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Abstract 

Acoustic wave propagations have been studied for a long time with both experimental and 

numerical methods. Most of the analytical solutions for wave propagations are considered for 

simple environments such as a homogeneous atmospheres. As a result, the analytical solutions are 

unable to be applied for complicated environments. Numerical methods have become more and 

more important in acoustics studies after decades of development. The finite difference time-

domain method (FDTD) is one of the most commonly used numerical methods in wave 

propagation studies. Compared with the other methods, the FDTD method is able to include many 

aspects of sound wave behaviors such as reflection, refraction, and diffraction in the physical 

problems. 

In this thesis, the linearized acoustic Euler equations coupled with the immersed boundary 

method are applied to investigate the sound wave propagation over complex environments. For 

the three-dimensional simulations of sound wave propagation in long distance, the moving domain 

method and parallel computing techniques are applied. Based on these approaches, the 

computational costs are significantly reduced and the simulation efficiency is greatly improved. 

When looking into the effects of high subsonic vortical flow, a high order WENO scheme is 

applied for the simulation. In this way the simulation stability can be achieved and the sound 

scattering of vortical flow can be studied. Then, the numerical scheme is applied to simulate an 

ultrasonic plane wave propagating through biological tissue. The linearized Euler acoustic 

equations coupled with the spatial fractional Laplacian operators are used for numerical 

simulations. The absorption and attenuation effects of the biological lossy media are successfully 

observed from the simulation results. Throughout this thesis, the simulation results are compared 
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with either experimental measurements or analytical solutions so that the accuracy of the 

implemented numerical scheme is validated.  
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1. Introduction 

Sound propagation under various environments has received a lot of interest during the 

past several decades because of its high practical value in engineering. First, the outdoor sound 

propagation study can be applied to noise control in Ref. [1]-[6]. The quality of human living could 

be greatly improved by controlling the noise that is generated from vehicles, railways, airplanes 

and factories. The early studies were focused on simple models involved with homogeneous 

environments and isentropic propagations. With the development of numerical methods and 

computational techniques, more complicated circumstances were considered such as impedance 

ground, nonhomogeneous atmospheric conditions, turbulence, vortical flow, barriers with 

different shapes, and long distance propagation. Nowadays the numerical simulations can give 

more and more accurate predictions for more generalized environments. In noise control studies, 

the most general factor for outdoor acoustics is the complex impedance of the ground. It is defined 

as the ratio of pressure amplitude to the normal component of velocity amplitude evaluated at the 

ground surface in Ref. [7]. Usually the ground surface can be divided into two types: rigid and 

porous. For rigid ground, such as glass or water, the incident sound wave will be completely 

reflected back without any transmissions into the ground. For porous ground, such as grass, snow 

or sand, part of the wave will be reflected back, while the other part will propagate into the ground 

and be absorbed. The parameter for determining how much wave can be reflected and absorbed in 

porous ground is called flow resistivity. 

Besides the applications for noise control, the study of ultrasound propagation in biological 

tissue can be applied in medical and therapeutic fields. This application can be categorized as the 

diagnostic application for signal processing and medical imaging in Ref. [8]-[13], and also as 
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therapeutic application. High intensity ultrasound can be used for tissue healing, ultrasonic surgery 

and destroying blood clots or internal stones in Ref. [14]-[19]. 

The research of sound propagation is also playing an extremely important role in the 

military filed. This technology that can be used for navigation, communication, detecting objects 

and tracking targets. The most famous application of this technology in the military is sonar, which 

is widely used in submarines.  

1.1 Background Review 

Sound propagation has been studied both analytically and numerically during the past 

decades. Since the analytical solutions are only capable in simple homogeneous circumstances, 

the numerical method becomes a powerful method when more realistic conditions are considered. 

So far there are many of numerical methods that have been developed for modeling acoustic waves, 

for example the Fast Field Program (FFP), Parabolic Equation Method (PEM), Boundary Element 

Method (BEM) and Finite Difference Time-Domain (FDTD) method.  

The FFP method uses a spatial Fourier transform to the wave equation which transforms 

spatial domain into the wave number domain in Ref. [20]. The physical sound solutions can be 

solved by an inverse Fourier transform, after solving the wave equations numerically in the wave 

number domain. The FFP method was first derived in Ref. [21]-[22] for two-dimensional sound 

propagation simulations in inhomogeneous atmospheres, and the three-dimensional FFP method 

was derived in Ref. [23]-[24] for moving atmospheres. This method is also introduced for 

underwater acoustics to study the effects of sound speed variations in Ref. [25]-[26]. In the early 

1980s it was adapted for atmospheric sound propagation in Ref. [27]-[31]. The FFP method can 

obtain accurate predictions of the sound field in the situation of a range-independent propagation 
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environment, but the disadvantage is that the method is limited to a horizontally stratified 

atmosphere and homogeneous ground surfaces.  

The PE method is based on the axis-symmetric approximation form of the parabolic wave 

equation. It was first introduced for electromagnetic wave propagation in Ref. [32], and after that 

the PE Method was widely applied in sound propagation studies. The two main formulations for 

the PE method are Green’s Function Parabolic Equation (GFPE) method, which was developed in 

Ref. [33]-[36], and the Crank-Nicholson Parabolic Equation (CNPE). A Wide Angle PE (WAPE) 

Method was introduced for sound propagation through a single vortex in Ref. [37]. For the GFPE 

method, Green’s function of a point source is used with Fourier transforms for sound wave 

propagation. For CNPE method, the Crank-Nicholson finite difference scheme is used for 

numerical evaluations. Gilbert and White first applied the two-dimensional PE method to 

atmospheric sound propagation in Ref. [38]-[39]. They predicted the outdoor sound propagation 

over an impedance ground, and the atmosphere profiles of both downward-refraction and upward-

refraction. Later, the PE method was applied successfully for underwater wave propagation in Ref. 

[40]-[41], long range sound propagation in the atmosphere in Ref. [42] and low-frequency sound 

propagation over a locally reacting boundary in Ref. [43]-[44]. Near the 21st century, the PE 

method was used for numerical simulations of sound wave propagation with complex topography 

in Ref. [45]-[52]. For sound wave propagation over inhomogeneous turbulent atmospheres, the PE 

method was applied by Chevret in Ref. [53] and Dallois in Ref. [54]. In the early 1990s, Collins 

introduced a PE starter called the self-starter in Ref. [55] which was based on high-order parabolic 

approximations. And this method was improved by using an operator of the split-step solution in 

Ref. [56]-[57]. 
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The Boundary Element Method (BEM) is another popular method for sound propagation 

numerical simulations. It was first introduced in the early 1960s in Ref. [58]. The BE method is 

typically applied to steady state problems such as radiation from an arbitrary source, and it was 

successfully used for time-domain numerical simulations in Ref. [59]-[61]. Chandler and 

Hothersall in Ref. [62] applied the BE method for wave propagation with complex terrain, and it 

was improved for solving meteorological influences in Ref. [63]. Later, the BE Method was used 

to solve Helmholtz equations in both bounded interior and unbounded exterior domains in Ref. 

[64]. One big advantage of the BE method is that only the boundary of the domain and interfaces 

need to be discretized instead of the entire computational domain.  

The Finite Difference Time-Domain (FDTD) method has become one of the most common 

tools for numerical simulations, and it has been widely used for outdoor sound propagation studies 

in recent years. Kelly first introduced a two-dimensional finite difference method for second order 

elastic wave equations in Ref. [65]-[66]. J. Vireux applied the FD method for shear vertical waves 

and shear horizontal waves in Ref. [67]-[68] by using the basic elastic wave equations with 

staggered grid. Later, the FD method was used for wave propagation studies under various 

circumstances such as sonic logging in Ref. [69]-[70], sound scattering by a single vortex in Ref. 

[71] and [72], wave propagation over rigid and impedance ground in Ref. [73]-[74], wave 

propagation over turbulent atmospheric flow in Ref. [75]-[76] and wave propagation over complex 

terrain in Ref. [77] and [78]. More recently Cotte et al. developed the time-domain impedance 

boundary conditions in Ref. [79] based on a recursive convolution method, and later Dragna et al. 

extended this method for two-dimensional long distance wave propagations in Ref. [80] for both 

homogeneous and downward reacting atmospheres. The FD method was also applied by Bohlen 

for three-dimensional wave propagation simulations in Ref. [81] with the domain decomposition 
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approach. The disadvantage of the FDTD method is that it requires tremendous computational 

memory, especially for three-dimensional and long propagation distance simulations. However, 

combined with the moving-zonal method and parallel computing techniques, the FDTD method 

has been much more efficient for outdoor sound wave propagation simulations. In this thesis, the 

Finite Difference Time Domain method is applied to implement all the numerical simulations. To 

show the capacity and accuracy of this method, one example is given below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The following simulation is based on the 2D Benchmark problem discussed in Ref. [82]. 

A two-dimensional point source with a rigid obstacle is simulated in a rectangular domain

[0,10]my and [0,8]mz . The circular rigid barrier with radius 0.5m is located at (4, 4). A 

uniform grid size 0.008my z    is used and the time step is chosen as
62.5 10 st    . The time 

Fig. 1.1 Description of the geometry and coordinate system 

for Benchmark problem simulation 
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domain is 29.4ms which is based on the y-direction domain size. The perfectly-matched-layer in 

Ref. [83]-[85] is specified at the top and bottom boundary of the domain with thickness 1m. The 

point sound source is located at (0, 4) with the Gaussian distribution in Ref. [82]. The pressure is 

non-dimensionalized and given like below: 

  
2 2

exp ln 2
0.04

x y
p 

  
   

  

 (1.1) 

where 310  . Five receivers A-E are put at (2, 4), (2, 6), (4, 6), (6, 6) and (6, 4). The geometry 

and coordinate system is shown in Fig. 1.1. The pressure contours of this simulation are given in 

Fig. 1.2 for several different moments. The pressure distributions clearly show that parts of the 

incident sound wave propagated through the rigid circular barrier, while the other parts were 

reflected back. 

  

(a) (b) 
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(c) (d) 

Fig. 1.2 Pressure contours of Benchmark problem simulation (a) t=5ms, (b) 

t=10ms, (c) t=12.5ms, (d) t=15ms. 

 

(a) (b) 
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  Fig. 1.3 2D Benchmark problem numerical pressure compared with analytical solutions 

(a) receiver A, (b) receiver B, (c) receiver C, (d) receiver D, (e) receiver E. 

 

(c) (d) 

(e) 
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       The non-dimensionalized numerical pressure versus non-dimensionalized time is shown in 

Fig. 1.3 with the corresponding analytical solution in Ref. [82]. The time is non-dimensionalized 

by /L c , where L is the unit length and c is speed of sound. It can be seen that the numerical results 

are in excellent agreement with the analytical solutions. This finite difference time-domain 

numerical method is validated to be accurate. The corresponding error analysis for the applied 

numerical scheme is given in Appendix B.  

1.2 Thesis Outline 

This thesis is dedicated to study the outdoor sound propagation under different 

environments. The finite difference time-domain method is applied for the numerical simulations. 

The numerical results of each different simulation are validated by comparing the corresponding 

analytical solutions or experimental data.  

This thesis is organized as follows. It is consisted of five chapters. The first chapter 

provides some background that describes different numerical methods for acoustics studies and 

their common applications. In chapter 2, the sound blockage effect of sonic crystals are studied. 

The sonic crystals are modeled as regular arrays of cylinder barriers. The different sound blockage 

effects caused by different numbers of cylinders, different materials of cylinders and rigid ground 

are studied. The finite difference time-domain numerical scheme coupled with immersed boundary 

method is applied for both two-dimensional and three-dimensional simulations, and the numerical 

results are verified by comparing the experimental data. The theoretical Bragg band gap can be 

successfully obtained by using the current numerical scheme. For three-dimensional simulations, 

the moving-zonal method is applied, and the numerical results are validated by comparing with 

the corresponding non-moving simulation results. 
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In chapter 3, the scattering effects of vortex dipole on two-dimensional sound wave 

propagation is studied. When acoustic wave propagates through a vortex or vortex dipole, both the 

amplitude and phase of the incident wave are affected. The different sound scattering effects 

caused by different strength of vortical flow and vortex pair placements are studied. For this 

problem a fifth order WENO scheme is applied for the convection terms. Besides the fixed vortex 

pair, numerical simulations for moving vortex pair are also conducted. The accuracy of the 

implemented numerical schemes are validated by the very good agreement between the numerical 

results and the analytical solutions.  

In chapter 4, we study the absorption and dispersion effects of the ultrasonic wave 

propagation through biological tissue. The biological tissue is considered as a kind of lossy media 

with acoustic attenuation, whether caused by molecular relaxations or scattered by small random 

particles. We uses the linearized Euler acoustic equations coupled with space-fractional Laplacian 

operators for the ultrasound simulations.  

Finally, the last chapter provides a summary and conclusions of the completed work. 

Current limitations and future developments are discussed. 
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2 Sound Propagation around Arrays of Cylinders 

Sound propagation over sonic crystals has attracted a lot of interests and been studied 

during the past few decades. In the late 1980s, several authors showed that a transparent material 

can become opaque for any light wave vector provided that a strong modulation of the refractive 

index in the three dimensions of the space is attained in Ref. [86]. In the 90s it was demonstrated 

that sculptures built by the periodic arrays of cylinders inhibited the sound transmission for certain 

frequency ranges related to this modulation just as photonic crystals do with light in Ref. [87]. For 

this reason the sonic crystals are defined as a periodic arrangement of structures made of sound 

hard scatterers, and the sound can be attenuated in a certain range of frequency in Ref. [88]. For 

an infinite periodic structure, there is a range of frequencies known as band gap. At the gap 

frequency, the sound attenuation level is usually increased. Therefore, the sonic crystals can also 

be applied to environmental noise control.  

So far the most used numerical methods for solving sound propagation over sonic crystals 

are Boundary Element Method (BEM) and Finite Element Method (FEM) in Ref. [89]-[91]. With 

the advent of high performance computers, the Finite Difference Time Domain (FDTD) method 

has evolved to be powerful and effective way for simulating sound propagation around complex 

geometries, different media and moving objects. By making use of parallel computation techniques, 

the simulation time can also be significantly reduced in Ref. [92]. Besides all the numerical 

methods, the corresponding analytical solutions and experiments are also studied for sonic crystals 

research in Ref. [88], [93] and [94].  

In this study, the linearized Euler equations are employed for sound propagation in air 

media and Zwikker-Kosten equations in Ref. [95] for sound propagation inside the objects that are 
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modeled as made of porous materials. Different scales of regular square lattice arrays are simulated 

for both two-dimensional and three-dimensional cases to study the sound attenuation effect.  

In this chapter, the numerical model, governing equations and simulation domain 

geometry are described, with a brief explanation of the FDTD numerical simulation. Then the 

simulated sound attenuations are compared among different simulations, and also compared with 

experimental data offered in Ref. [88]. At last, the summary and conclusions are given.  

 

 

 

 

 

 

 

 

 

2.1  2D Numerical Model Description 

 Figure 2.1 shows the geometry of the numerical model of the two-dimensional simulations 

for sound propagation through sonic crystals. The perfectly-matched-layer (PML) boundary 

conditions in Ref. [83]-[85] are set at top, bottom and left boundaries to represent non-reflective 

free field boundaries. We use the Gaussian pressure distribution for the sound source, and the other 

parameters ambient pressure 100kPaavp  , 1.4  , speed of sound 340m/sc  , porosity 0.3  , 

Fig. 2.1 Description of the geometry for regular array cylinder barriers. 
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porous media structure factor 3sc  . The flow resistivity of cylinders 8 24 10 Pa s m   which 

means the cylinders are rigid for sound propagation. The stability of the numerical scheme has 

been discussed in details in Ref. [96].  

The definition of sound attenuation is 

 20lg
fp

L
p

   (2.1) 

Where fp is the pressure simulated at the same location as p but without cylinder arrays. 

          For all the simulations of wave propagate through cylinder arrays in free field, the domain 

size is 24m 20m . The grid size 0.008my  and 0.008mz  is used as a uniform grid. The 

radius of the cylinders is 0.25m and the lattice constant L which the distance between the centers 

of two cylinders which showed in figure 5.1 is 1m. Seven different kinds of cylinder arrays are 

tested, the corresponding parameters Hy and Hz of each case are listed in table 2-1: 

Table 2-1 Parameters of different cylinder barriers array for 2D simulations 

Cylinder array Hy (m) Hz (m) 

3 3  5 9 

3 4  5 8.5 

3 5  5 8 

3 6  5 7.5 

4 3  5 9 

4 4  5 8.5 

5 4  4 8.5 
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The time step 62.5 10 st    and whole simulation time is 66.25ms. By that the wave propagates 

22.525m when the simulation ends. The sound source is at (0 10) m and four receivers are put at 

the centerline along the y-direction with different distances from the source: (9 10) m, (10 10) m, 

(11 10) m and (12 10) m. 

2.2  Results of 2D Simulations and Discussions 

. 
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(d) (c) 

(d

) 

(b) 
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       Figures 2.2 and 2.3 are the pressure contours of the simulations for the seven different cylinder 

arrays. The contours clearly show the process of the wave propagating through the rigid cylinders 

and the interactions between the incident waves and reflected waves. Figure 2.2 shows the pressure 

contours at the moment t=15ms that the wave reaches the first column of the cylinder array, and 

Fig. 2.2 Pressure contours at the moment t=15ms (a) 3x3 cylinders (b) 3x4 cylinders 

(c) 3x5 cylinders (d) 3x6 cylinders (e) 4x3 cylinders (f) 4x4 cylinders (g) 4x5 cylinders 

 

(e) 

(g) 

(f) 
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Fig. 2.3 shows the pressure contours at the moment t=35ms when the wave already passes the 

cylinder array. 
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(c) (d) 
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(e) (f) 

(g) 

Fig. 2.3 Pressure contours at the moment t=35ms (a) 3x3 cylinders (b) 3x4 cylinders 

(c) 3x5 cylinders (d) 3x6 cylinders (e) 4x3 cylinders (f) 4x4 cylinders (g) 4x5 cylinders 
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      Figure 2.4 shows the simulated sound attenuations of the four different receivers in each 

cylinder array. By comparing the sound attenuations from four different receivers, we can find that 

when the cylinder barriers are 3 3 array or 4 3 , the nearest receiver (9, 10) m has the highest sound 

attenuation level, but at several frequencies the sound attenuation is below zero. As the number of 

cylinders is increasing, like3 4 ,3 5 and 3 6 , the nearest receiver no longer has the best sound 

blockage effect. The sound attenuation curves of the four receivers start to change more rapidly 

and have more peaks and dips. For example when the cylinder array is 4 4 , the nearest receiver 

(9, 10) m has the lowest sound attenuation instead of the highest. The reason can be illustrated in 

the previous pressure contours showed in Fig. 2.2 and 2.3. We can see that more cylinder barriers 

can induce more reflections in the domain. Therefore the sound pressure level is even strengthen 

for the nearest receiver, instead of blocking the sound.  

We can also see that for all the different cylinder arrays and different receivers, they all have the 

first sound attenuation peak at the frequency about 170Hz, even though the magnitude of sound 

attenuation of each case is very different. This phenomenon is explained by the Bragg’s diffraction 

law in Ref. [88]. The theoretical Bragg band gap frequency is 

2

c
f

L
  

Where c is the speed of sound, and L is the sonic crystals lattice constant, with the values of

340m/sc  and 1mL  . Therefore the theoretical band gap frequency is
340

170Hz
2 1

f  


, which 

matches the numerical results very well. In addition to the Bragg band gap frequency, the results 

from all the different cylinder arrays also have a common that they all have the first dip at 

frequency around 250Hz. Besides that the magnitudes are also almost the same, around the sound 

attenuation 0dB. 
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(g)  

 

 

 

 

 

 

 

 

 

 

 

When the number of cylinders in y-direction is fixed as 3 columns, figure 2.5 shows the numerical 

results of the sound attenuations of each receiver when the number of cylinders in z-direction 

increases from 3 rows to 6 rows. From figure 2.5 (a) we can see that when the receiver is at the 

nearest location from the sound source which is (9, 10) m, basically the sonic crystal with more 

cylinder barriers at z-direction has higher sound attenuations except several frequencies. And the 

cylinder array3 6 has more sound attenuation peaks among the medium frequency from 250Hz to 

750Hz than the other three arrays. From figure 2.5 (b) we can see that when the receiver is at 

location (10, 10) m, the cylinder array3 4 has two remarkable sound attenuation peaks near the 

frequency 170Hz and 500Hz. When the frequency is relative high (from 700Hz to 1000Hz) the 

sound attenuation results become similar between 3 3 and3 5 ,3 4 and3 6 . From figure 2.5 (c) 

we can see that at location (11, 10) m, the cylinder array 3 4 also has a much higher sound 

Fig. 2.4 Sound attenuations versus frequency for four receivers (a) 3x3 cylinders (b) 

3x4 cylinders (c) 3x5 cylinders (d) 3x6 cylinders (e) 4x3 cylinders (f) 4x4 cylinders 

(g) 4x5 cylinders 
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attenuation at frequency 350Hz than the other three arrays. When the receiver is at the furthest 

location (12, 10) m, the sound attenuations do not have many peaks during the medium frequency 

range as the three nearer receivers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(d) 
(c) 

(b) 

 
Fig. 2.5 Sound attenuations versus frequency (a) at the receiver (9, 10)m (b) at the 

receiver (10, 10)m (c) at the receiver (11, 10)m (d) at the receiver (12, 10)m 
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(a) 

(d) (c) 

(b) 

 

Combing all the numerical results of four different receivers above, it can be found that the sound 

attenuations are higher when the number of cylinder barriers in z-direction is even compared with 

odd, especially at relative high frequency (from 500Hz to 1000Hz). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 2.6 Sound attenuations versus frequency comparison between transposed cylinder 

arrays (a) at the receiver (9, 10)m (b) at the receiver (10, 10)m (c) at the receiver (11, 

10)m (d) at the receiver (12, 10)m 
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           By comparing the numerical results from cylinders arrays 3 4 and 4 3 , we can find the 

relation of sound attenuations between two inter-transposed arrays. Figure. 2.6 shows the 

numerical sound attenuations of four receivers of cylinder arrays 3 4 and 4 3 . From 2.6 (a) we can 

see that for the nearest receiver (9, 10) m, the sound attenuation from cylinder array 3 4 is higher 

at relative low and high frequency than 4 3 . The sound attenuation from cylinder array 4 3 is 

higher during the medium frequency than 3 4 . From 2.6 (c) to (d) we can see that for the other 

three receivers the sound attenuations from cylinder array 4 3 are much higher than3 4 except a 

few certain frequencies. Therefore even the incident wave is propagating in y-direction, the 

cylinder array3 4 has much better sound blockage effect than 4 3 for the four different locations. 

2.3  3D Numerical Model Description 

2.3.1 Free Filed Simulation 

           The wave propagation through different cylinder arrays in free filed is also simulated for 

three-dimension. For this research, the three-dimensional Zwikker-Kosten equations in Ref. [95] 

of sound wave propagation are solved, and the finite-difference time-domain method coupled with 

immersed boundary method is applied. The parallel computing technique is also applied for three-

dimensional simulations. 

        Combining the linearized Euler sound propagation equations in air with those equations in a 

porous media in the form of the Zwikker-Kosten equations in Ref. [95], we have: 

 ( ) ( )av av av avp p f
t
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u
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         When the wave propagates through rigid cylinder barriers, the extra forced terms f
u  and 

pf  

from the immersed boundary method are applied: 

 

0      outside the porous media

( ) inside the porous media
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u u

u u

 (2.5) 

         In the above equations , sc , , , avu , avp and av are the specific heat ratio, porous media 

structure factor, porous media porosity, resistivity, time averaged background flow velocity, 

background pressure and specific volume respectively. In numerical simulations 1.4  , 3.0sc  , 

0.3  . The resistivity 8 24 10 Pa s m   which is a prohibitive high value and the cylinder 

barriers can be considered acoustic rigid. And the specific volume is defined as: 

 
av av

p

p


 
   (2.6) 

        The impulsive point sound source is given by: 

 
240rp e  (2.7) 

where r is the distance from the sound source position. 
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        Based on the PML boundary in Ref. [96] the PML boundary equations for three-dimension 

can be derived for three directions. 

        The PML boundary governing equations for x-direction is: 
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the PML boundary governing equations for y-direction is: 
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the PML boundary governing equations for z-direction is: 
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For an effective PML domain, a grid stretching in the layer of z-direction: 
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where ( ) 1z  represents the smooth function: 
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for an effective PML domain, a grid stretching in the layer of y-direction: 

 
1

( )y y y

 


 
 (2.22) 

where ( ) 1y  represents the smooth function: 
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a grid stretching in the layer of x-direction: 
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where ( ) 1x  represents the smooth function: 
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   (2.25) 

where D is the thickness of PML boundary, and the parameters A and s are chosen as A=25, s=2. 

  

 

 

 

 

 

  

 

 

 

 

 

 

For three-dimensional sound wave propagation through sonic crystals, four different arrays are 

studied: 3 3 , 3 4 , 3 5 and 4 3 . The computational domain has the dimension of 10y m , 3x m . 

The z-direction length is 6z m for the case of cylinder arrays and 4 3 , and is 8z m  for the 3 3

Fig. 2.7 Graphic illustration for 3D simulation geometry (a) yz-plane (b) 

xz-plane.  
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case of cylinder arrays 3 4 and 3 5 . A uniform mesh size of 0.008m in each direction. The radius 

and height of cylinder barriers is 0.25m and 1.8m, [0.6,2.4]x m, and the square lattice distance 

L=1m. The point sound source is set at the center of the y=0 plane, and three receivers are located 

at different distances from the source. Their corresponding coordinates are (1.5,7,3) , (1.5,8,3) ,

(1.5,9,3) for the case of cylinder arrays and 4 3 , and (1.5,7,4) , (1.5,8,4) , (1.5,9,4) for the 

case of cylinder arrays 3 4 and 3 5 . The time step 62.5 10t s   and total simulation time is 

27.5ms. The PML boundary conditions are specified with thickness 0.6m at the six surfaces of the 

domain for the cases to achieve free field. Figure 2.6 shows the geometry of the three-dimension 

simulation domain when cylinder barriers array is . 

    Table 2.2 illustrates the locations of the cylinders for each case, where the parameters Hz and 

Hy are the distances that are shown in figure 2.6: 

Table 2-2 Parameters of different cylinder barriers array for 3D simulations 

Cylinder array Hz (m) Hy (m) 

3 3  2 3 

3 4  2.5 3 

3 5  2 3 

4 3  2 3 

 

Figure. 2.8 and 2.9 are the pressure contours of each cylinder arrays simulation at x-plane 

and z-plane. Figure. 2.8 shows the pressure distributions at the moment t=5ms that the incident 

sound wave starts to reach the cylinder barriers, and figure 2.9 shows the pressure distributions at 

the moment t=15ms that the wave almost passed through the cylinder arrays. We can clearly see 

the reflected wave and interactions between the cylinders.   

3 3

3 4
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(a) (b) 

(c) (d) 

Fig. 2.8 Pressure contours at the moment t=5ms (a) 3x3 cylinders (b) 4x3 cylinders 

(c) 3x4 cylinders (d) 3x5 cylinders 
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(a) (b) 

(c) (d) 

Fig. 2.9 Pressure contours at the moment t=15ms (a) 3x3 cylinders (b) 4x3 cylinders 

(c) 3x4 cylinders (d) 3x5 cylinders 
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         The simulated sound attenuations of the three different receivers are given in Fig. 2.10 for 

each of the cylinder arrays. First of all, we can see that the farthest receiver which is at 9m away 

from the sound source has the highest sound attenuation than the other two receivers. When the 

cylinder array is 3 3 or 4 3 , the farthest receiver has an attenuation peak at around frequency 

350Hz, after which the sound attenuation curve decreases gradually. The simulation results of 

three receivers are quite similar between the two different cylinder arrays of3 3 and 4 3 . The 

sound attenuation of the nearest receiver which is 7m away from the sound source is much higher 

than the receiver at 8m at low and high frequencies, and the receiver at 8m has higher sound 

attenuation than the receiver at 7m at the medium frequency range. 

When the cylinder array is 3 4 or3 5 the farthest receiver also has the best sound blockage 

effect than the other two receivers as discussed above. However, the relative levels between the 

two receivers at 7m and 8m are opposite for these two cylinder arrays. For the cylinder array 3 4

the sound attenuation of receiver at 8m is slightly higher than the receiver at 7m except for several 

high frequencies. For the cylinder array3 5 the sound attenuation of receiver at 8m is higher than 

the receiver at 7m at all the frequency range. And the sound attenuation of the receiver at 7m is 

below zero except for high frequencies, which means the cylinder arrays strengthens the sound 

pressure level instead of diminishing.  
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(a) (b) 

(c) (d) 

Fig. 2.10 3D sound attenuations versus frequency for three receivers 

(a) 3x3 cylinders (b) 4x3 cylinders (c) 3x4 cylinders (d) 3x5 cylinders  
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        When the number of cylinder barriers in y-direction is fixed as 3, the effect of increasing 

cylinder barriers at z-direction is also studies like the 2D simulations. Figure. 2.10 shows the 

numerical results of sound attenuations of cylinder arrays 3 3 ,3 4 and3 5 .  

        When the receiver is at the nearest location 7m, the relation of three different simulation 

results is changing disorderly as the frequency increasing. For low frequency (100Hz to 350Hz), 

the cylinder array3 3 has higher sound attenuation. Then the sound attenuation reaches the lowest 

values during medium frequency (350Hz to 700Hz). After that it becomes the highest again. The 

highest sound attenuation is obtained at high frequency for cylinder arrays 3 3 and3 5 , while at 

very low frequency for cylinder array3 4 . 

      When the receiver is at location 8m, the sound attenuation values are similar for the three 

different arrays. And the values are small, even below zero, which means the sound blockage 

effects of these three cylinder arrays are not good for this location. 

      When the receiver is at the farthest location 9m and the frequency is lower than 500Hz, the 

sound attenuation increases as the number of cylinders increasing. And we can see that when the 

frequency is greater than 500Hz, the sound attenuations of three cylinder arrays are gradually 

decreasing as the frequency is increasing, which means the sound blockage effect of sonic crystal 

becomes weak at high frequency.  

      The sound attenuation comparison between transposed cylinder arrays is also studied for 3D 

simulations. Figure. 2.12 shows the comparison between cylinder arrays 3 4 and 4 3 for the three 

receivers. From figure 2.12 (a) we can see that the cylinder array 4 3 has much higher sound 

attenuation than3 4 at high frequency at location 7m. From figure 2.12 (b) we can see the sound 

attenuation values are similar for the two transposed arrays at 8m. And the values are fluctuating 

near zero, which means both of two cylinder arrays cannot diminish the sound pressure level at 
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this location. From figure 2.12 (c) we can see that the cylinder array 4 3 has much higher sound 

attenuation than3 4 at frequency relative low frequency. The sound attenuation of array 4 3 has a 

peak at frequency about 400Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11 3D sound attenuations versus frequency for different cylinder arrays (a) 

receiver at 7m (b) receiver at 8m (c) receiver at 9m 

(a) (b) 

(c) 
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Fig. 2.12 3D sound attenuations versus frequency for transposed cylinder arrays (a) 

receiver at 7m (b) receiver at 8m (c) receiver at 9m  

 

(a) (b) 

(c) 
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2.3.2 Ground Effect Simulations with Moving Zonal-Domain Method 

        Besides the study of sound blockage effect of sonic crystals in free filed, the 3D simulations 

with rigid ground influence are also discussed in this section.  

For three-dimensional sound wave propagation through cylinder arrays with rigid ground 

effect, the cylinder array is chosen as 3 3 . The computational domain z-direction length 6z m  

and the height x-direction length 6x m . Uniform mesh is used for simulations and the grid size

0.008x y z m      . The radius and height of cylinder barriers is 0.2m and 1.5m, [0,1.5]x m, 

and the square lattice distance L=0.5m. The coordinate of point sound source is at (1.5,0,3) , and 

four farther receivers are chosen compare with the free filed simulations. The coordinates of the 

four receivers are (1.5,10.5,3) , (1.5,11,3) , (1.5,11.5,3) and (1.5,12,3) . Time step is the same as the 

simulations in free field that 62.5 10t s   and total simulation time is 37.5ms. The PML 

boundary conditions are specified with thickness 1m at front, back, left and top surface. The 

illustration of the geometry for this simulation is in figure 2.13. For the study in this section, we 

need to simulate the wave propagation in long distance to reach the four receivers, and the moving 

zonal-domain approach in Ref. [97] is implemented.  

   This method is to move the computational domain with the acoustic wave. First, the size of 

the domain needs to be small so that the computational efficiency and be greatly improved. 

Meanwhile the domain should also be large enough to contain a dispersing pulse and the energy 

should be confined within the computational domain. Figure. 2.11 is an illustration of the moving 

domain method. The incident wave with initial pressure distribution, propagates until arriving at a 

distance from the right boundary, preferably near the center of the moving domain to minimize the 

boundary effect in Ref. [97]. Then the moving domain starts moving a certain distance at the same 

direction as the wave propagation. 
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Fig. 2.13 Geometry of sound propagation through 3*3 sonic crystal with rigid ground. 

 

Fig. 2.14 Illustration of the moving domain method. 
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For the three-dimensional simulations in this section, two different moving domain scale 

in moving direction is used, one is 4m and the other is 5m. The simulation results with moving 

domain approach are also compared with the results simulated with fixed integral domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.15 Pressure contours at the moment t=20ms (a) moving domain with length 4m 

(b) moving domain with length 5m (c) non-moving domain  

. 

 

(a) (b) 

(c) 
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             Figure. 2.15 shows the pressure contours of the non-moving domain simulation and the 

moving domain with two different length simulations at moment t=20ms. We can find that there 

is a wave following the incident wave, which is the reflected sound wave generated by the rigid 

ground. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Fig. 2.16 Pressure contours at the moment t=30ms (a) moving domain with length 4m 

(b) moving domain with length 5m (c) non-moving domain  

. 

 

(a) 
(b) 

(c) 
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       Figure. 2.16 shows the pressure contours of the non-moving domain simulation and the 

moving domain with two different length simulations at moment t=30ms. The graphs clearly show 

how the incident wave and the reflected wave from rigid ground are reflecting among the cylinder 

barriers and the interactions between the reflected waves. When the moving domain approach is 

used, we can see that part of the data are dumped at the area before the cylinder barriers. In contrast 

the non-moving simulation keeps all the data, from figure. 2.16 (c) we can see the intact reflected 

waves that are propagating towards back. However the wave that propagates through the cylinder 

arrays are kept completely in moving domain simulations and are just the same as the wave in non-

moving domain. Therefore the moving domain method is feasible for the simulations of the certain 

locations that we are interested in. 

  Figure. 2.17 gives the numerical sound attenuations of the four receivers, and also the 

comparison between moving domain and non-moving domain. First of all, we can see that for all 

the four receivers, they all have the first sound attenuation peak at the frequency around 340Hz. 

Based on the theoretical Bragg’s diffraction law
2

c
f

L
 in Ref. [89], and the sonic crystal lattice 

distance 0.5mL  , we have the Bragg band gap frequency is
340

340Hz
2 0.5

f  


, which matches 

with the numerical results well just like the two-dimensional simulations. In another word we know 

that the rigid ground does not have great influence on the band gap frequency in these three-

dimensional simulations. By observing the magnitude of sound attenuation at the band gap 

frequency, we find that the nearest receiver which is 10.5m away from the source has the sound 

attenuation about 10dB at the band gap frequency, and the furthest receiver which is 12m away 

from the source has the sound attenuation about 23dB at the band gap frequency. Another 

conclusion can be drawn that when the receiver if further, the magnitude of sound attenuation at 
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band gap frequency is higher. When the receivers are 11m and 11.5m away, they also have another 

sound attenuation peak at high frequency about 1500Hz, but the sound attenuation of the furthest 

receiver is much lower at the same frequency than the other three. The values are even below zero, 

which means the sonic crystal is ineffective for sound blockage for high frequency sound wave at 

this location.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

Fig. 2.17 Sound attenuations versus frequency for four receivers 

(a) (3, 10.5, 1.5) (b) (3, 11, 1.5) (c) (3, 11.5, 1.5) (d) (3, 12, 1.5)  

 

. 
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         From the results comparison between moving domain and non-moving domain in figure. 

2.17, we can find that for all the four receivers, at relative low and medium frequency the numerical 

sound attenuations from moving domain match extremely well with the results of non-moving 

domain, the three curves are almost identical.  

          Figure. 2.17 (a)-(c) show that when the receivers are at location (1.5, 10.5, 3), (1.5, 11, 3) 

and (1.5, 11.5, 3), at high frequency (higher than 1500Hz), the numerical result of moving domain 

with length 5m is still the same as the result of non-moving domain, but the result of moving 

domain with length 4m has slightly difference with the other two. And the greater the distance 

between the receiver and the cylinder barriers, the smaller the difference is. One main reason to 

explain this discrepancy is that moving domain method is dumping parts of the data while the 

domain is marching forward. Thus several small wave reflections and interactions between 

cylinders or between cylinders and receivers that are shown in figure. 2.16 (c) are no longer exist. 

When frequency is high, which means the time interval is short, the results from moving domain 

method is slightly different with the non-moving domain because a number of wave reflections 

that happened in short time are lost in moving domain.  

       Another factor can influence the accuracy is the moving domain size. When the moving 

domain size is small, which means the space left between the wave and cylinders is not big enough, 

consequently the data is not complete enough. When the domain size increases, the results of 

moving domain match much better with the results of fixed domain. 
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2.3.2 Simulations Based on Published Experiment 

       In this section, the three-dimensional simulations are conducted based on an experiment for 

sonic crystals in Ref. [88], [93] and [94]. The experiment consists of sound wave propagating 

through only one array of five rigid cylinders. The outer diameter of cylinder is 3cm and distance 

between the centers of cylinders in the sound propagation direction is 8.5cm. The height of the 

cylinders is 25cm. A speaker (Philips FWB-MX970RS) was used as the sound source in Ref. [88]. 

The distance between the speaker and first cylinder was 80cm so that the wave front that interacts 

with cylinder is close to a plane wave front and sound propagation is unidirectional. Acoustics 

foam was also used in regions around the source and receiver to prevent the reflections. The 

microphone which was used as a receiver was kept at a distance of 10cm from the last cylinder. 

The sound pressure level obtained from the microphone was averaged 50 times to obtain a 

consistent experimental reading, and this process is performed over a range of frequencies from 

500Hz to 6000Hz at a frequency step of 3.5Hz in Ref. [88]. 

         For our corresponding three-dimensional numerical simulations, the computational domain 

has a size of [0,0.0425]z m , [0,1.74]y m and [0,0.25]x m . A uniform mesh size is implemented 

as 0.5mm in all the directions of the grid. The rigid cylinders are used as the sonic crystal, and the 

radius and height of cylinder barriers are 1.5cm and 25cm. The sound source is a periodic plane 

wave at the left boundary 0y  . The expression of the sound source is: 

sin(2 )p ft  

where f is the sound wave frequency. Since the sound attenuation results are relative values, we 

take the magnitude of plane sound wave as 1. We test five different sound source frequencies 

1500Hz, 2000Hz, 3500Hz, 4000Hz and 5000Hz according to the approach used for the sound 
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source in the experiment in Ref. [88]. For the highest frequency 5000Hz, the corresponding wave 

length is: 

340
0.068m=68mm

5000

c

f
     

         And this smallest wave length value is 136 times of the mesh size used for simulations, thus 

the mesh revolution is valid for the high sound frequency. The time step 72.5 10 st    and 

simulation time domain t=7.5ms. According to the sonic crystals described in Ref. [88], the 

coordinates of the centers of the five cylinders at x=0 plane are (0cm, 80cm, 2.125cm), (0cm, 

88.5cm, 2.125cm), (0cm, 97cm, 2.125cm), (0cm, 102.5cm, 2.125cm) and (0cm, 114cm, 2.125cm). 

The top, bottom, back and front side walls are set as rigid boundaries, and the PML boundary is 

set at the west surface as the acoustic foam in experiment, with a thickness 30cm. 

          Figure. 2.18 gives the illustration of part of the geometry in yz-plane. 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

Fig. 2.18 Illustration of simulation geometry in xy-plane. 
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(a) 

(e) 

(c) (d) 

(b) 

 Fig. 2.19 Pressure contours at z-plane at the moment t=3.75ms of rigid sonic 

crystals (a) 1500Hz (b) 2000Hz (c) 3500Hz (d) 4000Hz (e) 5000Hz. 
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       Figure. 2.19 (a)-(e) are the pressure contours at t=3.75ms of the 3D rigid sonic crystal 

simulations with different plane wave frequency from 1500Hz, 2000Hz, 3500Hz, 4000Hz and 

5000Hz respectively. It can be seen that at this moment the sound wave is strengthened because 

the reflected waves, right before the first cylinder barrier when the sound frequency is 1500Hz, 

2000Hz and 4000Hz. Contrarily when the sound frequency is 3500Hz the propagating sound wave 

is weakened by the reflected waves at t=3.75ms. From figure. 2.19 (c) we can see that the plane 

wave is weak before the first cylinder barrier. Different from the four simulations, when the sound 

wave has the highest frequency 5000Hz the incident wave propagation is not obviously 

strengthened or weakened by the reflections. 

       Figure. 2.20 (a)-(e) are the pressure contours at t=6ms of the 3D rigid sonic crystal simulations. 

From (a)-(e) we can find that when the sound source with frequency 1500Hz, 2000Hz and 3500Hz, 

the incident sound wave is strengthened right before the first cylinder barrier, and strongly 

weakened near the left boundary. On the contrary when the sound frequency is 4000Hz the incident 

wave is enhanced by the reflected waves all over the area before cylinder arrays. From figure. 2.20 

(e) we can see that when the sound source has the highest frequency 5000Hz, the incident wave 

propagation is not obviously strengthened or weakened by the reflections and it can successfully 

pass through the cylinder arrays.  

       Based on figure. 2.19 and 2.20, we know that the sonic crystal is effective for sound blockage 

for the incident sound wave with frequency from 1500Hz to 4000Hz. But the sonic crystal is not 

effective for the highest sound frequency 5000Hz, since most of the incident wave could pass 

through the rigid cylinder barriers and reach the receiver. 
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(a) 

(e) 

(c) (d) 

(b) 

 Fig. 2.20 Pressure contours at z-plane at the moment t=6ms of rigid sonic crystals 

(a) 1500Hz (b) 2000Hz (c) 3500Hz (d) 4000Hz (e) 5000Hz. 
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       Figure. 2.21 (a)-(e) give the numerical sound attenuations of the simulations with different 

sound frequency. When the sound source has frequency from 1500Hz to 4000Hz, the numerical 

sound attenuations have two main band gap as same as the experimental data. And the magnitude 

of sound attenuation at the band gap is also close to the experiment results. When the incident 

wave frequency is 3500Hz or 4000Hz, the sound attenuations have more fluctuations at the high 

frequency domain and most of the values are below zero. Form figure. 2.21 (e) we can see that 

when the incident wave frequency is 5000Hz, the two band gaps shown in the other figures do not 

exist. And the sound attenuations are lower than zero along the frequency domain, which means 

the sonic crystal cannot work for sound blockage for this high source frequency. This result 

coincides with the conclusion that we have drawn based on the contours. 

       The comparison of the averaged sound attenuations between the simulation and the 

experimental data in Ref. [88] is given in Fig. 2.21 (f). From the comparison we can see that the 

simulated sound attenuations have two band gaps, around 1250Hz-2500Hz and 3500Hz-4500Hz, 

with the maximum sound attenuation of 30dB and 35dB respectively. The experimental results are 

close to the simulated results for both the two band gaps. The first maximum sound attenuation is 

achieved at frequency about 1950Hz. According to the Bragg’s law in Ref. [88]: 

340
2060.6Hz

2 2 0.085

c
f

a
  


 

Therefore, the simulated band gap frequency has a very good agreement with the theoretical value. 
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(a) 

(e) 

(c) (d) 

(b) 

 

(f) 

Fig. 2.21 Sound attenuations versus frequency for rigid sonic crystals with different sound 

frequency (a) 1500Hz (b) 2000Hz (c) 3500Hz (d) 4000Hz (e) 5000Hz (f) averaged results. 
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2.3.3 Effect of Porous Materials 

       In this section, the sound blockage effect of the sonic crystals made of porous media is studied. 

The geometry and all the initial conditions are remained the same as the rigid cylinder arrays 

simulations except that changing the material of cylinders to porous media. Two different 

resistivity 22kPa s m and 250kPa s m are tested for the porous sonic crystals, and the frequency 

of incident plane wave is selected as 1500Hz, 2000Hz and 3500Hz. The simulation results are also 

compared with the results of the corresponding rigid cylinder arrays cases.  

 

   
(a) (b) 

(c) (d) 
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       Figure. 2.22 (a)-(f) are the pressure contours at t=3.75ms of the 3D porous cylinder arrays 

simulations with different plane wave frequency and cylinder resistivity. We can see that the 

pressure distributions are almost the same between the two different porous media resistivity at 

this moment except the area after the cylinder arrays. By comparison we can see that the pressure 

after the fifth cylinder is higher when the resistivity of the porous cylinders is 22kPa s m . This 

phenomena can be easily explained that when the impedance of the cylinders is lower, the more 

of the incident wave is allowed to pass through the cylinder arrays.  

 

 

 

  

(e) (f) 

Fig. 2.22 Pressure contours at z-plane at the moment t=3.75ms of porous sonic crystals (a) 1500Hz, 2k 

(b) 1500Hz, 50k (c) 2000Hz, 2k (d) 2000Hz, 50k (e) 3500Hz, 2k (f) 3500Hz, 50k 
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(a) 

(e) (f) 

(c) (d) 

(b) 

Fig. 2.23 Pressure contours at z-plane at the moment t=6ms of porous sonic crystals (a) 1500Hz, 2k 

(b) 1500Hz, 50k (c) 2000Hz, 2k (d) 2000Hz, 50k (e) 3500Hz, 2k (f) 3500Hz, 50k 
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       Figure. 2.23 (a)-(f) are the pressure contours at t=6ms of the 3D porous cylinder arrays 

simulations. After long enough time propagation, the pressure distributions become different 

between the two different porous media resistivity. First, for the incident wave with frequency 

1500Hz, the pressure right before the first cylinder is similar between the two different porous 

materials. The pressure near the left boundary is higher when the porous cylinders have lower 

impedance. For the incident wave with frequency 2000Hz, we can see that the phase of the 

propagating wave is different between two different porous materials. From figure. 2.23 (e) and (f) 

it can be found that when the incident wave has frequency 3500Hz, the pressure distribution is 

totally different between two porous materials. The wave near the left boundary is weak and is 

enhanced before the cylinder arrays when the porous resistivity is 22kPa s m . On the contrary the 

wave is not influenced near the entrance and is diminished before the cylinder arrays when the 

porous resistivity is 250kPa s m . Another noteworthy phenomenon is that when the sound wave 

has frequency 3500Hz the wave can reach almost the right boundary with the low flow resistivity

22kPa s m of the cylinder arrays, but the wave is almost stopped by the cylinder arrays with flow 

resistivity 250kPa s m . 

       The numerical sound attenuations of porous sonic crystals, and the comparison with rigid 

sonic crystal results are shown in figure. 2.24. Based on the averaged values and the comparison, 

it can be seen that the sound attenuation curves of the three different sonic crystal materials have 

the same number of fluctuations, but very different magnitude. The numerical sound attenuations 

at low and medium frequency domain are similar between the three simulations, and the values 

simulated with rigid sonic crystal at the two band gaps are much higher than the results of porous 

sonic crystal, while the porous sonic crystal with resistivity 50kPa has slightly higher attenuation 

than the one with resistivity 2kPa. At high frequency domain (greater than 4500Hz), the porous 
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sonic crystals have high sound attenuations than the rigid sonic crystal. As a result the porous sonic 

crystals have better sound blockage effect than the rigid sonic crystals for high frequency sound 

source.  

  

Fig. 2.24 Sound attenuations versus frequency for porous sonic crystals with different sound 

frequency (a) 1500Hz (b) 2000Hz (c) 3500Hz (d) averaged results 

(a) (b) 

(c) (d) 
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2.4  Summary 

          In this chapter, the sound blockage effect of cylinder arrays is studied for both two- and three-

dimensional cases. Based on the discussions in this chapter we see how the array and the material 

of sonic crystals can influence the sound blockage effect.  

          It has been proved that the finite-difference time-domain method incorporated with the 

immersed boundary method provides a valid model for the sound propagation through sonic 

crystals. For the two-dimensional simulations of the sound propagates through sonic crystals 

perpendicularly in free filed, a very good agreement between our numerical band gap frequency 

and the theoretical result is found. When the number of cylinders in z-direction is fixed, the more 

cylinders in the wave propagation direction results in better sound blockage effect when the 

receiver is far. This conclusion is not necessarily valid when the receiver is close to the sonic 

crystal because the sound pressure level is enhanced due to the reflections.  

          The Euler-type moving zonal-domain approach in Ref. [97] is applied for three-dimensional 

simulations. The influence of moving domain size is discussed based on the comparison with the 

numerical results from non-moving domain. The simulation results from moving-domain agree 

well with the non-moving domain simulation, while the computational efficiency is greatly 

improved. The simulation results are also compared and agree well with the experimental data in 

Ref. [88]. Based on the comparison between rigid and porous sonic crystals, it is found that 

selecting appropriate materials is important aim at different sound source frequency. The sonic 

crystals made of porous material with intermediate flow impedance is effective for noise blockage.  
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3 Sound Propagation over Vortex Pair 

        In this chapter, the scattering effects of high subsonic vortex dipole on two-dimensional sound 

wave propagation is studied. When acoustic wave propagates through a vortex or vortex dipole, 

the sound field may be significantly modified by the interactions between the incident wave and 

the vortical flow in Ref. [99]. Both the amplitude and phase of the sound wave will be affected 

during the propagation through vortical flow. Knowledge of sound scattering by a vortical flow 

field is very important for many aeroacoustics studies. Previous studies on this topic include 

analytical studies in Ref. [100]-[115] and numerical simulations in Ref. [71], [72], [116] and [37]. 

One classical numerical calculations carried out by Colonius in Ref. [71], Navier-Stokes equations 

are applied to directly solve the wave propagation through a single vortex, and very good 

calculation results are achieved. However there are also several drawbacks appeared about this 

numerical model. Compared with the direct linearized Euler equations, this model requires a very 

high grid resolution and high order scheme to achieve accurate results. Cheinet et al. in Ref. [72] 

applied the linearized Euler equations to solve the problem of sound propagation over a single 

vortex. The second-order central finite difference method was used for the spatial derivatives, and 

a fourth-order Runge-Kutta was used for time integration. Their simulation was only limited to the 

propagation of acoustic waves of weak amplitude in low Mach number flows. The accuracy of 

their method for high Mach number vortical flow problem was not validated yet.  

When we conduct simulations for high Mach number vortical flow, the ordinary numerical 

schemes are not accurate enough in dealing the convective terms because the velocity and its 

gradient are high. As a result great numerical errors are generated in the domain near the high 

speed vortical flow. A high order WENO scheme in Ref. [101]-[110] is adopted to the regions 

with high velocity to solve convection-dominant background flow in time domain numerical 
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simulation. The WENO scheme can not only achieve higher-order accuracy near the high gradient 

velocity regions, but also maintain a stable and non-oscillatory solution.       

3.1  High Order Numerical Scheme 

          In the simulations for this topic, a fifth order WENO scheme in Ref. [109]-[110] is applied 

for the convention terms. To illustrate the implementation of the high-order upwind scheme for 

the convection terms in the current simulation, we take one-dimensional convection term as an 

example. 

The expression of convection terms is written as: 

 x x

u
a a u a u

x

   
 


 (3.1) 

Where max( ,0)a a  and min( ,0)a a  .  

The fifth order WENO scheme for xu
and xu

is given like below: 

 
1 2 3

1 2 3x x x xu w u w u w u          (3.2) 

Where
1w , 

2w and
3w are the weight coefficients, and can be found in Ref. [109]. In addition, 1

xu  , 

2

xu  and 3

xu   are three ENO3 stencils defined as: 
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2

2 3 4
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 (3.7) 

  In this chapter, the fifth-order WENO scheme is applied only for the regions around the vortex, 

and the numerical scheme in Ref. [96] is used for solving convection in the remaining regions. It 

should be noted that the background velocity filed generated by the vortices is assumed to be 

steady. 

3.2  Numerical Model Description 

       First the sound propagation over single vortex is discussed. The description for single vortex 

is shown in Fig. 3.1, where is the angle between receiver and the center of vortex, and is the 

circulation of vortex. The graphic illustration for the single vortex is shown in Fig. 3.1. 

 

  

Fig. 3.1 Description of the geometry and coordinate system for the plane wave 

propagation over single vortex.  



59 

 

For a periodic plane wave given as: 

  sin 2p f  (3.8) 

where f is wave frequency. Since we focus on low frequency plane wave, the wave frequency is 

set as 85Hzf  . For a homentropic vortex, the tangential velocity is given in Ref. [71]: 

 

2

1 exp
2

R
v

R L
 



    
          

 (3.9) 

where L is the length of vortex core, R is the distance from the center of vortex or vortex pair to 

the receiver, and is a constant selected as 1.2564. The two length scales are related by the Mach 

number of the vortex, defined as the maximum vortex velocity relative to the sound speed: 

 
2

M
La


 


  (3.10) 

where  is a numerical constant which depends on the specific distribution of tangential velocity 

in the core of vortex, and a is the speed of sound at infinity. Different Mach numbers and the 

corresponding values of are listed in Table 3.1. 

Table 3-1 Different Mach number and corresponding vortex circulation 

M 2( / )m s  

0.0625 190.4 

0.125 367.2 

0.25 748 

0.5 1496 

        

         After simulation, the simulated pressure is normalized by calculating the root-mean-square 

pressure rmsp  in Eq. (3.11): 
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 (3.11) 

where
1p is the simulated pressure with vortex or vortex pair, and

2p is the simulated pressure 

without vortical flow. According to the low frequency theories in Ref. [71], the root-mean-square 

pressure level 
rmsp in the far filed should scale as:  

 
1/2~ ( / )rms Ip p r   (3.12) 

where Ip is the amplitude of the incident wave, and the parameter is related to the vortex strength 

and the wave number of sound wave. 

 / ( )a    (3.13) 

        Based on the discussions for sound propagation over single vortex in Ref. [98], the root-mean-

square pressure level scaled by the right hand side of Eq. (3.12) is shown in Fig. 3.2.  

  

Fig. 3.2 Scaled root-mean-square pressure level for single vortex.  
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       In the simulations in Ref. [98], the ratio / r is fixed as a constant 2.5, from Fig. 3.2 we can 

find that when is decreased, which means the Mach number becomes small, the curves scaling 

with appear to hold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          For the simulations for vortex pair in this chapter, the geometry and coordinate system are 

shown in Fig. 3.3, where  is the vortex pair orientation angle. It is defined as the contour-

clockwise angle between y-axis and the vector from the center of clockwise vortex to the center of 

counter-clockwise vortex. In our simulations, different orientations of vortex pair from 0 to

Fig. 3.3 Description of the geometry and coordinate system for the plane wave 

propagation over vortex pair.  
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315 are tested. The 2d is the distance between two centers of vortex pair, and it is selected as 2m, 

so that the core of each vortex is not overlapping with to each other.  

          The size of computational domain in y-direction is [0,110]y m and [0,160]z m in z-

direction. Uniform mesh is used for simulations and grid size 0.05y z m    . Two perfectly-

matched-layers with thickness 20m are specified at the top and bottom boundaries. The center of 

the receiver circle is located at (20m, 80m), and three different values of the radius r are tested: 

8m, 10m and 12m. Time step 62 10t s   and total simulation time 0.31s. The parameters L and

a  given in Eq. (3.9) and (3.10) are 1m and 340m/s respectively. For each different angle , the 

corresponding coordinates of the centers of vortex pair are given in table 3.2. 

Table 3-2 Coordinates of vortex pair for different simulations 

 (degree) Vortex1 (clockwise) Vortex2 (counter clockwise) 

0 (19, 80) (21,80) 

45 (19.293, 79.293) (20.707, 80.707) 

90 (20, 79) (20, 81) 

135 (20.707, 79.293) (19.293, 80.707) 

180 (21, 80) (19, 80) 

225 (20.707, 80.707) (19.293, 79.293) 

270 (20, 81) (20, 79) 

315 (19.293, 80.707) (20.707, 79.293) 

 

3.3  Simulation Results and Discussions 

        The pressure distributions of each simulation, and the normalized pressure level versus 

different receiver locations are given in this section. Figure. 3.4, 3.6, 3.8 and 3.10 are pressure 
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contours for each different with vortex pair Mach number 0.0625, 0.125, 0.25 and 0.5 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) 

(c) (d) 

(b) 
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(e) 

(g) (h) 

(f) 

Fig. 3.4 Pressure contours at the moment t=0.31s with Mach number 0.0625 for different 

angle  (a) 0.0 (b) 45 (c) 90 (d) 135 (e) 180 (f) 225 (g) 270 (h) 315. 
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It can be seen in Fig. 3.4 that when the vortex pair is a low Mach flow with M=0.0625, the 

sound scattering effect is not relatively strong. When 0   or 180   the sound scattering effect 

is the weakest, while the sound scattering effect reaches the strongest when 270   . The same 

conclusions can also be drawn from the Fig. 3.4 which shows the normalized pressure level along 

the receiver circle for different . We can find that when 45 ,  90 ,  135 ,  225      ,  270 ,  315 

the normalized pressure level reaches the peak at 0   . Different from this phenomenon, when 

the sound scattering effect is the weakest, which means 0   and 180   , the normalized 

pressure level peak locates at 45    and 45   respectively. 

Furthermore the normalized pressure level distribution becomes symmetric about 0  when

90   and 270   . Also the three pairs of normalized pressure level curves: 0   and

180   , 45   and 135   , 225   and 315   are symmetric.  
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(e) (f

(c) (d) 

(g) 
(h) 

 (f) 

Fig. 3.5 Normalized pressure level with Mach number 0.0625 for different angle  (a) 0 

(b) 45 (c) 90 (d) 135 (e) 180 (f) 225 (g) 270 (h) 315.  
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(a) 

(c) (d) 

(b) 
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(e

(g) (h) 

(f) 

Fig. 3.6 Pressure contours at the moment t=0.31s with Mach number 0.125 for different 

angle  (a) 0.0 (b) 45 (c) 90 (d) 135 (e) 180 (f) 225 (g) 270 (h) 315.  
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(c) (d) 
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Fig. 3.6-3.9 give the pressure contours and normalized pressure level curves for different 

angles and Mach number 0.125 and 0.25, and the same conclusions discussed for Mach 0.0625 

in the previous text can be found. Based on the pressure contours we can see that the sound 

scattering effects become stronger as the Mach number increases, and for each Mach number the 

sound scattering effect becomes the strongest when 270   and the weakest when 0   and

180   . 

 

 

 

 

 

 

(g) (h) 

Fig. 3.7 Normalized pressure level with Mach number 0.125 for different angle  (a) 0 

(b) 45 (c) 90 (d) 135 (e) 180 (f) 225 (g) 270 (h) 315.  
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(a) (b) (a) 

(c) (d) 



72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e) (f) 

Fig. 3.8 Pressure contours at the moment t=0.31s with Mach number 0.25 for different 

angle  (a) 0.0 (b) 45 (c) 90 (d) 135 (e) 180 (f) 225 (g) 270 (h) 315. 

(g) (h) 
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(c) (d) 
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(g) (h) 

(b) (a) 

Fig. 3.9 Normalized pressure level with Mach number 0.25 for different angle  (a) 0 (b) 

45 (c) 90 (d) 135 (e) 180 (f) 225 (g) 270 (h) 315.  
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(f) (e) 
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Fig. 3.10 and 3.11 show the pressure contours and normalized pressure level curves 

respectively for relative high Mach number vortical flow, M=0.5. The sound scattering effects are 

much more obvious compared with the low Mach number vortex pair. Meanwhile the normalized 

pressure level distributions have the same phenomena as the low Mach number simulations except

270   . From Fig. 3.11 (g) we can see that when 270   the normalized pressure level has a 

drop at location 0   instead achieves the highest normalized pressure level. The explanation for 

this phenomenon can be found from the corresponding pressure contour. It is seen in Fig. 3.10 (g) 

that at the location 0   , in another word at (30, 80) the incident pressure is not greatly 

(g) (h) 

Fig. 3.10 Pressure contours at the moment t=0.31s with Mach number 0.5 for different 

angle  (a) 0.0 (b) 45 (c) 90 (d) 135 (e) 180 (f) 225 (g) 270 (h) 315.  
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influenced as much as the other Mach number. Thus the normalized pressure level curve no longer 

has the peak at 0   . 
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(e) (f) 
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          Fig. 3.12 gives the relation between the Mach number of vortical flow and the normalized 

pressure level distributions for different . Obviously the higher Mach number, the stronger sound 

scattering effects, which results in higher normalized pressure levels. One exception is that when

270   the normalized pressure level of Mach number 0.5 at 0   is lower than Mach number 

0.125 and 0.5. And it has been discussed earlier.  

Besides the currently receiving circle radius 10m, two different radius 8m and 12m are 

chosen for simulations with same vortex pair Mach number 0.25. Fig. 3.13 shows the relation 

between different radius and the corresponding numerical normalized pressure levels for different 

angle from 0 to180 . This can be seen that the closer to the vortical flow, the higher normalized 

pressure level at the peak. Besides the magnitude, the phase of the scattered wave is also changed 

at different . 

 

(g) (h) 

Fig. 3.11 Normalized pressure level with Mach number 0.5 for different angle  (a) 0 (b) 

45 (c) 90 (d) 135 (e) 180 (f) 225 (g) 270 (h) 315.  
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(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(g) (h) 

Fig. 3.12 Normalized pressure level comparison between different Mach numbers for 

different angle  (a) 0 (b) 45 (c) 90 (d) 135 (e) 180 (f) 225 (g) 270 (h) 315.  
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      Our single vortex results and the results in [71] indicated that for the single vortex case, 

when / r  was constant, the root-mean-square pressure scaled with . Based on Fig. 3.14, when 

the ratio / r is a constant of 0.4 in our simulations, as    is reduced, which means the Mach 

number becomes small, the curves appear to scale with . Based on Fig. 3.15, when Mach number 

is 0.0625, i.e.  is a constant of 0.14, the curves appear to scale with the square root of / r when 

the receiver distance r is reduced. Therefore, the simulation results of the stationary vortex pair 

(c) (d) 

(e) 

Fig. 3.13 Normalized pressure level at M=0.25 comparison between different angle 

(a) 0 (b) 45 (c) 90 (d) 135 (e) 180.  
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Fig. 3.14 Root-mean-square pressure level at r =10m normalized by .  

case also agree with the low-frequency theory when the Mach number is low, as the single vortex 

case.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.15 Root-mean-square pressure level at M=0.0625 normalized by . 
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3.4 Moving Vortex Pair Simulation  

 Besides the stationary vortex pair, in this section the sound scattering effects of a moving 

vortex pair are studied. First, the theoretical analysis for the scattering of a plane sound wave by a 

moving vortex pair in Ref. [114] is represented, after that the corresponding numerical simulations 

are conducted and the numerical results are compared with analytical solutions. 

3.4.1. Analytical Analysis 

      The analytical solutions represented in Ref. [114] deal with the two dimensional scattering of 

a plane wave by a vortex pair, in the homentropic flow where any viscous dissipation is absent. 

And the vortex strength is supposed to be sufficiently small in Ref. [114], in another word the 

analytical solution is feasible for low Mach number steady motion of the vortex pair. It is noted 

that the singularity of the scattering does not occur for the vortex pair, in contrast to a single vortex.  

An acoustic potential of the incident sound wave is assumed as: 

  1 0 0expIp i k y t    
 

 (3.14) 

where Ip is the amplitude of the incident wave, 0k is the wave number defines as 2 /  , ( , )y y z

is the two-dimensional Cartesian coordinates of the receiver location, and 0 is the angular 

frequency of the plane wave with
0 2 f  . When the vortex pair with strength and are located 

at  ,Vt d and  ,Vt d respectively at time t , the vorticity and the flow velocity  1 2,u u u

induced are given by: 

       0,0, y Vt z d z d            (3.15) 
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 (3.16) 
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where is Dirac delta function andV is defined as the vortex pair self-induced moving velocity:  

 
4

V
d


  (3.18) 

and 2d is the distance of centers of vortex pair. 

Finally we have the expression for scattered pressure sp : 
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2 2

0 0exp (1 cos )(i M k y Vt z t      
  

 (3.19) 

More details of the derivation for Eq. (3.19) can be found in Ref. [114].  

3.4.2. Numerical Simulations and Results 

      In the numerical simulations for moving vortex pair cases, the vortex parameters are the same 

as the stationary vortex cases. The far field receiver location is changed to further location: r=50m, 

so that the moving vortex pair is contained inside the receiver circle. The initial simulation 

conditions like domain size, grid size, time step and time domain are kept the same the simulations 

for stationary vortex pair. The center of the receiving circle is located at (55m, 80m), and the vortex 

orientation angle 90   .  
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(a) 
(b) 

(c) (d) 

Fig. 3.16 Pressure contours of moving vortex pair at the moment t=0.31s 

(a) M=0.0625, (b) M=0.125, (c) M=0.25, (d) M=0.5. 
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           Pressure contours of moving vortex pair simulations at time 0.31s are provided in Figs. 3.16 

(a)-(d) for the four Mach numbers. First we can find that the vortex pair with a higher Mach number 

has a stronger sound scattering effect. According to Eq. (3.18), the moving vortex pair with a 

higher Mach number has higher moving velocity. Therefore as Mach number increases, the vortex 

pair is closer to the receiver which is at 0   , and the scattered area is smaller. 

 

 

 

 

       

 

 

 

 

 

 

 

          The analytical solution presented in Ref. [114] are applicable for low Mach number steady 

motion of the vortex pair. As a result, the simulated pressure at time t=0.31s of the moving vortex 

pair with Mach number 0.0625 is compared with the analytical solutions, and the comparison is 

given in Fig. 3.17. Fig. 3.17 (a) gives the pressure distributions for all the receivers, and Fig. 3.17 

(b) shows the distribution at the receiver direction angle range of 90 90      so that the 

Fig. 3.17 Simulated pressure with moving vortex pair when 

M=0.0625 in comparison with analytical solutions 

(a) (b) 
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(a) (b) 

Fig. 3.18 Normalized pressure level comparison between moving vortex pair 

and stationary vortex pair (a) M=0.0625 (b) M=0.125 (c) M=0.25 (d) M=0.5. 

(c) (d) 

comparison can be observed more clearly. We can see that the numerical results have a very good 

agreement with the analytical solutions. 
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Fig. 3.18 gives the normalized pressure level of the moving vortex pair cases in comparison 

with the stationary vortex pair cases. First, when the Mach number is lower, the two curves are 

closer because the distance between the stationary vortex pair and the moving vortex is smaller. 

For the stationary vortex pair, when the Mach number is 0.0625, the highest normalized pressure 

level is obtained at the location 0   . As the Mach number increases, the scattering effect 

becomes much stronger at the two sides of the location 0   . By observing the normalized 

pressure level at 0   , we can find that the difference between moving and stationary vortex pair 

cases becomes larger as the Mach number increases. This is because the moving vortex pair is 

closer to the receiver at 0   and further away from the stationary vortex pair when the Mach 

number is higher. 

3.5 Summary 

        In this chapter, propagations of plane waves through a single vortex and a vortex pair is 

studied. To handle with the high convection effect resulting from the background vortical flow, a 

fifth order WENO scheme is applied. The results of the single vortex simulations have a good 

agreement with the literature data. Then, the simulations are implemented for both stationary and 

moving vortex pair cases. For a fixed vortex pair orientation angle , the results show that the 

sound scattering effect becomes stronger as the Mach number increases. The scaling laws for the 

low frequency sound wave seem to apply under the low Mach number vortical flow condition. The 

accuracy of the numerical scheme is validated by the good agreement between the simulated results 

and the analytical solutions. 
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4 Ultrasound Propagation Simulations in Biological Tissue 

         During the past decades the mechanisms and models of ultrasonics have caused a lot of 

interests, and the derivation of wave equations to model acoustic absorption and dispersion in 

biological tissue has continued to be subject of research interest. The biological tissue is considered 

as a kind of lossy media with acoustic attenuation, whether caused by molecular relaxations or 

scattered by small random particles in Ref. [127]. Many algorithms for ultrasound have been 

developed in Ref. [128]-[130]. Algorithms that compensate for attenuation in the background 

media are found in Ref. [128] and [131]. Sophisticated techniques for determining the exact values 

of attenuation and dispersion are given in Ref. [132]-[133]. The wave propagation in biological 

tissue media in which the absorption follows a frequency power law in Ref. [134] has many 

important applications in biomedical ultrasonics. Acoustic attenuation in biological tissue 

generally satisfies a power law relationship such that attenuation increases with frequency 

according to some noninteger exponent in Ref. [127].  

        In this chapter, the linearized Euler acoustic equations in Ref. [92] which used in the previous 

chapters are incorporated with space-fractional Laplacian operators in Ref. [135] for the ultrasound 

simulations. The finite forward difference scheme is applied for velocity and backward difference 

scheme is applied for pressure on non-fractional derivative operator terms in spatial discretization.  
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4.1  Theoretical Model with Fractional Laplacian Operators  

For the ultrasound propagation in biological tissue simulations in this chapter, we simplify 

the tissue to be consisted of two kinds of media: water and bone. The governing equations for the 

wave propagation in water are the general Linearized Euler equations in Ref. [134] with no 

fractional Laplacian operators: 
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where u is the acoustic velocity, 
0 is the density of water, and

0c is the sound propagating speed 

in water. The governing equations for the wave propagation in bone material are given like below: 
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where
1 is the density of bone, and 1c is the sound propagating speed in bone. The y is a 

noninteger power law exponent for fractional Laplacian derivative,  and  are proportionality 

coefficients in Ref. [134]. 

Table 4-1 Different power law exponent and corresponding proportionality coefficients 

 

  

y      

1.5 -4.90368e-8 -9.80736e-5 

1.9 -1.95732e-9 -6.20019e-7 
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     For the two-dimensional simulations, consider the Riesz fractional derivative in Ref. [135] 

equals to the fractional Laplacian operator given below: 

 
2 /2( )

p p
p

y z

 


 

 
   

 
 (4.5) 

where is the power law exponent. If 0 1  , the standard Grunwald approximation method 

in Ref. [135] is given as: 
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where y is numerical grid size, and
jg is called weight coefficient. The expression for weight 

coefficient is given as: 
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If 0 1  , the standard Grunwald approximation method in Ref. [135] is given as: 
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And the weight coefficient is given as: 
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Different power law exponent values y , the corresponding proportionality coefficients are listed 

in Table. 4.1. For the numerical simulations in the following section, the power law exponent is 

chosen as 1.9. 
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4.2  Ultrasound Propagation in Biological Tissue Simulations 

The geometry and coordinate system for the ultrasonic wave propagation in biological tissue 

are shown in Fig. 4.1. The computational domain size is 0.06m 0.06m , and uniform grid is 

implemented with very small mesh size
55 10 my z      . The four boundaries of 

computational domain are specified as rigid boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it is shown in Fig. 4.1 the domain is consisted with two different materials water and 

bone. The bone area is between two concentric circles. The center of two concentric circles is at 

the center of the computational domain (0.03, 0.03) and radius is 0.015m and 0.005m respectively. 

Fig.  4.1 Description of the geometry and coordinate system for 

the ultrasound wave propagation. 
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The ultrasound propagation speed in water and bone is1500m/s  and 2000m/s  respectively, and the 

density of water and bone media is
31000kg/m  and

31500kg/m  respectively. 

For the ultrasonic wave propagation simulations, the time step is chosen as an extremely 

small value 95 10 st    . Simulation step is 7600 and time domain is 38 st  . A receiver is put 

at the center of the computational domain (0.03, 0.03). The ultrasonic plane wave is set at the left 

boundary of the domain from 0.025mz  to 0.035mz  . The expression for ultrasonic plane wave 

in Ref. [127] is given as: 

 0 1( ) cos(2 )[1 cos(2 )]p t f t f t    (4.11) 

where
0f is the center frequency which is chosen as 0 1.3MHzf  , and frequency

1f controls the 

plane wave bandwidth, which is chosen as
1 0.2MHzf  . This input ultrasonic wave with specified 

frequency is shown in Fig. 4.2. 

 

 

 

 

 

 

 

 

 

 

 
Fig.  4.2 Input ultrasonic plane wave. 
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(a) (b) 

(c) (d) 
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Fig. 4.3 (a)-(f) are the pressure contours at six different moments. How the ultrasonic wave 

propagation and are attenuated through the biological tissue model can be clearly observed. We 

can find several reflections when the ultrasonic wave enters the bone media, and the absorption 

and dispersion of the wave inside the bone due to the fractional Laplacian. Based on Fig. 4.3 (f) it 

is seen that after the ultrasonic wave pass through the bone media, it becomes much weaker 

compared to the incident plane wave. Meanwhile there are several reflected waves remain inside 

the bone.  

      The numerical pressure versus time of the receiver (0.03, 0.03) is given in Fig. 4.4. The 

numerical pressure simulated without bone media is also shown in Fig. 4.4 for comparison. From 

(e) (f) 

Fig.  4.3 Pressure contours of ultrasound propagation at different moments (a) 4 st   (b)

12 st   (c) 20 st   (d) 24 st   (e) 28 st   (f) 30 st  . 
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the figure we can see that the with-bone numerical pressure curve has smaller magnitude than the 

without-bone curve. It is due to the reflections at the interface between water and bone media, and 

also the dispersions inside the bone. Except the magnitude, the with-bone curve is also shifted 

compared with the without-bone curve. This is because the ultrasound propagation speed inside 

the bone is higher than the speed in water. The ultrasonic plane wave propagates to the receiver 

faster when the bone media is included in the computational domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  4.4 Numerical pressure versus time of ultrasound propagation simulation. 
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To test if the perfectly-matched-layer in Ref. [83]-[85] can be applied for ultrasonic wave, two 

simulations are implemented. The governing equations for ultrasonic wave propagation in PML 

boundary is given as: 
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. D is the PML boundary layer thickness. 
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         One simulation is adding two PML boundaries at both top and bottom of the domain that 

shown in Fig. 4.1. The other is adding the PML boundary only at the bottom of the domain, but 

enlarge the domain size in z-direction to 0.1m. Thickness of PML boundary is 0.01m and all the 

other simulation parameters are kept the same as the previous simulations. The receiver is put at 

(0.005, 0.049) for both simulations which is near the top PML boundary. The pressure contours of 

these two different cases are shown in Fig. 4.5, and the numerical pressure of two simulations are 

given in Fig. 4.6. Based on the comparison in Fig. 4.6 we can see that the two numerical curves 

match very well, which means there are no reflections back from the PML boundary, and the wave 

propagation is just like in the free field. As a result it is known that the PML boundary works well 

for ultrasonic wave.  

Fig. 4.5 Pressure contours of ultrasound propagation with PML 

boundary (a) 10 st   (b) 30 st  . 

(b) 
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To observe the interactions between several ultrasonic plane waves, another simulation is 

conducted. The ultrasound is set at the four boundaries of the domain, instead of only coming from 

the left side. Meanwhile all the other initial conditions and parameters are kept the same as the one 

wave simulations. Fig. 4.7 gives the pressure contours of the four ultrasonic plane wave 

simulations with bone media. Based on the pressure distributions we can clearly see that the 

ultrasound comes from the four directions, meet each other near the center of the domain, and how 

they are interacted. A lot of small reflections and dispersions can be observed all over the 

biological tissue.   

 

 

Fig. 4.6 Numerical pressure versus time of ultrasound propagation simulation with PML  
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(a) (b) 

(c) (d) 
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(e) (f) 

Fig. 4.7 Pressure contours of four ultrasonic wave propagations with bone at different moments 

(a) 5 st   (b) 12.5 st   (c) 17.5 st   (d) 22.5 st   (e) 27.5 st   (f) 35 st  . 

(a) (b) 
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(c) (d) 

(e) (f) 

Fig. 4.8 Pressure contours of four ultrasonic wave propagations without bone at different 

moments(a) 5 st   (b) 12.5 st   (c) 17.5 st   (d) 22.5 st   (e) 27.5 st   (f) 35 st   . 
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      When the computational domain only contains water and there are no power law attenuations 

for the ultrasonic wave, the corresponding pressure contours are shown in Fig. 4.8. Different from 

the pressure distributions in Fig. 4.7, the four ultrasonic waves meet each other at the center of the 

domain and pass by. There are no reflections spread in the domain. Meanwhile the shapes and the 

magnitudes of four ultrasonic waves are not greatly influenced.  

 

 

  

Fig. 4.9 Numerical pressure versus time of four ultrasonic wave propagations. 
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4.3 Ultrasound Propagation with Sonic Crystals 

The sound blockage effect of sonic crystals has been studied for both point sound source and 

low frequency plane wave in chapter 2. In this section the ultrasonic plane wave propagation 

through cylinder arrays are simulated and the sound attenuating effect for ultrasound are studied.  

 The geometry for the ultrasonic wave propagation through cylinder arrays simulations are 

shown in Fig. 4.1. The computational domain size is 0.35m 0.06m , and the other simulation 

parameters like grid size, time step, media density, propagation speed and fractional Laplacian 

power law exponent are the same as the ultrasonic plane wave propagation through biological 

tissue simulations in section 2 except the time domain is increased to 0.19ms. The same ultrasonic 

plane wave in section 2 is set at the left boundary of the domain from 0.025mz  to 0.35mz  .  

 

 

 

 

 

 

 

  

Fig. 4.10 Description of the geometry and coordinate system for the ultrasound wave 

propagation through sonic crystals propagations. 
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      The sonic crystal for ultrasound propagation is consisted of five solid bone media that evenly 

placed along the wave propagation direction. The coordinates of the centers of five cylinders are 

(0.05, 0.03), (0.1, 0.03), (0.15, 0.03), (0.2, 0.03) and (0.25, 0.03), and the radius is 0.015m. Five 

receivers are placed after each cylinder, and the corresponding coordinates are (0.075, 0.03), 

(0.125, 0.03), (0.175, 0.03), (0.225, 0.03) and (0.275, 0.03). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 



106 

 

 

 

 

 

 

 

 

 

 

 

  

(d) 
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(f) 
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      Fig. 4.11 gives the pressure contours of the ultrasound propagation through sonic crystals at 

different moment. We can see how the ultrasonic wave is greatly absorbed and attenuated by the 

bone sonic crystals. From Fig. 4.11 (f) we notice that after passing through the fourth sonic crystal, 

the ultrasonic wave is already extremely weak compared to the incident wave. It even can barely 

be observed from the pressure contour.  

  

(g) 

Fig. 4.11 Pressure contours of ultrasound propagation through cylinder arrays at 

different moment (a) t=0.01ms (b) t=0.03ms (c) t=0.05ms (d) t=0.07ms (e) t=0.9ms 

(f) t=0.11ms (g) t=0.13ms.  

. 

  

 

(a) (b) 
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(c) (d) 

(e) 

Fig. 4.12 Numerical pressure versus time for each receiver (a) (0.075, 0.03) 

(b) (0.125, 0.03) (c) (0.175, 0.03) (d) (0.225, 0.03) (e) (0.275, 0.03). 
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     The numerical pressure of each receiver is shown in Fig. 4.12, and the values simulated without 

sonic crystals are also represented in the figure for comparison. It is seen that when the sonic 

crystals are applied, the ultrasonic plane wave pressure decreases drastically after passing through 

each bone. When there are no sonic crystals, the pressure of sonic plane wave is gradually 

decreasing while propagating, but the magnitude are many times larger than the pressure with 

sonic crystals. The corresponding sound attenuation levels are given in Fig. 4.13.  

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) (b) 

(c) (d) 
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(e) 

Fig. 4.13 Sound attenuations versus frequency for each receiver (a) (0.075, 0.03) 

(b) (0.125, 0.03) (c) (0.175, 0.03) (d) (0.225, 0.03) (e) (0.275, 0.03)  
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4.4 Summary  

        In this chapter, the ultrasonic plane wave propagation in biological tissue is studied. The 

theoretical governing equations and the numerical fractional Laplacian derivative approach are 

described. First of all, the simulation for single ultrasonic plane wave is implemented, the pressure 

of ultrasound is apparently attenuated after propagating through bone material, where the fractional 

Laplacian derivative is applied. After that, the absorption effect of PML boundary in Ref. [83]-

[85] for ultrasound is studied. The numerical result shows that the PML boundary is also capable 

of attenuating and bending ultrasonic waves. Four ultrasonic plane waves come from four different 

directions are simulated. The interactions between ultrasonic waves can be observed based on 

corresponding pressure contours, the numerical absolute pressure is also given. 

     In the end the sonic crystals blockage effect for ultrasonic waves is studied. The sonic 

crystals are consisted of five bone material, which the fractional Laplacian derivative is applied. 

Due to the remarkable absorption and dispersion effect of sonic crystals, the pressure of ultrasonic 

waves are greatly decreased. As the result the sound attenuation values for each receiver are high. 
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5 Conclusion 

5.1 Conclusions       

        The primary focus of this thesis is investigating the sound wave propagation under complex 

environments. Various factors for acoustics, such as sonic crystals, ground surface and ambient 

vortical flow are considered. This study is implemented by a numerical model for linearized Euler 

equations combining the FDTD method with the immersed boundary method. The numerical 

results are compared with the analytical solutions or experimental data, when applicable.  

       The sound wave perpendicularly propagating through cylinder arrays is studied for both two- 

and three-dimensional cases. In 2D studies, when the number of cylinders in the vertical direction 

is fixed, the use of more cylinders in the wave propagation direction results in a better sound 

blockage effect. This conclusion is not necessarily valid when the receiver is close to the arrays 

because the sound pressure level is enhanced instead of attenuated due to the reflections. The 

validity of the numerical model is confirmed by the good agreement with the theoretical Bragg 

band gap value. An Euler-type moving zonal-domain approach is applied for three-dimensional 

simulations. The moving domain size is an important factor for numerical simulation. The size 

needs to be small enough to achieve high calculation efficiency and large enough to maintain the 

dispersing pulse and energy. The accuracy of the moving-domain method has been verified by 

comparing its simulated results with the results of non-moving domain method. Additional 

simulation studies for sonic crystals are performed based on the published measurement. The two 

band gaps of the simulated results have a very good agreement with the experimental data, again 

showing the accuracy of the simulation model. By using different sonic crystal materials, the 

results suggest that selecting appropriate materials is an important factor to block different sound 
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source frequency. The sonic crystals made of porous materials with intermediate flow resistivity 

are more effective for noise blockage.  

      Sound plane wave propagation through a vortex pair is investigated. The FDTD linearized 

Euler equations are solved with a fifth order WENO scheme. Frist, the sound propagation over a 

stationary vortex pair is considered for different Mach numbers and vortex pair orientation angles

 . The pressure distributions and normalized pressure levels clearly show the significant sound 

scattering effect of the vortical flow. The maximum sound scattering effect is obtained at 0270   

and the minimum values are at 00  and 0180  . Furthermore, the scattering effect of a moving 

vortex pair is studied with different Mach numbers under angle 90   . The accuracy of the 

numerical model has also been verified by comparing with the analytical solutions. 

      The ultrasonic plane wave propagation in biological tissue is studied. The linearized Euler 

acoustic equations coupled with spatial-fractional Laplacian operators are presented. From our 

numerical analysis, it is seen that the ultrasonic wave is significantly absorbed and attenuated after 

propagating through the bone material, where the fractional Laplacian derivative is applied. After 

that, the absorption effect of the Perfectly-Matched-Layer (PML) boundary for ultrasonic wave is 

investigated. The numerical results suggest that the PML boundary is also capable of absorbing 

ultrasound. The simulation with four ultrasonic plane waves that came from four different 

directions is implemented for studying the interactions between ultrasonic waves. In the end, the 

sonic crystals’ sound blockage effect for ultrasonic waves is investigated. The sonic crystals are 

made up of five bone materials, where the fractional Laplacian derivative is applied. Due to the 

remarkable absorption and dispersion effects, the pressure of ultrasonic plane waves drastically 

decreases. As a result the sound attenuation values for each receiver are high. 
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5.2 Future Works       

       Besides the current advances presented in this thesis, there are still many other possible 

improvements for the future works. First, most of the analytical solutions are limited to 

homogeneous propagation conditions in which the environmental properties do not change much. 

The development of analytical solutions for inhomogeneous atmosphere and complex terrain can 

help verify and improve the accuracy of the numerical simulations.  

       Secondly, for the three-dimensional long distance sound wave propagation simulations, one 

must note that the required computer memory is prohibitively high and the cost is expensive. The 

development of supercomputer power and parallel computing techniques would help to speed up 

the calculation and greatly reduce the cost.  
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Appendix A: Error Analysis for Numerical Scheme  

     In our simulations, we use second-order central difference for space and time. When 

calculate the values of the nodes that near the boundary of two different media, a numerical error 

is generated because the central difference scheme. To discuss the numerical error, we consider 

the one-dimensional scheme in y-direction with no background shear flow: 0avV  . Then the 

governing equations and the corresponding discretized equations for propagation in air are: 
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Combining equation (A.3) and (A.4) we have the scheme for air: 
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The governing equations and discretized equations in porous media: 

 av

s

v p
v

t c y
 

   
   

  
 (A.6) 

 
avpp v

t y

 
 

  
 (A.7) 

  1 1 1

1

n n n n n

j j av j j j

s

t
v v p p y v

c y
   



 
    


 (A.8) 

  1

1

n n n nav
j j j j

p t
p p v v

y






   

 
 (A.9) 

For rigid barriers, the resistivity of porous medium is selected as an extremely high value, to make 

the matrix diagonal dominant, we change the velocity equation Eq. (A.8) to semi-explicit scheme: 
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Fig. A.1 Grid illustration for numerical error near the boundary. 
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          Combining Eq. (A.9) and Eq. (A.10) we have: 
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 . Thus we get the numerical scheme for high resistivity porous media: 
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          Now we discuss the situation that the sound wave propagates into porous media from air 

domain. The graphic illustration of the grid is given in Fig. A.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



117 

 

        In Fig. A.1, y-axis is the wave propagation direction, and t-axis stands for the time marching. 

We can find that at moment n+1 the 1D sound wave propagates to location y= j where is right 

before the interface of air and porous medium. To calculate the values for the node y= j, we need 

to use the velocity 1

n

jv  at point j+1, which is inside the porous media. However in our numerical 

scheme we consider the point j+1 is still in air domain. To discuss the caused numerical error, we 

use the pressure equation (A.9) of porous media first and then use velocity equation (A.3) of air. 

Combining those two equations we have the corrective scheme for point j: 
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The subscript a p means the wave propagates from air to porous. Then Equation (A.13) 

subtracts the current scheme (A.5) we have the error between those two schemes: 
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Then we change the current scheme (A.5) and (A.12) to error format for air (A.15) and porous 

(A.16): 

  1 1

1 12 2n n n n n n

j j j j j jv v v a v v v      

       (A.15) 

  1 1

1 1

2 1
2

1 1 1 1

n n n n n n n

j j j j j j j

b
v v v v v v v


      

   

 

      
   

 (A.16) 

To simplify the following expressions, we notate the
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. For most of 

the cases, the initial conditions are chosen as speed of sound 340m/sc  , time step 62.5 10 st    , 

grid size 0.008my  , ambient pressure 101000Paavp  and the resistivity 84 10 Pa   . Then 

we have 0.011a  , 0.0038b  , 81.75  . 
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           Now we notate the value
1n

jE v  as the error between two schemes. And to simplify the 

analysis, we only keep the leading terms in equation (A.16): 

 
1n n

j jv v    (A.17) 

By this assumption, the propagation of error is simplified to happen only in location y j . And 

the error will not propagate into porous media, which coincides with the initial condition that the 

porous media is rigid. The numerical errors of each point at every following time step are 

calculated and are given in the tables below. 
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          Based on the results above, we can conclude the errors of each point at every time step, and 

the values are listed in the table below. We can find that the error will propagate to the red points 

that marked in Fig. A.1 until all the nodes in air domain. However since the coefficients a and b 

are very small values, and the coefficients before the error E are reduced exponentially. As a result, 

the numerical errors far away from the boundary are negligible, and we can find that our numerical 

results given in Fig. 1.3 have an excellent agreement with the data in the literature. 
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