impact on the open loop 

control of the system, and responds similarly to HC during loss of visual feedback. It is 

important to remember that previous research has indicated the influence other hallmark PD 

characteristics have on postural instability, such as rigidity and tremor (Kerr, Morrison, & 

Silburn, 2008; Morrison, Kerr, & Silburn, 2008; Sasagawa, Ushiyama, Kouzaki, & Kanehisa, 

2009). Increased rigidity of the biomechanical system could certainly cause a more noise-like 

characteristic in reflexive, open loop control similar to the high frequency vibration seen in stiff 

systems in the presence of a perturbation. Tremor has also been shown to have the capability of 

affecting postural sway in the 4-7 Hz range (Kerr et al., 2008), however it is argued that the 

effect of tremor on postural sway arises from descending neural control commands and not 

merely mechanical wave transmission. Neural connectivity and its relation to PD and 

open/closed loop control is beyond the scope of this paper, however it should be considered in 

future studies since there is strong evidence for the effect of PD on open loop velocity based 

control that has not previously been discussed. 

 

Conclusion 

 The investigation of temporal, organizational and fractal characteristics of COPv as a 

non-stationary, time varying series yields marked differences in behavior between HC and PD, 
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even in pre-clinical populations. AAMV proved to be the most clinically significant measure due 

to the low sample size required to find statistical differences (p<0.5) between HC, PD-Mi and 

PD-Mo, and its relative ease of calculation and interpretation. ApEn showed that there is a 

common change in the regularity of COPv time series between groups and across conditions, but 

offered little clinical significance. The fractal method of analysis, DFA, revealed a difference in 

scaling behavior between groups and across conditions for short time scales indicating a change 

in open loop control. DFA also showed a common reaction across groups to the removal of 

visual feedback in the long time scale, indicating similar closed loop control characteristics.  

This study serves to show that the traditional treatment of COP as a stationary signal in 

current clinical methods oversimplifies the complexity data information contained within. In 

order to develop quantitative clinical assessments of postural instability in PD, accurately track 

disease progression and effectively detect fall risk, future efforts should focus on the non-

stationary analysis of COP. Furthermore, COPv may hold key information related to velocity 

based control of postural stability that could further benefit clinical analysis, understanding of 

disease pathology, and development of computer simulation models of postural control in PD. 

Limitations: There were limitations to this study which should be considered. Due to the 

pilot nature of this study, there were a relatively small number of subjects considered. Also, due 

to natural self-selection of stance width by the subjects on the force plates, the medio-lateral 

(ML) direction was not considered in the analysis. Further studies should investigate these 

effects in ML COPv as well, since there is evidence of differences between PD and HC in the 

ML direction. Since the data was collected in 30 s epochs which were concatenated to form a 

longer time series, it would also be helpful to collect long samples of data. Longer time series 

improve the definition of fluctuation analysis, and other aspects of PD vs. HC could be explored, 
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such as the effect of fatigue on scaling. Lastly, the analyses performed require careful and 

methodical selection of non-dimensional parameters (e.g. window length in DFA, sample rate of 

data, vector length in ApEn, etc…). As such, careful consideration of the limitations of these 

methods should always be applied before usage. 
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Table 1: Summary Statistics. Group means and standard deviations for each measure and 

each condition. 

Condition Group α1 α2 CrI AAMV ApEnt 

EO HC Mean 1.379 0.261 131.905 9.234 0.592 

STDEV 0.104 0.089 46.327 2.212 0.052 

PD-Mi Mean 1.315 0.255 152.500 13.476 0.594 

STDEV 0.206 0.111 49.198 5.891 0.073 

PD-Mo Mean 1.258 0.308 110.909 22.900 0.591 

STDEV 0.253 0.164 55.037 19.481 0.085 

EC HC Mean 1.427 0.230 116.190 13.937 0.571 

STDEV 0.100 0.095 32.323 5.754 0.055 

PD-Mi Mean 1.413 0.178 131.667 22.333 0.560 

STDEV 0.190 0.102 52.541 14.239 0.069 

PD-Mo Mean 1.295 0.211 126.364 36.492 0.577 

STDEV 0.233 0.090 61.850 27.506 0.080 
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Table 2: Tukey-Kramer and Power Analysis for combinations of each possible group. 

Either significance is noted (sig) or the number of subjects required for significance 

(p<0.05) is noted (n = 'number'). 

(I) Group (J) Group α1 α2 CrI AAMV ApEnt 

1 2 n = 39 n = 1091 n = 79 n = 21 n = 3532 

  3 sig n = 72 n = 76 sig n = 14128  

2 1 n = 39 n = 1091 n = 79 n = 21 n = 3532 

  3 n = 194 n = 56 n = 22 n = 25 n = 1570 

3 1 sig n = 72 n = 76 sig n = 14128  

  2 n = 194 n = 56 n = 22 n = 25 n = 1570 

*sig indicates significant difference between groups at the current power  

** n = "number" indicates the required sample size for significance  
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Figure 1: Fluctuation vs. scale. A typical fluctuation vs. scale plot for each group           

( i) HC, ii) PD-Mi, iii) PD-Mo) in both condition conditions (EO, EC).  
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Figure 2: Construction of α1, α2 and CrI from a fluctuation vs. scale plot.   
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Figure 3: Bar plot of the means and standard deviations of AAMV results by group and 

condition. 
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Figure 4: Bar plot of the means and standard deviations of the ApEn results by group and 

condition. 
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Figure 5: Bar plot of the means and standard deviations of the Alpha1 results by group and 

condition. 
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Figure 6: Bar plot of the means and standard deviations of the Alpha2 results by group and 

condition. 
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Figure 7: Bar plot of the means and standard deviations of the CrI results by group and by 

condition.  
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Figure 8: A multiple comparison Tukey-Kramer plot of the mean and standard deviation 

showing group significance for Alpha1. Group=1 is HC, Group=2 is PD-Mi and Group=3 is 

PD-Mo. The plot shows significant difference between HC and PD-Mo. 
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Figure 9: Multiple comparison Tukey-Kramer plot of the mean and standard deviation 

showing condition significance for Alpha2. The plot shows that the two conditions are 

significantly different from one another. 
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Chapter Four: Summary 
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Summary of Study 

The purpose of this study was to test the sensitivity of system parameters of the Center of 

Pressure velocity (COPv) time series to pre-clinical postural instability (PI) in PD, the 

progression of PI due to PD progression, and ultimately fall risk using DFA. Subjects with mild 

PD (PD-Mi), moderate PD (PD-Mo) and age-range-matched healthy controls (HC) participated 

in this study of a postural sway task. Ground reaction forces and moments were collected from 

subjects standing on force plates in quiet postural sway in eyes open (EO) and eyes closed (EC) 

conditions. COPv was calculated and analyzed as a non-stationary time series with varying 

statistical properties. We investigated the temporal parameter of Absolute Average Maximal 

Velocity (AAMV), the system order parameter of Approximate Entropy (ApEn), and fractal 

parameters from the DFA which were the short term scaling behavior of the time series (α1), the 

long term scaling behavior of the time series (α2) and the time scale at which the scaling 

behavior changes – the crossover index (CrI).  

Taken together, the parameters showed differences between groups and conditions. In the 

temporal analysis, AAMV showed significant group differences between HC and PD-Mo and 

significant condition differences. In the fractal analysis, α1 showed significant group differences 

between HC and PD-Mo and α2 showed significant differences between conditions. Due to the 

pilot nature of the study, power analysis was conducted on all non-significant findings in order to 

inform the design of a full study. Feasible subject numbers were found for many of the measures 

that did not show significance in the pilot study.  

Conclusions and Recommendations 

The investigation of temporal, organizational and fractal characteristics of COPv as a 

non-stationary, time varying series yields marked differences in behavior between HC and PD, 
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even in pre-clinical populations. AAMV proved to be the most sensitive measure of differences 

between HC, PD-Mi and PD-Mo. The fractal parameters α1 and α2 not only have merit as 

clinical tools, but also give insight into the differences in open and closed loop control between 

the groups. This study shows the importance of the COPv time series as a clinical assessment 

tool of pre-clinical PD postural instability, disease progression and fall risk. Furthermore, COPv 

may hold key information related to velocity based control of postural stability. Further study is 

needed to develop these measures as a clinical tool. Further study is also needed in order to 

connect the measurements of postural instability in PD (COP, COPv) to the neural control 

systems that govern these processes. The present study shows that aspects of this control system 

can be seen in the postural sway data, however more targeted experimentation is needed to 

strengthen this connection. Challenges to postural sway, such as a narrow or compliant base of 

support, could also be introduced to see if there is different degrees of parameter modulation 

between groups. Given the neurodegenerative nature of PD, a better understanding of this 

connection could further benefit clinical analysis, understanding of disease pathology, and 

development of computer simulation models of postural control in PD. 

Study Limitations  

Limitations in this study are largely due to the pilot nature of the subject pool. Many measures 

were underpowered, and thus only trends in data could be reported. Since subjects were asked to 

self-select stance width, we were not able to investigate the ML direction of postural sway due to 

the fact that certain postural deficits might have been compensated for or unequally modulated in 

this direction by wider or narrower stance width.  
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Further Study 

 Further study of this subject should extend the methods to the medial-lateral (ML) 

direction of the COPv time series. A larger sample population should also be considered 

following the power analyses performed in this study. It would also be beneficial to increase the 

time of each trial taken in order to witness more of the data structure in time. A study conducted 

in this way would need to work with clinicians in order to ascertain how long a clinical 

assessment of PD using force plates should take. An assessment that takes too long to collect 

would be less likely to be helpful in a clinical setting.  

For the purpose of understanding the control system changes between HC and PD, a 

study should be designed in which perturbations to feedback systems in closed loop control are 

investigated beyond the removal of visual feedback. Since this study showed little difference 

between groups with the removal of visual feedback, perhaps control systems in PD leading to 

postural instability are more sensitive to other types of feedback. Lastly, the study should be 

safely extended to PD populations who already have a history of falls in order to further assess 

the sensitivity of these parameters to PD progression.  
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Appendix A: Matlab code used in the analysis 
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i. Initial Parameters 

The file Init_Parameters.m is M code specifying initial parameter definitions and 

organization for use with all analysis code is copied below. The file was written jointly 

by Josh Harper and Dr. Carl Luchies.  

%Init_Parameters.m 
%Initial parameters needed for swat analysis 
%Written by Carl W. Luchies, 2014 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 
%%%%%%% THE USER MUST SELECT APPRORIATE SETTINGS IN THIS CELL BREAK %%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 
%choose the test mode. 1 = real data analysis; 2 = known signal analysis 
test_mode = 1; 
%%% NOTE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
%if test_mode = 2, select: ifreq = 2; i_filter = 2; testyear = 3; and set 
%the following parameters: 
if test_mode == 2 
    Mdl = arima('Constant',0,'AR',{0.8,-0.4},'Variance',10^2); 
    signal_time = 1:1:600; 
     
    %simulate the model 
    rng('default'); 
    [Y, E] = simulate(Mdl,600); 
     
    %(expm(-((ti-500)^2)/(2*200^2)))* 
    count = 0; 
    for ti = 1:1:600 
        count = count + 1; 
        signal_data(ti,:) = Y(ti,:); 
    end 
     
    figure('Name', 'Known Signal') 
    plot(signal_time, signal_data) 
    title(['Known Signal with']) 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 
  
% choose the sampling frequency (1=100hz, 2=1000hz, 3=1080hz) 
i_freq=2; 
  
%Choose to downsample at a particular rate. setting a rate of "1" will keep 
%the original sample rate which is normally 1000hz. choosing a downsample 
%rate of 10 will decimate the signal to a sample rate of 100hz, 100 to 
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%10hz.  
downsample_rate = 10;  
  
%to save or not to save: 1=yes, 2=no 
i_save=2; 
  
%filter the data: 1=yes, filter, 2=no filter 
i_filter=1; 
  
%Testing year: 1= HC and Mild PD; 2= HC and Moderate PD 3: Model data or 
%known signal data if test_mode = 2. 
testyear=[1:2]; 
  
%groups:  1=HC, 2=PD (for test_mode = 2: 1 = stationary; 2 = 
%non-stationary) 
group=[1:2]; 
  
%Testing condition: 1=EO; 2=EC (for test_mode = 2: 1 = clean; 2 = white noise) 
condition=[1,2]; 
  
%trials 
trials=[1:3]; 
  
%choose the sway direction analyzed.  1 = Radius of COP; 2 = AP; 3 = ML 
%(for test_mode = 2 use COP_direction = 2) 
COP_direction = 2; 
  
%choose type of analysis. 1 = position, 2 = velocity, 3 = acceleration 
analysis = 2; 
  
%Set statistical preferences for use in Process results 
pval = 0.05; 
  
%setup the experiments to be run by setting the variables to 1 (enable) or 
%0 (disable) 
  
i_DFA = 1;                          %Detrended Fluctiation Analysis 1 enables DFA analyis per trial or with trials averaged, 

2 enables DFA analysis with trials chained together into a single time series 
DFASave = 2;                        %Specify whether to save the DFA data or load previous results. 0 = Do Nothing, 1 = 

save, 2 = load previous analysis 
i_ApEnt = 0;                        %Approximate Entropy Analysis 
ApEntSave = 0;                      %Specify whether to save the Approximate Entropy data or load previous results. 0 = 

Do Nothing, 1 = save, 2 = load previous analysis 
i_spectral_analysis = 0;            %Spectral Analysis 
i_spectrogram = 0;                  %Time Frequency Analysis 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%% THE REST OF THE CODE INITIATES DATA GATHERING 

%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 
%% 
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%choose sample frequencies 
if i_freq ==1 
    fsample = 100; 
elseif i_freq == 2 
    fsample = 1000; 
elseif i_freq ==3 
    fsample = 1080; 
end 
  
%groups, subjects, trials, conditions to analyze 
%  1_1001_EO1 
%  testingyear_subjectnum_trialcondition 
% 
% testingyear = 1, HC (1-14) and mild PD (1-14) 
% testingyear = 2, HC (1-10) and moderate PD (1-12) 
% 
% subjectnum = 1000's HC; 3000's Mild; 4000's Moderate (4009 is mild) 
% trailcondition: EO is eyes open, EC is eyes closed, 1,2,3 trial number 
  

  
%Subject number range for each group: start:stop 
subject_range=[1 11;...  %max is 11 
    1 12; ... %max is 12 
    1 10;...   %max is 10 
    1 11];     %max is 11 
  
HC_groupnum1 = max(subject_range(1,:)); 
HC_groupnum2 = max(subject_range(3,:)); 
PDMi_groupnum = max(subject_range(2,:)); 
PDMo_groupnum = max(subject_range(4,:)); 
  
if test_mode == 2 
    subject_range = [1 1; 1 1; 1 1; 1 1]; 
end 
  

  
condition_string={'EO'; 'EC'}; 
  
if test_mode == 2 
    condition_string = {'Stationary'; 'Non_Stationary'}; 
end 
  
yr1_HC_subnum=['1001'; ... 
    %    '1002'; ... 
    '1003'; ... 
    %    '1004'; ... 
    %    '1005'; ... 
    '1006'; ... 
    '1007'; ... 
    '1008'; ... 
    '1009'; ... 
    '1010'; ... 
    '1011'; ... 
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    '1012'; ... 
    '1013'; ... 
    '1014']; 
  
yr1_PD_subnum=['3001'; ... 
    '3002'; ... 
    '3003'; ... 
    '3004'; ... 
    '3005'; ... 
    '3006'; ... 
    %    '3007'; ... 
    '3008'; ... 
    '3009'; ... 
    '3010'; ... 
    '3011'; ... 
    %    '3012';... 
    '3013'; ... 
    '3014']; 
  
yr2_HC_subnum=['1001'; ... 
    '1002'; ... 
    '1003'; ... 
    '1004'; ... 
    '1005'; ... 
    '1006'; ... 
    '1007'; ... 
    '1008'; ... 
    '1009'; ... 
    '1010']; 
  
yr2_PD_subnum=['4001'; ... 
    '4002'; ... 
    %    '4003'; ... 
    '4004'; ... 
    '4005'; ... 
    '4006'; ... 
    '4007'; ... 
    '4008'; ... 
    '4009'; ... 
    '4010'; ... 
    '4011'; ... 
    '4012']; 
  
COP_direction_name = {'COP_Radius';... 
    'COP_AP';... 
    'COP_ML'}; 
  
%choose prealocation size for variables that will change size with loop 
%iteration. 
pre_alocate = length(COP_direction)*length(trials)*length(condition)*((subject_range(1,2)-

subject_range(1,1)+1)+(subject_range(2,2)-subject_range(2,1)+1)+(subject_range(3,2)-

subject_range(3,1)+1)+(subject_range(4,2)-subject_range(4,1)+1)); 
  
%for known signal data 
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%set up timing parameters 
if i_freq==1 
    sample_freq=100;        %samples/sec 
else 
    sample_freq=1000; 
end 
  
sample_time=30;                              %duration in seconds 
t=1/sample_freq:1/sample_freq:sample_time;  %time vector 
dt=1/sample_freq;                           %time between samples 
  
%Low pass filter information 
order = 4;                                  %fourth order filter 
nyquist_frequency = sample_freq/2;          %compute the nyquist frequency 
cutoff_freq=10;                             %cutoff frequency for the lowpass filter 
normalized_cutoff = cutoff_freq/nyquist_frequency; 
  
[b,a] = butter(order, normalized_cutoff , 'low'); 
%b and a are now my filter coefficients 
  

  
%establish the path to the data 
if i_freq==1        %100Hz data 
    %for Harper's structure 
    path_data=['C:\Time_Freq_Research\Data_Raw\COP_Data_1000Hz\']; 
    path_results=['C:\Time_Freq_Research\Data_Results\Sample_Data\']; 
     
    %for VCL structure from Harper's drive 
%         path_data=['\\Client\D$\Time_Freq_Research\Data_Raw\COP_Data_1000Hz\']; 
%         path_results=['\\Client\D$\Time_Freq_Research\Data_Results\Sample_Data\']; 
     
    %for luchie's file structue 
    %path_data=['c:\Luchies\data\PD_sway\COP_Data_100Hz\']; 
    %path_results=['c:\Luchies\Data_Processing\PD_sway\COP_Data_100Hz\']; 
else                %1000Hz data 
    %for Harper's structure 
    path_data=['C:\Time_Freq_Research\Data_Raw\COP_Data_1000Hz\']; 
    path_results=['C:\Time_Freq_Research\Data_Results\Sample_Data\']; 
     
    %for VCL structure from Harper's drive 
%         path_data=['\\Client\D$\Time_Freq_Research\Data_Raw\COP_Data_1000Hz\']; 
%         path_results=['\\Client\D$\Time_Freq_Research\Data_Results\Sample_Data\']; 
     
    %for Luchie's file structure 
    %path_data=['c:\Luchies\data\PD_sway\COP_Data_1000Hz\']; 
    %path_results=['c:\Luchies\Data_Processing\PD_sway\COP_Data_1000Hz\']; 
end 
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ii. Main Process Code 

Process.m is the main process code was used to perform common operations on data (e.g. 

take the derivative of COP to form COPv) and call different analysis based on the 

selections in Init_Parameters.m. 

%Process_v3.m 
%Calculate the power spectrum of the COP time series 
%Written by Josh Harper and Carl Luchies 2015 
  
%clear workspace 
clear 
%set up all initial parameters 
Init_parameters 
time_stamp = datestr(now,'yyyymmddTHHMMSS'); 
  
%Load any saved data used in the analysis 
if ApEntSave == 1 || ApEntSave == 2 
    if i_ApEnt == 1 
        mkdir(['C:\Time_Freq_Research\Data_Results\ApEnt\' time_stamp]); 
    elseif i_ApEnt == 2 
        mkdir(['C:\Time_Freq_Research\Data_Results\ApEnt_chain\' time_stamp]); 
    end 
    result_dir3 = ('C:\Time_Freq_Research\Data_Results\ApEnt\'); 
    result_dir5 = ('C:\Time_Freq_Research\Data_Results\ApEnt_chain\'); 
    if ApEntSave == 2 && i_ApEnt == 1 
        load([result_dir3 '\newest\ApEntropy_collect.mat'],'ApEntropy_collect') 
    elseif ApEntSave == 2 && i_ApEnt == 2 
        load([result_dir5 '\newest\ApEntropy_collect_sub.mat'],'ApEntropy_collect_sub') 
    end 
end 
%pre-alocate space for variables that change with each iteration 
alpha1_mod = zeros(pre_alocate,1); 
alpha2_mod = zeros(pre_alocate,1); 
AAMV_mod = zeros(pre_alocate,1); 
% group_factor = zeros(pre_alocate,1); 
% condition_factor = cell(pre_alocate,1); 
% subject_factor = zeros(pre_alocate,1); 
% trial_factor = zeros(pre_alocate,1); 
  
%delineate between real data signal analysis and known signal analysis 
if i_save == 1 
     
    if analysis == 1 
        type_dir = ['COP_Position']; 
    elseif analysis == 2 
        type_dir = ['COP_Velocity']; 
    elseif analysis == 3 
        type_dir = ['COP_Acceleration']; 
    end 
    result_dir = (['C:\Time_Freq_Research\Data_Results\' type_dir '\' time_stamp]); 
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    mkdir(result_dir); 
     
end 
%% 
%Data Analysis 
call_count1 = 0; 
fig_count = 0; 
total_trial_iter_count = 0; 
total_sub_iter_count = 0; 
for idirection = COP_direction 
    for icondition = condition 
        icondition 
        for itestyear=testyear %test year being analyzed 
             
            for igroup=group   %group being analyzed within a test year 
                igroup 
                itestyear 
                if itestyear ==1 && igroup ==1 
                    subnum=yr1_HC_subnum; 
                    subjects=subject_range(1,1):subject_range(1,2); 
                     
                elseif itestyear==1 && igroup==2 
                    subnum=yr1_PD_subnum; 
                    subjects=subject_range(2,1):subject_range(2,2); 
                     
                elseif itestyear==2 && igroup==1 
                    subnum=yr2_HC_subnum; 
                    subjects=subject_range(3,1):subject_range(3,2); 
                     
                elseif itestyear==2 && igroup==2 
                    subnum=yr2_PD_subnum; 
                    subjects=subject_range(4,1):subject_range(4,2); 
                     
                elseif itestyear ==3 && igroup==1 && test_mode == 1 %itestyear = 3 cooresponds to model data 
                    subnum = ['model_output']; 
                    subjects = 1; 
                elseif itestyear ==3 && test_mode == 2 
                    subnum = ['known signal']; 
                    subjects = 1; 
                end 
                %         for icondition=condition %Condidion: EO EC loop 
                count_subject = 0; 
                for isubject=subjects % subject loop 
                    total_sub_iter_count = total_sub_iter_count + 1 
                    count_subject = count_subject + 1; 
                    count_trial = 0; 
                     
                    %set up factor vectors for N-Way ANOVA 
                        if itestyear == 1 
                            group_factor_sub(total_sub_iter_count,1) = (igroup); 
                        elseif itestyear == 2 && igroup == 1 
                            group_factor_sub(total_sub_iter_count,1) = (igroup); 
                        elseif itestyear == 2 && igroup == 2 
                            group_factor_sub(total_sub_iter_count,1) = (igroup+1); 
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                        end 
                        condition_factor_sub(total_sub_iter_count,1) = condition_string(icondition); 
                        direction_factor_sub(total_sub_iter_count,1) = (idirection); 
                     
                        plot_title_sub=['COP_' COP_direction_name{idirection} '_Test 

Yr_',int2str(itestyear),'_Group_',int2str(igroup),... 
                            '_sub#_',subnum(isubject,:),condition_string{icondition,:}]; 
                         
                    for itrial=trials  %trial loop 
                        total_trial_iter_count = total_trial_iter_count +1 
                        %set up factor vectors for N-Way ANOVA 
                        if itestyear == 1 
                            group_factor(total_trial_iter_count,1) = (igroup); 
                        elseif itestyear == 2 && igroup == 1 
                            group_factor(total_trial_iter_count,1) = (igroup); 
                        elseif itestyear == 2 && igroup == 2 
                            group_factor(total_trial_iter_count,1) = (igroup+1); 
                        end 
                        condition_factor(total_trial_iter_count,1) = condition_string(icondition); 
                        condition_factor_numeric(total_trial_iter_count,1) = icondition; 
%                         direction_factor(total_trial_iter_count,1) = (idirection); 
                        trial_factor(total_trial_iter_count,1) = (itrial); 
                         
                        fig_count = fig_count+1 
                        count_trial = count_trial + 1; 
                         
                        %load the data 
                        if test_mode == 1 
                            if itestyear<3 
                                

datafilename=[num2str(itestyear),'_',subnum(isubject,:),'_',condition_string{icondition,:},num2str(itrial)]; 
                                datafilename2=[num2str(itestyear),'-',subnum(isubject,:),'-

',condition_string{icondition,:},num2str(itrial)]; 
                            elseif itestyear==3 
                                datafilename=['model_output']; 
                            end 
                            fname=[path_data,datafilename]; 
                            eval(['load ',fname]); 
                        elseif test_mode == 2 
                        end 
                         
                        %%%%%%% - For MODEL DATA - %%%%%%%%%%%% 
                        if test_mode == 1 
                            if itestyear<3 
                                if idirection == 1 
                                    COP_raw = sqrt((dt_COPAP_COPML(:,idirection+1)-

mean(dt_COPAP_COPML(:,idirection+1))).^2+(dt_COPAP_COPML(:,idirection+2)-

mean(dt_COPAP_COPML(:,idirection+2))).^2); 
                                else 
                                    COP_raw=dt_COPAP_COPML(:,idirection); 
                                end 
                            elseif itestyear ==3 
                                if idirection == 1 
                                    COP_raw = 

sqrt(Model_dt_COPAP(:,idirection+1).^2+Model_dt_COPAP(:,idirection+2).^2); 
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                                else 
                                    COP_raw=Model_dt_COPAP(:,idirection); 
                                end 
                            end 
                        elseif test_mode ==2 
                            COP_raw = signal_data; 
                        end 
                        plot_title=['COP_' COP_direction_name{idirection} '_Test 

Yr_',int2str(itestyear),'_Group_',int2str(igroup),... 
                            '_sub#_',subnum(isubject,:),condition_string{icondition,:} num2str(itrial)]; 
                         

                         
                        if test_mode == 2 
                            plot_title = ['Known_', condition_string{icondition,:}, '_Signal_']; 
                        end 
                         

                         

                         
                        %Filter the data 
                        COP_raw = COP_raw - mean(COP_raw); 
                        if i_filter == 1 
                            COP_temp = filtfilt(b,a,COP_raw); 
                        elseif i_filter == 2 
                            COP_temp = COP_raw; 
                        end 
                        %calcuate velocity or acceleration 
                        if analysis == 1 
                            COP = COP_temp;                     %position of COP 
                        elseif analysis == 2 
                            [COP, ~] = derivative(COP_temp,2,sample_time/length(COP_temp));               %velocity of COP 
                        elseif analysis == 3 
                            [~, COP] = derivative(COP_temp,2,sample_time/length(COP_temp));         %acceleration of COP 
                        end 
                        clear COP_temp COP_raw 
                         
                        %downsample the data in acordance with the 
                        %downsample rate set in init_parameters 
                        COP = COP(1:downsample_rate:end); 
                         
                        %Collect the COP data for each trial for later us 
                        %in COP_chain 
                        COP_collect_tr(:,itrial) = COP; 
                        %test the data for stationarity 
                        %                     [h, pValue, stat, cValue, reg] = is_stationary(COP_AP); 
                        %                     ['COP AP_Test Yr_',int2str(itestyear),'_Group_',int2str(igroup),... 
                        %                         '_sub#_',subnum(isubject,:),condition_string(icondition,:)] 
                        %                     h 
                        %plot the data for a check 
                        %                                                 figure('Name', ['DQC_' plot_title]) 
                        %                                                 plot(t,COP) 
                        %                                                 xlabel('time (sec)') 
                        %                                                 ylabel('COP ') 
                        %                                                 title(datafilename2) 
                        % 
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                        %% 
                        if i_DFA == 1 
                            %perform a DFA analysis. 0 = no, 1 = yes 
                            DFA_range = 10:20:length(COP); 
                            if DFASave == 1     %RUN NEW DFA ANALYSIS 
                                [D,Alpha1,F_n]=DFA_main(COP',DFA_range,2000); 
%                                                                                 alpha1_subject(isubject) = Alpha1; 
                            end 
                            %find the AAMV 
                            windows = fix(length(COP)/125); 
                            divisions = 0:(windows-1); 
                            for irange = 1:windows 
                                %find the rectified peaks of DATA 
                                pks = findpeaks(abs(COP((1+125*divisions(irange)):(125 + 125*divisions(irange))))); 
                                %take the mean of the peaks over teh given range 
                                mini_mean(irange) = mean(pks); 
                                clear pks 
                            end 
                            %find the average absolute maximal velocity by take the mean of the mini 
                            %means 
                            AAMV = mean(mini_mean); 
                            result_dir2 = ('C:\Time_Freq_Research\Data_Results\F_n'); 
                             
                            %if you wish to save the time consuming to make F_n 
                            %function for later analysis with the same F_n 
                            %parameters, use the save code 
                            if DFASave == 1     %SAVE RESULTS 
                                save([result_dir2 '\F_n' plot_title '.mat'],'F_n') 
                                delete([result_dir2 '\newest\*.mat']) 
                                save([result_dir2 '\newest\F_n' plot_title '.mat'],'F_n') 
                            end 
                            %if you have already saved the F_n's for this run, 
                            %use the load code. 
                            if DFASave == 2     %LOAD PREVIOUS RESULTS 
                                F_n_load = load([result_dir2 '\newest\F_n' plot_title]); 
                                F_n = F_n_load.F_n; 
                            end 
                            AAMV_trial(itrial,isubject,igroup,itestyear,icondition,idirection) = AAMV; 
                             
                            %% 
                             
                            %find alpha1 and alpha2 
                            %specify the number of segments to divide F_n into 
                            difference = diff(log10(F_n)); 
                             

                             
                            for iter = 1:length(difference) 
                                if difference(iter,:) <= 0.55 
                                    crossover_index = iter; 
                                    break 
                                     
                                end 
                                 
                            end 
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                            crossover_scale(total_trial_iter_count) = DFA_range(crossover_index); 
                            crossover_scale_collect(itrial,isubject,igroup,itestyear,icondition,idirection) = 

DFA_range(crossover_index); 
%                             difference = difference'; 
%                             figure('Name', ['Alpha for' plot_title]) 
%                             hold on 
%                             plot(log10(DFA_range(:,1:end-1)),difference) 
%                             scatter(log10(DFA_range(:,crossover_index)),difference(:,crossover_index),'*') 
%                             set(gca,'YTick',0:0.25:5) 
%                             hold off 
                            % 
                            index_offset = 15; 
                             
                            A1 = polyfit(log10(DFA_range(1:crossover_index)'),log10(F_n(1:crossover_index)),1); 
                            A2 = 

polyfit(log10(DFA_range(crossover_index+index_offset:end)'),log10(F_n(crossover_index+index_offset:end)),1); 
                            alpha1(itrial,isubject,igroup,itestyear,icondition,idirection) = A1(1); 
                            alpha2(itrial,isubject,igroup,itestyear,icondition,idirection) = A2(1); 
                             
                            %modify data collection to work with N-Way ANOVA. 
                            %collapse itestyear and igroup into groups 1-3 
                            %specifyig healthy(1), mild(2) and moderate(3). The 
                            %result should be a nx1 vector which will line up 
                            %with the "factor" variables (group_factor, 
                            %condition_factor, subject_factor and 
                            %trial_factor). 
                            alpha1_mod(total_trial_iter_count) = A1(1); 
                            alpha2_mod(total_trial_iter_count) = A2(1); 
                            AAMV_mod(total_trial_iter_count) = AAMV; 
                             

                             
                            %                         B1 = log10(F_n(1))-A1(1)*log10(DFA_range(1)); 
                            %                         B2 = log10(F_n(end))-A2(1)*log10(DFA_range(end)); 
                            % 
                            %                         y1 = A1(1)*DFA_range + B1; 
                            %                         y2 = A2(1)*DFA_range + B2; 
                             
                            y1 = polyval((A1),log10(DFA_range)); 
                            y2 = polyval((A2),log10(DFA_range)); 
%                             figure('Name',['DFA for ' plot_title]) 
%                             hold on 
%                             scatter(log10(DFA_range),log10(F_n),'o'), 

scatter(log10(DFA_range(:,crossover_index)),log10(F_n(crossover_index,:)),'*'), 

plot(log10(DFA_range(1:crossover_index)),(y1(1:crossover_index)),'--'), 

plot(log10(DFA_range(crossover_index+index_offset:end)),(y2(crossover_index+index_offset:end)),'-'); 
%                             xlabel('n') 
%                             ylabel('F(n)') 
%                             axis([0 12 0 12]) 
                        end 
                         
                        %% 
                        %perform an approximate entropy analysis on the 
                        %data 
                        if i_ApEnt == 1 && ApEntSave == 1 
                            tic 
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                            m = 2; 
                            r = 0.2; 
                            ApEntropy_temp = ApEnt(COP_resample,m,r); 
                            %collect the results by subsets and in a single 
                            %column vecotor for later use in ANOVA 
                            ApEntropy_collect(itrial,isubject,igroup,itestyear,icondition,idirection) = ApEntropy_temp; 
                             

                             

                             
                            clear ApEntropy_temp 
                            toc 
                        elseif i_ApEnt == 1 && ApEntSave == 2 
                            ApEntropy_tr(total_trial_iter_count) = 

ApEntropy_collect(itrial,isubject,igroup,itestyear,icondition,idirection); 
                        end 
                         

                         
                        %% 
                        %do a spectral analysis of the data. 0 = no, 1 = yes 
                         
                        if i_spectral_analysis == 1 
                             
                            [mf,f,mx,amp] = Spectral_analysis(sample_freq,COP); 
                            [pxx,omega] = pwelch(COP); 
                            %median_freq(itrial,ichan)=mf; 
                            %freq_fft(itrial,:,ichan)=f; 
                            %Power_fft(itrial,:,ichan)=mx'; 
                            f_trials(:,itrial) = f; 
                            amp_trials(:,itrial)=amp; 
                            mx_trials(:,itrial)=mx; 
                            mf_trials(itrial)=mf; 
                             
                            f_trial_ave = mean(mean(f_trials,2)); 
                            amp_trials_ave = mean(mean(amp_trials,2)); 
                            mx_trials_ave = mean(mean(amp_trials,2)); 
                            mf_trials_ave = mean(mf_trials); 
                            % Generate the plot, title and labels. 
                            iplot=1; 
                            if iplot==1 
                                figure('name',['spec anal for' plot_title]) 
                                %                         subplot(2,1,1) 
                                loglog(omega,pxx); %plot(f(irange),mx(irange)); 
                                %                             axis([0 7 0 50]) 
                                title('Signal Power Spectrum'); 
                                xlabel('Frequency (Hz)'); 
                                ylabel('Power'); 
                                 
                                %                         subplot(2,1,2), plot(f,amp) 
                                %                         axis([0 7 0 15]) 
                                %                         title('Signal Power Spectrum'); 
                                %                         xlabel('Frequency (Hz)'); 
                                %                         ylabel('Amplitude'); 
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                            else 
                            end 
                        end 
                         

                         

                         
                        %% 
                         
                        %           perform a spectrogram analysis to see the non-stationary characteristics of the signal 
                         

                         
                        if i_spectrogram == 1 
                            spectro_CWL_JRH 
                        end 
                        %% 
                         
                        %           run the data adaptive evolutionary spectrum analysis 
                         
                        %             spec = data_adapt(COP_AP,8,9,2); 
                         

                         

                         
                    end %itrial loop end 
                    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% TRIAL RESULTS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                    %string together each COP trial into a single data set 
                    %for each subject 
                    COP_chain = vertcat(COP_collect_tr(:,1), COP_collect_tr(:,2), COP_collect_tr(:,3)); 
                    COP_chain_collect(:,isubject,igroup,itestyear,icondition,idirection) = vertcat(COP_collect_tr(:,1), 

COP_collect_tr(:,2), COP_collect_tr(:,3)); 
%                     figure('Name', ['DQC_' plot_title_sub]) 
%                     

plot(1:length(COP_chain_collect(:,isubject,igroup,itestyear,icondition,idirection)),COP_chain_collect(:,isubject,igro

up,itestyear,icondition,idirection)) 
%                     xlabel('time (sec)') 
%                     ylabel('COP ') 
%                     title(datafilename2) 
                     
                    if i_DFA == 2 
                        %perform a DFA analysis. 0 = no, 1 = yes 
                        DFA_range = 10:10:length(COP_chain); 
                        if DFASave == 1     %RUN NEW DFA ANALYSIS 
                            tic 
                            [D,Alpha1,F_n]=DFA_main(COP_chain',DFA_range,2000); 
                            toc 
                            %                                                                                 alpha1_subject(isubject) = Alpha1; 
                        end 
                        %find the AAMV 
                        windows = fix(length(COP_chain)/2000); 
                        divisions = 0:(windows-1); 
                        for irange = 1:windows 
                            %find the rectified peaks of DATA 
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                            pks = findpeaks(abs(COP_chain((1+2000*divisions(irange)):(2000 + 2000*divisions(irange))))); 
                            %take the mean of the peaks over teh given range 
                            mini_mean(irange) = mean(pks); 
                            clear pks 
                        end 
                        %find the average absolute maximal velocity by take the mean of the mini 
                        %means 
                        AAMV = mean(mini_mean); 
                        result_dir4 = ('C:\Time_Freq_Research\Data_Results\F_n_chain'); 
                         
                        %if you wish to save the time consuming to make F_n 
                        %function for later analysis with the same F_n 
                        %parameters, use the save code 
                        if DFASave == 1     %SAVE RESULTS 
                            save([result_dir4 '\F_n' plot_title_sub '.mat'],'F_n') 
                            delete([result_dir4 '\newest\*.mat']) 
                            save([result_dir4 '\newest\F_n' plot_title_sub '.mat'],'F_n') 
                        end 
                        %if you have already saved the F_n's for this run, 
                        %use the load code. 
                        if DFASave == 2     %LOAD PREVIOUS RESULTS 
                            F_n_load = load([result_dir4 '\newest\F_n' plot_title_sub]); 
                            F_n = F_n_load.F_n; 
                        end 
                        AAMV_sub_collect(isubject,igroup,itestyear,icondition,idirection) = AAMV; 
                         
                        %% 
                         
                        %find alpha1 and alpha2 
                        %specify the number of segments to divide F_n into 
                        difference = diff(log10(F_n)); 
                         
                        cross_deriv = derivative(log10(F_n),2,0.01); 
                        ss_mean = mean(abs(cross_deriv((length(cross_deriv) - fix(.35*length(cross_deriv))):end))); 
                        ss_std = std(abs(cross_deriv((length(cross_deriv) - fix(.35*length(cross_deriv))):end))); 
                        for iter = 1:length(cross_deriv) 
                            temp_val = mean(cross_deriv(iter:iter+20)); 
                            iter; 
                            if temp_val < ss_mean+ss_std && temp_val > ss_mean-ss_std 
                              
                                pickoff_val = cross_deriv(iter); 
                                pickoff_point = iter; 
                                break 
                            end 
                        end 
                        clear iter 
                         
                        for iter = 1:length(difference) 
                            if difference(iter,:) <= 0.55 
                                crossover_index = iter; 
                                break 
                                 
                            end 
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                        end 
%                         crossover_scale_sub(total_sub_iter_count) = DFA_range(crossover_index); 
%                         crossover_scale_collect(isubject,igroup,itestyear,icondition,idirection) = 

DFA_range(crossover_index); 
                         
                        crossover_scale_sub(total_sub_iter_count) = DFA_range(pickoff_point); 
                        crossover_scale_collect(isubject,igroup,itestyear,icondition,idirection) = DFA_range(pickoff_point); 
                                                    difference = difference'; 
                                                    figure('Name', ['Alpha for' plot_title_sub]) 
                                                    hold on 
                                                    plot(log10(DFA_range(:,1:end)),cross_deriv) 
                                                    scatter(log10(DFA_range(:,crossover_index)),cross_deriv(crossover_index),'*') 
                                                    scatter(log10(DFA_range(:,pickoff_point)),cross_deriv(pickoff_point),'X','r') 
  
%                                                     scatter(log10(DFA_range(:,crossover_index)),difference(:,crossover_index),'*') 
% %                                                     set(gca,'YTick',0:0.25:5) 
                                                    hold off 
                                                     

                                                     
                        index_offset = 15; 
                         
                        A1 = polyfit(log10(DFA_range(1:crossover_index)'),log10(F_n(1:crossover_index)),1); 
                        A2 = 

polyfit(log10(DFA_range(crossover_index+index_offset:end)'),log10(F_n(crossover_index+index_offset:end)),1); 
                        alpha1_sub_collect(isubject,igroup,itestyear,icondition,idirection) = A1(1); 
                        alpha2_sub_collect(isubject,igroup,itestyear,icondition,idirection) = A2(1); 
                         
                        %modify data collection to work with N-Way ANOVA. 
                        %collapse itestyear and igroup into groups 1-3 
                        %specifyig healthy(1), mild(2) and moderate(3). The 
                        %result should be a nx1 vector which will line up 
                        %with the "factor" variables (group_factor, 
                        %condition_factor, subject_factor and 
                        %trial_factor). 
                        alpha1_sub(total_sub_iter_count) = A1(1); 
                        alpha2_sub(total_sub_iter_count) = A2(1); 
                        AAMV_sub(total_sub_iter_count) = AAMV; 
                         

                         
                        %                         B1 = log10(F_n(1))-A1(1)*log10(DFA_range(1)); 
                        %                         B2 = log10(F_n(end))-A2(1)*log10(DFA_range(end)); 
                        % 
                        %                         y1 = A1(1)*DFA_range + B1; 
                        %                         y2 = A2(1)*DFA_range + B2; 
                         
                        y1 = polyval((A1),log10(DFA_range)); 
                        y2 = polyval((A2),log10(DFA_range)); 
                         
                        %plot the DFA analysis for each subject 
                        figure('Name',['DFA for ' plot_title_sub]) 
                        hold on 
                        scatter(log10(DFA_range),log10(F_n),'o'), 

scatter(log10(DFA_range(:,crossover_index)),log10(F_n(crossover_index,:)),'*'), 
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plot(log10(DFA_range(1:crossover_index)),(y1(1:crossover_index)),'--'), 

plot(log10(DFA_range(crossover_index+index_offset:end)),(y2(crossover_index+index_offset:end)),'-'); 
                        scatter(log10(DFA_range(:,pickoff_point)),log10(F_n(pickoff_point)),'X','r') 
                        xlabel('n') 
                        ylabel('F(n)') 
                        axis([0 12 0 12]) 
                     

                         

                         

                                                 

                       

                     

                     
                    end 
                     
                    %Approximate Entropy Analysis 
                    if i_ApEnt == 1                         
                        %take the mean and standard deviation across trials 
                        Ap_Ent_trial_mean(isubject,igroup,itestyear,icondition,idirection) = 

mean(ApEntropy_collect(:,isubject,igroup,itestyear,icondition,idirection)); 
                        Ap_Ent_trial_std(isubject,igroup,itestyear,icondition,idirection) = 

std(ApEntropy_collect(:,isubject,igroup,itestyear,icondition,idirection)); 
                         
                        ApEntropy_sub(total_sub_iter_count) = 

Ap_Ent_trial_mean(isubject,igroup,itestyear,icondition,idirection); 
                    end 
                     
                    if i_ApEnt == 2 && ApEntSave == 1 
                        tic 
                         
                        m = 2; 
                        r = 0.2; 
                        ApEntropy_temp = ApEnt(COP_chain,m,r); 
                        %collect the results by subsets and in a single 
                        %column vecotor for later use in ANOVA 
                        ApEntropy_collect_sub(isubject,igroup,itestyear,icondition,idirection) = ApEntropy_temp; 
                         

                         

                         
                        clear ApEntropy_temp 
                        toc 
                    elseif i_ApEnt == 2 && ApEntSave == 2 
                        ApEntropy_sub(total_sub_iter_count) = 

ApEntropy_collect_sub(isubject,igroup,itestyear,icondition,idirection); 
                    end 
                    %Time Frequency Analysis 
                    if i_spectrogram == 1                   
                    end 
                     
                    %Detrended Fluctuation Analysis 
                    if i_DFA == 1  
                        call_count1 = call_count1 + 1; 
                        %                     AAMV_sub_ave(:,igroup,itestyear)  = mean(AAMV_trial); 
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                        %                     AAMV_sub_std = std(AAMV_trial); 
                         
                        %                     Marker = ['+' 'o' '*' 'x' 's' '^']; 
                        %                     figure('Name', 'AAMV_Scatter') 
                        %                     hold on 
                        %                     scatter(call_count1,AAMV_sub_ave(isubject),Marker(call_count1)) 
                         
                        %take the mean and standard deviation of Alpha1, 
                        %Alpha2 and AAMV and crossover_scale across trials 
                        alpha1_mean_sub(isubject,igroup,itestyear,icondition,idirection) = 

mean(alpha1(:,isubject,igroup,itestyear,icondition,idirection));                     
                        alpha1_std_sub(isubject,igroup,itestyear,icondition,idirection) = 

std(alpha1(:,isubject,igroup,itestyear,icondition,idirection));  
                        alpha1_sub(total_sub_iter_count) = alpha1_mean_sub(isubject,igroup,itestyear,icondition,idirection); 
                         
                        alpha2_mean_sub(isubject,igroup,itestyear,icondition,idirection) = 

mean(alpha2(:,isubject,igroup,itestyear,icondition,idirection));                     
                        alpha2_std_sub(isubject,igroup,itestyear,icondition,idirection) = 

std(alpha2(:,isubject,igroup,itestyear,icondition,idirection));  
                        alpha2_sub(total_sub_iter_count) = alpha2_mean_sub(isubject,igroup,itestyear,icondition,idirection); 
                         
                        AAMV_mean_sub(isubject,igroup,itestyear,icondition,idirection) = 

mean(AAMV_trial(:,isubject,igroup,itestyear,icondition,idirection));                     
                        AAMV_std_sub(isubject,igroup,itestyear,icondition,idirection) = 

std(AAMV_trial(:,isubject,igroup,itestyear,icondition,idirection));  
                        AAMV_sub(total_sub_iter_count) = 

AAMV_mean_sub(isubject,igroup,itestyear,icondition,idirection); 
                         
                        crossover_scale_mean(isubject,igroup,itestyear,icondition,idirection) = 

mean(crossover_scale_collect(:,isubject,igroup,itestyear,icondition,idirection)); 
                        crossover_scale_std(isubject,igroup,itestyear,icondition,idirection) = 

std(crossover_scale_collect(:,isubject,igroup,itestyear,icondition,idirection)); 
                        crossover_scale_sub(total_sub_iter_count) = 

crossover_scale_mean(isubject,igroup,itestyear,icondition,idirection); 
                     

                     
                    end 
                     
                    %Spectral Analysis 
                    if i_spectral_analysis == 1 
                        mx_ave(:,isubject) = mean(mx_trials')'; 
                        mf_ave(isubject) = mean(mf_trials_ave); 
                        amp_ave(:,isubject) = mean(amp_trials')'; 
                         
                        mx_std(:,isubject) = std(mx_trials')'; 
                        mf_std(isubject) = std(mf_trials); 
                        amp_std(:,isubject) = std(amp_trials')'; 
                    end 
                end %isubject loop end 
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SUBJECT RESULTS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                %Detrended Fluctiation Analysis 
                if i_DFA == 1    
                    %run a repeated measures anova on the DFA to see if 
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                    %there is a significant difference between trials 
                    %within subjects 
                    %for alpha1 
                    [A1p_subject A1table_subject] = 

anova_rm_cust(alpha1(:,1:max(subjects),igroup,itestyear,icondition,idirection)', 'on',['Alpha1 RM ANOVA for year ' 

int2str(itestyear) ' Group ' int2str(igroup) ' condition ' condition_string{icondition,:} 

COP_direction_name{idirection,:}]); 
                    A1_RMANOVA{igroup, itestyear,icondition,idirection} = A1table_subject; 
                    clear A1p_subject A1table_subject 
                     
                    %for alpha2 
                    [A2p_subject A2table_subject] = 

anova_rm_cust(alpha2(:,1:max(subjects),igroup,itestyear,icondition,idirection)','on',['Alpha2 RM ANOVA for year ' 

int2str(itestyear) ' Group ' int2str(igroup) ' condition ' condition_string{icondition,:} 

COP_direction_name{idirection,:}]); 
                    A2_RMANOVA{igroup, itestyear,icondition,idirection} = A2table_subject; 
                    clear A2p_subject A2table_subject 
                     
                    %for AAMV 
                    [AAMVp_subject AAMVtable_subject] = 

anova_rm_cust(AAMV_trial(:,1:max(subjects),igroup,itestyear,icondition,idirection)','on',['AAMV RM ANOVA for 

year ' int2str(itestyear) ' Group ' int2str(igroup) ' condition ' condition_string{icondition,:} 

COP_direction_name{idirection,:}]); 
                    AAMV_RMANOVA{igroup, itestyear,icondition,idirection} = AAMVtable_subject; 
                    clear AAMVp_subject AAMVtable_subject 
                end 
                 
                %Approximate Entropy Analysis 
                if i_ApEnt == 1   
                    %run a repeated measures anova on the ApEnt to see if 
                    %there is a significant difference between trials 
                    %within subjects 
%                     [AEp_subject AEtable_subject] = 

anova_rm_cust(ApEntropy_collect(:,1:max(subjects),igroup,itestyear,icondition,idirection)','on',['ApEnt RM 

ANOVA for year ' int2str(itestyear) ' Group ' int2str(igroup) ' condition ' condition_string{icondition,:} 

COP_direction_name{idirection,:}]); 
%                     ApEnt_RMANOVA{igroup, itestyear,icondition,idirection} = AEtable_subject; 
%                     clear p_subject table_subject 
                end 
                 
                %Time Frequency Analysis 
                if i_spectrogram == 1                   
                end 
                 

                 

                 
                %Spectral Analysis 
                if i_spectral_analysis == 1 
                    mx_group_ave(:,igroup) = mean(mx_ave')'; 
                    mf_group_ave(igroup) = mean(mf_ave); 
                    amp_group_ave(:,igroup) = mean(amp_ave')'; 
                     
                    mx_group_std(:,igroup) = std(mx_ave')'; 
                    mf__group_std(igroup) = std(mf_ave); 
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                    amp_group_std(:,igroup) = std(amp_ave')'; 
                    %                     clear mx_ave mf_ave amp_ave mx_std mf_std amp_std 
                    %         figure(3000*itestyear+100*igroup); 
                end 
            end %igroup loop end 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GROUP RESULTS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            if i_DFA == 1                         %Detrended Fluctiation Analysis 
            end 
            if i_ApEnt == 1                        %Approximate Entropy Analysis 
            end 
            if i_spectral_analysis == 1            %Spectral Analysis 
            end 
            if i_spectrogram == 1                  %Time Frequency Analysis 
            end 
             
        end %itestyear loop end 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%% TEST YEAR RESULTS 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        if i_DFA == 1                         %Detrended Fluctiation Analysis 
        end 
        if i_ApEnt == 1                        %Approximate Entropy Analysis 
        end 
        if i_spectral_analysis == 1            %Spectral Analysis 
        end 
        if i_spectrogram == 1                  %Time Frequency Analysis 
        end 
         
    end %icondition loop end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% CONDITION RESULTS 

%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if i_DFA == 1                         %Detrended Fluctiation Analysis 
    end 
    if i_ApEnt == 1                        %Approximate Entropy Analysis 
    end 
    if i_spectral_analysis == 1            %Spectral Analysis 
    end 
    if i_spectrogram ==1                  %Time Frequency Analysis 
    end 
end %idirection loop end 
  
%save data that needs to be saved 
if DFASave ==1 
end 
if ApEntSave == 1 && i_ApEnt == 1 
    save([result_dir3 time_stamp '\ApEntropy_collect.mat'],'ApEntropy_collect') 
    delete([result_dir3 '\newest\*.mat']) 
    save([result_dir3 '\newest\ApEntropy_collect.mat'],'ApEntropy_collect') 
elseif ApEntSave == 1 && i_ApEnt == 2 
    save([result_dir5 time_stamp '\ApEntropy_collect_sub.mat'],'ApEntropy_collect_sub') 
    delete([result_dir5 '\newest\*.mat']) 
    save([result_dir5 '\newest\ApEntropy_collect_sub.mat'],'ApEntropy_collect_sub') 
end 
  
%% 
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varnames = {'Group','Condition','Trial'}; 
if i_DFA == 1 || i_DFA == 2 
     
    %collect data for SPSS analysis and write to excel 
    %file in the results directory (indices 1:44 
    %coorespond to EO and indices 45:88 coorespond to 
    %EC. This WILL ONLY WORK with these indices IF 
    %idirection is ONLY set to EITHER ML or AP. NOT 
    %BOTH). 
     
%     xlswrite('C:\Time_Freq_Research\Data_Results\SPSS_input.xlsx',alpha1_sub(:,1:44)', 1,'C2') 
%     xlswrite('C:\Time_Freq_Research\Data_Results\SPSS_input.xlsx',alpha1_sub(:,45:88)', 1,'D2') 
%     xlswrite('C:\Time_Freq_Research\Data_Results\SPSS_input.xlsx',alpha2_sub(:,1:44)', 1,'E2') 
%     xlswrite('C:\Time_Freq_Research\Data_Results\SPSS_input.xlsx',alpha2_sub(:,45:88)', 1,'F2') 
%     xlswrite('C:\Time_Freq_Research\Data_Results\SPSS_input.xlsx',AAMV_sub(:,1:44)', 1,'G2') 
%     xlswrite('C:\Time_Freq_Research\Data_Results\SPSS_input.xlsx',AAMV_sub(:,45:88)', 1,'H2') 
%     xlswrite('C:\Time_Freq_Research\Data_Results\SPSS_input.xlsx',crossover_scale_sub(:,1:44)', 1,'I2') 
%     xlswrite('C:\Time_Freq_Research\Data_Results\SPSS_input.xlsx',crossover_scale_sub(:,45:88)', 1,'J2') 
                         
%     %Perform Satistical Analysis on the Results 
%  
%     all_collected = [alpha1_mod alpha2_mod AAMV_mod group_factor condition_factor_numeric trial_factor]; 
%      
%     %perform an N-Way ANOVA and reduce analysis complexity for each anovan by 
%     %comparing the p value to the set variable "pval" specified in 
%     %Init_parameters. 
%      
%     %perform an initial anovan which will include all relevent factors 
%     [p1_init, tbl1_init, stats1_init, terms1_init] = anovan(alpha1_mod,{group_factor condition_factor 

trial_factor},'varnames',varnames,'model', 'full'); 
%     [p2_init, tbl2_init, stats2_init, terms2_init] = anovan(alpha2_mod,{group_factor condition_factor 

trial_factor},'varnames',varnames, 'model', 'full'); 
%     [p3_init, tbl3_init, stats3_init, terms3_init] = anovan(AAMV_mod,{group_factor condition_factor 

trial_factor},'varnames',varnames, 'model', 'full'); 
%     [p4_init, tbl4_init, stats4_init, terms4_init] = anovan(crossover_scale,{group_factor condition_factor 

trial_factor},'varnames',varnames, 'model', 'full'); 
%  
%      
%     [table, chi2, p, factorvals] = crosstab(group_factor,condition_factor,trial_factor); 
%      
%     %reduce the number of included factors based on the set pval and the p 
%     %values resulting from the initial anovan 
%     %for first analysis: alpha1 
%     pvals1 = cell2mat(tbl1_init(2:length(tbl1_init)-2,7)); 
%     ind1 = find(pvals1>pval); 
%     terms1_init(ind1,:) = []; 
%     [p1, tbl1, stats1, terms1] = anovan(alpha1_mod,{group_factor condition_factor 

trial_factor},terms1_init,3,varnames'); 
%      
%     %for second analysis: alpha2 
%     pvals2 = cell2mat(tbl2_init(2:length(tbl2_init)-2,7)); 
%     ind2 = find(pvals2>pval); 
%     terms2_init(ind2,:) = []; 
%     [p2, tbl2, stats2, terms2] = anovan(alpha2_mod,{group_factor condition_factor 

trial_factor},terms2_init,3,varnames'); 
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%      
%     %for third analysis: AAMV 
%     pvals3 = cell2mat(tbl3_init(2:length(tbl3_init)-2,7)); 
%     ind3 = find(pvals3>pval); 
%     terms3_init(ind3,:) = []; 
%     [p3, tbl3, stats3, terms3] = anovan(AAMV_mod,{group_factor condition_factor 

trial_factor},terms3_init,3,varnames'); 
%      
%     %for fourth analysis: crossover scale 
%     pvals4 = cell2mat(tbl4_init(2:length(tbl4_init)-2,7)); 
%     ind4 = find(pvals4>pval); 
%     terms4_init(ind4,:) = []; 
%     [p4, tbl4, stats4, terms4] = anovan(crossover_scale,{group_factor condition_factor 

trial_factor},terms4_init,3,varnames'); 
%      
%     %perform a multiple comparison test (Tukey Test) 
%     alpha1_tukey = multcompare(stats1,'Dimension',[1 2]); 
%     alpha2_tukey = multcompare(stats2,'Dimension',[1 2]); 
%     AAMV_tukey = multcompare(stats3,'Dimension',[1 2]); 
%     crossover_tukey = multcompare(stats4,'Dimension',[1 2]); 
     
    % Perform Satistical Analysis on the Results when trials are averaged 
    varnames = {'Group','Condition'}; 
    % 
    % perform an N-Way ANOVA and reduce analysis complexity for each anovan by 
    % comparing the p value to the set variable "pval" specified in 
    % Init_parameters. 
    % 
    % perform an initial anovan which will include all relevent factors 
    [p1_init, tbl1_init, stats1_init, terms1_init] = anovan(alpha1_sub,{group_factor_sub 

condition_factor_sub},'varnames',varnames,'model', 'full'); 
    [p2_init, tbl2_init, stats2_init, terms2_init] = anovan(alpha2_sub,{group_factor_sub 

condition_factor_sub},'varnames',varnames, 'model', 'full'); 
    [p3_init, tbl3_init, stats3_init, terms3_init] = anovan(AAMV_sub,{group_factor_sub 

condition_factor_sub},'varnames',varnames, 'model', 'full'); 
    [p4_init, tbl4_init, stats4_init, terms4_init] = anovan(crossover_scale_sub,{group_factor_sub 

condition_factor_sub},'varnames',varnames, 'model', 'full'); 
  

     
    [table, chi2, p, factorvals] = crosstab(group_factor_sub,condition_factor_sub); 
    % 
    % reduce the number of included factors based on the set pval and the p 
    % values resulting from the initial anovan 
    % for first analysis: alpha1 
    pvals1 = cell2mat(tbl1_init(2:length(tbl1_init)-2,7)); 
    ind1 = find(pvals1>pval); 
    terms1_init(ind1,:) = []; 
    [p1, tbl1, stats1, terms1] = anovan(alpha1_sub,{group_factor_sub 

condition_factor_sub},terms1_init,2,varnames'); 
     
    % for second analysis: alpha2 
    pvals2 = cell2mat(tbl2_init(2:length(tbl2_init)-2,7)); 
    ind2 = find(pvals2>pval); 
    terms2_init(ind2,:) = []; 
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    [p2, tbl2, stats2, terms2] = anovan(alpha2_sub,{group_factor_sub 

condition_factor_sub},terms2_init,2,varnames'); 
     
    % for third analysis: AAMV 
    pvals3 = cell2mat(tbl3_init(2:length(tbl3_init)-2,7)); 
    ind3 = find(pvals3>pval); 
    terms3_init(ind3,:) = []; 
    [p3, tbl3, stats3, terms3] = anovan(AAMV_sub,{group_factor_sub 

condition_factor_sub},terms3_init,2,varnames'); 
     
    % for fourth analysis: crossover scale 
    pvals4 = cell2mat(tbl4_init(2:length(tbl4_init)-2,7)); 
    ind4 = find(pvals4>pval); 
    terms4_init(ind4,:) = []; 
    [p4, tbl4, stats4, terms4] = anovan(crossover_scale_sub,{group_factor_sub 

condition_factor_sub},terms4_init,2,varnames'); 
     
    %perform a multiple comparison test (Tukey Test) 
    alpha1_tukey = multcompare(stats1,'Dimension',[1 2]); 
    alpha2_tukey = multcompare(stats2,'Dimension',[1 2]); 
    AAMV_tukey = multcompare(stats3,'Dimension',[1 2]); 
    crossover_tukey = multcompare(stats4,'Dimension',[1 2]); 
end 
  
%statistical analysis of Aproximate Entropy results 
if i_ApEnt == 1 || i_ApEnt == 2 
%     [pAE_init, tblAE_init, statsAE_init, termsAE_init] = anovan(ApEntropy_tr,{group_factor condition_factor 

trial_factor},'varnames',varnames,'model', 'full'); 
%        
%     pvalsAE = cell2mat(tblAE_init(2:length(tblAE_init)-2,7)); 
%     indAE = find(pvalsAE>pval); 
%     termsAE_init(indAE,:) = []; 
%     [pAE, tblAE, statsAE, termsAE] = anovan(ApEntropy_tr,{group_factor condition_factor 

trial_factor},termsAE_init,3,varnames'); 
%      
%     Ap_Ent_Tukey = multcompare(statsAE,'Dimension', [1,2]); 
     
    %you can also perform ANOVA and Tukey on trial averaged data 
    varnames = {'Group','Condition'}; 
    [pAE_init, tblAE_init, statsAE_init, termsAE_init] = anovan(ApEntropy_sub,{group_factor_sub 

condition_factor_sub},'varnames',varnames,'model', 'full'); 
       
    pvalsAE = cell2mat(tblAE_init(2:length(tblAE_init)-2,7)); 
    indAE = find(pvalsAE>pval); 
    termsAE_init(indAE,:) = []; 
    [pAE, tblAE, statsAE, termsAE] = anovan(ApEntropy_sub,{group_factor_sub 

condition_factor_sub},termsAE_init,2,varnames'); 
     
    Ap_Ent_Tukey = multcompare(statsAE,'Dimension', [1,2]); 
     
    xlswrite('C:\Time_Freq_Research\Data_Results\SPSS_input.xlsx',ApEntropy_sub(:,1:44)', 1,'K2') 
    xlswrite('C:\Time_Freq_Research\Data_Results\SPSS_input.xlsx',ApEntropy_sub(:,45:88)', 1,'L2') 
end 
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iii. DFA Analysis 

DFA_main.m and DFA.m are fuctions called by Process.m to calculated the fluctuation 

equation of the Detrended Fluctuation Analysis. 

 
function [D,Alpha, F_n, AAMV]=DFA_main(DATA,n,range) 
% DATA should be a time series of length(DATA) greater than 2000,and of column vector. 
%A is the alpha in the paper 
%D is the dimension of the time series 
%n can be changed to your interest 
%AAMV is the average absolute maximal velocity 
%range is the non-overlaping velocity window range used to calculate AAMV 
% 
%define the number of divisions based on range and length of Data 
windows = fix(length(DATA)/range); 
divisions = 0:(windows-1); 
for irange = 1:windows 
    %find the rectified peaks of DATA 
    pks = findpeaks(abs(DATA((1+range*divisions(irange)):(range + range*divisions(irange))))); 
    %take the mean of the peaks over teh given range 
    mini_mean(irange) = mean(pks); 
    clear pks 
end 
%find the average absolute maximal velocity by take the mean of the mini 
%means 
AAMV = mean(mini_mean); 
N1=length(n); 
F_n=zeros(N1,1); 
for i=1:N1 
    F_n(i)=DFA(DATA,n(i),1); 
end 
  
n=n'; 
%  plot(log(n),log(F_n)); 
% xlabel('n') 
% ylabel('F(n)') 
A=polyfit(log(n(1:end)),log(F_n(1:end)),1); 
Alpha=A(1); 
D=3-A(1); 
  

  

  
return 

 

function output1=DFA(DATA,win_length,order) 
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N=length(DATA); 
n=floor(N/win_length); 
N1=n*win_length; 
y=zeros(N1,1); 
Yn=zeros(N1,1); 
  
fitcoef=zeros(n,order+1); 
mean1=mean(DATA(1:N1)); 
for i=1:N1 
     
    y(i)=sum(DATA(1:i)-mean1); 
end 
y=y'; 
for j=1:n 
    fitcoef(j,:)=polyfit(1:win_length,y(((j-1)*win_length+1):j*win_length),order); 
end 
  
for j=1:n 
    Yn(((j-1)*win_length+1):j*win_length)=polyval(fitcoef(j,:),1:win_length); 
end 
  
sum1=sum((y'-Yn).^2)/N1; 
sum1=sqrt(sum1); 
output1=sum1; 
 

 

iv. Approximate Entropy Analysis 

The approximate entropy was calculated using a function ApEnt.m called by Process.m. 

%function estimates approximate entropy of time series u (assumed to be a %column vector) 
  
function [ApEntropy]=ApEnt(u,m,r) 
rlim=r*std(u); %establish the limits of similarity for vector components 
[N1 N2]=size(u); 
  
%vector sequences x of length m are created from consecutive elements of 
%vector u starting with the first element 
icount=0; 
for i=1:N1-m %starting with the first vector sequence, determine the conditional probability using the current x as 

the template 
    x_template=u(i:i+m); % this is the template vector 
    A=0; 
    B=0; 
  
    for j=1:N1-m 
        if j ~= i 
              x=u(j:j+m); % this is the conditioning vector 
              x_diff=abs(x_template-x); %compare the template to each conditioning vector 
              if all(x_diff(1:m) < rlim) %check to see if the first m components are similar 
                    B=B+1; 
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                    if (x_diff(m+1) < rlim) %check to see if the m+1 components are similar 
                        A=A+1; 
                    end 
                     
              end 
         end 
     end 
      
     if A & B ~= 0 %exclude if either the numerator or denominator is zero 
        icount=icount+1; 
        cond_prob(icount)=A/B; 
     end 
 end 
  
 %cond_prob 
 ApEntropy=-mean(log(cond_prob)); 
     

              

 

v. Derivative calculation 

The derivative was calculated using a fourth order accurate derivative function. Called by 

Process.m. 

% DERIVATIVE.M   Differentiation program to calculate the first and second  
%                derivatives of numerical data.  Select either a 
%                second (a=1) or fourth (a=2) order accurate scheme. 
%   These parameters must be defined before calling this function: 
%   dt = time step 
%   a = 1 or 2 to chose second or fourth order of accuracy respectively 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [vel,acc] = derivative(x,a,dt) 
  
[m,n] = size(x); 
  
x0  = x(3:m-2,:); 
xp1 = x(4:m-1,:); 
xp2 = x(5:m,:); 
xm1 = x(2:m-3,:); 
xm2 = x(1:m-4,:); 
  
%SECOND ORDER ACCURATE VELOCITY SCHEME 
if a==1 
  
c0 = 2; 
c1 = 0; 
c2 = -1; 
c3 = 0; 
c4 = 1; 
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c5 = 0; 
  
%FOURTH ORDER ACCURATE VELOCITY 
elseif a==2 
  
c0 = 12; 
c1 = 1; 
c2 = -8; 
c3 = 0; 
c4 = 8; 
c5 = -1; 
end 
  
DX = (c1*xm2 + c2*xm1 + c3*x0 + c4*xp1 +c5*xp2)/c0; 
vel(3:m-2,:) = DX/dt; 
  
clear c0 c1 c2 c3 c4 c5 DX  
  
%SECOND ORDER ACCURATE ACCELERATION SCHEME 
if a==1 
  
c0 = 1; 
c1 = 0; 
c2 = 1; 
c3 = -2; 
c4 = 1; 
c5 = 0; 
  
%FOURTH ORDER ACCURATE ACCELERATION SCHEME 
elseif a==2 
  
c0 = 12; 
c1 = -1; 
c2 = 16; 
c3 = -30; 
c4 = 16; 
c5 = -1; 
end 
  
DDX = (c1*xm2 + c2*xm1 + c3*x0 + c4*xp1 +c5*xp2)/c0; 
acc(3:m-2,:) = DDX/(dt*dt); 
  
% USE FORWARD FORMULAS FOR INITIAL POINTS AND BACKWARD FORMULAS FOR END POINTS 
% VEL AND ACC BEING SECOND AND FIRST ORDER ACCURATE RESPECTIVELY 
  
vel(1,:)     = (-3*x(1,:)+4*x(2,:)-x(3,:))/2/dt; 
vel(2,:)     = (-3*x(2,:)+4*x(3,:)-x(4,:))/2/dt; 
  
acc(1,:)     = (x(1,:)-2*x(2,:)+x(3,:))/(dt*dt); 
acc(2,:)     = (x(2,:)-2*x(3,:)+x(4,:))/(dt*dt); 
  
vel(m-1,:) = (x(m-3,:)-4*x(m-2,:)+3*x(m-1,:))/2/dt; 
vel(m,:) = (x(m-2,:)-4*x(m-1,:)+3*x(m,:))/2/dt; 
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acc(m-1,:) = (x(m-3,:)-2*x(m-2,:)+x(m-1,:))/(dt*dt); 
acc(m,:) = (x(m-2,:)-2*x(m-1,:)+x(m,:))/(dt*dt); 
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Appendix B: Further Analysis 
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i. Time Frequency Analysis 

Time frequency analysis (TFA) was explored at the beginning of the previous study, 

however it was abandoned in favor of DFA since DFA offered a more obvious 

analysis path and more finite result variables. It is our belief that TFA could be a very 

useful tool in the study of the COPv time series, since it is used in many non-

stationary time series applications. Below is the initial exploratory code which offers 

a beginning to the study of COPv in PD with TFA. It is also called the Process.m, 

mentioned in Appendix A. 

%calculate and plot the spectrogram of the COP_AP signal. This allows 
%visualization of the nonstationarity of the signal 
  
%Changes made on 1-14-15 by JRH 
  
%********************** 
%the following commands are to be used for model data 
%  itestyear=3; 
%  igroup=1; 
%  isubject=1; 
%  subnum=['Model HC']; 
%  COP_AP=Model_dt_COPAP(:,2); 
%************************* 
  
plot_title=['COP_' COP_direction_name{COP_direction} '_Test Yr_',int2str(itestyear),'_Group_',int2str(igroup),... 
    '_sub#_',subnum(isubject,:),condition_string(icondition,:)]; 
  
sample_time=30;                 %duration in seconds 
SF=1000;                        %sampling frequency 
t=1/SF:1/SF:sample_time;        %time vector 
dt=1/SF;                        %time between samples 
  
%load the sample data of COP in the AP direction 
%load COP_AP_example.mat 
y = COP; 
N = length(y);                     % Length of signal 
  
NFFT = 2^nextpow2(N); % Next power of 2 from length of y 
Y = fft(y,NFFT)/N; 
f = SF/2*linspace(0,1,NFFT/2+1); 
  
% % Generate the plot, title and labels. 
% figure(1000*itestyear+100*igroup+isubject); 
% hold on 
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% set(fh,'color','white','visible','off'); 
% subplot(2,1,1); %(311); 
% plot(t,y-mean(y),'k'); 
% title(plot_title); 
% axis([0 30 -30 30]); 
% xlabel('Time (s)','FontName','Times New Roman','fontsize',10); 
% ylabel('Amplitude','FontName','Times New Roman','fontsize',10); 
% set(gca,'FontName','Times New Roman','fontsize',10); 
% %  
% % Frequency domain plots 
% subplot(2,1,2);%(312); 
% plot(f,2*abs(Y(1:NFFT/2+1))) 
% irange=[1:100]; 
% plot(f(irange),2*abs(Y(irange))) 
% axis([0 1.5 0 10]); 
% xlabel('Frequency (cycles/second)','FontName','Times New Roman','fontsize',10); 
% ylabel('Amplitude','FontName','Times New Roman','fontsize',10); 
% set(gca,'FontName','Times New Roman','fontsize',10); 
  
%define the range of window lengths to use 
maxPSD_scale = 1; 
L = [7500]; 
overlap_factor = 0.99; 
rows = ceil(sqrt(length(L))); 
cols = round(sqrt(length(L))); 
countL = 0; 
figure('Name',plot_title); 
for iL = L 
    countL = countL+1; 
    %compute the spectrogram for the COP data 
    color = (0:1:100); 
    %define the window function 
    windowL = iL; 
    Noverlap = fix(overlap_factor*windowL); 
    window=hann(windowL, 'periodic'); 
%     freq = [0.001:.01:10];  %frequency target range for high freq and smaller windows 
    freq = [0.001:.01:5]; %frequency target range for low and large 
%     windows 
    [S,F,T,P] = spectrogram(y,window,Noverlap,freq,1000); 
    length_time = fix((length(y) - Noverlap)/(length(window)-Noverlap)); 
     
    subplot(rows,cols,countL) 
    surf(T,F,P./max(max(P)),'edgecolor','none') 
    axis xy; axis tight; colormap(jet); colorbar; view([0,90]); axis([0 fix(T(end))+1 0 (fix(F(end))+1) 0 

maxPSD_scale 0 maxPSD_scale]); %view([-127.5,30]) 
     
    title(['hann' num2str(windowL)]) 
%     xlabel('Time (s)'); 
%     ylabel('Frequency (cycles/second)'); 
end 
%% 
  
%perform a Fractal Dimension Analysis 
        
%        figure('name', ['FD' plot_title]); 
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%        [n, r] = boxcount(P./max(max(P)), 'slope'); 
%        df = -diff(log(n))./diff(log(r)); 
%        store_df(isubject,igroup,icondition) = mean(df(4:8)); 
%        store_df_std(isubject,igroup,icondition) = std(df(4:8)); 
%        disp(['Fractal dimension, Df = ' num2str(mean(df(4:8))) ' +/- ' num2str(std(df(4:8)))]); 
%% 
  
%perform a PCA Analysis 
[number_of_components,explained] = PCA_required(P,90); 
store_explained(isubject,igroup,icondition)=explained(1); 
store_components(isubject,igroup,icondition) = number_of_components; 
figure('name',['PCA' plot_title]); 
pareto(explained) 
title(plot_title) 
%% 
  
if i_save == 1 
    saveas(gcf,[result_dir '\' plot_title],'jpg') 
end 
%find the gradient and plot in the freq vs time plane 
% [PSDx,PSDy] = gradient(P,.2,.5085); 
% PSDz = sqrt(PSDx.^2 + PSDy.^2); 
% figure(3000*itestyear+100*igroup+isubject); 
% hold on 
% % set(fh,'color','white','visible','off'); 
% % subplot(2,1,1); %(311); 
% % plot(t,y-mean(y),'k'); 
% % title(plot_title); 
% % axis([0 30 -30 30]); 
% % xlabel('Time (s)','FontName','Times New Roman','fontsize',10); 
% % ylabel('Amplitude','FontName','Times New Roman','fontsize',10); 
% % set(gca,'FontName','Times New Roman','fontsize',10); 
% % subplot(2,1,2) 
% surf(T,F,PSDz); axis xy; axis tight; colormap(jet); colorbar; view([-127.5,30]);title(plot_title);; 
  

  

  

  
%store frequency and power data for each trial. m x n x p where m is 
%data, n is isubject and p is igroup 
% S_tot(:,:,isubject,igroup,itestyear) = abs(S); 
% PSD_tot(:,:,isubject,igroup,itestyear)=P; 
%  
% mean_S(:,isubject,igroup,itestyear) = mean(S_tot(:,:,isubject,igroup,itestyear)); 
% mean_PSD(:,isubject,igroup,itestyear) = mean(PSD_tot(:,:,isubject,igroup,itestyear)); 
%  
% std_S(:,isubject,igroup,itestyear) = std(S_tot(:,:,isubject,igroup,itestyear)); 
% std_PSD(:,isubject,igroup,itestyear) = std(PSD_tot(:,:,isubject,igroup,itestyear)); 
%  
% mean_S_group(:,igroup,itestyear) = mean(mean_S(:,isubject,igroup,itestyear)); 
% mean_PSD_group(:,igroup,itestyear) = mean(mean_PSD(:,isubject,igroup,itestyear)); 
%  
% std_S_group(:,igroup,itestyear) = std(mean_S(:,isubject,igroup,itestyear)); 
% std_PSD_group(:,igroup,itestyear) = std(mean_PSD(:,isubject,igroup,itestyear)); 
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ii. Spectral Analysis 

Time frequency analysis code also calls the m file Spectral_analysis.m seen below. It 

is used to look at the spectral density of the signal assuming signal stationarity.  

function [ median_freq,f,mx,amp] = Spectral_analysis(Fs,x) 
%Spectral_analysis 
% determine the spectrum of the signal x provided 
%  Fs = sampling frequency 
%  x = signal of arbitrary length 
% edited from routing found on Matlab Central 
% http://www.mathworks.com/support/tech-notes/1700/1702.html?BB=1 
  
% Use next highest power of 2 greater than or equal to length(x) to calculate FFT. 
nfft= 2^(nextpow2(length(x)));  
  
% Take fft, padding with zeros so that length(fftx) is equal to nfft  
fftx = fft(x,nfft);  
  
% Calculate the numberof unique points 
NumUniquePts = ceil((nfft+1)/2);  
  
% FFT is symmetric, throw away second half  
fftx = fftx(1:NumUniquePts);  
  
% Take the magnitude of fft of x and scale the fft so that it is not a function of the length of x 
mx = abs(fftx)/length(x);  
amp = mx; 
% Take the square of the magnitude of fft of x.  
mx = mx.^2;  
  
% Since we dropped half the FFT, we multiply mx by 2 to keep the same energy. 
% The DC component and Nyquist component, if it exists, are unique and should not be multiplied by 2. 
  
if rem(nfft, 2) % odd nfft excludes Nyquist point 
  mx(2:end) = mx(2:end)*2; 
  amp(2:end) = amp(2:end)*2; 
else 
  mx(2:end -1) = mx(2:end -1)*2; 
  amp(2:end-1) = amp(2:end-1)*2; 
end 
  
% This is an evenly spaced frequency vector with NumUniquePts points.  
f = (0:NumUniquePts-1)*Fs/nfft;  
  
% Generate the plot, title and labels.  
% figure(20) 
% plot(f,mx);  
% title('Power Spectrum of your signal');  
% xlabel('Frequency (Hz)');  
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% ylabel('Power');  
% pause 
  
%determine the median frequency, the frequency which divides the power in 
%half 
[m n]=size(mx); 
  
    Area_mx = trapz(mx); 
    Median_area = .5*Area_mx; 
  
            Runn_Int = 0;   % Initialize a runnig integral 
            for i = 1:m-1 
                Lim_int = mx(i:i+1);   % Successive points are the limits of integration 
                Inst_Int = trapz(Lim_int);  % Calculate the integral between two points 
                Runn_Int = Runn_Int + Inst_Int; % Update the running integral 
                Area_Vector(i) = Runn_Int; 
            end 
        
    Freq_indx = find(Area_Vector > Median_area); 
    median_freq = f(Freq_indx(1));   %  Median freq 
  
end 
  

 

 

 

 

 

  

 

 

 


