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Abstract

The detection of ultra-high energy cosmic rays is constrained by their flux, requiring detectors with

apertures of hundreds or even thousands of square kilometers and close to one hundred percent duty

cycle. The sheer scale that would be required of conventional detectors, to acquire sufficient statistics

for energy, composition or anisotropy studies, means that new techniques that reduce manpower and

financial resources are continually being sought. In this dissertation, the development of a remote

sensing technique based observatory known as bistatic radar, which aims to achieve extensive coverage

of the Earth’s surface, cf. Telescope Array’s 700 km2 surface detector, is discussed.

Construction of the radar projects transmitter station was completed in the summer of 2013, and

remote receiver stations were deployed in June and November of 2014. These stations accomplish

radar echo detection using an analog signal chain. Subject to less radio interference, the remote stations

add stereoscopic measurement capabilities that theoretically allow unique determination of cosmic ray

geometry and core location. An FPGA is used as a distributed data processing node within the project.

The FPGA provides triggering logic for data sampled at 200 MSa/s, detecting Cosmic Ray shower

echoes chirping at −1 to − 10 MHz/µs (depending on the geometry) for several µs. The data acqui-

sition system with low power consumption at a cost that is also comparatively inexpensive is described

herein.
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Chapter 1

Cosmic Rays

The Earth is continuously being struck by particles with kinetic energies ranging from a few MeVs

to at least 3 ·1020 eVs. Over the past several decades there has been a concerted effort in understanding

their flux, their arrival energies, composition and origin in the celestial sphere. The answer to these

questions along with correlations with known astronomical maps will solve one of the biggest mysteries

of the 21st century in understanding the most violent processes in our universe.

The first discovery of cosmic ray particles is attributed to Victor Hess, a passionate balloonist,

who undertook ten ascents (five at night) between 1911 and 1913. On these balloons, measurements

were made using electroscopes. The potential drop as a function of time, measured approximately

every hour, was converted into ion-pairs created in the gas of the electroscope per cubic centimeter per

second [12]. Fig. 1.1 shows averaged measurements made from two detectors [13] on board the balloon

Böhmen on the 7th of August, 1912.

This ascent was his seventh attempt, for which coal-gas used in previous attempts was replaced

with hydrogen, enabling Hess to reach an altitude of 5350 m. At the time, conventional wisdom was

that it was the Earth’s radioactivity that was responsible for all the measured terrestrial radiation and,

as a result, should decline with altitude. Hess’s balloon experiments disproved this and demonstrated,

that following an initial decrease, there is an increase in ionization as one ascends higher into the atmo-

sphere. Additionally, following measurements on a separate ascent during a quasi-total solar eclipse on

the 7th of April, 1912; Hess claimed that not only was the ionization extraterrestrial in nature, but also

that the sun was not the only source.

Werner Kolhörster, a German Physicist, with modified temperature and pressure stable electro-

scopes verified Hess’s results in 1914 and was successfully able to measure ionization at up to 9 km

altitudes. A decade later, Millikan and Cameron in 1926, using special water resistant electroscopes
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Fig. 1.1 Averages of Ionization measurements made by Hess on August 7th,1912.

made ionization measurements at Muir Lake (alt. 11,800 ft) and Arrowhead Lake (alt. 5,100 ft). They

found that the ionization decreased steadily with depth in the water, and the difference in readings be-

tween the two lakes at different elevations were "the exact water equivalent of the absorption of the

atmosphere" [14]. These results confirmed that the ionization was indeed extraterrestrial in nature and

subsequently led to Millikan coining them as Cosmic Rays. Initially, these particles were believed to be

γ − rays. However, by 1934, an East - West asymmetry observed in their arrival directions due to de-

flections caused by the Earth’s magnetic field provided evidence that they are predominantly positively

charged particles or nuclei.

1.1 Energy Spectrum

Primary cosmic rays - those accelerated at astrophysical sources, including protons, helium, iron and

other nuclei synthesized in stars have an energy spectrum that has been studied by a variety of experi-

ments. Fig. 1.2 summarizes these results.

Apart from those associated with solar flares, the flux of such cosmic rays, J(E), below 1010eV, are

modulated by solar magnetic fields. These fields decelerate and partially deflect cosmic rays from the

inner solar system. In addition, cosmic ray arrival intensities are also subject to geomagnetic fields.

At higher energies, the flux is non-thermal and follows a broken power law for about ten orders of

magnitude,

J(E) =
d2φ(E)

dEdΩ
∼
(

E
eV

)−γ

(1.1)
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Fig. 1.2 Energy Spectrum from 108 to 1021 eV. Taken from [1].

where γ is the spectral index. There exist interesting features in this energy spectrum: at ∼ 1015.5 eV

the spectral index changes from 2.7 to ∼ 3 and is referred to as the knee, at ∼ 1018.5 eV the spectrum

becomes harder again, with γ changing to ∼ 2.6 (the ankle) and finally the flux steeply decreases above

3 ·1019eV. The flux drops from 1 particle/m2 − year at the knee to 1 particle/km2 − year at the ankle

and eventually to 1 particle/km2 − century towards the end of the observed spectrum.

The change in the spectral index, at the knee, is likely due to sources within the galaxy unable to

accelerate cosmic rays to higher energies, cosmic rays escaping our galaxy during diffusive propagation

processes or both. Equivalent to the latter, is that the galaxy confines cosmic rays with energies below
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1.1 Energy Spectrum

the knee and they are unable to leak out (the ’leaky box’ model). [15] provides a detailed discussion on

the origin of the knee in the cosmic-ray energy spectrum.

The cut-off at high energies can be explained by the interaction of primary cosmic rays with the

remnant cosmic microwave background (CMB) radiation. If these cosmic rays are heavier nuclei, they

can subsequently photo-disintegrate [16] or pair-produce resulting in an energy loss of the primary. For

heavier nuclei like iron [17],

A + γCMB → (A−1)+ N

→ (A−2)+ 2N

→ A + e+ + e−
(1.2)

results in a lower observed energy spectrum and lighter nuclei than at the source.

Fig. 1.3 shows possible interactions with the CMB.

Figure 3: Panorama of the interactions of possible cosmic primaries with the CMB.
Curves marked by “p+γCMB → e+e−+p” and “Fe+γCMB → e+e−+p” are energy loss
lengths (the distance for which the proton or Fe nucleus loses 1/e of its energy due
to pair production). The curve marked by “p+γCMB → π+n or π◦p” is the mean
free path for photo-pion production of a proton on the CMB. The curve marked
“Fe+γCMB → nucleus + n or 2n” is the mean free path for a photo-nuclear reaction
where one or two nucleons are chipped off the nucleus. The curve marked “γ +γCMB

→ e+e−” is the mean free path for the interaction of a high-energy photon with the
CMB. Added for reference is the mean decay length for a neutron indicated by “n →
peν”.

are not easily met, which has stimulated the production of a large number of creative
papers.

In Figure 1 I plot the number of theoretical papers, mostly speculative, written
on the subject of the highest-energy cosmic rays as a function of time, as found on the
Los Alamos server as astro-ph papers. Over the last three years the average has been
one paper per week. In Figure 2 I list a random sample of the titles. The authors of
these papers deserve a strong response from the experimental community.

2 Propagation of the highest-energy cosmic rays

The interaction of the particles with the cosmic microwave background (CMB) and
magnetic fields plays an important role in their propagation. All possible species of
cosmic rays with the exception of neutrinos interact with the CMB. A panorama of
the various interactions is given in Figure 3.

4

Fig. 1.3 Panorama of interactions of possible cosmic primaries with the CMB. Taken from [2]

For protons, the high energy cut-off of the spectrum was predicted independently by Greisen,

Kuzmin and Zatespin in 1966 [18] [19] and is now known as the GZK limit . This limit primarily

arises due to the interaction of protons with the cosmic microwave background, producing delta reso-

nances that subsequently decay into nucleons and pions,

p + γCMB → ∆
+(1232 MeV ) → n + π

+

→ ∆
+(1232 MeV ) → p + π

0
(1.3)
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1.1 Energy Spectrum

Figure 4: Mean energy of protons as a function of propagation distance through the
CMB. Curves are for energy at the source of 1022 eV, 1021 eV, and 1020 eV.

Figure 5: Fluctuation of the energy of a proton propagating through the CMB.

5

Fig. 1.4 Mean energy of protons as a function of propagation distance through the CMB. Curves are for
energy at the source of 1022 eV , 1021 eV , and 1020 eV. Taken from [2]

For a temperature of ∼ 2.73K, γCMB has number density 411cm−3, total energy density 0.26eV cm−3,

and average energy 6.34×10−4eV . Following the discussion in [20], the threshold energy for protons

interacting with a photon to produce π0,+ is ∼ 1020eV. Interactions at smaller energies by a factor of 3

or 4 are possible, as the microwave spectrum extends to higher energies (In addition to its higher-energy

thermal tail, the microwave background increases with redshift due to the expansion of the Universe).

Given the delta resonance cross-section of ∼ 5× 10−28 cm2 and the γCMB number density, the ultra-

high energy proton mean free path is ∼ 8 Mpc [21]. Each time a photo-pion interaction occurs, the

subsequent proton loses about 20% of its initial energy. Fig. 1.4 shows that after each interaction, as the

proton continually loses energy to the microwave background, the energy of the proton eventually falls

below the delta resonance threshold. As shown, for observation of trans-GZK protons, sources must be

within ∼ 100 Mpc (the GZK horizon).

Other interaction modes of cosmic protons with the cosmic microwave background are possible,

including pair production,

p + γCMB → p + e+ + e− (1.4)

which has a threshold of E ∼ 8×1017 eV, and along with redshift propagation loss, is the primary energy

loss mechanism for protons that fall below the delta resonance threshold. GZK attenuated protons

produce a ’pile-up’ while pair production and red shift propagation losses cause the steepening in the

spectrum.
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Fig. 1.5 Energy Spectrum from 1017 to 1021 eV. Taken from [1].

For iron nuclei dominated or mixed composition models, galactic-extragalactic transitions are likely

responsible for the ankle to the left of the cosmic ray energy spectrum at an energy of approximately

1018.5 eV.

Fig. 1.5 shows the pileup and the ankle in the cosmic ray energy spectrum.

1.2 Anisotropies

One of the highest energy particles detected was the Oh-My-God (OMG) particle [22]. With an energy

of ∼ 3.2±0.9×1020 eV, the particle was detected in 1991 by the Fly’s Eye Detector in western Utah.

However, the source of such Ultra High Energy Cosmic Rays (UHECR) are still under discussion. It is

widely accepted that local galactic sources are unlikely to be cosmic accelerators producing > 1019 eV

particles, as the galactic magnetic field would not be able to confine these particles. Observations also

show that these cosmic rays have a relatively isotropic distribution and aren’t concentrated in the galactic

plane [5].

As the sources are likely to be extragalactic, deflections caused by galactic and intergalactic mag-

netic fields complicate obtaining directional information. The amount of deflection δ experienced by

any charged particle of charge q and energy ε traveling through a magnetic field B for a distance L is
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1.2 Anisotropies

proportional to [23],

δ ∝
qBL

ε
, (1.5)

but, if such deflections are small, then it may be possible to determine the source location in the UHECR

sky. [24] provides a more detailed discussion regarding mapping deflections of extragalactic UHECR’s.

If trans-GZK protons and light nuclei like iron have powerful astrophysical sources, then due to the

inhomogeneity of these sources within the GZK horizon in our local universe, they should have minimal

deflections and are expected to exhibit an anisotropic arrival distribution. Therefore, it is of interest to

correlate the UHECR sky with a catalog of known energetic sources.

The recent discussion regarding anisotropies in the UHECR sky began with the Pierre Auger Obser-

vatory (PAO) in 2007. They made correlations with the arrival directions of > 55 EeV events with the

VCV(Véron-Cetty and Véron 2006) Catalog of Active Galactic Nuclei(AGN) [25]. Fig. 1.6 shows the

"most likely value of the fraction of correlated events, plotted with black dots, as a function of the total

number of time-ordered events (the events used in exploratory scans excluded)" [3]. Here 33± 5% of

events are correlating cosmic rays, compared with 21% expected for an isotropic hypothesis. The most

updated fraction of these correlating cosmic rays is 28.1+3.8%
−3.6% for > 53 EeV . The energy threshold was

revised after accounting for "measurements of the fluorescence yield, a better estimate of the invisible

energy, a deeper understanding of the detector, and an improved event reconstruction" [4] resulting in a

modified correlation fraction.

Fig. 1.7 shows the Auger sky map with ten years of data from January 1st, 2004 to March 31st, 2014

for ⩾ 52EeV arrival directions. Here circles are drawn around all of the 2 Mass Redshift Survey (2MRS)

objects within 90 Mpc. Each circle has radius 9◦, which is the value for which the cross-correlation has

maximum significance [4]. They reported no statistically significant evidence of correlation in UHECR

distribution.

In 2014, the Telescope Array (TA) analyzed five years of Surface Detector (SD) data for cosmic

rays with energies > 57 EeV. Summing events over 20◦ radii circles [5] ("an angular scale comparable

to the clustering length of AGN’s within 85 Mpc" [26]), TA found deviations from isotropy, as shown

in Fig. 1.8. There were, however, no clearly identifiable sources reported. The TA suggested that, if the

hot spot is indeed real, then it could be due to the "closest galaxy group, galaxy filaments connecting

us with the Virgo Cluster" or both [5]. Alternatively, "if cosmic rays are heavy nuclei, then they may

have originated in the supergalactic plane containing the Ursa Major cluster and then been deflected by

galactic and intergalactic fields" [5].

While both experiments suggest anisotropy in the distribution of UHECRs, more statistics are nec-

essary for confirmation.
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with an antisymmetric halo magnetic field (A) is already excluded by the upper limits. In Fig. 2
the phase measurement as a function of the energy shows an interesting pattern: it suggests a
smooth transition between a phase of ∼ 270◦ (consistent with the right ascension of the galactic
center) below 1×1018 eV and another phase of ∼ 90◦ (consistent with the right ascension of the
galactic anti-center) above 5×1018 eV. This is interesting since a real anisotropy would need less
events to be established with high statistical confidence from the phase consistency in ordered
energy intervals than by amplitude measurements [9]. New data will show if this feature still
stands.

3. Correlation with celestial objects

Figure 3. Fraction of events correlating
with AGNs as a function of the cumulative
number of events, starting after the
exploratory data. The expected correlating
fraction for isotropic cosmic rays is shown
by the dotted line.
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for the 2pt+ and 3pt methods and cor-
responds to an energy of about 51 ≈ EeV .

For the highest energy cosmic rays, possible candidates able to accelerate them up to
1020 eV are jets of AGN, as mentioned before. The Pierre Auger Collaboration reported
[11, 12] a correlation of events with the AGNs in the VCV catalogue. The first 14 events were
used for an exploratory scan that yielded the following search parameters: energy threshold
(Eth = 55 EeV), maximum angular separation (Ψ ≤ 3.1◦) and maximum redshift (z ≤ 0.018).
Those parameters minimize the probability that the correlation with AGN could result from a
background fluctuation if the flux were isotropic. The subsequent 13 events established a 99%
confidence level for rejecting the hypothesis of isotropic cosmic ray flux. The reported fraction
of correlation events was (69+11

−13)%. By adding data with Eth = 55 EeV up to the end of 2009

(69 events in total), the amount of correlation decreased to (38+7
−6)% [13]. For this dataset, we

show in Fig. 3 the most likely value of the fraction of the correlated events plotted with black
dots as a function of the total number of time-ordered events (the events used in the exploratory
scan are excluded). The most updated estimate of the fraction of correlating cosmic rays is
(33± 5)%, with 21% expected under the isotropic hypothesis [14].

A posteriori studies [13] showed that the distribution of arrival directions of the 69 cosmic
rays is compatible with models (for suitable values of two parameters, the smoothing factor σ
and an isotropic fraction fiso) based on populations of nearby extragalactic objects, such as
galaxies in the 2MRS and AGNs in the SWIFT-BAT catalogues. The models fit the data for
smoothing angles around a few degrees and for correlating fractions of order 40% (fiso ≈ 0.6).
The data does not fit either the isotropic expectation or the predictions of the models with

Fig. 1.6 Fraction of events correlating with AGNs as a function of the cumulative number of events by
the Auger Observatory. The dotted line shows the expected correlating fraction for isotropic cosmic
rays. Taken from [3].

1.3 Composition

In addition to the energy spectrum and anisotropy, the composition of cosmic rays is another important

factor in identifying the origins of UHECR. The composition of cosmic rays with energy ≤ 1016eV can

be measured directly with space-based experiments [27] equipped with spectrometers and calorimeters.

However, for higher energy cosmic rays, the small flux means that indirect detection techniques are

necessary.

Indirect measurement of the composition of cosmic rays is achieved by measuring the depth of

shower maximum (Xmax) as the primary cosmic ray interacts with the atmosphere to produce secondary

particles [17]. Sec. 2.1 provides a detailed discussion of proton-initiated Extensive Air Showers. While

the penetration of the primary in the atmosphere increases with energy for all nuclei, heavy vs. light

nuclei also vary in penetration, and it is this characteristic that enables composition measurements. In

addition, fluctuations in Xmax and the number of secondary muons may be used in the determination

of the primary’s composition. These indirect measurements, rather than on an event-by-event basis, are

done statistically by a comparison of measured and simulated distributions [28].

Shower observations suggest light primaries dominate at the knee and change to heavier primaries

up to ∼ 1017 eV [27]. A reversal follows with lighter nuclei up to ∼ 1018eV. The PAO finds that
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Fig. 5.— Cross-correlation of events with the galaxies in the 2MRS catalog. The top-left

panel shows the values of fmin and P as a function of the maximum distance D to the

galaxies considered. The top-right panel shows the results of the scan in ψ and Eth for the

value D = 90 Mpc corresponding to the minimum values in the top-left plot. The bottom

plot shows the sky distribution (in Galactic coordinates) of the events with E ≥ 52 EeV

(black dots). Blue fuzzy circles of 9◦ radius are drawn around all of the 2MRS objects

closer than 90 Mpc. The dashed line is the field-of-view limit for the Auger Observatory

(for θ ≤ 80◦) and the blue solid line corresponds to the Super-Galactic Plane.

penalization due to the scan performed in D, the probability of obtaining a value of P

smaller than 1% from isotropic distributions for any value of D is P ≃ 6%. Finally, we

show the map of events and objects in the bottom panel. Given the minimum found, we

include events with E ≥ 58 EeV and draw circles of 1◦ radius around the BAT AGNs

closer than 80 Mpc.

The results of the cross-correlation with jetted radio galaxies are shown in Figure 7.

The minimum value fmin ≃ 2×10−4, with P ≃ 1.4%, is obtained for D = 10 Mpc (see

top-left panel). The only object included in this catalog within such a distance is the

Centaurus A galaxy. Since the correlation with Cen A is discussed separately in the next

section, we consider here the second minimum, which is found for D = 90 Mpc. This

Fig. 1.7 Pierre Auger Observatory sky map plotted using 9◦ radius-circles drawn around known 2MRS
objects within 90 Mpc. The dashed line is the field-of-view limit for the Auger Observatory (for θ ≤
80◦) and the blue solid line corresponds to the Super-Galactic Plane. Taken from [4].

the spectrum is dominated by light nuclei from 1018eV to 1018.5eV [29] after which a heavier nuclear

component becomes significant [30]. By contrast, the TA can explain their data over this entire energy

range without a heavy nuclear admixture [31], leading to a discrepancy in these energy regimes between

the two observatories.

1.4 Candidate Sources

While the source of such UHECRs has not been pinpointed, there are various candidate sources that are

best described by the Hillas plot in Fig. 1.9, that may provide a window into understanding the most

violent processes in the universe. In this Figure, the sources above the top (red) line indicate those

sources that can accelerate protons to energies up to 1021 eV, while those above the bottom (green) line

can accelerate heavier iron nuclei up to 1020 eV.

The Hillas criterion upon which Fig. 1.9 is based places a limit on the maximum energy of a particle

of electric charge q, leaving the source with magnetic field B and radius Rs:

εmax = qBRs (1.6)

This constraint is obtained by demanding that the Larmor radius [6], RL = ε/qB is contained within
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– 12 –

Fig. 1.— Aitoff projection of the UHECR maps in equatorial coordinates. The solid curves

indicate the galactic plane (GP) and supergalactic plane (SGP). Our FoV is defined as the

region above the dashed curve at Dec. = −10◦. (a) The points show the directions of the

UHECRs E > 57 EeV observed by the TA SD array, and the closed and open stars indicate

the Galactic center (GC) and the anti-Galactic center (Anti-GC), respectively; (b) color

contours show the number of observed cosmic ray events summed over a 20◦-radius circle;

(c) number of background events from the geometrical exposure summed over a 20◦-radius

circle (the same color scale as (b) is used for comparison); (d) significance map calculated

from (b) and (c) using Equation 1.

Fig. 1.8 Telescope Array significance map plotted using 20◦ radius-circles. Both the significance of the
hotspot, as well as the number of events observed, are indicated by the color coding. Taken from [5].

4 Sources and acceleration of high energy cosmic rays
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Figure 4.1: Magnetic field strength versus size of various suggested cosmic ray sources.

Blandford argument The acceleration of a proton to the energy E = 1020 eV by regular
electromagnetic fields requires the potential difference U = 1020 V. What is the minimal power
P dissipated by such an accelerator? In order to use the basic equation P = UI = U2/R
known from high-school physics, we have to know the appropriate value of the resistance R.
Since the acceleration region is in most cases nearly empty, we use R ∼ 1000 Ω (lead by the
“impedance of the vacuum”, R = 4πk0/c = 1/(ǫ0c) ≈ 377Ω). Hence a source able to produce
protons with E = 1020 eV by regular acceleration in electromagnetic fields has the minimal
luminosity [12]

L = U2/R >∼ 1037 W = 1044 erg/s . (4.1)

This can be transformed into an upper limit on the density ns of ultrahigh energy cosmic
rays (UHECR) sources, since the observed UHECR intensity fixes the required emissivity L,
i.e. the energy input per volume and time, as L ∼ 3× 1046erg/(Mpc3yr). Hence, the density
of UHECR sources able to accelerate protons to E = 1020 eV should be smaller than ns =
L/L ∼ 10−5/Mpc3, if the acceleration is by regular electromagnetic fields. For comparison, the
density of normal galaxies is ns ≈ 10−2/Mpc3, while the most common type of active galactic
nuclei in the nearby Universe, Seyfert galaxies, has the density ns ≈ (1 − 5) × 10−5/Mpc3

within redshift z <∼ 0.02.

4.1.2 Specific sources

Most galactic astrophysical sources are connected with type II (or core-collapse) supernovae
(SN) and their remnants (SNR): Examples are the direct acceleration in the magnetosphere of

28

Fig. 1.9 Hillas Plot. Sources above the top (red) line can accelerate protons up to 1021 eV and sources
above the bottom (green) can accelerate iron up to 1020 eV. Taken from [6].
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1.4 Candidate Sources
4.1 Sources of high energy cosmic rays

Figure 4.2: The unified scheme of AGN.

an extremely efficient energy generation mechanism. For accretion on a BH, the maximal
energy gain is Emax ∼ GmM/RS , where the Schwarzschild radius is RS = 2GM/c2, and thus
Emax = mc2/2. A large part of this energy will be lost in the BH, while the remainder heats
up via friction an accretion disc around the black hole. Modeling the accretion process gives
an efficiency of ǫ = 10%–20%. Thus the luminosity from accretion is

L =
ǫc2dm

2dt
. (4.9)

For a rather modest mass consumption of the BH, dm/dt = 1M⊙/yr, one obtains 6×1045erg/s
or L ∼ 1012L⊙.

The unified picture of AGNs is illustrated in Fig. 4.2. The different AGN types are only
facets of the same phenomenon–accretion on a SMBH—viewed from different angles, at differ-
ent stages of activity (small or large dm/dt) and evolution in time (e.g. from a quasar phase
at redshift z ∼ 1–4 towards a Seyfert galaxy at present). Blazars are AGN with a relativistic
jet that is pointing in the direction of the Earth and are therefore often ranked among the
most promising sources of ultrahigh energy cosmic rays. According Fig. 4.2, blazars are either
Flat Spectrum Radio Quasars (FSRQ) or BL Lac objects.

Gamma Ray Bursts come in two (main) sub-varieties, depending on their duration that
varies from fraction of a second to many minutes. While short duration GRBs are most likely
the result of binary collisions between e.g. neutron stars, long duration GRBs which make
up about 2/3 of all GRBs are associated with supernova events in extremely massive stars.
GRBs are highly beamed sources of gamma-rays and perhaps also of high energy neutrinos
and cosmic rays. A distinctive feature is the high Lorentz factor of shocks in GRBs.

31

Fig. 1.10 Unified scheme of AGN. Taken from [6].

the accelerator of size Rs [6],

RL = ε/qB ≤ Rs (1.7)

Conceptually, to produce the highest energy particles, small accelerators will need to have large

magnetic fields to trap charged particles in the acceleration region or, vice-versa, a cosmic accelerator

with a small magnetic field requires an immense acceleration region of the order of Mpc.

Possible candidates for UHECR origin include (a) Gravitational Accretion Shocks where dark mat-

ter accretion can cause shocks around large-scale structures in the Universe, (b) Gamma Ray Bursts

(GRB) where multiple shock regions can form potential zones of acceleration, (c) Neutron Stars that

have extremely strong dipole fields of order 10−15G [27] and finally, the most discussed source: (d)

Active Galactic Nuclei (AGN).

Active Galaxies have a total luminosity exceeding the thermal emission of the individual stars com-

prising the galaxy due to accretion of supermassive black holes located at their center. The type of AGN

observed is dependent on the observing angle, stage of activity and evolution in time [6], as shown in

Fig. 1.10. Amongst these AGN’s, Blazars have relativistic jets pointing towards Earth and are consid-

ered strong candidates as UHECR sources [32]. These Blazars are either Fanaroff-Riley I galaxies and

their associated BL Lac objects or Fanaroff-Riley II galaxies and their associated Flat Spectrum Radio

Quasars (FSRQ) .

Understanding the energy, composition and anisotropy of cosmic rays will provide answers to some

11



1.4 Candidate Sources

of the most intriguing questions in our Universe. The next chapter discusses physics of cosmic ray

interactions and their detection using a novel radar technique.

12



Chapter 2

Radar Detection of Cosmic Rays

In this chapter, we discuss the properties of Extensive Air Showers (EAS) and the technique of

detection by radio interrogation.

2.1 Extensive Air Showers (EAS)

Cosmic rays with energies per nucleon in excess of 1014 eV [33] create cascades of particles with

electromagnetic and hadronic components in the atmosphere, known as Extensive Air Showers (EAS).

The development of the shower can be defined by the first interaction in the atmosphere. The interaction

of a primary proton with an absorber nucleus A can be represented as,

p + A → p + X + π
0,± + K0,±, (2.1)

where X is the fragmented nucleus. Several particles such as K, Λ, η , ...... are produced. However,

the pions carry away roughly half of the energy (dependent on interaction elasticity) and the remainder

by the remnant cosmic ray, which continues to interact. The entire shower development can then be

described in terms of the behavior of the pions produced in the first few interactions.

Neutral pions (π0) with a rest lifetime of ∼ 10−16s have the decay modes,

π
0 → γγ, π

0 → γe+e−, and π
0 → e+e−e+e−, (2.2)

where the two-photon mode dominates. These photons go on to produce e+e− pairs that then emit

bremsstrahlung photons after traveling some distance. When

−dE
dx

|bremsstrahlung = −dE
dx

|ionization, (2.3)

13



2.1 Extensive Air Showers (EAS)

the electron is said to be at its critical energy (∼ 84 MeV in air) and the shower evolution at that point

described as the shower maximum.

Primary cosmic ray energy affects the decay time and interaction length of the secondary charged

pions (π±). These pions can interact to initiate subsequent pion showers or can decay to produce muons

through their most common decay mode,

π
+ → µ

+ + νµ and π
− → µ

− + ν̄µ (2.4)

2.1.1 Longitudinal Shower Development

The Gaiser-Hillas functional form [34] has proven to be useful in fitting the measured and simulated air

shower development with various hadronic models like QGSJET (Quark Gluon String with JET) and

QGSJETII [35]. The form is given by,

N(X) = Nmax(
X −X0

Xmax −X0
)

Xmax−X0
λ

e
X0−X

λ , (2.5)

where Nmax is the maximum number of charged particles, Xmax is the atmospheric depth where the

maximum occurs, X0 is the atmospheric depth of the first interaction and λ is a fit parameter.

The cascade of these secondary particles produced in the atmosphere have been investigated using

Monte Carlo Simulations such as CORSIKA 6.50 (COsmic Ray SImulation for KAskade) [36] with the

QGSJET II hadronic interaction subroutine.

Figs. 2.1 and Fig. 2.2 show CORSIKA simulation of the longitudinal distribution of the number

of charged particles and energy deposition, respectively. Shown is a ∼ 1018eV proton-initiated shower

at a zenith angle of 60.4± 0.3◦, using a realistic curved Earth surface model. Shower maximum is at

∼ 400g/cm2.

Fig. 2.3 shows a comparison of the number of shower electrons for showers initiated by 1018eV,

1019eV, and 1020eV cosmic ray protons at different shower depths.

Several hundred simulations were run for proton energies 1018 ≤ E ≤ 1020.5, showing the relation-

ship between depth at shower maximum and zenith angle of the arriving primary proton. The number

of electrons produced at shower max does not vary significantly with the incoming angle of the primary

proton (see Fig. 2.4).

2.1.2 Lateral Shower Development

As the secondary particles have transverse momentum with respect to the shower axis, the lateral shower

profile for the electromagnetic particles is approximated by the Nishimura-Kamata-Greisen (NKG)
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Fig. 2.1 Longitudinal Distribution of particles in a ∼ 1018eV proton-initiated shower with an incoming
zenith angle of 60.4±0.3◦ in 870 Vertical Steps of 1g/cm2.

function,

ρ(r) =
N(s)

rm
2sm

2
(r/rmsm)s−2(1 + r/rmsm)s−4.5

2πβ (s,4.5−2s)
(2.6)

where ρ(r) is the charged particle density at a distance r to the shower axis in particles per unit area,

and N(s) is the total number of charged particles at shower age s (s = 3
1+2Xmax/X such that s = 1 at Xmax).

The Moliere radius is given by

rm = 70(
ρ0

ρ
) m, (2.7)

where ρ is the density of the air at the altitude under consideration, and ρ0 is the density at sea level.

Fig. 2.5 shows the lateral distribution of electrons at various primary energies incident at ∼ 60◦. It

is essential to note that these are shower electrons as opposed to ionization electrons that contribute to

the plasma frequency discussed in the next section.

2.2 EAS Plasma

Electrons and ions close to the shower core form a plasma that on average can be assumed to be electri-

cally neutral. Such a plasma has excitation modes that are longitudinal or transverse. We now discuss
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Fig. 2.2 Longitudinal Distribution of the energy content in different particle species for a ∼ 1018eV
proton-initiated shower with an incoming zenith angle of 60.4±0.3◦ in 870 Vertical Steps of 1g/cm2.
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the formation and excitation of the plasma. In the discussion that follows, the mass of protons is as-
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2.2 EAS Plasma

sumed to be infinite compared to that of electrons.

2.2.1 Plasma Frequency

Conceptually, if atomic electrons are displaced by some distance ∆x, as shown in Fig. 2.6, regions of

positive and negative charge due to the ions and electrons are, respectively, created.

+

+

+

+

-

-

-

-

Δx Δx

E

Fig. 2.6 Longitudinal oscillations in a plasma.

The longitudinal electric field in this intervening region is

E = −nee∆x
ε0

, (2.8)

and the force restoring the electrons to their original position is then,

F = eE = −nee2∆x
ε0

= me
d2∆x
dt2 , (2.9)

which is the equation of a simple harmonic oscillator such that the electrons oscillate coherently in the

longitudinal direction with the frequency,

ω
2

p =
nee2

ε0me
(2.10)

Additionally, as the transverse fields are translationally invariant, the transverse canonical momen-

tum of a particle in the field is conserved such that we have the dispersion relation [37],

ω
2 − k2c2 = ω

2
p (2.11)

where k is the propagation constant.
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2.2 EAS Plasma

For a wave with a frequency above the plasma frequency (ω > ωp), the propagation constant k is

real. The wave propagates through the plasma with a phase velocity, vφ = ω/k> c, as shown in Fig. 2.7.

The individual electrons scatter independently according to the Thompson cross-section,

k

ω
ω
p

ω
k

=c

Transverse

Longitudinal

Fig. 2.7 Dispersion relation for waves in a plasma.

σT =
8π

3
(

e2

mec2 )2 = 6.69×10−29 m2, (2.12)

When ω < ωp, the propagation constant is imaginary (i.e., k < 0), and the wave is evanescent with

no energy transmitted through the plasma. The plasma rather reflects the wave.

Fig. 2.8 shows the plasma frequency at various primary energies incident at ∼ 60◦ as determined

from CORSIKA simulations. Ionization electrons are calculated by measuring the ratio of the energy

deposited in the atmosphere and the mean energy per ion pair production of 33.8 eV [38].

Fig. 2.9 shows the plasma frequency for a 1019eV primary incident at different zenith angles and

various radii at shower maximum.

2.2.2 Plasma Lifetime

Various factors contribute to the lifetime of plasmas, such as diffusion through the ambient air, attach-

ment, and recombination of electrons [39].

At lower EAS shower max altitudes, the ambipolar diffusion constant Di is given by,

Di ∝ Tiνi
−1, (2.13)
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Fig. 2.8 Plasma Frequency for primary proton initiated shower of 1018, 1019 and 1020 eV incident at
∼ 60◦.Also shown is a 54.1 MHz reference line, corresponding to our experimental sounding frequency.

where Ti, νi are the kinetic temperature and collisional frequency, respectively. The ambipolar constant

has been found to be ∼ 5 cm2s−1 [39] at EAS altitudes due to higher collisional frequency as compared

to meteor shower altitudes at ∼ 80 to 120 km. Assuming that the diffusion of EAS showers are similar

to that of meteor ionization, where for the underdense regime, the power decays exponentially with a

time constant, τm = λ 2/32π2Di, then diffusion alone would lead to a lifetime of ≃ 200 s for a frequency

of 54 MHz. Additionally, it has also been shown that for plasmas due to lightning strikes, (which have

higher ionization densities by several orders of magnitude than EAS) at ∼ 10 km and 11 cm wavelength

the time constant is 240 ms. For these reasons, diffusion is expected to have minimal effect on the

lifetime of EAS plasmas. Similarly, recombination times of electrons and ions in the troposphere are

expected to be several minutes [39] [40] and so likely even less significant than diffusion.

Attachment is the primary factor affecting EAS plasma lifetime [41]. These processes are

Two Body Attachment:

e− + O2 → O− + O, (2.14)
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Fig. 2.9 Plasma frequency for a 1019eV primary proton-initiated shower at various zenith angles and
radii at shower maximum.

Three Body Attachment:

e− + O2 ⇌ O−∗
2 ,

O−∗
2 + O2 → O−

2 + O2 + energy.
(2.15)

At low altitudes, the three-body attachment dominates the de-ionization process [40] due to its quadra-

ture dependence on oxygen concentration. At higher altitudes, as the concentration of oxygen dimin-

ishes, two-body attachment becomes more important in the de-ionization process. For calculating the

plasma lifetime at EAS altitudes, three-body attachment is the most significant process.

The three-body attachment rate is dependent on the particle density of the atmospheric elements

involved and given by [42],

∂Ne

∂ t
= −katt1NeN2

m[O2]2 − katt2NeN2
m[O2][N2], (2.16)

where Ne is the electron number density, Nm is the total number density of atmospheric molecules

(Nitrogen, Oxygen, Carbon-Dioxide and trace gases), [O2] is the fraction of Oxygen and [N2] the

fraction of Nitrogen in the atmosphere. These parameters are, [O2] = 0.209476, [N2] = 0.78084,

katt1 = 2 ·10−30cm6s−1, and katt2 = 8 ·10−32cm6s−1.

The lifetime of a plasma at sea level is found to be ∼ 15 ns and at 10 km to be ∼ 130 ns [42] as
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shown in Fig. 2.10.
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Fig. 2.10 The lifetime of plasma in the atmosphere at standard temperature and pressure due to the
attachment process discussed in the text.

2.3 Radar Detection

2.3.1 Radar Detection of Ionization Trails

The development of the ionization trail induced by cosmic rays is believed to be analogous to that of

micro-meteors that form similar ionization columns. As meteoroids penetrate the Earth’s atmosphere,

gradual ablation results in a cylindrically ionized channel along their path. Radar detection of these

meteor plasma columns have been observed for trails between altitudes of 70 and 120 km, with most

observed between 80 and 105 km [43].

Typically the smallest detectable meteors have a mass of 10−6g and dimensions of 10−3 to 10−2m.

At typical velocities of ∼ 4−5 ·104m/s, they have kinetic energy of ∼ 1J, most of which is dissipated

to ionization. However, as discussed earlier, in an EAS, the lateral distribution of particles spreads out

as the shower progresses and propagates at relativistic speeds. Subsequently, air showers result in an

ionization column with a different initial distribution than that of a meteor.

In 1941, Blackett and Lovell [44] were the first to propose cosmic rays as an explanation of anoma-

lies observed in atmospheric radar data. They suggested a point cluster approximation, with n ions
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within a Fresnel length, L f , of the ionized column,

L f =
√

λR, (2.17)

where λ is the transmitter wavelength and R the distance from the transmitter to the ionized column. In

this approximation, the maximum electronic ions per cm is,

n =
1
2

10−7 pE (2.18)

where E is the incident energy and p the pressure in atmospheric units. Consequently, in an equivalent

point cluster, the total number of electrons is given by,

N = nL f =
1
2

10−7 pE
√

λR (2.19)

They suggested that via their model, reflections observed at altitudes as low as 10 km for E ≥ 1015eV

were possibly from such cosmic ray ionization trails. However, no definitive observations were ever

reported.

In later discussions, it was suggested that the point cluster method would not lead to coherent scat-

tering due to the spread of shower electrons in the cascade process. In addition, and more importantly

attenuation is caused by the scattering of the oscillating electrons from neutral molecules that interfere

with the coherence oscillation of the plasma. This decrease in scattered energy is given by [45] and

claimed to reduce the detectable cosmic ray energy by as much as 30 dB [38],

1
1 +( νc

πν0
)2 , (2.20)

where νc is the collision frequency and ν0 the plasma frequency.

It has now been shown that the low-energy threshold initially suggested by Blackett and Lovell is

unlikely, and an energy threshold of E ∼ 1019eV is more realistic.

While dampening can cause substantial signal attenuation, its effect may be mitigated by using a

bistatic configuration (see Fig. 2.11). In this case, the radar cross-section (RCS) is of order 4πA2/λ 2

higher than that of the monostatic radar [38]. Here λ is the electromagnetic wave wavelength, and A is

the target objects cross-sectional area.

While the radar cross section, σEAS is unknown, the bistatic radar equation yields,

PR

PT
=

GT

4πR2
T

σEAS
GR

4πR2
R

λ 2

4π
, (2.21)

where PT and PR are the transmitted and received power, GT and GR the transmitter and receiver antenna
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Fig. 2.11 Bi - static Radar Configuration.

gains, RT and RR the distance to the ionization trail from the transmitter and receiver respectively, λ the

wavelength of the transmitted signal and σ the radar cross-section (RCS).

As the over-dense regime is likely to be the most significant contributor for radio reflection of EAS,

and since rc << λ (Rayleigh regime), where λ is the radar wavelength, the shower can be approximated

as a ’thin wire’, where the RCS is given by,

σEAS =
πL2sin2θ [

sin( 2πL
λ

cosθ)
2πL

λ
cos

]2

(π

2 )2 +(ln λ

γπrcsinθ
)2

cos4
φ (2.22)

with L the length of the wire, rc the radius of the wire, γ = 1.78, θ the angle between the wire and the

direction of incidence, and φ the angle between the polarization direction and the plane defined by the

wire and the direction of incidence [46].

Fig. 2.12 shows the RCS for 1019 and 1020 eV showers at varying zenith angles and a constant θ =

45◦ assuming a vertically polarized incident signal, as calculated using CORSIKA simulations.

In addition, at the receiver, the noise power is given by PN = KBTsB, where KB is Boltzmann’s

constant, Ts the system noise temperature and B is the noise bandwidth. The received signal-to-noise

ratio at the receiver is then,

S/N =
k

R2
RR2

T
(2.23)

where,

k =
PT GT σEASGRλ 2

(4π)3KBTsB
(2.24)

Assuming, PT = 40 KW, GT = 22 dBi, GR = 12 dBi , λ = 5.545 m, σEAS = 400 cm2 , B = 24 MHz, Ts

= 300 K and taking the separation between the Transmitter and Receiver to be 40 km, Fig. 2.13 shows
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Fig. 2.12 RCS for 1019 and 1020 eV showers at varying zenith angles and a constant θ = 45◦.

the isocontour lines for the signal-to-noise ratio in the bi-static plane in this particularly optimistic case

without considering attenuation due to collisional dampening. Here the cross-section refers to a physical

cross-section of ∼ 2 cm× 200 cm, or roughly the dimensions of the over-dense regime. The effective

area is limited by the beamwidth of the transmitter and receiver antennas.

This bi-static configuration results in a Doppler shift,

f =
1
λ

d
dt

[RT + RR] (2.25)

where RT and RR are the line of sight from the transmitter and receiver to the target respectively and λ

the wavelength of the transmitted signal. While the target moves near the speed of light, the distances

RT and RR evolve slowly over time.

This can be expressed as,

f = 2 f0cosδcosβ/2 (2.26)

where f0 is the frequency of the transmitted signal, β the bistatic angle and δ the angle between the

direction along which the target is moving and the bisector of the bistatic angle.

As the transmitting frequency is constant and since the path lengths are time-dependent the received

signal is a Doppler like signal (chirp). The rate of change in frequency (chirp rate) is subsequently given

by,

κ =
∂ f
∂ t

= − f0c[
1

RT
+

1
RR

]sinα (2.27)
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Fig. 2.13 Signal-to-Noise iso-contours for PT = 40 KW, GT = 22 dBi, GR = 12 dBi , λ = 5.545 m, σEAS =
400 cm2, B = 24 MHz, Ts = 300 K and separation between Transmitter and Receiver 40 km. The dashed
purple line is the Lemniscate of Bernoulli (figure 8-like curve) at ∼ 22.1 dB and the black dashed lines
are the transmitter and receiver horizontal beamwidths of 10◦ and 72◦ respectively.

where α = δ +β/2, i.e., the angle between the line of sight between the receiver and the target and the

direction of the target.

Fig. 2.14 shows the dependence of the chirp rates between the transmitter and receiver as a function

of the horizontal distance from the receiver and the angle α .

2.3.2 Radar Detection of Relativistic Ionization Discs

Recent discussions have addressed the feasibility of radar detection of the relativistic shower front [7], [47]

and [48]. In this case, the shower front is treated as a disc rather than a cylinder. The side of the disc

has a smaller cross-section than the front; consequently the primary contribution to the scattered signal

is considered to be from this shower front as shown in Fig. 2.15.

Here a transmitter (T) illuminates the shower front and is scattered from an element of the plasma

in the shower front and received at the receiver (R). The geometry of the radar system is determined by

the distances from the shower core to the transmitter (dT ) and to the receiver (dR), together with their

azimuth angles (φT and φR) and the altitude of the transmitter (hT ) [7].

Given such a geometry, and since the shower front is continuously being created and destroyed, the

interference from the reflected signal from different stages of the shower results in a frequency up-shift.
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Fig. 2.14 Bistatic Radar Chirp Rates.
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Figure 1: Schematic diagram representing the considered radar system and reflection
from the plasma disk produced by a shower in the atmosphere. A ground-based radio
transmitter (T) emits a radio signal, which is scattered off an element of the plasma disk
and subsequently observed by the receiver antenna (R). The geometry of the radar system
is determined by the distances from the shower core to the transmitter (dT ) and to the
receiver (dR) together with their azimuth angles (ϕT and ϕR) and the altitude of the
transmitter (hT ).

transmitter (T) irradiates a disk-like static plasma left behind the shower
front. The radio signal is scattered by free electrons in the ionization trail
and subsequently received by the ground-based antenna (R). The geometry of
such a radar system is described conveniently by the cylindrical coordinates
of the transmitter and the receiver, i.e. by the distances from the shower
core to the transmitter (dT ) and to the receiver (dR), and by the angles ϕT

and ϕR. The altitude of the transmitter is given by hT , whereas the receiver
is at the ground level.

The system of coordinates XYZ is chosen in such a way that the plane
constructed by the X-axis and the shower axis is perpendicular to the ground.
Moreover, the X and Y axes lie at the ground level. The center of the coor-
dinate system is placed at the shower core, i.e. at the point of intersection
of the shower axis with the ground. The coordinate system of the disk-like
static plasma X ′Y ′Z ′ is simply created by rotating the XYZ frame of refer-
ence around Y-axis by the shower inclination angle |θs − π/2| and translating

5

Fig. 2.15 Schematic diagram representing the considered radar system and the reflection from a plasma
disk produced by a shower in the atmosphere. Taken from [7]
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2.4 Bistatic Radar UHECR Experiments

2.4 Bistatic Radar UHECR Experiments

A handful of attempts have been made to use a bi-static radar configuration to detect the forward scatter

of radio waves from UHECR induced air showers.

2.4.1 Mixed Apparatus for Radar Investigation of Atmospheric Cosmic-rays of High
Ionization (MARIACHI)

Located in Long Island, United States, MARIACHI consisted of 4 radar stations designed to detect radio

signals transmitted by local TV stations and reflected off of cosmic ray showers [8]. In addition, 12 mini

conventional scintillator detectors enabled coincidence measurements between radar and scintillator

detector triggers. Fig. 2.16 illustrates the schematic of this experiment.

The scintillation detector stations were located at high schools, with each detector comprising four

scintillators, each of 0.25m2, in classroom corners along with a counter in one of these corners. A Field

Programmable Gate Array provided logic enabling the triggering of a cosmic ray event and a Global

Positioning System with 100 ns timing accuracy provided an event time-stamp. Orthogonal Inverted

VEE dipole antennas provided directional information for radar echo candidate events, and data was

subsequently read out using PCR 1000 radio receivers.

2.4.2 TARA

The Telescope Array Radar (TARA) project is similar to the MARIACHI experiment but uses a dedi-

cated transmitter at 54.1 MHz as the radar source. In this bistatic configuration, the transmitter emits

the sounding signal, and a distant radar receiver detects radar echoes (chirp). TARA operates in con-

junction with a set of conventional cosmic ray detectors in a quiet noise environment at the Telescope

Array in Millard County, Utah (www.telescopearray.org/tara/).

Fig. 2.17 shows the layout of the TARA experiment, together with the Telescope Array’s fluores-

cence and surface array detectors.

The TARA receiver operates in Long Ridge, UT (39-14.560 N 113-05.291 W). The receiver antenna

is a dual polarized Log Periodic Dipole Antenna designed to match the expected radar echo in the

passband from 50 to 80 MHz. Details of the receiver antenna can be found in Chap. 3 and specifics of

the radar detector are given in Chap. 4.

The Transmitting facility is just outside the city limits of Hinckley, UT (39◦ 200′ 19.824” N, 112◦420′ 3.24”W ).

The station comprises a phased high-gain Yagi antenna array and the transmitter.

28



2.4 Bistatic Radar UHECR Experiments

Fig. 2.16 The MARIACHI experiment. Shower scintillation detectors and Radar Cosmic Ray Scattering
(RCRS) stations are pictured. Taken from [8].

Transmitter

In June 2009, conventional television programming transitioned from analog to digital in the United

States and subsequently vacated the analog TV channel 2 band. TARA received a 20 KW transmitter

from KUTV Salt Lake City and obtained a second one from KTVN Reno. TARA re-purposed this

transmitter equipment and currently broadcasts continuous wave signals as WF2XZZ at 54.1 MHz, just

above the amateur radio band ending at 54 MHz.

Fig. 2.18 shows a functional block diagram of the TARA transmitter.
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Fig. 2.17 The TARA experiment. Pictured are shower scintillation detectors and fluorescence detector
co-located with the radar echo station. Taken from [9]

Fig. 2.18 Schematic of the transmitter hardware configuration. Taken from [9]

Transmitting Antenna

The TARA transmitting antenna array consists of 8 narrow-band Yagi antennas, designed and manufac-

tured by M2 Antenna Systems, Inc. Each Yagi, constructed of aluminum, is capable of handling 10 kW

of continuous RF power and consists of 5 elements per antenna: a driven element, a reflector, and three

director elements. The elements are mounted on a 21.6’ long and 2" diameter boom. All elements are

constructed of aluminum tubing of 3/4" outer diameter. Each element, except for the driven element, is

constructed of two equal sections that are joined at the boom via 7/8" outer diameter sleeve elements.

Tab. 2.1 shows the dimensions of these elements and the spacing along the boom.

A balanced t-match is fed from a 4:1 coaxial balun that transforms the unbalanced 50 Ω input to the
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2.4 Bistatic Radar UHECR Experiments

Element Length (in) Position (in)
Reflector 107.625 -44.375
Driven 100.500 0.000
Director 1 99.500 51.125
Director 2 97.250 131.625
Director 3 97.00 193.625

Table 2.1 Length and relative boom position of antenna elements of the TARA Yagi Antennas. All
elements have a outer diameter of 3/4′′.

balanced 200 Ω used to drive the antenna. A 50 Ω 7/8" coaxial waveguide connects the balun to four

port power dividers. Further details on the transmitter power delivery can be found in [9].

The eight yagis are phased such that the forward gain is ∼ 22 dBi and the front to back ratio is

∼ 18 dB. Fig. 2.19 show measured points overlaid on an NEC model [10] for the radiation pattern of

the array in the XY and YZ-plane, respectively.
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Fig. 2.19 Simulated horizontal (top) and vertical (bottom) radiation pattern of a horizontally polarized
TARA phased YAGI Array, shown in blue. Red points represent field data taken using a dedicated
receiver antenna. Agreement between simulation and data is observed to be excellent. Taken from [9].
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Chapter 3

Log Periodic Dipole Antenna

In this chapter, we discuss the TARA Log Periodic Dipole Antenna’s (LPDA’s) used to capture EeV

cosmic ray radar reflections.

3.1 Theory of Operation

The TARA LPDA’s consist of a sequence of parallel linear dipoles close together. The lengths (Ln’s)

and spacings (Rn’s) of these dipoles logarithmically increase, as defined by the inverse of the geometric

ratio τ [49],
1
τ

=
L2

L1
=

Ln+1

Ln
=

R2

R1
=

Rn+1

Rn
(3.1)

with the spacing constant σ ,

σ =
Rn+1 −Rn

Ln+1
(3.2)

These constants determine the frequencies of operation for the LPDA: for TARA these are τ ∼ 0.82

and σ ∼ 0.54.

Successive dipoles are connected alternately to opposite sides of a transmission line with the feed

point at the end with the shorter elements. Fig. 3.1 shows an equivalent schematic of the receiver LPDA.

Tab. 3.1 gives the lengths and positions of the antenna elements on the boom from the front edge to the

back. All elements are constructed of aluminum tubing of 1/4 ′′ outer diameter (d).

Straight lines joining the antenna elements meet at a point called the virtual apex, forming an angle

2α , characteristic of antennas whose pattern and impedance is practically independent of frequency in

the band of operation. The angle α , the geometric ratio τ , and the scaling constant, σ are related by,

σ =
1− τ

4tanα
(3.3)
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L1
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d
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Rn-1

Ln
-1

Feed Point 

Fig. 3.1 TARA Log Periodic Dipole Antenna (LPDA) equivalent schematic. Virtual Apex angle, α , of
∼ 4.8◦.

As an electric field is incident on the antenna, near-resonant length elements of the exciting fre-

quency form the active region of the antenna and can be described as being some number of wavelengths

from the virtual apex. As the excitation frequency changes, the active region consequently changes but

remains the same number of wavelengths from this virtual apex (See Fig. 3.2). That is,

Ri

λi
= const., i = 1....n. (3.4)

As successive dipole elements are connected 180 degrees out of phase, relative to the active region,

the closely spaced shorter elements (< λ/2) have negligible current and provides capacitive impedance.

The larger spaced and longer elements (> λ/2) have small currents and the phase reversal provides

inductive impedance.
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3.2 Antenna Simulations with NEC

Element Length (in) Position (in)
1 21.875 3.625
2 26.625 18.0625
3 32.5 35.625
4 39.625 57.0
5 48.3125 83.125
6 58.3125 115

Table 3.1 Length and relative boom position of antenna elements of the TARA Log Periodic Dipole
Antennas. All elements have a diameter of 1/4 ′′.

L/
λ

R/λ

Active Region

Virtual 
Apex

2α

Fig. 3.2 TARA LPDA showing the active region (red), inductive elements(blue) and capacitive elements
(green) in response to an incident excitation frequency, as a consequence of phasing.

3.2 Antenna Simulations with NEC

Several parameters characterize an antenna: Antenna geometry, operating frequency, and the environ-

ment, particularly the type of ground. To get information on characteristics like directionality one must

solve the electric field integral equation (EFIE),

ε⃗ (⃗r) = −ıωµ

∫
V

G⃗(⃗r, r⃗′) j⃗(⃗r′)dr⃗′ (3.5)

where j⃗(⃗r′) is the current density located in the volume defined by the antenna geometry, µ = µ0µr

the permeability, and G⃗(⃗r, r⃗′) is the dyadic homogeneous Green’s function. [50] provides a detailed

treatment.
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3.2 Antenna Simulations with NEC

Numerical Electromagnetic Code (NEC) [10] is a simulation tool that employs the Method Of

Moments (MOM) to solve this EFIE numerically.

Equation 3.5 appears similar to the generalized form,

L(I) = E (3.6)

where L is a linear operator, E is the excitation source (electric field), and I is an unknown function

(current).

In MOM, I is first expanded into a sum of N weighted basis functions,

I ≈
N

∑
n=1

anIn (3.7)

where an are unknown weighting coefficients, and since L is a linear operator, one can write,

N

∑
n=1

anL(In) ≈ E (3.8)

The basis function (wire segment) in NEC is represented by,

anIn = An + Bnsink(s− sn)+Cncosk(s− sn) with |s− sn|< ln/2 (3.9)

where s is the position along the nth segment with center sn and length ln. NEC then solves for the

3N coefficients in equation 3.9 by applying boundary-conditions between segment junctions and at the

ends. A set of basis functions sum to give the overall current, as shown for a four-segment wire, e.g., in

Fig. 3.3.

NEC (TARA uses both NEC-2 and NEC-4) requires that the length of wire segments should not

exceed 1/10 th of the wavelength of operation to ensure accuracy. Tab. 3.2 gives the number of wire

segments used for each wire and the corresponding length per wire segment.

Element Segs Length (in)
1 11 0.33
2 11 1.64
3 11 3.24
4 11 5.18
5 13 6.40
6 15 7.67

Table 3.2 Number of wire segments for each wire and the corresponding length per segment.
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3.3 Antenna Characterization

Fig. 3.3 Current Basis Functions and their sum on a four wire segment. Taken from Ref. [10]

3.3 Antenna Characterization

Frequency-independent performance requires that the antenna appear electrically the same to the excit-

ing wave at all frequencies. TARA expects cosmic rays in the 50 to 80 MHz band, and correspondingly

the antenna has the minimum number of elements required in their respective active regions for response

over the desired passband. The length of the LPDA elements constrains the maximum and minimum

possible frequencies.

fmin ≈
c

4 · lmax
≈ 50MHz and fmax ≈

c
4 · lmin

≈ 135MHz (3.10)

The impedance of the antenna to a 50 Ω transmission line was measured in an anechoic chamber

and simulated using NEC4. The voltage standing wave ratio (VSWR) in terms of the magnitude of the

complex reflection coefficient (S11) is given by,

V SWR =
1 + |s11|
1−|s11|

, (3.11)

and is shown as a function of frequency in Fig. 3.4. A VSWR of 3.0 implies that 75% signal power is

transmitted from the antenna to the environment at a given frequency.

At time t, the electric field arriving at the antenna from some direction (θ ,φ ) is a transverse two-

component vector given by,

E⃗(t) = e⃗θ Eθ (t)+ e⃗φ Eφ (t) (3.12)
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Fig. 3.4 Overlay of SWR of a horizontally polarized TARA LPDA as measured in the KU anechoic
chamber compared with NEC simulation.

where θ and φ denote independent polarizations (the radiation electric field is only transverse and for

this reason has no component Er). Fig. 3.5 depicts the coordinate system. The field can be linearly,

circularly or elliptically polarized.

Of particular interest at some time t is the electric field in the antenna’s far field relative to that of

some isotropic antenna and as a function of angular space. The antenna power measured in dBi (decibels

w.r.t isotropic) is described as,

Pi(θ ,φ) = 10log10
S(θ ,φ)

S(θ ,φ)i
(3.13)

where,

S(θ ,φ) = [E2
θ (θ ,φ)+ E2

φ (θ ,φ)]/Z0 (3.14)

is the Poynting Vector of an isotropic antenna in its far field and Z0 ∼ 377Ω the intrinsic impedance of

free space.

Fig. 3.6 shows measured points overlaid on a NEC model for the radiation pattern of the antenna in

the XY-plane. Transmission coefficient (S21) measurement give a measure of the total transmitted power

of a wave relative to an incident wave. These measurements were made using two identical horizontally

polarized LPDA’s at a separation of 5λ at the carrier frequency of 54.1 MHz. As the measurements

were relative, not absolute, a uniform scale factor was determined by minimizing χ2 between the model

and data.

Lowering a horizontally polarized dipole antenna from some height, again at the carrier frequency,

and measuring the received power at a horizontally polarized LPDA on the ground enabled confirmation

of the radiation pattern in the YZ-plane. As previously, a χ2 minimization between measurement and

simulation was performed. (See Fig. 3.7)
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Fig. 3.5 Spherical Coordinate System used for defining antenna geometry.
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Fig. 3.6 Radiation pattern in the XY-plane of a horizontally polarized TARA LPDA at the transmitter
sounding frequency of 54.1 MHz. Beamwidths (3 dB below peak gain) are shown with red lines. Black
points show field measurements.
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Fig. 3.7 Radiation pattern in the YZ-plane of a horizontally polarized TARA LPDA at the transmitter
sounding frequency of 54.1 MHz. Beamwidths (3 dB below peak gain) are shown with red lines. Black
points show field measurements.

In the case of the radiation pattern plot in the YZ-plane, a ground plane effect is seen due to the

superposition of the direct wave on the antenna and that of the wave reflected from the ground.

For a vertically polarized antenna, the radiation pattern is expected to be similar but switched in the

E(XZ) and H(YZ) planes.

A property associated with the radiation pattern is the half-power beamwidth, φHPBW and θHPBW in

the antenna E and H planes respectively, defined as the points where the power decreases by 3 dB. The

relationship between the half-power beamwidths and power is given by,

θHPBW φHPBW ∼= ΩA =
∫

φ=2π

φ=0

∫
θ=π

θ=0
Pi(θ ,φ)sinθdθdφ , (3.15)

where ΩA is the beam area, defined as the solid angle through which most of the power radiates.

Fig. 3.8 and Fig. 3.9 show the horizontal half-power beamwidth and the front-to-back ratio of the

antenna measured in the KU anechoic chamber.

3.4 Effective Height

The relationship between the terminal voltage at the antenna feeds and the incident electric field [51] is

given by,

V = h⃗ · E⃗ = hEcosθ , (3.16)

where h is the effective height and θ the angle between the electric field polarization and the dipole.
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Fig. 3.8 Beamwidth of a horizontally polarized TARA LPDA, as measured in the KU anechoic chamber.
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Fig. 3.9 Front-to-Back ratio of a horizontally polarized TARA LPDA, as measured in the KU anechoic
chamber and an overlay of NEC simulation. The discrepancy is likely due to differences in the height
of the antenna while taking the measurement (∼ 6 f t.) vs. simulation (12 f t.).
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3.5 Galactic Floor

A detailed discussion of the effective height is presented in [52] and is given by (see Fig. 3.10),

h( f ) = 2×
√

G
4π

c2

f 2
Z
Z0

(3.17)

where G is the unit-less gain, c the speed of light, f the frequency, Z the impedance at the antenna

terminals and Z0 the impedance of free space.
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Fig. 3.10 Effective Height of the TARA LPDA.

3.5 Galactic Floor

In any RF receiver system, sensitivity is limited by the combination of external noise entering through

the antenna and internal noise from various sources like low-noise amplifiers and other resistive losses

from filters, cables, and couplers. The sky, earth, and antenna resistive loss generate noise entering the

antenna. Diffuse radio noise from the galactic plane is non-polarized and is the dominant noise source

in the TARA frequency band.

After accounting for the amplifier and instrumental gains and losses, the observed noise background

can be compared with the irreducible galactic noise background [53] across the passband. Specifically,

toward the South Galactic Plane the spectrum of specific intensity in units of Wm−2Hz−1sr−1 is given

by,

Iν = Igν
−0.52 1− exp[−τ(ν)]

τ(ν)
+ Iegν

−0.80exp[−τ(ν)], (3.18)

where ν is in MHz, the two terms Ig and Ieg correspond to galactic and extragalactic contributions
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3.5 Galactic Floor

respectively and τ(ν) is the opacity in the polar direction. The parameter values are

Ig = 2.48×10−20, Ieg = 1.06×10−20,τ(ν) = 5.0ν
−2.1. (3.19)

The apparent brightness temperature, Tb (figure 3.11), is then related by the Rayleigh-Jeans Law:

kTb = Iνc2/2ν
2. (3.20)
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Fig. 3.11 Apparent brightness temperature of the sky.

The system noise was first measured using the LPDA, 100ft of LMR-400 cable, a front end module

comprising a 61 dB amplifier (MITEQ AU - 1525), FM notch filter (Mini-Circuits NBSP - 108+), a

high pass and low pass filter and a HP 54542C oscilloscope sampling at 250 MSa/s with 32768 samples

being taken in so-called snapshots every 30 seconds. See Fig. 3.12.

+V

-V

250 MSa/s , 32768 Sa

100 ft LMR 400 Cable

Fig. 3.12 An experimental setup to measure average system noise. Snapshots were taken every 30
seconds for 1 week.
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3.5 Galactic Floor

The average measured system noise is calibrated by removing the effects of individual components

in the receiver RF chain from the average snapshot spectra to determine the absolute received power.

Without any scaling, the corrected received power compares well with the Galactic expectation [54]

(see Fig. 3.14). Principal components, for which adjustments are made, include filters and amplifiers

measured via the transmission coefficient, and also the transmission line using the manufacturer’s at-

tenuation per unit-length data (Fig. 3.13). Transmission line attenuation is found via,

Attenuation(dB)/100 f t = c·
√

(F [MHz])+(0.000260)·F [MHz] (3.21)

where the constant c = 0.075550 for LMR - 600 and c = 0.122290 for LMR - 400 cable.
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Fig. 3.13 Attenuation in dB per 100 ft of the LMR - 600 and LMR - 400 transmission lines.

Anthropogenic noise sources are transient and noise is absent in the measurement band due to the

receiver site’s remote location. In this frequency region, galactic noise dominates thermal and other

noise sources.
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Fig. 3.14 Average receiver system noise floor (green) Power Spectral Density (PSD) in dBm/Hz super-
imposed with a fit to the known galactic background noise (red dashed line). System attenuation, filters,
and amplifiers were accounted for in calculating the absolute received power.
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Chapter 4

Cosmic Ray Detector

In order to detect cosmic ray chirps while also adding stereoscopic measurement capabilities in a

radio-quiet environment, receiver stations have been developed. These remote stations have a mostly

analog data acquisition system that has low power consumption and at a cost that is comparatively in-

expensive. This chapter includes discussions on the triggering logic, powering, and the communication

system and some specific details of hardware components.

4.1 Station Structure

The station is designed to detect chirp echoes that have low signal-to-noise ratios. A dual-polarized

LPDA (Chapter 3) feeds the two station channel inputs. The station consists of four basic components:

the Mixer Module, Chirp Acquisition Module (CAM), Transient Detector Apparatus (TDA), Current

Voltage Temperature (IVT) Board and the System Health Monitor (SHM). Fig. 4.1 shows these com-

ponents that are powered via solar panels, while a GHz transceiver provides communications with the

Longridge fluorescence detector station, which houses Internet communications. A discussion of these

components, as well as the powering and communications systems follow.

4.2 Mixer Module

The signal of interest is a chirp signal that has duration Tc seconds, a changing Amplitude A(t) with

start phase φ0, start frequency f0, stop frequency f1 and chirp rate κ Hz/s. Both up and down chirps are

treated identically in the detector. Fig. 4.2 is an example of the signal of interest. Assuming that it is
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4.2 Mixer Module

Fig. 4.1 Construction schematic showing the different Components of the TARA detector. Courtesy
Kenneth Ratzlaff, Instrumentation Design Lab, KU.

centered around time t = 0, such a chirp signal can be written as,

s(t) = A(t)sin(φ0 + 2π f0t + πκt2) (4.1)

To detect the presence of the signal s(t) without prior knowledge of the chirp rate κ , the signal is

first down-converted to a monotone. To achieve this, the signal is mixed with a delayed copy of itself,

i.e s(t)
⊗

s(t − τ) [55], as depicted in the radar block diagram in Fig. 4.3.

For an incident chirp signal, the non-linear components in the mixer result in a product term that

yields a monotone at a beat frequency

f = κτ, (4.2)

where τ is the delay time. This delay is created with LMR-600 cable, which introduces negligible losses.

This is illustrated in Fig. 4.4, where a -10 MHz/µs chirp is down-converted to a 1 MHz monotone (100

ft of LMR-600 cable was used here).

Signal "de-chirping" is done in the mixer module consisting of Radio Frequency (RF) components

as shown in Fig. 4.5. This mixer module receives both antenna channels.

The mixer module components for channel 1 are: a splitter (ZMSC-4-1-BR, Mini-Circuits), mixer

(ZX05-1L-S+, Mini-Circuits), filter (SLP-1.9+, Mini-Circuits), amplifier (ZFL-500LN+B, Mini-Circuits)

and bias tee (ZFBT-4RG-FT, Mini-Circuits). In addition to copies of the incoming signal used in de-
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48



4.2 Mixer Module

TOFPGA

+
V

-V

+
V

-V

      B
PF

63 - 77 M
H

z

     B
PF

D
C
 - 1.9 M

H
z

LO

R
F

IF

D
elay

A
ntenna

200 M
S
a/s

A
D

C

A
D

C

A
D

C

A
D

C

A
D

C

4 M
S
a/s

4 M
S
a/s

4 M
S
a/s

4 M
S
a/s

100ns

B
PF A

B
PF B

B
PF C

B
PF D

Fig.4.3
R

adar
block

diagram
show

ing
the

dow
n-conversion

process
along

w
ith

the
filtering

and
enveloping

process.

49



4.2 Mixer Module
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Fig. 4.4 Top: Power spectrum of a -10 MHz/µs chirp created by a signal generator, prior to mixing.
Bottom: power spectrum of a 1 MHz monotone signal after signal mixing and passing through a
low pass filter. The chirp is evident as the left-most peak in this distribution. The 24 MHz peak and
the 48 MHz harmonic is likely due to a Serial Peripheral Interface(SPI).
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chirping, additional copies are sent to a TDA and a High-Speed ADC.

For Channel 2, the mixer module consists only of a bias tee (ZFBT-4RG-FT, Mini-Circuits) leading

into a TDA.

Fig. 4.5 Block diagram showing the different components of the mixer module. Courtesy Kenneth Rat-
zlaff, Instrumentation Design Lab, KU.

4.3 Triggering Mechanism

The expected value of chirp rates from EAS echoes are typically between -10 to -1 MHz/µs [9] (see

Chapter 2). Consequently, with 95 ns delay, the down-converted signal has a frequency between ∼100

kHz and 1 MHz. To trigger, the mixed signal is split into multiple copies. Each copy is then passed

through a bandpass filter and an envelope detector. Different frequency bands are then compared by

majority logic in a Field Programmable Gate Array (FPGA) , requiring no more than two bands to form

a trigger in order to suppress impulsive noise. Each of the frequency banded outputs corresponds to a

separate range of chirp rates.

To illustrate the triggering mechanism, in the oscilloscope-based example in Fig. 4.6, after mixing

and filtering, the signal is passed through a power detector (8471D; Agilent, Inc.). Here, a chirp with
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4.4 Chirp Acquisition Module (CAM)

0 dB SNR at a rate of -1 MHz/µs is first band-pass filtered (41–100 MHz) and then amplified by 20

dB. Next, the signal is mixed and low-pass filtered (DC-1.9 MHz) and then passed through the Agilent

power detector.

4.4 Chirp Acquisition Module (CAM)

The CAM is an embedded system with a modular design that provides hardware and software integra-

tion for chirp detection. It consists of five basic parts: Trigger Board, High-Speed Board, FPGA, Global

Positioning System (GPS) and a Single Board Computer (SBC) as shown in Fig. 4.7. A description of

each of these subsystems follows.

4.4.1 Trigger Board

Fig. 4.8 shows a general layout of the Triggering board.

The input to the trigger board is an SMA female connection. The input signal is first split into four

copies, and then each passed through a bandpass filter followed by an envelope detector (see Fig. A.2).

The bandpass filters are Butterworth Pi filters with passbands as given in Table. 4.1 and Bode plot in

Fig. 4.9.

Channel 3dB Low Pass Cut Off (KHz) 3dB High Pass Cut Off (KHz) 3dB Band-Width (KHz)
A 344 18 326
B 570 240 330
C 864 549 315
D 1117 818 308

Table 4.1 Passband of the Butterworth Pi Filters and the corresponding Channels.

The envelope detector consists of a rectifying diode followed by an RC combination that allows the

output waveform to follow the envelope of the signal [56]. Fig. 4.10 shows a simulated 50 KHz sine

wave signal passed through an envelope detector. The Figure illustrates the subsequent response in the

four different signal paths.

Next, the four channels are passed into the ADC (AD80066) [57], operating from a 5V supply.

The ADC is packaged in a Small-Shrink-Outline-28-Package (SSOP-28 package) [57] and nominally

consumes 490 mW. It runs in the Sample and Hold Amplifier (SHA) mode with the 16-bit output

multiplexed into 8-bit words and accessed in two read cycles clocking at 3MHz per channel. Fig. 4.11

shows the read operation timing diagram.

The ADC register is programmed via the Serial Peripheral Interface (SPI) Bus at 24MHz as shown

in the timing diagram in Fig. 4.12.
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Fig. 4.6 Top: 0 dB SNR and 1 MHz/µs chirp embedded in noise prior to "de-
chirping". Second from top: The monotone signal after input chirp is mixed
with delayed copy of itself and passed through a low-pass filter. Bottom:
Monotone passed through the Agilent 8471D power detector.
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Fig. 4.7 Elements of the CAM unit showing the communications protocols.

Fig. 4.8 Trigger Board Schematics. Courtesy Rob Young, Instrumentation Design Lab, KU.
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Fig. 4.9 Bode plot for the four bandpass filters.
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Fig. 4.10 A 50 KHz sine wave signal response from the envelope detector in each signal path.

The data are transferred via the FPGA Peripheral module (Pmod) interface for triggering (see

Sec. 4.4.3).

The GPS module (i-Lotus M12M) is commercially available and mounted on the Triggering Board

as well. Fig. A.3 shows the connections between the FPGA, SBC, and the GPS and Triggering Board.
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Fig. 4.11 Read operation timing for the Analog Devices AD80066 ADC. 16 bits are multiplexed as two
8-bit words at 3 MHz per channel.

Fig. 4.12 SPI Timing for the Analog Devices AD80066 ADC. SCLK is the 24MHz transfer rate clock;
16 bits are transferred while valid programming i.e while SLOAD is pulled low.

4.4.2 High-Speed Board

The TARA High-Speed Board is a commercially available AD9634 Evaluation Board [58]. The board

consists of a 12-bit ADC sampling up to 250 MHz, with a total power consumption of 360mW. The

ADC clocks at 200 MHz and uses a 1.8V SPI port at 24 MHz for register programming and read-back

(see Fig 4.13).

Fig. 4.13 SPI Timing for the Analog Devices AD9634 ADC. SCLK is the 24MHz transfer rate clock; 8
bits are transferred while valid programming, i.e. while SLOAD is pulled low.

Differential signaling provides superior common-mode noise rejection. 12-bit words are transferred

using a custom adapter (Fig. A.4) between the Evaluation Board’s Low Voltage Differential Signaling

(LVDS) parallel output port and the Very High Density Cable (VHDC) on the FPGA. In the next section,

we discuss the timing details.

4.4.3 FPGA

The CAM uses the Xilinx Spartan 6 FPGA based Nexsys 3 digital system board [11].

To configure the FPGA, the configuration file saved with a ’.mcs’ extension is first stored in a non-

volatile parallel Phase Change Memory (PCM) device. This is then transferred to the FPGA on power

up via the BPI-UP port. On the development board, this is one of the four possible configuration modes

and is achieved by removing all connections on the J8 jumper [11] (See Fig. 4.14)
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After power-on, the Spartan-6 FPGA board must be configured (or programmed) before it can perform 
any functions. The FPGA can be configured in one of four ways:  a PC can use the Adept "USB Prog" 
port to program the FPGA any time power is on; a configuration file stored in the non-volatile parallel 
PCM device can be transferred to the FPGA at power-on using the BPI-UP port; a file stored in the 
non-volatile serial (SPI) PCM device can be transferred to the FPGA using the SPI port; or a 
programming file can be transferred from a USB memory stick attached to the USB HID port. An on-
board "mode" jumper (J8) selects between the programming modes as shown in the J8 Mode legend 
in the figure below.  JTAG Mode can be accessed at any time without changing jumpers. 
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Programming files are stored in SRAM-based memory cells within the FPGA. This data defines the 
FPGA’s  logic  functions  and  circuit  connections, and it remains valid until it is erased by removing 
board power, by pressing the reset button attached to the PROG input, or by writing a new 
configuration file using the JTAG port. 
 
FPGA configuration files transferred via the JTAG port use the .bin or .svf file types, files transferred 
from a USB stick use the .bit file type, and BPI or SPI programming files can use .bit, .bin, or .mcs 
types. The ISE/WebPack or EDK software from Xilinx can create bit, svf, bin, or mcs files from VHDL, 
Verilog, or schematic-based  source  files  (EDK  is  used  for  MicroBlaze™  embedded processor-based 
designs). Digilent's Adept software or Xilinx's iMPACT software can be used to program the FPGA or 
ROMs using the Adept USB port. 
 
During JTAG programming, a .bit or .svf file is transferred from the PC to the FPGA using the Adept 
USB port. When programming a non-volatile PCM device, a .bit, .bin, or .mcs file is transferred to the 
in a two-step process. First, the FPGA is programmed with a circuit that can program PCM devices, 
and then data is transferred to the PCM device via the FPGA circuit (this complexity is hidden from 
the user – a  simple  “program  ROM”  interface  is  presented  by  the  programming  software. Note the 
PCM devices are next-generation Flash ROM devices, and they are often referred to as "Flash" or 
"ROM" memory). After the PCM device has been programmed, it can automatically configure the 
FPGA at a subsequent power-on or reset event as determined by the J8 jumper setting. Programming 
files stored in the PCM devices will remain until they are overwritten, regardless of power-cycle 
events. 
 
The FPGA can be programmed from a memory stick attached to the USB-HID port if the stick 
contains a single .bit configuration file in the root directory, the J8 Programming Mode jumper is set to 

Fig. 4.14 Spartan 6 Programming via BPI port (BPI prom 28F128P30). Taken from [11].

The Nexys3 board includes a single 100MHz Complementary metal–oxide–semiconductor (CMOS)

oscillator connected to pin V10 [11](V10 is the GCLK0 input in bank 2). Phase Locked Loop (PLL) ,

and Digital Clock Manager (DCM) features on the board can be used to synthesize other frequencies.

The DCM is configured to produce two 48 MHz clocks (see Fig. 4.15).

CLK_IN

RESET

CLK_OUT1

CLK_OUT2

LOCKED

FPGA CLK (100 MHz)

48 MHz, 0° phase, 50% duty cycle
616.667 ps pk-to-pk jitter, 150.000 ps 
phase error

48 MHz, 0° phase, 50% duty cycle
616.667 ps pk-to-pk jitter, 150.000 ps 
phase error

Fig. 4.15 Nexsys 3 board’s 100 MHz CMOS oscillator and two 48 MHz clocks synthesized in the
FPGA.

These are then further sub-divided to synthesize clocks for transfer and synchronization between

peripheral boards and other functions, as shown in Fig. 4.16 and Fig. 4.17.

The triggering board connects to the FPGA development board via the Pmod connector. These are

2x6 right-angle, 100-mil female connectors that mate with standard 2x6 pin headers [11]. Each set of

12-pin connector comprise eight logic signals and a pair of 3.3V VCC and ground signals (4.18) [11].

Fig A.3 shows the connections.

Words from the triggering board are de-serialized from the parallel input ports in the FPGA via the

implementation of a Finite State Machine (FSM). Once shifted in, a comparator is implemented, and
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divide by 2
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CDS CLK2 (CLK For Synchronizing Triggering 
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Fig. 4.16 Schematic illustrating synthesis of secondary triggering clocks from a 48 MHz clock.

divide by 2

48 MHz CLK

Inv.

24 MHz CLK
(FSM CLK For Configuration Of 
Triggering & High Speed Board)

24 MHz CLK
(SPI CLK For AD80066 & AD9634)

Fig. 4.17 Synthesis of registry configuration and data transfer clocks from the 48 MHz clock.

8 signals
GNDVCC

Pin 1
Pin 6

Pin 12

Fig. 4.18 Pmod connector with eight logic signals, two grounds and two 3.3V VCC per Pmod.

each channel triggers only if at least one of the following conditions are satisfied,

A>C and A> D (4.3)

B> D and (B> A or B>C) (4.4)

C > A and (C > B or C > D) (4.5)
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A B C D (((¬A)∧ (¬B))⊕ ((¬C)∧ (¬D)))⊕ ((B∧C)⊕ (¬((B∧C)|(A∨D))))

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Table 4.2 Truth Table for the four input channel triggering (see Fig. 4.9).

D> A and D> B (4.6)

along with the Threshold condition,

A> T hreshold or B> T hreshold or C > T hreshold or D> T hreshold (4.7)

which is imposed both for redundancy and also to ensure that no more than two channels initiate an event

trigger. All four channels are assessed as given in the truth table in Tab. 4.2 and shown in Fig. 4.19.

A snapshot trigger used to measure ambient noise is also implemented on 0xFF clock cycles of the

GPS Pulse Per Second (PPS) clock. A trigger can, for this reason, be registered either on a snapshot

trigger or an event trigger based on the four channel comparator, as shown in Fig 4.20.

To support LVDS signaling, signals to the VHDC connector are routed as matched pairs with the

corresponding fpga pins located in I/O bank0. These are powered at 2.5V [11]. There are twenty

matched pairs of data signals, twenty ground signals, and eight power signals on the VHDC connector

[11] (see Fig. 4.21).

The 200 MHz differential clock outputs from the High-Speed Board are brought into the FPGA and

used in frequency synthesis. The DCM is configured to produce two clocks at 200 MHz from these

input clocks (see Fig. 4.22).

The AD9634 ADC sends even/odd bits on the rising/falling edge of the sampling clock. A Double
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Fig. 4.19 Event triggering logic for the four input signals (A,B,C,D) and Threshold (Th).
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Fig. 4.20 Triggering logic for a comparator based event and a GPS PPS based snapshot trigger
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asserted,  then  a  “7”  will  be  displayed in digit position 2. If AN0 and CB, CC are driven for 4ms, and 
then  A1  and  CA,  CB,  CC  are  driven  for  4ms  in  an  endless  succession,  the  display  will  show  “17”  in  the  
first two digits. An example timing diagram for a four-digit controller is provided. 
 
 
Expansion Connectors 
 
 
The Nexys3 board has a 68-pin VHDC connector for high-speed/parallel I/O, and an 8-pin Pmod 
connector for lower speed and lower pin-count I/O.  
 
VHDC Connector 
 
The VHDC connector includes 40 data signals (routed as 20 impedance-controlled matched pairs), 20 
grounds (one per pair), and eight power signals. This connector, commonly used for SCSI-3 
applications, can accommodate data rates of several hundred megahertz on every pin. Both board-to-
board and board-to-cable mating connectors are available. Data sheets for the VHDC connector and 
for mating board and cable connectors can be found on the Digilent website, as well as on other 
vendor and distributor websites. Mating connectors and cables of various lengths are also available 
from Digilent and from distributors. 
 
All FPGA pins routed to the VHDC connector are located in FPGA I/O bank0. The FPGA's bank0 I/O 
power supply pins and the VHDC connector's four Vcc pins are connected together by a small, 
segregated power supply plane in the PCB. This sub-plane can be connected to 2.5V or 3.3V, 
depending on the position of jumper JP8. This arrangement allows peripheral boards and the FPGA to 
share the same Vcc and signaling voltage across the connector, whether it be 3.3V or 2.5V. 
 
The unregulated board voltage VU5V0 (nominally 5V) is also routed to four other VHDC pins, 
supplying up to 1A of additional current to peripheral boards. A second jumper (JP4) allows the 
unregulated board voltage to be disconnected 
from the VHDC connector if desired. 
 
All  I/O’s  to  the  VHDC connector are routed as 
matched pairs to support LVDS signaling, 
commonly powered at 2.5V. The connector 
uses a symmetrical pinout (as reflected around 
the connector's vertical axis) so that peripheral 
boards as well as other system boards can be 
connected. Connector pins 15 and 49 are 
routed to FPGA clock input pins. 
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Fig. 4.21 Right: All FPGA pins routed to the VHDC connector are located in FPGA I/O bank0. Left:
40 data signals, 20 ground signals, and 8 power signals are found on the VHDC connector. Taken
from [11].
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CLK_P
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LOCKED
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200 MHz, 50% duty cycle
300 ns pk-to-pk jitter, 150 ps 
phase error
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Fig. 4.22 High-Speed Board’s 200 MHz differential clocks and subsequent FPGA synthesis of 200 MHz
clocks.

Data Rate (DDR) interface [59] is used between the FPGA and the ADC, as illustrated in Fig. 4.23.

C0
C1

d d+1 d+2 d+3 d+4 d+5 d+6 d+7D

d d+2 d+4 d+6Q0

d-1 d+1 d+3 d+5Q1

Fig. 4.23 Input Double Data Rate (IDDR2) is implemented to set even/odd bits on the clock ris-
ing/falling edge.

The bits are aligned per the C0 non-inverted clock, synthesized by use of an extra flip-flop as in

Fig. 4.24.

Input BUFfer Differential Signaling (IBUFDS) is a differential I/O primitive [59] that is instantiated

for the signals from the ADC and have two pins for the P and N channels of the differential signal (see

Fig. 4.25).

Bits are then serialized via an FSM and then stored in a circular buffer. The buffer has Random

Access Memory (RAM) depth of 213(8192) words and width of 16 bits. The actual width is 12 bits but

padded with four bits (bits 0,7,8,15 are redundant). Buffer read/write operations are at 200 MSa/s. The

Xilinx Block Memory Generator Wizard [60] generates the writing, reading and memory resources,

where one 9K Block RAM (BRAM) and seven 18K BRAMs are used (see Fig. 4.26).

Once a trigger is received, the 16-bit words of 213(8192) bit depth are written into a First In First
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Fig. 4.24 IDDR2 when DDR alignment is C0.

I

IB
O

Fig. 4.25 Differential Input Buffer Primitive.

Out (FIFO) buffer at 200 MSa/s. The SBC reads the 8-bit words of 214(16384) bit depth at 8 MSa/s (SPI

clock), i.e. it has a non-symmetric aspect ratio. The Xilinx FIFO Generator Wizard [61] instantiates

the writing, reading and memory resources, where eight 18K BRAMs and First Word Fall Through

(FWFT) are used (see Fig. 4.27).

Fig. 4.28 depicts the circular buffer to FIFO process.

In addition to the signal captured by the FPGA from the High-Speed Board, the Triggering infor-

mation is also saved and forms the header of the data (see Fig 4.29). The header replaces the first 8 bits

of raw data and subsequently invalidates the next 8 bits.

The SBC (Raspberry Pi rev 2.) sets the triggering threshold with transactions initiated using a

different chip select line than the one activated once an interrupt is initiated on the FPGA side. This

interrupt initiates when the FIFO buffer is full. However, due to latencies arising due to the crossing of

clock domains in the FIFO, three synchronous D flip-flops as shown in Fig. 4.30 are instantiated after

the assertion of full on the FIFO. An FSM controls the transfer logic between the FPGA and SBC.

In all transfers to/from the SBC(Master) and FPGA(Slave), an SPI clock at 8 MHz is used (see

Fig. 4.31).
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DOUTB[15:0]
FPGA CLK (200 MHz)
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FPGA CLK (200 MHz)
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Fig. 4.26 Block Memory Signals.
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Fig. 4.27 FIFO Signals.
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Read Ptr. (200 MSa/s,
depth : 8192 words, width : 16 bits)

Write Ptr. (200 MSa/s,
depth : 8192 words, width : 16 bits)

Write Ptr. (200 MSa/s,
depth : 8192 words, width : 16 bits)

Read Ptr. (8 MSa/s,
depth : 16384 words, width : 8 bits)

FIFO write on Trigger

True Dual Port RAM

First In First Out 

Fig. 4.28 Simple Dual Port RAM and FIFO Implementation

Triggered Data
(16382 words of 8 bit width)

Header
(8 Bits)

01234567

Header - Bit 0 : Forced, Bit 1 : D, Bit 2 : C, Bit 3 : B, Bit 4 : A, Bit 5 : Event Trigger  

Data - 16382 words (of 8 bit width) where bits 0 & 7 are redundant. 8191 words 
     (of 12 bit width) are valid ADC data. 

Invalid Data
(8 Bits)

16384 Words (8 bit width)

Fig. 4.29 Triggering Information and ADC Data.

4.4.4 GPS

The GPS unit (i-Lotus M12M) [62] is mounted on the Triggering Board for stability and power (see

Fig A.3). A Universal Asynchronous Receiver/Transmitter (UART) is used to transfer data from/to the

SBC. The GPS PPS is used as a counter to obtain snapshot triggers as described earlier in Sec. 4.4.3.

Fig. 4.32 shows the Functional Block diagram of the GPS to SBC and FPGA connections.

Timing information is periodically queried from the GPS unit and used to update the time on the

SBC.

D

CLK

D

CLK

D

CLK

Q Q QFULL INTERRUPT

Fig. 4.30 Implementation of D Flip Flop to assert an Interrupt signal.
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4.4 Chirp Acquisition Module (CAM)
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Fig. 4.32 GPS to FPGA and SBC Interface.

4.4.5 Single Board Computer (SBC)

The Single Board Computer used in the CAM is the commercially available Raspberry Pi Model B

Rev. 2 (RPi - B Rev 2). The RPi has the Broadcom BCM2835 SoC (System on Chip) that includes

the ARM1176JZF-S 700 MHz processor, VideoCore IV GPU, 512 MB RAM and access to other I/O

peripherals, and a separate three port USB Hub [63] (see Fig 4.33).

The RPi has a 26 (2× 13) pin 2.54 mm expansion header with 8 General Purpose Input/Output

(GPIO) pins. It also has dedicated peripherals such as SPI, UART along with 3.3V, 5V and GND
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Fig. 4.33 Functional Block Diagram of the Raspberry Pi Model B Rev. 2
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Fig. 4.34 Adafruit Prototyping Pi Plate showing the corresponding GPIO pins to FPGA and GPS

supply lines.

The board consists of a 32 GB SD card to which data are stored and also where a minimal Rasp-

bian Wheezy (118 MB image) is compiled with hard float support (3.6.11+ hardfp kernel). WiringPi

written in C for the BCM2835 provides access to the GPIO. The Adafruit Prototyping Pi Plate provides

convenient pin access to connect with the FPGA and GPS (see Fig. 4.34).

4.5 System Monitoring and Powering

In addition to the CAM, the Remote Station comprises several components to power the station and

monitor environmental variables. These components are the TDA Board, IVT Board, and the SHM.

In the Summer of 2013, a prototype station comprising just these components had been deployed to
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4.5 System Monitoring and Powering

acquire environmental and powering information. In the current station, modifications were made, and

the system was updated to integrate the CAM. A detailed description of the current powering and

operational systems follow.

4.5.1 TDA

The TDA continuously monitors ambient noise at the site by counting threshold-crossings. The thresh-

olds are set with Digital-to-Analog Converters that are remotely controlled through the System Health

Monitor (SHM). The measurement period, usually 10 seconds, is also controlled by the SHM. Fig. 4.35

shows a functional block diagram of the TDA. The TDA communicates via the Local Interconnect

Network (LIN) bus, designed with the robustness needed for automobile environments.

Fig. 4.35 Transient Detector Apparatus (TDA). Courtesy Kenneth Ratzlaff, Instrumentation Design Lab,
KU.

4.5.2 IVT Board

The IVT board provides power measurements to monitor the Photo-Voltaic (PV) battery-charging

system. Voltage and current are measured for both the PV power input and the Load power output

(Fig. 4.36). On the board, a temperature sensor is located to enable correction for the current sensors.

Heavy screw lugs accommodate the heavy cables that are required for currents that typically reach 10

Amps. As was the case for the TDA, a micro-controller provides analog-to-digital conversion, averages

over the measurement period and communicates with the SHM over the LIN bus.
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4.6 Chirp Calibration Unit (CCU)

Fig. 4.36 Current Voltage Temperature (IVT) Board. Courtesy Kenneth Ratzlaff, Instrumentation De-
sign Lab, KU.

4.5.3 SHM

The SHM has the functions of reporting on the environmental and operational status of the system and

of controlling the charging of the batteries (Fig. 4.37). The SHM gathers ambient noise data from the

TDA and power data from the IVT over a period that is programmable from 5 seconds to at least 10

minutes. Similarly, it measures the battery voltage using the ADC on the micro-controller. A real-time

clock with battery backup provides a time-stamp for each measurement cycle.

The SHM also controls the charging of the battery. A high-current solid-state relay (SSR) can switch

PV current off when the battery reaches capacity, and another SSR is used to turn the load off if the

battery voltage is too low. As illustrated in Fig. 4.38, hysteresis levels minimize oscillations. The thresh-

olds are remotely programmable. If, however, the voltage level becomes too low, the communications

channel also shuts down until the battery becomes sufficiently charged.

Data are stored on board using an SD card and are also sent to a communication channel. An

Ethernet appliance provides both raw TCP connection and a website. The data are streamed via the

raw TCP port, and the website provides a data display and interactive control of operational variables

including the battery charging thresholds, the TDA thresholds, the measurement period, and calibration

values.

4.6 Chirp Calibration Unit (CCU)

In order to calibrate the remote stations independently, a Chirp Calibration Unit has been deployed in

the field. Fig. 4.39 shows this unit that comprises a ’fat - dipole’, an Arduino with a monostable 555
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4.6 Chirp Calibration Unit (CCU)

Fig. 4.37 System Health Monitor (SHM). Courtesy Kenneth Ratzlaff, Instrumentation Design Lab, KU.

circuit, and a signal generator (SF1020). The output of the control circuit controls an SSR, which in

turn then triggers the signal generator. Fig. A.5 shows the control circuit for the chirp generator.

The dipole is tuned to a frequency of 70 MHz, however, in order to transmit a broadband chirp-like

signal the radius of the dipole was optimized to transmit efficiently up to 50 MHz. Stable chirps at

1 PPS, spanning 80 to 50 MHz and of a 20 µs duration every 2 hours for 10 seconds, i.e., ten chirp

signals, are produced.
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4.6 Chirp Calibration Unit (CCU)

Fig. 4.38 Threshold Settings on the System Health Monitor (SHM).

20 dB Attn
      SF 1020 
Signal Generator

Battery

  10 W
PV Panel 

 Controller
   Circuit Arduino

Fig. 4.39 Schematic of the Chirp Calibration Unit (CCU) Courtesy Steven Prohira, Dept. of Physics
and Astronomy, KU.
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Chapter 5

TARA Remote Station Detection of
UHECR’s

In this chapter, we discuss measurements taken using the Telescope Array Radar Remote Stations.

5.1 Snapshot Triggers

It is essential to understand the environment into which an observable cosmic ray may be embedded.

As mentioned previously, this was accomplished using snapshot triggers with the station prototype, de-

ployed in 2013. Snapshot triggers are taken every 255 seconds to sample the ambient noise at the remote

station location. These triggers are instantiated after 255 continuous pulses from the GPS clock pulsing

at 1 PPS. Since these snapshot triggers are unassociated with actual high-amplitude backgrounds, they

offer the opportunity to probe otherwise weak, but constant radio-frequency signals, such as that of the

Milky Way.

As the Earth rotates, the location of the Galactic center relative to the antenna heading (78◦ East of

North) changes, leading to a smooth variation in the measured noise floor. This variation is depicted

in Fig. 5.1, where both a fit to the measured signal centered at 70 MHz over a 5 MHz wide band is

superimposed along with the expected modulation by the Galactic Center on the measured signal at 70

MHz. We observe an apparent correlation in the phase of the known Galactic motion with bore-sight

of the receiver antennas, indicating good sensitivity to otherwise-weak signals. The measurements

made were taken from the horizontally polarized channel during the period from the 1st to the 14th of

December, 2014.

The behavior is seen at other frequencies as shown in Fig. 5.2. Here the relative angle is the differ-

ence between the azimuthal angle of the galactic center and the heading of the TARA LPDA.
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Fig. 5.1 Modulation of the RS2 antenna at 70 MHz. The green line is a least squares fit to the measured
power while the orange line is a least squares fit to the expected modulation due to the galactic center,
chosen to be Sagittarius A*. The measurements were taken from the horizontally polarized channel.

The measured noise level of Remote Station 2 superimposed on the expected Galactic noise floor

is shown in Fig. 5.3. The measurement again confirms that the Remote Stations are functioning well

enough to observe a high-energy cosmic ray if our putative radar model is correct.

5.2 Expected Event Rate

To quantify our expected signal event rate using the technique of radar reflections, an extensive library of

CORSIKA simulated showers were generated to calculate the lengths and radii of plasma. These were

estimated based on the energy deposited by the showers and the subsequent ionization electron density

in Chapter 2. Determining the RCS of a thin wire at various angles and obtaining the received power

from the bi-static radar equation using numerous locations within the baseline provides a distribution

of RCS vs. received chirp power. Given the TARA geometry and detector design the efficiency for

≥ 1019 eV has been calculated to be ∼ 10% based on the cumulative distribution function shown in

Fig. 5.4. Here a cut was made at 0 dB SNR based on the received signal power relative to the receiver

noise floor.

Fig. 5.5 shows the expected integrated event rate for the TARA Remote Station volume from 10 to

100 EeV. Here, we take dN/dE/dt/dΩ from the Telescope Array measurements and take into account

the efficiency of the detector and the flux of UHECR.
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Fig. 5.2 Modulation of the RS2 antenna at 70 MHz and 77 MHz. The orange line is a least squares fit
to the expected modulation due to the galactic center, chosen to be Sagittarius A*. The measurements
were taken from the horizontally polarized channel.

5.3 Calibration Events

The Chirp Calibration Unit (CCU) generates ten chirps every 2 hours. These chirps span from 80 to 50

MHz in 20 µs for an average slope of 1.5 MHz/µs. The calibration unit was placed ∼ 140 f t from the

two remote stations and subsequently used to trigger them. Fig. 5.6 shows the spectrogram of such a

chirp.

During the period from 20th to the 24th of January, 2015, both force-triggered and self-triggered

events were collected by the CAM. The CAM tags an event as either a force-triggered or self-triggered

event based on the header information received. The events during this period classified as such are

shown in the SNR vs. Chirp-rate plot in Fig. 5.7.

The SNR here is the ratio of the maximum signal power of an event to the RMS of noise collected

in the last 10µs of the event, so as to prevent signal contamination. The chirp rate is calculated using

the "de-chirping" algorithm described earlier, namely by taking the product of the signal with a delayed

copy of itself. The delay was chosen to be 1 µs, and the bin with the maximum signal power below

20 MHz/µs was selected to obtain the chirp rate for the event. The CCU triggered events are clearly

identifiable as a ∼ 1.48 MHz/µs line in the plot ranging from a SNR of ∼ 25 to 30 dB. However, the

forced triggered data also has comparable SNR due to interference from the Transmitter signal at 54.1

MHz. Applying a 5th order Butterworth bandpass filter (58 - 82 MHz) as shown in Fig. 5.8 mitigates

the problem, clearly indicating the need for further carrier attenuation at 54.1 MHz as part of future

upgrades.
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Fig. 5.3 The measured noise floor of the TARA LPDA using the Remote Station 2 DAQ, with the
expected noise floor superimposed (primarily galactic at these energies). The measurements made were
taken from the horizontally polarized channel.

5.4 Constraints on the Radar Cross Section

In the case, that there are no cosmic ray detections, we have investigated our numerical sensitivity to

the radar cross-section. The efficiency of the TARA detector can be folded into the known TA flux of

UHECR such that, for a 90% C.L, the upper limit on the Radar Cross Section (σlimit) can be obtained

from σlimit = σpred × Events Observed
Events Expected , where σpred is the expected RCS, Events Observed are the number

of cosmic ray events detected by the Remote Station and Events Expected are the number of events

expected accounting for detector inefficiencies. Fig. 5.9 shows the RCS limit assuming a particular

number of events detected for a live time of 1 year.
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the text.
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Fig. 5.6 Remote Station triggered chirp (data). Calibration chirp sent from CCU in the field.
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Fig. 5.7 Self and force-triggered events during the period from 20th to the 24th of January, 2015 for
RS2, prior to software-filtering contamination by the carrier at 54.1 MHz.
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Fig. 5.8 Self and Force-triggered events during the period from the 20th to the 24th of January, 2015
for RS2 after passing through a 5th order Butterworth bandpass filter (58 to 82 MHZ) to suppress
out-of-band noise.
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Chapter 6

Conclusion

The Telescope Array RAdar (TARA) detector is an ambitious project based on a remote sensing

technique known as bistatic radar that aims to probe large portions of the Earth’s surface in the quest

to measure cosmic ray induced radio echoes. Together with the Telescope Array in radio-quiet western

Utah, TARA’s pilot receiver and transmitter stations were deployed in 2011. This initial deployment

gave us insight into the detectability of air shower radar echoes. The receiver stations comprised an array

of Log Periodic Dipole Antennas. An oscilloscope-based data acquisition system was implemented for

noise calibration, including tracking galactic noise as the galactic plane migrates through the sky. That

experience laid the foundation for upgrades, including the construction of a dedicated transmitter station

in the summer of 2013 and deployment of additional remote receiver stations.

A prototype remote station was deployed in March of 2013, and for a period of one year collected

invaluable data regarding power budgeting and the ambient noise conditions in the Utah desert. These

results led to the eventual deployment of the first Remote Station in June of 2014 and was upgraded via

the addition of a second station in November of the same year.

At the core of these stations, an FPGA-embedded system provides logic for triggering and storing

raw data sampled at 200 MSa/s. These stations reduce costs relative to off-the-shelf commercial options

and add stereoscopic measurement capabilities for UHECR events.

In mid-January of 2015 a Chirp Calibration Unit was installed, and the detection of transmitted

chirps have demonstrated the working principle of the Remote Stations. Valuable insight has been

gained for future improvements on these stations including improvement in timing resolution for stereo-

scopic measurements. Going forward, data taken for a live-time of the order of months may eventually

provide sufficient statistics to answer some of the most intriguing questions in our Universe. Under-

standing the composition, anisotropy and energy of particles continuously bombarding Earth will ulti-

mately lead to an understanding of the most violent processes in the Cosmos.
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Astroparticle physics, at the intersection of astronomoy, cosmology and particle physics has a con-

tinuosly changing landscape. The TARA project implements a novel technique to detect cosmic ray

chirps and similar techniques are being proposed to detect cosmic neutrinos [64]. The remote stations

implementation for the detection of chirp signals may prove to be useful in similar applications.
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Appendix A

Schematics

CAM

Fig. A.1 shows the schematics of the power supply board for the CAM.

Triggering Board

Fig. A.2 shows the schematics of the Triggering board including the bandpass filters, envelope detectors

and the ADC.

Fig A.3 shows the connections between the FPGA, SBC and the GPS and Triggering Board.

High Speed Board

To provide superior common-mode noise rejection differential signalling is used and the 12-bit words

are transferred using a custom adapter (Fig. A.4) between the Evaluation Board’s LVDS (Low Voltage

Differential Signalling) parallel output port and the VHDC (Very High Density Cable) connector on the

FPGA.

Chirp Calibration Unit (CCU)

To clibrate the remote station a chirp calibration unit was deployed at the station location. Fig. A.5

shows the control circuit for the chirp generator.
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