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Abstract 

I investigated the sampling behavior of DIC and WAIC in the context of selecting an optimal 

measurement model in Bayesian SEM, as well as the utility of highly constrained parameter 

estimates in detecting differential item functioning (DIF).  I assessed the relative efficiency of 

WAIC compared to DIC, evaluated analytical WAIC SEs by calculating relative bias, and 

reported how often WAIC and DIC indicated a preference for each invariance model.  I 

compared the power and Type I error rates for DIF detection across conditions, and assessed the 

quality of estimates by calculating bias and 95% CI coverage rates for key parameters.  Results 

indicate that although WAIC has less sampling variability than DIC, their model preferences are 

similar.  Both WAIC and DIC have greater power to detect that invariance constraints are 

untenable than AIC in using maximum likelihood (ML) estimation.  In tests of null hypotheses 

that DIF parameters are zero, Bayesian credible intervals and ML modification indices have 

similar power, but Bayesian credible intervals have much lower Type I error rates. 



iv 

 

Acknowledgements 

I would like to thank each of my committee members—Drs. Wei Wu, Pascal Deboeck, 

Carol Woods, Billy Skorupski, and Paul Johnson—for their expertise, time, guidance, and 

support.  I am grateful for the statistical resources and technological support provided by the 

University of Kansas’s Center for Research Methods and Data Analysis.  I would also like to 

thank my wife, Katharina Jorgensen, for excusing my antisocial behavior while undertaking this 

task, and my family for understanding why I spent most of the winter holidays working. 

  



v 

 

Table of Contents 

Abstract ..................................................... iii 

Acknowledgement .............................................. iv 

Table of Contents ............................................... v 

List of Tables and Figures ......................................... vii 

PART I: Literature Review ........................................ 1 

Defining a Model’s Goodness-of-Fit .............................. 2 

Defining Model Fit in SEM ................................... 5 

Covariance structure analysis ............................. 6 

Model fit in covariance structure analysis ..................... 9 

Residuals-based fit measures ......................... 9 

χ
2
 fit statistic ................................... 10 

χ
2
-based fit indices ............................... 12 

Sources of misfit ................................. 15 

Application of Fit Measures in Traditional SEM ...................... 16 

Model evaluation ..................................... 17 

Model modification .................................... 19 

Tools for model modification ........................ 20 

Model comparison .................................... 24 

Nested model comparisons .......................... 25 

Nonnested model comparisons ....................... 28 

Bayesian SEM ............................................ 32 

Bayesian statistical inference .............................. 32 

Estimating Bayesian models .............................. 35 

Bayesian Model Fit ......................................... 36 

Model evaluation ..................................... 37 

Model modification .................................... 39 

Model comparison .................................... 41 

Bayes factors ................................... 42 



vi 

 

Information criteria ............................... 43 

Summary of Bayesian Model-Comparison Tools ..................... 47 

PART II: Assessing Bayesian Tools for Selecting an Optimal Measurement Model ... 49 

Monte Carlo Design for Study 1 ................................ 50 

Procedure .......................................... 54 

Results and Discussion ...................................... 55 

Variability of information criteria ........................... 56 

Impact of model misspecification ........................... 67 

Model rankings and preferences ............................ 70 

PART III: Assessing Bayesian Tools for Detecting DIF ..................... 78 

Monte Carlo Design for Study 2 ................................ 79 

Procedure .......................................... 80 

Results and Discussion ...................................... 83 

Nonconverged Models .................................. 83 

Variability of parameter estimates .......................... 84 

Rejection Rates ...................................... 89 

PART IV: General Discussion ...................................... 96 

Limitations and Future Directions ............................... 99 

Conclusions .............................................. 103 

References .................................................... 106 

Appendix: Prior Distributions for Model Parameters ........................ 116 

 

  



vii 

 

List of Tables and Figures 

Table 1: Manipulated Variables in Monte Carlo Design for Studies 1 and 2 ........... 51 

Table 2: Effect Sizes (η
2
) of Monte Carlo Factors on Information Criteria ............ 57 

Table 3: Effect Sizes (partial-η
2
) of Monte Carlo Factors on Parameter Estimates ....... 85 

Figure 1: Population model(s) for data generation in Study 1 ..................... 52 

Figure 2: Mean WAIC1 across conditions ................................. 58 

Figure 3: Mean AIC across conditions ................................... 60 

Figure 4: Mean DIC1 across conditions ................................... 60 

Figure 5: Mean DIC2 across conditions ................................... 61 

Figure 6: Standard deviations of four information criteria across conditions ........... 62 

Figure 7: Standard deviations of all five information criteria across conditions ......... 62 

Figure 8: Relative efficiency of DIC1 to DIC2 ............................... 63 

Figure 9: Relative efficiency of WAIC2 to WAIC1 ........................... 64 

Figure 10: Relative efficiency of WAIC2 to DIC1 ............................ 65 

Figure 11: Relative SE bias of WAIC2 ................................... 66 

Figure 12: Effect of DIF, model type, and parsimony error on latent-mean bias ........ 68 

Figure 13: Effect of DIF, model type, and parsimony error on latent-variance bias ...... 68 

Figure 14: Effect of DIF, model type, and parsimony error on CFI ................. 69 

Figure 15: Effect of DIF, model type, and parsimony error on RMSEA .............. 70 

Figure 16: Model preferences based on ranked AIC, DIC1, WAIC1, and WAIC2 ........ 71 

Figure 17: Model preferences based on ranked DIC2 .......................... 73 

Figure 18: How often the lowest WAIC’s 95% CI contains the next lowest WAIC ...... 75 

Figure 19: How often the lowest WAIC’s 95% CI contains the highest WAIC ......... 75 

Figure 20: How often the second lowest WAIC’s 95% CI contains the highest WAIC .... 76 

Figure 21: Model preferences including the correct partial invariance model .......... 78 

Figure 22: Convergence rates for each model across conditions ................... 83 

Figure 23: Bias in the second latent mean grows in magnitude as DIF increases ........ 86 

Figure 24: Average posterior mean of the second latent SD by DIF ................ 86 

Figure 25: Average posterior mean of Δλs by DIF, prior σ, and N ................. 87 



viii 

 

Figure 26: Average posterior mean of Δτs by DIF, prior σ, and N .................. 88 

Figure 27: Rejection rates for Δλs by DIF, prior σ, and N ....................... 89 

Figure 28: Rejection rates for Δτs by DIF, prior σ, and N ....................... 91 

Figure 29: Maximum-DIF rejection rates for Δτs by DIF, prior σ, and N ............. 91 

Figure 30: False discovery rates (FDR) by DIF, prior σ, and N ................... 92 

Figure 31: Power and Type I error rates for detecting DIF using modification indices .... 93 

Figure 32: Type I error rates by DIF, prior σ, and N ........................... 95 

Figure 32: Power by DIF, prior σ, and N .................................. 95 

 



1 

 

 

 

Selecting an Optimal Measurement Model and Detecting Differential Item Functioning Using 

Bayesian Confirmatory Factor Analysis 

PART I: Literature Review 

Bayesian methods have been incorporated into popular software packages to estimate 

structural equation models (SEM), such as Amos (Arbuckle, 2012) and Mplus (Muthén & 

Muthén, 2012).  This has resulted in increased popularity of such estimators in applied research 

(Andrews & Baguley, 2013).  More frequent use of Bayesian estimation will be accompanied by 

a greater demand for methods to evaluate SEMs in a Bayesian context (Levy, 2011).  Applied 

users might be motivated to use a Bayesian estimation technique to fit an SEM that is intractable 

to estimate with maximum likelihood (ML) or may be attracted to the Bayesian framework for 

its interpretational benefits (Gelman et al., 2014; Iversen, 1984).  In either case, the scientific 

community can expect future journal articles to include the use of Bayesian methods to answer 

research questions about measurement equivalence (or “invariance”) and differential item 

functioning (DIF), which are related topics of frequent methodological research in the context of 

latent variable models such as SEM and item-response theory (IRT). 

I begin this section with an introduction to the concept of model fit, followed by a 

thorough literature review of methods for evaluating traditional SEMs in a frequentist 

framework.  I then provide a conceptual introduction to the Bayesian approach to statistical 

inference and estimation, and I review existing methods for Bayesian SEM (BSEM) evaluation.  

I use common applications of model comparison and modification (e.g., testing measurement 

invariance, identifying misspecified parameters) to contrast the frequentist and Bayesian 

approaches of assessing model fit.  I conclude the review with a discussion of gaps in the 

invariance testing literature.  Finally, I propose a study to investigate the frequency properties of 
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tools for selecting an optimal measurement model and for detecting DIF in a Bayesian context. 

Defining a Model’s Goodness-of-Fit 

The fit of a model in many contexts (e.g., regression, multilevel models) refers to how 

similar the observed values are to the predicted values implied by the model.  For instance, in an 

“intercept-only” general linear model 

 𝑌𝑖 = �̂�0 + 𝑒𝑖 (1) 

the estimate of 𝛽0 is the sample mean �̅�, and the residuals 𝑒𝑖 are the mean-centered data, 

representing how much the i
th

 observation deviates from �̅�.  In this model, each observation’s 

predicted value �̂�𝑖 is the sample mean �̅�, and the estimated residual variance of 𝑒𝑖 is the total 

sample variance.  If X is a variable correlated with Y, its inclusion in the model  

 𝑌𝑖 = �̂�0 + �̂�1𝑋𝑖 + 𝑒𝑖 (2) 

will improve the predicted values �̂�𝑖 in the sense that the discrepancies between predicted and 

observed values (i.e., residuals, 𝑒𝑖 = 𝑌𝑖 − �̂�𝑖) will be smaller, on average. The residual variance 

of 𝑒𝑖 thus decreases by the amount of shared variance between X and Y.   

In the ANOVA decomposition of a linear model (Maxwell & Delaney, 2004), the degree 

to which predicted values differ from observed values is estimated by the mean squared error 

(MSE), the square-root of which (RMSE) is the SD of the residuals.  The magnitude of these 

discrepancies relative to the total sample variance (
𝑆𝑆𝐸

𝑆𝑆𝑇
) indicates the degree to which the model 

fails to perfectly predict each observed 𝑌𝑖, and its complement is thus a measure of model 

goodness-of-fit (1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
), more commonly known as R

2
 (interchangeably known as η

2
 in 

software such as SPSS).  R
2
 is most commonly interpreted as the proportion of variance in the 

outcome y that is explained by the linear combination of predictors.  Another interpretation, 
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which is more related to model fit, is that R
2
 quantifies the degree of correspondence between 

observed and predicted values of y—where predicted values are a linear combination of 

predictors. 

Model fit may be evaluated in an absolute sense (without reference to any competing 

alternative models) using R
2
, but applied researchers are often interested in how much a model 

improves by including additional predictors or covariates
1
.  Because R

2
 will nearly always 

increase with the inclusion of any additional predictor, regardless of its merit, a researcher using 

the highest R
2
 as criterion for the “best” model will always choose the most complex, inclusive 

model.  A researcher could continue to add as many predictors as there are observations, at 

which point the model has no degrees of freedom (df).  A model with no df explains 100% of the 

sample variance (i.e., R
2
 = 1), but it has no utility because the predicted values are not free to 

differ from the observed values.  Such a model explains nothing—it is descriptive at best. 

Given the same approximate level of predictive accuracy, the principle of parsimony 

prefers the simplest available model.  A common expression of this principle is Occam’s Razor, 

named for Sir William of Occam, who stated that if two explanations are practically equivalent 

(i.e., they make nearly equal predictions), the simplest explanation should be preferred.  In a 

statistical modeling context, “simplest” indicates the model requiring the fewest independent 

entities (e.g., predictor variables, functional form of effect on outcome) to make predictions of 

the same accuracy.  An adjusted R
2
 has been formulated for general linear models in the spirit of 

this principle, “punishing” the estimated goodness-of-fit by taking the number of parameters into 

                                                 
1
 The distinction between predictors and covariates is purely substantive, not statistical.  They play the same role 

mathematically, but the effects of covariates on an outcome are of little to no substantive interest to an applied 

researcher.  Covariates are included to control for nuisance effects, to generate more accurate predicted values for 

distinct subpopulations, or to increase power to detect effects of interest by reducing the residual variance, but the 

effects of interest involve predictors (also called independent or quasi-independent variables, depending on whether 

they are manipulated by design).  Throughout this paper , I refer to both predictors and covariates as predictors. 



4 

 

account so that adding parameters would be preferable only when they improve model fit beyond 

what would be expected from sampling fluctuation (Maxwell & Delaney, 2004).  

It is useful to distinguish between two types of accuracy—(a) in estimation and (b) in 

prediction—which necessitates distinguishing between two types of quantity that appear in 

mathematical and statistical models: variables and parameters.  The quantities X and Y in (2) are 

predictor and outcome variables, respectively; they are vectors of individuals’ scores on some 

measureable phenomena.  The quantities �̂�0 and �̂�1 in (2) are estimates of population parameters 

𝛽0 and 𝛽1 that describe the relationship between the variables.  The terms prediction and 

estimation refer to scores (i.e., �̂�𝑖 conditional on �̂�𝑖) and parameters, respectively, and model fit 

could refer to the accuracy of predictions or to the accuracy of the form of the model (i.e., What 

variables are included as predictors, and thus what parameters describe the effects of those 

predictors?).  The error term 𝑒𝑖 is a variable that represents how each case’s observed value 

differs from that case’s predicted value.  Although individual residuals can be calculated from 

the model results, 𝑒𝑖 is an unobserved (i.e., latent) variable, and its variance is the portion of the 

total variance in Y that is not explained by the predictor(s).  Thus, the residual term also 

represents any and all true effects on Y of potential predictors not included in the analysis model. 

The intercept-only model (1) will typically yield less accurate predictions than (2), so the 

fit of (2) will be superior to the fit of (1) with respect to predicted values.  However, both models 

might be accurate with respect to the parameters, assuming the normality assumption holds and 

the X–Y relationship is linear.  That is, neither model should be expected to include all predictors 

that cause individual differences in Y, but because 𝑒𝑖 represents any and all such potential 

predictors, the model in (2) is correct in the sense that it provides the best linear unbiased 

predictions (BLUPs) of Y conditional on observed values of X, and the model in (1) is correct in 
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the sense that it provides the best linear unbiased estimate (BLUE) of the population mean (i.e., 

�̂�0 is the unconditional sample mean �̅�). 

With respect to the free parameters included in an analysis model, R
2
 does not measure of 

model fit; it is only a measure of fit with respect to accuracy of predicted values.  Diagnostics for 

general linear models are not calculated directly from parameters, but the omission of important 

effects can be detected using plots of residuals against predictors (or potential predictors).  There 

are many other measures developed to indicate fit (or misfit) of a general linear model with 

respect to predictions, such as the predicted sum of squares (a leave-one-out method).  In other 

modeling contexts (e.g., a generalized linear model such as binary logistic regression), goodness 

of fit might be defined in terms of observed and expected counts in unconditional and 

conditional contingency tables, respectively, for categorical data, rather than in terms of 

explained and unexplained variance in a continuous variable.  The common aspect of all such 

methods typically involves evaluating predicted values with respect to observed values, but 

describing all such methods is beyond the scope of this review.  The remainder of the review will 

focus on model goodness-of-fit in the context of SEM. 

Defining Model Fit in SEM 

Models are mathematical representations of the population
2
 processes that give rise to 

observable, real-world phenomena.  Human behavior can be influenced by a variety of sources, 

so the true population process for any particular social phenomenon might be infinitely complex.  

By necessity, an analysis model is merely an approximation of the true population (MacCallum, 

2003).  Structural models can include several predictors and outcomes, representing more 

                                                 
2
 The term population informally refers to a group of people with some common characteristic(s) of interest.  In 

statistics, a population is a process that gives rise to observable data.  Even the entire “population” (in the informal 

sense) is merely a sample of all cases that could presently be observed, but not all possible cases that could ever be 

observed.  Throughout this review, I use the term population in the statistical sense: a data-generating process. 
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complex relationships than a general linear model can.  In fact, the general linear model can be 

seen as a special case of SEM, one in which there is only one outcome variable with any number 

of predictors.  SEM is more general because several outcomes can be included in the model, each 

of which has a linear prediction equation associated with it—a submodel—and the parameters of 

all submodels are estimated simultaneously.  A variable can even take on the role of a predictor 

and an outcome in the same model, representing a chain of causation—this is often called a 

mediation model.  SEMs can also include latent variables, which are estimated by modeling their 

effects of observed variables used to measure them.  The flexibility and complexity of SEM 

make it an attractive modeling framework for social and behavioral scientists. 

In the context of SEM, model fit is typically defined in terms of the summary statistics 

(i.e., means, variances, and covariances).  Specifically, when fitting a specified model to 

observed data, the estimated parameters yield predicted values of the variances and covariances 

among the variables (Brown, 2006), and a well-fitting model is one whose model-implied (i.e., 

predicted) covariance matrix closely resembles the observed covariance matrix.  To explain why 

SEM model fit concerns discrepancies of predicted summary statistics rather than individual 

predicted scores, I must briefly discuss how SEMs have traditionally been estimated.  

Covariance structure analysis. Many psychological constructs (e.g., depression, 

intelligence) cannot be measured directly because they cannot be perceived with the senses, and 

are thus commonly referred to as latent constructs.  Instead, latent constructs must be measured 

indirectly.  Observable behaviors can indicate someone’s level on a latent variable—for example, 

higher political conservatism could be expected to correspond with observing (a) higher 

indications of such an orientation on a questionnaire or (b) more frequently casting votes for 

conservative candidates in elections.  Psychological researchers have historically used scales to 
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measure latent constructs because each scale item is designed to indicate a respondent’s level on 

a latent variable.  Scales can measure attitudes in social psychological research; frequency or 

duration of symptoms can measure psychological disorders in a clinical context; or test 

performance can measure competency in an educational setting.  In each of these examples, the 

indicators are assumed to be related due to a common cause—the latent construct they are 

designed to measure. 

The common factor model can be applied to data that conform to this assumption.  In its 

simplest form (a single-factor model), observable indicators x are treated as outcomes of an 

unobserved common factor F (i.e., a latent construct): 

 xpi = λp × Fi + εpi (3) 

where i is an index for N observations (i = 1, 2, … N), p is an index for P observable indicators 

(p = 1, 2, … P), λp is the regression weight relating indicator xp to factor F, and εp is the residual 

term, representing the uniqueness of indicator xp—unique in that it is unrelated to the common 

factor F or any other indicators.  The model in (3) assumes that F and all xp are centered at their 

means, but this assumption can be relaxed by adding an intercept term (τ) for each x: 

 xpi = τp + λp × Fi + εpi (4) 

Because F is not directly observed, it is not possible to directly estimate the regression 

weights (λ), intercepts (τ), or variance of residuals (ε).  However, regression coefficients can be 

estimated without access to individual observations (x, y), if certain summary statistics are 

available—namely the mean vector (M) and covariance matrix (S) of x and y.  In the linear 

model (2), regression coefficients are estimated as: 

 �̂�1 =
𝐶𝑜𝑣(𝑋,𝑌)

𝑉𝑎𝑟(𝑋)
 �̂�0 = �̅� − �̂�1�̅� (5) 

The variance of F in (3) cannot be estimated, nor can its covariance with each indicator, because 
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F is unobserved.  But the covariance between each indicator and F can be estimated by imposing 

certain constraints (see Brown, 2006) and reproducing the observed covariances among 

indicators as a criterion.  The effect of F on each x in (3) or (4) can be iteratively estimated (e.g., 

using MLE), as long as the model can be identified by fixing the variance of F to be equal to 1 

(fixed-factor approach) or to be equal to the common variance of one indicator xp (marker-

variable approach). 

The common factor model is therefore typically fit to data as an analysis of the 

covariance structure among a set of observed variables.  More complex exploratory and 

confirmatory factor analyses (EFA and CFA) also operate on the assumption that covariances 

among manifest variables can be explained by a number of common factors (fewer than the 

number of observed variables) that have a linear effect on the indicators.  For example, a two-

factor model for person i's p
th

 manifest variable xpi would be represented as 

 xpi = τp + λp1F1i + λp2F2i + εpi (6) 

This model expresses the observed S as a function of (as many or fewer) parameters—the matrix 

of regression weights (Λ), the covariance matrix of latent variables (Φ), and the covariance 

matrix of indicator residuals (Θ): 

 S ~ �̂� = ΛΦΛ
t
 + Θ (7) 

and the observed M as a function of Λ, the latent means (α), and the indicator intercepts (τ): 

 M ~  �̂� = τ + Λα (8) 

These factor analysis models are special cases of SEM, in which the latent variables are freely 

correlated without any directed paths (i.e., no regressions among latent variables).  If there are 

latent regressions, represented in the β matrix, the more general covariance structure is 

 Σ̂ = Λ (I
Q
 − β

−1
) Φ (I

Q
 − β

−1
)
t
 Λ

t
 + Θ (9) 
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where I
Q
 is an identity matrix of dimension Q = the number of latent factors. 

Model fit in covariance structure analysis. Because SEMs are traditionally fit as 

analyses of covariance structure, models must be evaluated in terms of covariance structure.
3
  

There are no predicted values for the indicators (outcome variables) because individuals’ values 

on the latent factors (predictor variables) are not observed.  Instead, a covariance structure 

analysis (CSA) results in model-implied predictions Σ̂ for values in the population covariance 

matrix Σ among the indicator variables.  Because Σ is unavailable for direct comparison with Σ̂, 

model fit is evaluated using discrepancies between Σ̂ and the observed covariance matrix S.  

There are numerous ways to quantify these discrepancies, and several fit indices have been 

formulated to detect or describe different aspects of model misfit.  Exhaustive reviews of 

numerous fit measures may be found in Hu and Bentler (1998) and West, Taylor, and Wu 

(2012), but I discuss only a few popular ones here. 

Residuals-based fit measures. Just as residuals can be calculated between observed and 

predicted individual scores in a general linear model, residuals in CSA are calculated by 

subtracting elements in Σ̂ from elements in S (also, elements in �̂� from elements in M, if the 

model includes a mean structure).  Residuals can be inspected on an individual basis to discover 

which relationships among observed variables are not adequately reproduced by the model.  A 

summary measure of the residuals can also be used.  The square-root of the average of squared 

residuals is the root mean-squared residual (RMR), which provides an average magnitude of 

residuals in the original (co)variance metric.  More commonly, a standardized measure is 

calculated (SRMR) by scaling the residuals by their respective standard deviations.  A weakness 

of using a single-number summary of residuals is that misspecifying the relationships between a 

                                                 
3
 This constraint is not necessary in a Bayesian context, as later sections will discuss. 
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small number of variables might go unnoticed in a model with a large number of observed 

variables if, on average, the residuals are small. 

χ
2
 fit statistic. Parameters are estimated iteratively, with the criterion of minimizing a 

discrepancy function F between Σ̂ and S.  Discrepancy functions are thus a function of residuals 

(i.e., differences between observed sample moments and model-implied population moments).  

In general, the elements of Σ̂ and S can be stacked into individual vectors  �̂� and s, respectively, 

and each discrepancy is squared and summed, after being scaled by a weight matrix W (Browne, 

1984): 

 𝐹general = (𝒔 − �̂�)T𝐖−1(𝒔 − �̂�) (10) 

In unweighted least squares (ULS) estimation, the weight matrix is an identity matrix, so it is 

merely the sum of squared discrepancies: 

 𝐹ULS = (𝒔 − �̂�)T(𝒔 − �̂�) =
1

2
𝑡𝑟 [(𝑺 − Σ̂)

2
] (11) 

Weighted least squares (WLS) estimation has several special cases.  In generalized least squares 

(GLS) estimation, the weight matrix is a function of S, and assuming multivariate normality the 

equation can be simplified to 

 𝐹GLS =
1

2
𝑡𝑟 [(𝐈Q − 𝑺−1Σ̂)

2
] (12) 

Asymptotically distribution-free (ADF) estimation involves calculating the weight matrix from 

the excess kurtosis among the indicators, allowing the normality assumption to be relaxed in 

asymptotically large sample sizes (e.g., N > 1000 or 5000).  The most popular discrepancy 

function among applied researchers—due in no small part to it being the default estimator in 

most software—is the maximum likelihood (ML) estimator: 

 𝐹ML = log|Σ̂| − log|𝑺| + 𝑡𝑟(𝑺Σ̂−1) − 𝑃 (13) 
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where P is the number of observed variables.  FML also assumes multivariate normality of 

indicators.  If a mean structure is included in the model, FML is amended with another term for 

discrepancies in the mean vector: 

 𝐹ML = log|Σ̂| − log|𝑺| + 𝑡𝑟(𝑺Σ̂−1) − 𝑃 + (𝑴 − 𝛍)TΣ̂−1(𝑴 − 𝛍)  (14) 

Due to its popularity, I will refer solely to FML throughout this review unless otherwise 

stated.  Regardless of which discrepancy function is used, a test statistic is calculated as the 

product of the discrepancy function and the sample size
4
: 

 𝑇 = 𝑁 × 𝐹ML (15) 

If the normality assumption is met, N is large enough, and the model is correctly specified, T 

approximately follows a central χ
2
 distribution with df equal to the number of observed sample 

moments (means, variances, and covariances) minus the number of estimated parameters in the 

model.  The deviance can also be used to calculate the ML χ
2
 statistic.  The deviance = −2 ×

log(𝑝(𝑌|𝛉)), where p(Y | θ) is the likelihood of observing the observed data (Y), conditional on 

the vector of model parameters (θ).  The deviance is distributed as a χ
2
 random variable, so the χ

2
 

statistic for a model is the difference between the deviance of that target model and the deviance 

of the saturated model. 

If the variables are continuous but nonnormal, an adjusted χ
2
 statistic (and SEs) can be 

calculated using excess kurtosis of indicators.  If the hypothesized model does not precisely 

match the population model, then T is approximately distributed as a noncentral χ
2
 random 

variable, with the same df but also a noncentrality parameter λ that depends on the magnitude of 

                                                 
4
 Early software such as LISREL (Jöreskog & Sörbom, 2006) and EQS (Bentler, 2006) used N – 1 instead of N 

because without a mean structure, CSA likelihood follows from a Wishart distribution.  More recently developed 

software such as Mplus (Muthén & Muthén, 2012) and lavaan (Rosseel, 2012) include a mean structure by default, 

and so their likelihood functions follow from a normal distribution and use N as the multiplier (Widamin & 

Thompson, 2003). 
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discrepancy between hypothesized and true models. 

The χ
2
 statistic provides a test of exact fit—that is, a test of the null hypothesis that there 

is no difference whatsoever between the model-implied and observed sample moments (H0: �̂� = 

S), which is a proxy for the untestable null hypothesis that the hypothesized target model is 

identical to the true population model (H0: Σ0 = Σ).  Similar to other test statistics, larger N 

increases its power to detect smaller inconsistencies with H0.  Because hypothesized models are, 

by necessity, mere approximations of reality, a test of exact fit has limited utility.  Large N yields 

enough power to detect even small model–data discrepancies, so small that they are of no 

practical importance (in the sense that predicted values are close enough to observed values that 

they would be useful in an applied setting).  It is this limitation of the χ
2
 statistic that motivated 

several methodologists to develop alternative indices of fit, a few of which I discuss next. 

χ
2
-based fit indices. The χ

2
 statistic provides a test of statistical significance of the 

observed model–data discrepancy.  Like other statistical tests (e.g., independent-samples t), 

interpretation of a rejected H0 is facilitated by a measure of effect size (e.g., Cohen’s d).  

Practical fit indices were developed for the same purpose when evaluating the practical 

significance of model–data discrepancy.  Other than the aforementioned residuals-based fit 

indices, most fit indices are calculated as a function of the χ
2
 statistic. 

The only fit measure with a known distribution is the root mean-squared error of 

approximation (RMSEA), which is based on the noncentrality parameter λ̂, estimated as the 

difference between χ
2
 and its expected value (df): 

 RMSEA = √max (0,
λ̂

𝑑𝑓(𝑁)
) = √max (0,

χ2−𝑑𝑓

𝑑𝑓(𝑁)
) (16) 

RMSEA is thus a measure of how much misfit there is, on average, per df, in the metric of the 
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discrepancy function (i.e., with the influence of N removed).  Confidence intervals can be 

constructed for RMSEA using the upper and lower limits of the noncentral χ
2
 with noncentrality 

parameter λ̂ (Curran, Bollen, Chen, Paxton, & Kirby, 2003), which can then be used to test 

hypotheses of close fit rather than exact fit (MacCallum, Browne, & Cai, 2006).  A limitation of 

this approach is that the value of RMSEA does not have a clear interpretation (Browne & 

Cudeck, 1992), so setting a null-hypothesized value of RMSEA for a test of close fit is arbitrary. 

  RMSEA is a measure of absolute misfit, in the sense that the model is judged in 

isolation (without respect to another model) and higher numbers indicate worse fit.  Another 

index based on the noncentrality parameter is McDonald’s noncentrality index: 

 Mc = 𝑒
− 

1

2
(

λ̂

𝑁
)

= 𝑒
− 

1

2
(

χ2−𝑑𝑓

𝑁
)
 (17) 

The interpretation is no more straight-forward than for RMSEA, but Mc is a measure of 

goodness of fit, in that higher values (theoretical upper bound of 1) indicate better fit (West et al., 

2012).  

The comparative fit index (CFI; Bentler, 1990) also utilizes the estimated noncentrality 

parameter, but it belongs to a class of indices called comparative or incremental fit indices, 

which quantify model fit by comparing the fit of the target model (χT
2) to the fit of a baseline 

model (χB
2 ): 

 CFI = 1 −
max(λ̂T,0)

max(λ̂B,0)
= 1 −

max (χT
2 −𝑑𝑓T,0)

max (χB
2 −𝑑𝑓B,0)

 (18) 

This is in contrast to indices such as SRMR, RMSEA, and Mc, which quantify absolute (mis)fit 

of an isolated model.  The Tucker–Lewis index (TLI, also called NNFI; Bentler & Bonnett, 

1980) is another popular incremental fit index, originally developed to help identify the 

appropriate number of factors in EFA.  Its calculation is similar, but instead of the noncentrality 
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parameter (i.e., the difference between the χ
2
 and df), it is calculated using the χ

2
-to-df ratio. 

Incremental fit indices are based on the idea that there is a continuum between the worst-

fitting model (represented by the baseline model, in which variables are typically not allowed to 

correlate) and the best-fitting model (represented by the saturated model, in which all observed 

associations are freely estimated).  Target models lie somewhere between these two extremes, 

and incremental fit indices indicate where along the continuum the target model is located—

values closer to 0 indicate the target model is closer to the poor-fitting baseline model, and 

values closer to 1 indicate the target model is closer to the perfect-fitting saturated model.  This 

allows nonnested target models to compared, so long as they are both nested within the same 

saturated model, and the same baseline model can be specified to be nested within both 

competing target models (Bentler & Bonnett, 1980; Widamin & Thompson, 2003).   

The goodness-of-fit index (GFI) is an absolute fit index whose interpretation is similar to 

R
2
 in general linear models—the proximity between observed sample moments and model-

implied predictions of those moments.  Values closer to 1 indicate closer proximity and thus 

better fit.  Like R
2
 (Maxwell & Delaney, 2004), the GFI is upwardly biased in finite samples 

(West et al., 2012), which led Maiti and Mukherjee (1990) to revise its calculation (GFI*), 

commonly referred to as gamma hat (Hu & Bentler, 1998, 1999): 

 Gamma Hat =
𝑃

𝑃+2(
λ̂

𝑁
)

=
𝑃

𝑃+2(
χ2−𝑑𝑓

𝑁
)
 (19) 

where P is the number of observed variables. 

These absolute and incremental fit indices are among the most commonly used because 

of their lack of sensitivity to sample size and their sensitivity to misfit in different types of 

models (Fan & Sivo, 2007, 2009).  Another class of fit indices is called information criteria 
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because they are based on information theory, and they are used solely for model comparison.  

They are formulated to take model complexity into account, providing a basis on which to 

choose models that balance good fit with parsimony.  Gelman, Hwang, and Vehtari (2013) 

reviewed several information criteria, the most popular of which are Akaike’s information 

criterion (AIC) and Schwarz’s Bayesian information criterion (BIC). 

Information criteria follow a common template: 

 IC = 𝐹ML + 𝑍  or IC = χ2 + 𝑍 (20) 

where Z is a term that punishes fit (i.e., adds to the measure of misfit).  Lower values of an 

information criterion are thus preferred, and because of (15), the rank order of the models is 

unchanged whether the χ
2
 statistic or FML is used.  The difference between information criteria 

lies in the calculation of Z.  AIC punishes the addition of parameters: Z = 2 × k, where k is the 

number of free parameters in the model.  BIC punishes the addition of parameters more severely 

with increasing sample size: Z = k × log(N).  A frequently noted weakness of information criteria 

is that although they provide a criterion to choose among competing models (the lowest value 

indicates the preferred model), there is no indication of the practical difference between models.  

This weakness, however, is not unique to information criteria, as the metric of many fit indices is 

rarely well defined. 

Sources of misfit. The global fit measures described above quantify global model fit (i.e., 

how well the model as a whole fits the data).  Other tools are available to identify local sources 

of misfit, such as a predicted correlation between variables x and y that is much lower or higher 

than the observed correlation.  It is important to note that local discrepancies such as this could 

be due to mere sampling fluctuation, in which case the model might be modified to fit a fluke in 

the data that would not be generalizable to future samples from the same population 
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(MacCallum, 1986; MacCallum, Roznowski, & Necowitz, 1992).  This is why it is important to 

consider model modification as an exploratory process and to verify any modified model using 

independent data—this could be accomplished by randomly splitting the original sample into 

training and validation samples if the original sample size were large enough (Browne & 

Cudeck, 1992).  Errors due to mere sampling variability are referred to as sampling error or 

estimation discrepancy (MacCallum, 2003), and they cause discrepancies between observed and 

model-implied covariance matrices (S and Σ̂) because no individual sample covariance matrix (to 

which the model is fit) will be identical to the covariance matrix of the population (Σ) from 

which it was drawn, even if the model were perfectly specified (i.e., no difference between the 

target and population models). 

However, local discrepancies might also indicate true model misspecifications (e.g., 

omitted variables, or omitted parameters relating the variables included in the model).  When the 

model is misspecified, discrepancies occur because the target model differs from the population 

model.  In other words, even if S = Σ (i.e., no sampling error), fitting the target model to Σ would 

not yield an identical model-implied covariance matrix Σ̂.  This source of error is referred to as 

model error or approximation discrepancy (MacCallum, 2003).  In practice, it is impossible to 

distinguish or separate the effects of sampling and model error.  Tools for model modification 

(discussed in the Model Modification section) are used on the assumption that they will detect 

model errors, but this must be confirmed on independent data. 

Application of Fit Measures in Traditional SEM 

Model fit measures can be applied in numerous scenarios.  I will focus on three general 

categories: evaluation, modification, and comparison.  Evaluation refers to judging the global fit 

of a single SEM, without reference to any competing model.  If a model is judged to fit the data 
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inadequately, researchers may look for sources of misspecification with the goal of modifying 

their original model.  Modification is a method of constructing a competing model post hoc, but 

researchers may have specified two or more competing models a priori.  Model comparison 

refers to choosing the most appropriate among competing SEMs, using model fit as at least one 

criterion—other criteria, perhaps, being generalizability and theoretical plausibility. 

Model evaluation. There are many special cases of SEM: path analyses estimate 

regressions among observed variables; factor analyses relate observed indicators to latent 

constructs (i.e., a measurement model); and general SEMs include aspects of path analysis and 

factor analysis (i.e., a measurement model for latent constructs, accompanied by regressions 

among latent constructs).  But any published SEM must include an evaluation of global fit, even 

if it has been modified or compared to other models.  Because SEMs are statistical models 

constructed to represent theories of the relationships among variables, the global fit of a model 

quantifies the correspondence between a researcher’s theory (the target model) and reality (the 

true population model, an instance of which is represented in the observed data). 

Most fit measures discussed in the previous section can be used to evaluate models in an 

global sense.  The χ
2
 statistic provides a statistical test of the null hypothesis that the target model 

perfectly explains the sample data.  Because SEM requires a large N to ensure convergence and 

precision of estimates (Bollen, 1989), this test is often powerful enough to detect even negligible 

discrepancies between the observed sample moments and predicted moments implied by the 

parameter estimates.  This is not to say the χ
2
 statistic is not useful, but it only provides 

information about whether the model fits the data perfectly, not the magnitude of discrepancy or 

whether the discrepancy is of any practical consequence. 

Global model fit is therefore evaluated by supplementing the χ
2
 statistic with one or more 
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practical fit indices.  The intent is similar to the American Psychological Association’s (2010) 

recent addition to publication requirements, suggesting that null-hypothesis significance tests be 

supplemented with effect sizes and confidence intervals.  For example, GFI* (gamma hat) can be 

used to indicate the degree to which model-implied predictions of sample moments correspond 

with observed sample moments, in a proportion metric.  The RMSEA can be used to estimate the 

amount of discrepancy between true and hypothesized models per df.  The SRMR can be used to 

indicate the average amount of discrepancy between observed and model-implied correlations.  

The CFI and TLI can be used to indicate the degree to which the model fits better than a baseline 

model that assumes every variable is an independent factor.  Some of these measures (or 

functions of them) can also be used for model comparison, discussed in the Model Comparison 

section.  

Hu and Bentler (1998, 1999) proposed a two-index strategy for evaluating model fit.  

Their simulations suggested that SRMR was more sensitive to misspecification in the structural 

model, whereas RMSEA, CFI, TLI, and Gamma Hat were more sensitive to misspecification in 

the measurement model.  However, Fan and Sivo (2005) demonstrated that this was an artifact of 

their simulation—Hu and Bentler’s measurement-model misspecifications had smaller effect 

sizes (noncentrality parameters) than their structural-model misspecifications.  When those effect 

sizes were held constant, SRMR showed no differential sensitivity, negating the justification for 

a two-index strategy.  Fan and Sivo (2009) did reveal that certain indices were more sensitive 

than others to misspecification in the mean structure (namely, Gamma Hat and Mc), but they 

were also so sensitive to model size that useful cutoffs would be difficult or impossible to 

propose—a finding they also found applies to covariance structure misspecification (Fan & Sivo, 

2007).  Deciding whether a model fits well to observed data in any absolute sense is therefore 
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difficult or impossible.  But as Marsh, Hau, and Wen (2004) stated, fit indices were never 

intended to be used for hypothesis testing. 

Model modification. If the global fit of a model is judged to be insufficient, then a 

researcher can either (a) reconsider the underlying theory to formulate a new model of the 

phenomena of interest or (b) attempt to identify the reason why the target model does not fit well 

and modify it in an ad hoc fashion to address the source of misspecification.  The former 

consumes time and effort that the researcher has already spent formulating the original target 

model, and like any other human being, many researchers might not be easily convinced by the 

evidence (i.e., data) that their theories (i.e., models) are incorrect, at least not entirely. 

This is perhaps why the latter alternative is more common practice, but once researchers 

use clues in the data to modify a hypothesized model, they no longer operate in a confirmatory 

framework, but an exploratory framework.  There is nothing wrong with doing so, if this fact is 

openly reported along with the results.  Exploratory research is useful for generating hypotheses, 

which can then be confirmed or disconfirmed using future, independently sampled data. 

Models can be modified in a build-up or tear-down fashion.  In a build-up approach, a 

restricted model is fit initially, in which only theoretically necessary parameters are freely 

estimated.  If the initial model is judged to fit the data poorly, additional free parameters are 

added in a sequential fashion until acceptable fit is achieved.  A tear-down approach begins with 

as unrestricted a model as one can identify, and proceeds to fix parameters sequentially.  The 

tear-down approach is perhaps more commonly used in a model comparison framework (e.g., 

tests of measurement invariance), when a series of competing nested models are identified a 

priori and fit sequentially to identify whether each set of constraints is plausible.  A data-driven 

build-up approach is a form of model-modification that MacCallum (1986) referred to as a 
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specification search. 

Tools for model modification. Because of their availability in most SEM software, the 

most popular tools for model modification are modification indices (MI), expected parameter 

change (EPC), and residuals.  Residuals are discrepancies between each element in S and its 

corresponding element in Σ̂.  Whereas RMR indicates the average discrepancy between 

covariance elements (and SRMR indicates the average discrepancy between correlation 

elements), the full matrix of residuals can reveal which specific observed relationships are not 

adequately characterized by the model.  Large residuals occur most frequently for pairs of 

variables that are not directly related in the model. 

For example, in a two-factor CFA, the indicators of the first factor are typically only 

related to indicators of the second factor indirectly (i.e., via the factor correlation).  But if the two 

factors represent disorders with some similar symptoms, then the correlation among those 

symptoms (indicators) would be higher than could be explained merely by the correlation 

between the disorders (factors) that are the cause of those symptoms.  Thus, the standardized 

residual would be large, indicating a local source of misfit that a researcher might conclude is an 

indication of misspecification.  Because there is a theoretical explanation for why the residual is 

large, the researcher would be justified in reformulating the model in some way.  If the symptom 

description is nearly identical for both disorders, the researcher might include only one of the 

indicators (or average of the two) and allow it to be an indicator of both factors.  If the similar 

symptoms are not nearly identical, the simpler solution might be to let both remain as indicators 

of their separate disorders, but freely estimate their residual correlation (i.e., postulate that they 

are related in some way additional to what can be accounted for by the correlation between their 

respective disorders). 
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MI and EPC do not refer directly to discrepancies between S and Σ̂, but to a function of 

them.  To identify the model, certain (in fact, most) structural parameters are fixed to specific 

values so that other model parameters (i.e., elements of Λ, Φ, Θ, and Β) can be freely estimated 

(identification rules can be found in Brown, 2006).  Parameters may be fixed to identify 

constructs (e.g., fixing the mean and scale of a latent construct to 0 and 1, respectively) or 

because theory leads researchers to hypothesize certain direct effects to be negligible (i.e., each 

indicator measures only one construct in a CFA, rather than all constructs being allowed to affect 

all indicators, as in EFA). 

Recall the example of measuring mental disorders—when the residual covariance 

between two similar symptoms is freed in the modified model, there is one less df that was given 

up to estimate that parameter.  When a parameter is freed, the χ
2
 statistic will always decrease, 

indicating better fit to the data.  The difference between χ
2
 statistics from nested models fit to the 

same data is also distributed as a χ
2
 random variable, with df equal to the difference in df due to 

freeing the parameter(s).  This provides a significance test of whether the amount of decrease is 

significant.  The χ
2
 difference test (Δχ

2
) is discussed in greater detail in the Model Comparison 

section, but an introduction is relevant here because a MI for a fixed parameter is an estimate of 

the amount that the χ
2
 statistic would change if that particular parameter were freely estimated, 

holding all other parameters constant (Sörbom, 1989).  Likewise, the EPC is an estimate of how 

much the parameter itself would change if it were estimated instead of fixed at a certain value 

(Saris, Satorra, & Sorbom, 1987). 

The use of MI is straight-forward.  All major SEM software packages provide a MI for 

each fixed parameter of the model.  In a typical specification search (MacCallum, 1986), the 

largest MI is identified, and if it meets some criterion for significance (e.g., greater than 10, or 
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significant at the α = .001 level), then the model is specified with that parameter freely estimated.  

The new model is fit to the data, and if model fit is still deemed inadequate, the process is 

repeated by freeing the next highest MI, until the global model fit is acceptable.  This is a very 

exploratory process that tends to over-fit models to nuances in the data, making the models less 

generalizable to future observations. 

MacCallum (1986; MacCallum et al., 1992) found that specification searches using MI 

only tend to lead researchers to a true model when the model they started with is already close to 

the true model and it is being fit to a sample of N > 300.  A fixed parameter’s MI is calculated on 

the assumption that all other fixed and estimated parameters will remain at their current values 

(i.e., the model is otherwise correctly specified), which is unrealistic for two reasons: (a) a 

misspecified parameter may cause other parameter estimates to be biased and (b) there may be 

more than one misspecified parameter.  Because MIs are themselves only estimates of the 

expected change in the χ
2
 statistic, they are subject to sampling variability.  Therefore, the order 

in which parameters are freed fluctuates from sample to sample, sometimes resulting in 

parameters being freed that should remain fixed.  For this reason, MacCallum (1986; MacCallum 

et al., 1992) suggested that the best method would be to identify a priori competing models and 

compare them directly, rather than making post hoc changes to improve fit of a single 

hypothesized model. 

To improve the consistency of model modifications, Saris et al. (1987) proposed 

incorporating EPC when deciding whether to free a parameter with a large MI.  They 

demonstrated that MIs are more sensitive to some model parameters than others, so the MI might 

be large for a parameter whose value might change very little if freed (i.e., small EPC), whereas 

a parameter whose EPC is large might have a small MI.  They suggested that a parameter should 
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be freed if both the EPC and MI are large, but should not be free when EPC is small, regardless 

of whether the MI is large.  If the EPC is large and the MI is small, however, then it is unclear 

whether to free the parameter because its large EPC might be due to sampling fluctuation. 

Kaplan (1990) suggested extending Saris et al.’s proposal to consider reasons for 

sensitivity of large MIs, including missing data, violated distributional assumptions, and power 

considerations.  Saris, Satorra, and van der Veld (2009) incorporated Kaplan’s (1990) suggestion 

into a revision of their original (Saris et al., 1987) MI–EPC method.  Saris et al. (2009) 

incorporated a power analysis for the MI test, so that researchers can (a) evaluate the magnitude 

of an observed MI in light of its power to detect misspecification in that parameter, and 

subsequently (b) decide whether to consult the EPC for additional evidence.  If an MI test has 

low power but the observed MI is significant, the parameter can be confidently freed.  If instead 

an MI test has high power but the observed MI is nonsignificant, then there is no justification to 

free that parameter.  When the observed MI is high but the test has high power, the test alone is 

inconclusive because it might merely be sensitive to that parameter, in which case only if the 

EPC is also large should that parameter be freed.  When the test has low power and the observed 

MI is low, then the test in inconclusive—there is no evidence that a parameter should be freed, 

but that might be due to low power to detect misspecification.  The sampling variability of EPC 

is too high to provide information about whether a parameter should be freed in this case. 

Even Saris et al.’s (2009) more integrative approach fails to overcome the main 

limitations of MI and EPC: they are estimates (hence, subject to sampling variability) based on 

the assumption that the rest of the model is correctly specified.  Their utility thus appears 

dubious at best.  MacCallum et al.’s (1992) revealed that MI-directed model modifications rarely 

lead to models that resemble the true model, and that modifications made to an incorrect model 
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vary wildly from sample to sample, and more recent research (e.g., Whitaker, 2012) provide no 

evidence that their main limitations are overcome by using both MI and EPC.  MacCallum’s 

(1986) long-standing advice—to formulate competing models a priori, comparing them rather 

than modifying an original model in a data-driven, post hoc manner—still appears pinnacle. 

Model comparison. Model comparison is moot when modifying an initial model because 

data is used to provide post hoc clues about what significant changes could be made to create a 

new model from the initial model.  Specifying a priori models is a more robust approach because 

theoretical uncertainty is taken into account ahead of time, rather than “fishing” for better results 

after the target model has been fit to data, making it impossible to infer whether the model is 

being adjusted merely to fit nuances of a particular sample.  When competing specifications are 

specified a priori, researchers can be more confident in their results (MacCallum et al., 1992).   

To specify competing models to compare to a target model, a researcher should anticipate 

how their model might be insufficient.  This might entail identifying indicators that could 

measure more than one construct in the SEM, and specifying competing models that allow 

correlated residuals or cross-loadings to take that into account; identifying specific effects that 

might be so negligible they could be fixed to zero (or vice versa); or reversing the role of 

predictor and outcome among a pair of constructs.  These models would represent different (sets 

of) hypotheses derived from the same theory, but competing models could also be specified to 

represent distinct competing theories (e.g., common-factor model vs. network perspective of 

mental disorders; Cramer, Waldorp, van der Maas, & Borsboom, 2010). 

Tools for model comparison can be roughly divided into two categories, depending on 

whether the competing models must be nested to use them.  Model A is nested within Model B 

when Model A has all of its free parameters in common with Model B, but Model B freely 
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estimates at least one additional parameter that Model A does not.  That is, the entire set of 

Model A’s parameters are a subset of Model B’s parameters.  More generally, Model A is nested 

within Model B if Model B can precisely reproduce any model-implied moments that Model A 

can (Bentler & Satorra, 2010).  Nonnested models may have parameters in common as well, but 

both models would estimate at least one parameter that the other model does not.  The following 

sections discuss tools for nested and nonnested model comparison, with examples to illustrate 

their use. 

Nested model comparisons. Nested models can be compared using a test statistic.  The 

test statistic in (15) for an individual model is distributed as a χ
2
 random variable with df equal to 

the number of observed sample moments minus the number of free parameters.  This statistic 

tests the null hypothesis that the target model perfectly explains the sample data, so the only 

source of discrepancy is sampling error (Browne & Cudeck, 1992).  The statistic in (15) can also 

be calculated as the −2 × log(likelihood) of the target model minus the −2 × log(likelihood) of 

the saturated model, in which all sample moments are freely estimated, resulting in perfect fit 

with zero df.  Thus, the χ
2
 fit statistic for an individual model is equivalent to a Δχ

2
 statistic 

comparing the fit of the target model to the perfect fit of the saturated model.  This statistic is 

distributed as a χ
2
 random variable because any overidentified model is nested within any 

saturated model. 

A Δχ
2
 statistic can be computed for any other pair of nested models, as well.  It is the 

difference between the χ
2
 of the more restricted model (i.e., worse-fitting because it estimates 

fewer parameters, having more df) and the χ
2
 of the less restricted model.  Likewise, Δdf for the 

Δχ
2
 statistic equals the difference between df for the more restricted and less restricted models, or 

equivalently, the number of additional parameters estimated in the less restricted model.  The 
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null hypothesis for the Δχ
2
 test is that the nested models are equivalent because the additional 

parameter(s) can be constrained to a fixed value, typically zero (e.g., means, regressions, 

correlations) or one (e.g., variances).  Like the χ
2
 test of perfect absolute model fit, the Δχ

2
 

statistic is overly sensitive to negligible discrepancies when the sample size is large, so H0 might 

be rejected even when the constraints are approximately tenable. 

Some model-comparison procedures have been formulated specifically to test sets of 

SEM constraints in a nested sequence, such as the four-step procedure (Mulaik & Millsap, 2000) 

and tests of measurement invariance (Cheung & Rensvold, 2002).  The four-step procedure 

specifies a sequence of nested models, where Model 1 is nested in Model 2, which is nested 

within Model 3, which is nested within Model 4.  These four nested models are specified to test 

certain hypothesized constraints in the target model, which is Model 2 (Mulaik & Millsap, 2000).  

For example, a target SEM might regress an outcome on three predictors, one of which also 

mediates the relationship between the outcome and the two other predictors.  Model 2 would be 

nested within Model 3, which is specified as a CFA model (i.e., all correlations are freely 

estimated among the constructs in Model 2).  Model 3 would be nested within Model 4, which is 

specified as an EFA model (i.e., all indicators load on all factors).  Acceptable global fit of the 

EFA model confirms the number of hypothesized factors is correct; a nonsignificant Δχ
2
 test 

between Models 1 and 2 indicates the measurement model is correctly specified; and a 

nonsignificant Δχ
2
 test between Models 2 and 3 indicates the hypothesized structure among 

latent variables is tenable.  Step 4 involves specifying an even more restricted Model(s) 4 than 

the target Model 3 by using the Δχ
2
 statistic to test whether parameters hypothesized to be 

substantial in Model 3 could in fact be constrained to zero in Model(s) 4. 

To address the dependence on sample size of Δχ
2
 statistics, Cheung and Rensvold (2002) 
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investigated the behavior of changes in alternative indices of fit, such as CFI, RMSEA, and 

SRMR.  They used Monte Carlo methods to estimate the sampling distribution of 20 fit indices 

and their changes between nested models in the context of testing whether measurement 

parameters (factor loadings, indicator intercepts, and residual indicator variances) are invariant 

across groups or measurement occasions.  They proposed cutoff criteria for certain indices with 

small Type I error rates: ΔCFI < 0.01, ΔGamma-Hat < 0.001, and ΔMc < 0.02.  Taking power 

into account, Meade, Johnson, and Braddy (2008) proposed a stricter ΔCFI < 0.002 criterion, and 

noted that ΔMc was inconsistent across different types of models.  Chen (2007) proposed using 

multiple indices (e.g., ΔCFI < 0.005 in conjunction with ΔRMSEA > 0.01 or ΔSRMR > 0.025), 

but these rules varied across sample sizes. 

Tests of measurement invariance involve a nested sequence of models named according 

to the constraints they test.  Configural or “form” invariance represents the hypothesis that the 

pattern of fixed and freely estimated measurement parameters is identical across groups and 

measurement occasions, and global model fit is used as criterion (e.g., the χ
2
 statistic or an index 

of fit such as CFI).  Metric or “weak” invariance represents the additional hypothesis that the 

factor loadings are equivalent across groups and occasions; scalar or “strong” invariance 

represents the additional hypothesis that indicator intercepts are equivalent across groups and 

occasions; and “strict” invariance represents the additional hypothesis that residual variances 

(and therefore total indicator variances) are equivalent across groups and occasions.  These more 

restricted subsequent models are evaluated using the Δχ
2
 statistic or change in a fit index (e.g., 

ΔCFI), as described above.   

Sometimes model comparison leads to model modification—if the H0 of weak invariance 

is rejected, then at least one of the factor loadings differs across groups or occasions.  Similar to 
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post hoc tests in ANOVA, individual follow-up constraints could be specified to test which 

parameters are invariant.  As long as partial weak invariance can be established, the scales of 

latent variables can be compared between groups and occasions (Muthén & Asparouhov, 2013).  

Likewise, if the H0 of strong invariance is rejected, it would be necessary to establish partial 

strong invariance to compare latent means (Muthén & Asparouhov, 2013). 

Nonnested model comparisons. A model that estimates more parameters is expected to 

fit data better than a nested model that estimates fewer parameters, necessitating a Δχ
2
 test to 

ascertain whether fit improves substantially due to the additional parameter(s).  When models are 

not nested, Model A’s parameters are not merely a subset of Model B’s parameters, nor vice 

versa.  It is possible that the models are so different that their parameters do not have the same 

interpretation.  Even if the models are similar, it is possible for nonnested models to have the 

same df but not be equivalent.  In such cases, calculating Δχ
2
 would not yield a quantity that is 

distributed as a χ
2
 random variable.  Thus, applying a Δχ

2
 test is not always appropriate for 

model comparison, or at least not as straightforward. 

Levy and Hancock (2007) provided a framework for using a set of Δχ
2
 tests to compare 

nonnested models.  In rare cases, competing models are so different that they do not share 

parameters with a common interpretation (e.g., network vs. latent variable models; Cramer et al., 

2010).  But in many cases, competing models are similar enough that common parameters 

between the two can be identified (e.g., CFA with cross-loadings vs. CFA with correlated 

errors).  For example, a researcher might presuppose that the target model is insufficient, 

motivating the a priori specification of alternative models with additional parameters that are 

hypothesized to remedy the target model’s potential deficiency.  The target model would then be 

a restricted model that is nested within the less restricted alternative models, each of which 
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specifies different additional free parameters; thus, the competing models would not be nested 

within each other, except that the target model is nested within all alternative models. 

In such a case, the nonnested alternative models could be compared indirectly via their 

respective comparisons with their common restricted model (Levy & Hancock, 2007).  After 

calculating Δχ
2
 between each alternative model and the common model, the alternative models 

are considered distinguishable if only one Δχ
2
 is significant, in which case (a) the model without 

a significant Δχ
2
 would be indistinguishable from the restricted target model, and (b) the model 

with a significant Δχ
2
 can be assumed to fit better than the competing alternative model because 

it fits significantly better than the target model.  If neither model’s Δχ
2
 is significant, then neither 

alternative model can be distinguished from the restricted model, and the restricted model is to 

be preferred because it fits as well as the alternatives but with fewer parameters.  If both 

alternative models have significant Δχ
2
, then they both fit better than the common model, but the 

competing models cannot be further distinguished using Δχ
2
, so they must be compared using 

other criteria. 

Bentler and Bonett (1980) enumerated ways to compare models using incremental fit 

indices such as CFI and TLI.  To compare nested or nonnested models, it is necessary to identify 

(a) a saturated model in which all competing models are nested and (b) a poorly fitting null 

model that is nested within all competing models. Typically, the saturated model is specified by 

freely estimating means, variances, and covariances among all observed variables as though they 

were all distinct factors in a CFA, leaving no degrees of freedom and χ
2
 = 0.  The default 

specification of a null model in most software (e.g., EQS, LISREL, Mplus, lavaan) is typically 

an independence model, which (like the saturated model) considers each observed variable a 

distinct factor, but independent of (i.e., uncorrelated with) all other variables.  Widamin and 
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Thompson (2003) illustrated many common research scenarios in which the independence model 

is insufficient as a null model because it is not nested within all competing alternatives—these 

include invariance tests across multiple groups or occasions, as well as latent growth curve 

models in which at least one model hypothesizes homoscedasticity of residuals. 

Once an appropriate null model is identified, which is as unrestricted as possible yet 

nested within all competing models (Widamin & Thompson, 2003), a continuum from poor fit to 

perfect fit is established by the null and saturated models, respectively.  All competing models 

can be evaluated by locating their incremental fit indices on that continuum (Bentler & Bonett, 

1980, p. 600).  The model with the highest index is to be preferred because its fit is closest to the 

fit we would expect for the correct model, if it were known.  Incremental fit indices could even 

be used in a cross-validation context, by comparing the fit of the same model to different data 

sets—when the sample size is unequal, χ
2
 values could not be compared, but CFIs could (Bentler 

& Bonett, 1980, p. 600). 

Information criteria defined in (20) are designed specifically for model comparison, and 

it is not necessary for competing models to be nested.  Comparing χ
2
 values between competing 

models would indicate which model fits the data better in an global sense.  If the competing 

models estimate the same number of parameters, they also have the same df, which is the 

expected value of χ
2
, so lower χ

2
 values would be preferred.  But if the competing models have 

different df, χ
2
 values cannot be directly compared.  Information criteria supplement the χ

2
 

value—or discrepancy function, which has the same rank order, shown in (15)—with an 

adjustment for the number of parameters estimated in the model.  The more parameters are 

estimated, the more the estimated fit is decremented, so additional parameters must be of 

substantial importance to justify their inclusion. 



31 

 

Among a set of competing models that are fit to the same data, the fitted model with the 

lowest information criterion is to be preferred (Gelman et al., 2013).  Information criteria do not 

follow theoretical distributions, so it is impossible to interpret a difference (e.g., ΔAIC or ΔBIC) 

as an effect size or to calculate an associated probability of observing the difference under H0 

that the models balance fit and parsimony equivalently well.  Lower values are merely 

interpreted as demonstrating a more efficient tradeoff of fit and parsimony. 

Because the punishment term in (20) is defined differently for each information criterion, 

different criteria behave differently in practice (Vrieze, 2012).  AIC uses a constant multiple of 

the number of estimated parameters, whereas BIC weights the number of parameters by the log 

of the sample size.  Thus, BIC adjusts for additional parameters more harshly in larger samples.  

When the true population model is one of the competing models under consideration, BIC tends 

to select the true model (Bollen, Harden, Ray, & Zavisca, 2014; Vrieze, 2012), but researchers 

should not assume the true model is a contender (MacCallum, 2003).  Even as sample size 

increases, the sampling variability of BIC is so erratic that there is no single model that will be 

preferred asymptotically (Preacher & Merkle, 2012).  AIC does not consistently choose the true 

model even when it is under consideration, but it does tend to choose the model that minimizes 

discrepancies between observed and predicted values (Vrieze, 2012). 

Information criteria have also been criticized because their adjustment for parsimony 

only takes into account the number of free parameters (Preacher, 2006).  Though adding 

parameters to a model increases its ability to fit well to a range of data patterns, the functional 

form of a model also affects how well a model fits data patterns.  Two models with the same 

degrees of freedom but different functional forms (e.g., a simplex model vs. a factor model) may 

have different fitting propensity, which is what Preacher (2006) termed the ability of a model to 
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fit random data, regardless of whether it is the true data-generating model.  Models are less 

parsimonious if they are more likely to fit data wholly unassociated with it. 

Preacher (2006) reviewed rarely used fit indices that would take into account functional 

form as well as the number of parameters.  One such index is the stochastic information criterion 

(SIC) of the same form in (20), but the punishment term for parsimony is a function of the Fisher 

information matrix of model parameters.  The more redundancy among parameter estimates 

indicated by the information matrix, the greater the decrement to model fit.  Other indices are the 

uniform index of fit (UIF) and normalized maximum likelihood (NML), both of which are 

calculated with Monte Carlo methods.  Thousands of random data patterns are simulated, to 

which competing models are fit, and the observed discrepancies of the competing models are 

compared with respect to their distributions of discrepancies.  Using this method, all aspects of 

competing models’ ability to fit any data pattern is implicitly taken into account, so these indices 

adjust for parsimony in a potentially more comprehensive way, but little research has been 

conducted to investigate their behavior. 

Bayesian SEM 

Before discussing the evaluation, modification, and comparison of Bayesian models, it is 

necessary to explain how Bayesian estimation of SEM parameters differs from CSA.  This 

explanation will include a conceptual introduction to Bayesian statistical inference and its 

contrast with frequentist inference. 

Bayesian statistical inference. In the traditional frequentist paradigm, inference about a 

population parameter typically involves null hypothesis significance testing (Gelman & Stern, 

2006, Gelman & Shalizi, 2013a).  Complementary null and alternative hypotheses are specified, 

which together account for the entire parameter space, and the tenability of the null hypothesis 



33 

 

(H0) is judged according to the likelihood of observing the sample data on the premise that H0 is 

true.  There are many ways to calculate the likelihood that is used to judge the statistical 

significance of the data.  Typically, a point estimate is calculated for the parameter to be tested 

(e.g., the corresponding sample statistic or ML estimate) and transformed into an inferential 

statistic with a known sampling distribution under H0, if certain assumptions hold.  Alternatively, 

an interval estimate is calculated, and H0 is judged to be plausible if the interval contains it. 

In the frequentist paradigm, parameters are seen as fixed constants, whereas data are 

variable.  The term “frequentist” came about because an inference is drawn about a parameter 

with reference to how frequently the observed data could be expected to occur under a certain 

premise about the unknown parameter.  This can lead to awkward interpretations of results 

(Iversen, 1984).  For example, the p value—p(Y | θ0)—is the probability (p) of the observed data 

(Y), or the frequency with which it should occur, on the condition that the unknown parameter 

(θ) is consistent with H0.  Likewise, 95% confidence intervals do not indicate that the interval 

estimate is 95% likely to contain θ; rather, the method of calculating the interval will 

successfully capture θ in 95% of samples drawn from the same population. 

Bayesian statistical inference utilizes the same information, but it does not stop with the 

calculation of a likelihood p(Y | θ).  In the Bayesian paradigm, information about θ comes not 

only from the data, but also from a researcher’s collection of prior experience, expert judgment, 

and theoretical expectation (Iversen, 1984).  This “prior” information is translated into a 

statistical summary called the prior probability distribution—p(θ)—and its role in Bayesian 

inference is to represent what the researcher believes about the population parameter (θ) before 

observing any evidence from data (Y).  The unknown parameter is thus considered to be variable 

rather than fixed, and the observed data is treated as fixed.  This does not mean that Bayesians 
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disregard sampling variability.  Bayesians merely treat known quantities (observed data) as 

constant to make probabilistic statements about unknown quantities (parameters), whereas 

frequentists make inferences about parameters indirectly and unintuitively via probabilistic 

statements about the observed data, conditional on a fixed but unknown H0 parameter. 

Bayesian inference culminates in a posterior probability distribution—p(θ | Y)—which 

represents what the researcher concludes about θ after observing data.  The posterior distribution 

is the entirety of a Bayesian inference (Iversen, 1984), and it is calculated using both prior belief 

and evidence from observed data.  In fact, posterior probability of a parameter is proportional to 

the product of the likelihood of the data and the prior probability of the parameter:  

 𝑝(θ|𝑌) ∝ 𝑝(𝑌|θ) × 𝑝(θ) (21) 

Conceptually, researchers can begin with prior beliefs about phenomenon of interest, collect data 

to obtain more information about that phenomenon, and allow the evidence to update their 

beliefs or change their minds entirely.  Thus, the likelihood is literally the weight of the evidence 

that changes the prior distribution into the posterior distribution, and larger sample sizes translate 

into greater weights of evidence that can completely overwhelm any prior belief.  

Bayesians need not consider a prior distribution to be a formal representation of actual 

beliefs, but rather a summary of assumptions about the relative likelihoods of possible values for 

θ (Gelman & Shalizi, 2013a).  Gelman and Shalizi (2013a, 2013b) consider priors to be model 

assumptions like any other, such as the distribution of errors or the function form of the 

relationship between predictors and outcome.  In practice, priors need not be informative at all; 

they can be uniform distributions with disparate upper and lower limits, indicating that the true 

parameter could be almost any possible value, all of which seem equally likely to the researcher.  

Uninformative priors such as these place all of the weight of estimation on the shoulders of data, 
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giving priors an even smaller influence than they usually do in samples of substantial size. 

Thus, the link between frequentist and Bayesian statistical inference can be made by 

viewing frequentist inference as a special case of Bayesian inference.  In the frequentist 

paradigm, inference is made using only the likelihood of the data under H0.  In the Bayesian 

paradigm, the use of uninformative priors yields posterior distributions that are identical in form 

to the likelihood, so Bayesian inferences would be identical to frequentist results.  For example, 

the mode of the posterior distribution would be the ML estimate, and the standard deviation of 

the posterior distribution would be its SE. 

Even in this special case, however, the interpretation of results under the two paradigms 

would differ.  Rather than calculate the probability of the data under H0 (i.e., the frequentist p 

value), the posterior distribution allows a researcher to infer for example, the probability that θ is 

greater (or less) than a null-hypothesized value θ0.  Rather than interpreting frequentist interval 

estimates as the probability of the method of estimation to capture the unknown θ—making no 

probabilistic statement about whether a particular interval estimate did so—a Bayesian 95% 

credible interval indicates much more intuitively that the true θ is 95% likely to be within the 

upper and lower bounds. 

Estimating Bayesian models. Bayesian methods for estimating model parameters 

involve simulation—namely, Markov Chain Monte Carlo (MCMC) methods, which operate 

iteratively using algorithms such as Gibbs sampling (see Gelman et al., 2014, chapter 11).  The 

current state of a Markov chain depends only on the previous state.  Sampling algorithms draw 

parameters sequentially at each current state by updating draws from the previous state.  Once 

the current state is updated, the next iteration begins.  If the model is appropriately identified, 

Markov chains eventually converge on a stable distribution, which is the joint posterior 
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distribution of model parameters.  All subsequent iterations in the Markov chain can be treated as 

random draws from the posterior, and a large sample of them should adequately represent the 

posterior distribution, allowing a researcher to summarize the posterior using the simulated 

values. 

In this framework, all unknown quantities can be drawn from the joint posterior, not just 

the model parameters.  For example, missing data for an observation can be imputed by drawing 

values from the posterior, conditional on observed variables for that observation.  Prediction 

intervals for hypothetical future observations can be simulated by drawing their predicted values 

from the posterior.  Latent variables can be drawn from the posterior as well, so SEMs are not 

limited to being estimated in a CSA framework, giving BSEM numerous advantages over 

traditional CSA.  For example, CSA cannot directly estimate interactions among latent variables, 

although a full-information method called latent moderated structural equations (LMS; Klein & 

Moosbrugger, 2000) is currently implemented only in Mplus.  However, interactions among 

latent variables are easily handled in BSEM because product terms can be calculated when latent 

variables are drawn from the posterior. 

Bayesian Model Fit 

Traditional SEMs are evaluated with a set of tools uniquely developed for CSA, not for 

evaluating other types of model (e.g., general linear models
5
).  BSEM, however, is not limited to 

being specified as an analysis of covariance structure, so tools for evaluating BSEMs are the 

same tools that were developed for evaluating Bayesian models in general.  Unless it is explicitly 

                                                 
5
 Although one can specify a general linear model using SEM software in order to obtain SEM fit measures, such 

models are typically saturated in terms of covariance structure.  There is a single outcome (or correlated set of 

outcomes in a multivariate model) that is related to all predictors.  This means that even if the linear model has 

several residual df, the SEM specification will have perfect fit with df = 0 because linear models base total df on 

sample size, whereas SEMs base df on the number of observed sample moments.  Thus, covariance structure fit 

measures for general linear models would not be informative. 
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stated otherwise, when I refer below to a method for evaluating a BSEM, the reader can assume 

the same method can apply to other types of Bayesian model.  I will focus on the same three 

categories that were the focus of evaluating CSA models: evaluating global fit of an isolated 

model, modification of a model to improve fit, and comparison of competing models. 

Model evaluation. The frequentist p value allows researchers to test whether their data 

are consistent with H0, which in the case of the χ
2
 test statistic in (15) is the hypothesis that the 

target model corresponds perfectly to the true population model.  Frequentist statistics treat 

parameters as a fixed quantity—be it a scalar, vector, matrix, or an array of scalars, vectors, or 

matrices (as in multiple-group SEM)—so the p value is calculated holding the H0 quantity fixed.  

In BSEM, the parameters vary and are characterized by a posterior distribution, so the p value 

would also vary across the posterior.  There are numerous ways to calculate a single p value that 

takes the posterior distribution into account (Levy, 2011), the most popular of which involves 

posterior predictive model checking (PPMC; Gelman, Meng, & Stern, 1996). 

The motivation behind PPMC is identical to traditional hypothesis testing: to test whether 

the observed data are consistent with H0 (i.e., consistent with the target model); however, unlike 

traditional hypothesis tests of null hypotheses, PPMC tests H0 using simulation methods, 

capitalizing on the MCMC process of sampling model parameters from the joint posterior 

distribution.  A simulated data set (Yrep) of the same size as the observed data (Yobs) is generated 

for each “sample” of parameters from the posterior (θ
i
, the vector of parameters at iteration i in 

the Markov chain).  Whether the observed data are consistent with H0 can then be tested by 

checking whether Yobs resemble data generated under H0 (i.e., Yrep). 

Resemblance between Yobs and Yrep can be defined in any number of ways (Gelman et al., 

1996; Levy, 2011).  At each iteration in the Markov chain, the test statistic in (15) can be 
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calculated for both Yobs and Yrep, as could SRMR or any of the fit indices in (16)–(19).  To 

compare the fit of the model to both Yobs and Yrep, a Bernoulli random variable is assigned a value 

of 1 if the model fits better to Yobs and 0 if the model fits better to Yrep.  This Bernoulli random 

variable has an expected value of 50% when the model fits Yobs well because both Yobs and Yrep 

are consistent with H0.  However, the less adequate the model is at capturing aspects of the data, 

the lower its expected value becomes, due to the fact that Yrep remains consistent with H0.  High 

PPP values may indicating the model is overfitting the data. 

The observed proportion of MCMC iterations that yield better fit for Yobs is called the 

posterior predictive p value (PPP; Gelman et al., 1996), which is an estimate of the probability 

(π̂) that the data (Yobs) are consistent with H0.  Thus, low values provide evidence that H0 is 

untenable as an explanation for the data.  When used to make a binary decision about whether to 

reject H0—as in traditional null-hypothesis significance testing (Gelman & Stern, 2006)—PPP 

tends to have Type I error rates lower than α levels set by the researcher.  Bayarri and Berger 

(2000) proposed conditional and partial PPP values, which yield nominal Type I error rates but 

are more computationally intensive, less flexible than PPP, and apply only in the context of 

binary-decision-making null-hypothesis significance tests. 

Gelman and Shalizi (2013a, 2013b; Gelman et al., 2014) do not advocate using PPP for 

traditional hypothesis testing, but rather as a diagnostic tool to identify whether and how a model 

can be improved (see also Kruschke, 2013; Morey, Romeijn, & Rouder, 2013).  I discuss model 

modification in the following section, but I note here that the developers of PPP (Gelman et al., 

1996) did not intend for it to be used as a test statistic.  Muthén and Asparouhov (2012) assert 

that PPP should be treated as an index of practical fit, similar to those defined in (16)–(19), 

although they nevertheless suggest that “using [PPP] values of .10, .05, or .01 appears 
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reasonable” (p. 315). 

There has been little development of methods to evaluate isolated Bayesian models in 

terms of data–model fit.  Johnson (2004) proposed a Bayesian χ
2
 goodness-of-fit statistic, whose 

properties are quite similar to PPP (i.e., evaluation of the fit statistic across the posterior).  The 

PPP is the most developed method of evaluating global fit, probably because of its flexibility.  

Any discrepancy measure can be used to compare the fit of two models, although software might 

only provide PPP based on the χ
2
 statistic (this is the case in Mplus; Muthén & Asparouhov, 

2012; Muthén & Muthén, 2012).  For instance, Levy (2011) evaluated the posterior predictive 

distribution of SRMR along with the χ
2
 statistic.  The appropriateness of specific aspects of the 

model could be tested, rather than the model as a whole.  In fact, prior predictive model checking 

predates PPMC (Gelman et al., 1996; Levy, 2011), and it can be used to evaluate the 

appropriateness of the chosen priors (i.e., whether the prior distribution generates data that 

resemble the observed data). 

Model modification. If a low PPP based on the overall model–data discrepancy 

(quantified by χ
2
) indicates global misfit, then further investigation is needed to discover why the 

model is inadequate.  Local sources of misfit might include inappropriate function form of 

relationships (e.g., linear vs. curvilinear slopes, additive vs. interactive effects among multiple 

predictors) or the omission of an important relationship.  Methods for identifying local 

misspecification appear to be less developed than methods for identifying global 

misspecification, although PPMC is flexible enough to be employed for identifying either global 

or local misspecification. 

Gelman and Shalizi (2013a) advocate plotting the raw data along with the line of best fit 

implied by the model, a diagnostic that applies equally well in frequentist and Bayesian 
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frameworks.  Kruschke (2013) and Morey et al. (2013) indicate the PPMC can be used to 

generate alternative models that can then be compared to the original target model (I discuss 

model comparison methods in the following section).  For example, Kruschke used a plotting 

method in accordance with PPMC to uncover a possible curvilinear effect.  But this type of 

method would be impossible in any BSEM in which the predictors are unobserved latent 

variables.  Checking residuals (i.e., 𝑺 − Σ̂) as in traditional SEM would be possible, but quite 

difficult because there is a posterior distribution of parameters, and thus a posterior distribution 

of Σ̂.  The posterior distribution of a summary measure such as SRMR would be simpler to 

investigate, which is one quantity that Levy (2011) investigated with PPMC. 

Fox and Glas (2005) previously proposed Bayesian analogs to MIs, but these were much 

more restricted in that they were statistical hypothesis tests, specifically developed for IRT 

models, and the two MIs they proposed were each specific to testing IRT parameters.  

Categorical factor analysis parameters can be transformed to IRT parameters, so Fox and Glas’ 

proposal may yet be applicable to BSEMs in general. 

Muthén and Asparouhov (2012, pp. 316–317) proposed a method for identifying local 

sources of misfit that is analogous to the use of MI in traditional SEM.  Frequentist estimators 

such as MLE require several parameters to be fixed in order to identify the model.  For example, 

setting scale of a construct requires fixing either the factor variance or one of the factor loadings 

to one, and unless there is theoretical justification for expecting nonzero values, residual 

correlations and cross-loadings are typically fixed to zero (Bollen, 1989).  In a Bayesian context, 

this would be equivalent to specifying a completely informative prior, such as a normal 

distribution with μ = 0 and σ = 0.  Bayesian estimation thus allows a less restricted, but still 

informative, normal prior with μ = 0, but with σ = 0.10 (which would indicate 95% of parameters 
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fall within the bounds ± 0.20).  If the data differ sufficiently from this prior, the posterior will 

indicate a very low probability that the parameter is zero.  In hypothesis testing language, if the 

95% credible interval does not include zero, the H0 that the parameter is zero may be rejected. 

This is a very new proposal that has yet to be tested.  The degree to which the likelihood 

of the data can overwhelm the specified prior (or vice versa) will affect the power of this method 

to detect local sources of misspecification.  It is also unclear whether a nontarget parameter with 

a small-variance prior would behave any more reliably than a traditional MI in leading a 

researcher to specify a model that more closely resembles the true population.  There are, 

however, at least two advantages of the Bayesian analog.  First, the BSEM analog of MI is the 

parameter estimate, so in a Bayesian framework, the MI and the EPC would not be distinguished 

as they are in SEM.  The more reliable but more complicated proposals to use both MI and EPC 

would thus not be necessary in BSEM.  Second, MI is calculated assuming all other parameters 

remain fixed, so parameters can only be freed one-at-a-time, and this sequence of model 

modifications leads to overfitted models that rarely resemble the true model (MacCallum et al., 

1992).  In contrast, the BSEM analog is estimated jointly with all other parameters in the model, 

including all nontarget parameters that have small-variance priors.  Thus, multiple potential 

modifications can be identified in a single step. 

Model comparison. As in traditional SEM (MacCallum, 1986; MacCallum et al., 1992), 

Bayesian methodologists tend to advise specifying competing models a priori (e.g., Gelman et 

al., 1996).  Gelman et al. (1996) proposed PPMC specifically to judge model fit in the absence of 

any alternative models, when it would still be necessary to check whether the model should be 

rejected—or at least to decide whether to modify the model or to specify alternatives.  They 

developed PPMC to address this necessity because up until then, the best developed tool (dating 
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back to the 1960s; Kass & Raftery, 1995) for evaluating Bayesian models was only intended for 

explicit model comparison via posterior odds.  This section is devoted to two broad classes of 

tools for comparing BSEMs: Bayes factors and information criteria. 

Bayes factors. The posterior odds of a pair of models can be defined as the ratio of their 

posterior probabilities, each of which is the product of their respective likelihoods and priors.   

 
𝑝(𝛉1|𝑌)

𝑝(𝛉2|𝑌)
=

𝑝(𝑌|𝛉1)

𝑝(𝑌|𝛉2)
×

𝑝(𝛉1)

𝑝(𝛉2)
 (22) 

When the prior probability distributions are equivalent, the posterior odds ratio reduces to the 

ratio of the likelihoods, called the Bayes factor (Kass & Raftery, 1995).   

 BF =
𝑝(𝑌|𝛉1)

𝑝(𝑌|𝛉2)
 thus 

𝑝(𝛉1|𝑌)

𝑝(𝛉2|𝑌)
= BF ×

𝑝(𝛉1)

𝑝(𝛉2)
 (23) 

Conceptually, the Bayes factor can be thought of as the quantity that changes the ratio of prior 

probabilities (representing a researcher’s prior belief about how likely two models are to be true) 

into the ratio of posterior probabilities (representing the updated belief after seeing evidence 

provided by data).  Because the models are fit to the same data, the likelihood ratio is a direct 

comparison of how much more likely the data are to have arisen from a population described by 

the model in the numerator than from the model in the denominator. 

The Bayes factor is the most well developed and studied tool for Bayesian model 

evaluation, although it is not without limitations.  Notably, it might not be possible for the joint 

prior distribution for all model parameters to be equal in both models, so it might only be 

possible to calculate Bayes factors that are conditional on individual parameters rather than 

Bayes factors for the model as a whole.  Many applied researchers use uninformative priors that 

are improper (i.e., not conjugate) to let the data carry all the influence on the posterior, in which 

case Bayes factors are undefined (Gelman et al., 2014, p. 183).  Even in situations when a Bayes 
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factor can be calculated, it is not included in standard output of any software package, so it 

would not be a straightforward task for researchers to calculate it.  Bayes factors are thus less 

appealing than information criteria, which are frequently included in standard software. 

In addition to the practical problems, Gelman et al. (2014) illustrate conceptual problems 

with Bayes factors; namely, Bayes factors are appropriate when the models being compared 

involve discrete parameters.  However, most research situations involve continuous parameters.  

Even if the hypotheses being compared are fixed values in a continuous distribution (e.g., H0: 

treatment effect is 0 vs. H1: treatment effect is 1) and the prior odds are 1, they will be sensitive 

to aspects of the prior distribution, which is an undesirable characteristic.  When working with 

continuous parameters, Gelman and Meng (1998) proposed path sampling as a method for 

approximating the Bayes factor by estimating the posterior across the range of the continuous 

parameter (e.g., in increments between 0 and 1, rather than only at the fixed hypothetical values).  

Like other methods of calculating the Bayes factor, path sampling is conceptually complex, 

difficult to program, and unavailable as a standard feature of any software package.  Song and 

Lee (2012) provide examples of how to program path sampling in OpenBUGS software (Lunn, 

Spiegelhalter, Thomas, & Best, 2009), which would also work in JAGS (Plummer, 2013). 

Information criteria. More recently, Bayesian versions of information criteria defined in 

(20) have been proposed.  Although BIC stands for “Bayesian” information criterion, Gelman et 

al. (2013, 2014) stress that the name is misleading because it is not at all a Bayesian measure.  

BIC was originally developed as an approximation to the Bayes factor, calculated by excluding 

several additive (or multiplicative) terms that asymptotically approach zero (or one), making 

them unnecessary assuming sample size is close to infinity.  Bollen, Harden, Ray, and Zavisca 

(2014) recently investigated the behavior of BIC and several alternative formulations that drop 
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fewer terms, making them better approximations of the Bayes factor.  Their conclusions were 

similar to Vrieze (2012): BIC selects the correct model when it is among the candidate models, 

but chooses the simplest model otherwise. 

Gelman et al. (2013, 2014) noted that because the goal of BIC is not to estimate a 

model’s predictive accuracy on new data, it belongs to a different class of information criteria 

than the ones I discuss below.  Bearing in mind that researchers should never expect to be able to 

specify a completely “true” model of a real population process in the social sciences 

(MacCallum, 2003), the utility of BIC is limited to situations in which researchers are simply 

looking for the simplest model in a set of competing models, not necessarily the one the “works” 

best by providing the most accurate predictions. 

AIC is designed to estimate a model’s out-of-sample prediction error (Vehtari & Ojanen, 

2012), which it seems to do successfully in practice, at least on average (Vrieze, 2012).  

However, the calculation of AIC is problematic for hierarchical models, even in a frequentist 

framework.  The punishment term in (20) for AIC is twice the number of parameters in the 

model, but in multilevel models each observation has an associated random effect of their Level-

2 (or higher) unit.  If the intraclass correlation coefficient (ICC) is zero (indicating no between-

cluster differences), then all variability occurs at Level 1, so the number of parameters is the 

same as it would be defined in a single-level model.  If ICC is one, then all variability occurs 

between clusters, so the number of parameters is increased by the number of clusters.  Most 

situations are somewhere in between the two extremes of ICC, but it is unclear how to choose a 

single value for the adjustment in AIC. 

This problem persists in Bayesian models, even if the model is not multilevel.  When 

priors are completely uninformative (i.e., flat, uniform over the entire sampling space), Bayesian 
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estimates are equivalent to estimates derived using ordinary least squares or MLE, so the 

effective number of parameters is the same as would be defined under those frequentist methods.  

However, when informative priors are specified, the effective number of parameters in the model 

is decreased proportionate to the weight of information in the prior (i.e., weight that is removed 

from the shoulders of the data; Gelman et al., 2013, 2014). 

Spiegelhalter, Best, Carlin, and van der Linde (2002) proposed a generalization of AIC 

called the deviance information criterion (DIC).  Recall that deviance is calculated as −2 × 

log(likelihood) in frequentist estimation methods such as MLE, and it is distributed as a χ
2
 

random variable.  Using Bayesian estimation, the likelihood of the data can be calculated at each 

iteration of the Markov chain because the parameters on which the probability of the data is 

conditioned are treated as variables.  Thus, there is a posterior distribution of deviance statistics.  

The average of that distribution (�̅�) is used as the χ
2
 component in (20), and the punishment term 

is the effective number of parameters (pD), defined as the difference between �̅� and the deviance 

calculated at the posterior mean: pD = �̅� − 𝐷(θ̅). 

AIC is a special case of DIC, and they are asymptotically equivalent when using flat 

priors in a nonhierarchical model.  A further generalization of AIC (and thus of DIC), called the 

Watanabe–Akaike (or alternatively, the “widely applicable”) information criterion (WAIC; 

Watanabe, 2010), calculates the effective number of parameters in a more fully Bayesian manner 

(Gelman et al., 2013, 2014; Vehtari & Ojanen, 2012).  It is new and relatively unstudied, but its 

behavior is promising as it is asymptotically equal to Bayesian cross-validation (Vehtari & 

Ojanen, 2012).   

The equations below illustrate how the calculations differ.  DIC calculates pD as twice 

the difference between (a) the log-likelihood of the entire data set evaluated at a point estimate 
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for the entire joint posterior (i.e., the mean vector for the joint posterior distribution) and (b) the 

average of the posterior distribution of log-likelihoods for the entire data set. 

 pDDIC = 2 {log [𝑝 (𝑌 | 
1

𝑀
∑ 𝛉𝑖𝑀

𝑖=1 )]  −  
1

𝑀
∑ log[𝑝(𝑌 | 𝛉𝑖)]𝑀

𝑖=1 } (24) 

The index i iterates over the range of M sampled vectors θ
i
 from the joint posterior distribution in 

the MCMC process.  Gelman et al. (2013) do not consider DIC to be fully Bayesian because it 

does not utilize the entire posterior to calculate the pointwise discrepancies for each observation.  

In contrast, WAIC calculates pD as a similar difference, but separately for each observation in 

the data set.  That is, pD calculates the difference between (a) the log of the average of an 

individual’s posterior distribution of likelihoods and (b) the average of the posterior distribution 

of that individual observation’s log-likelihood—and twice the sum of those differences across all 

N individuals is pD. 

 pDWAIC = 2 ∑ {log [
1

𝑀
∑ 𝑝(𝑌𝑛 | 𝛉𝑖)𝑀

𝑖=1 ]  − 
1

𝑀
∑ log[𝑝(𝑌𝑛 | 𝛉𝑖)]𝑀

𝑖=1 }𝑁
𝑛=1  (25) 

WAIC thus averages individual predictive discrepancies across the entire posterior, rather than 

the discrepancy of the entire sample conditional on a point estimate (i.e., average of the 

posterior).  For this reason, Gelman et al. (2014, p. 173) describe WAIC as “a more fully 

Bayesian approach for estimating the out-of-sample expectation.” 

The concept of nested models is not as clear cut in the Bayesian framework as it is in the 

frequentist framework, since the parameters involved in calculating the likelihood are not the 

only parameters in the model.  Priors also affect the posterior, and the more informative they are, 

the more less the effective number of Bayesian parameters resembles the number of parameters 

in a frequentist estimator (e.g., MLE).  Regardless, nesting is of little consequence because tools 

for Bayesian model comparison do not rely on nesting—Bayes factors and information criteria 
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can both be used to compare nonnested models.  However, information criteria are advantageous 

because they are easier to calculate, lack the noted limitations of Bayes factors, and are more 

readily available as standard output in software packages that provide Bayesian estimators: 

OpenBUGS (Lunn et al., 2009) and JAGS (Plummer, 2013) provide DIC, and Mplus (Muthén & 

Muthén, 2012) provides both DIC and BIC.  WAIC is not yet automatically calculated by any 

software, although Andrew Gelman (2013) has stated that it might be possible to implement it in 

a future version of the Bayesian software project, Stan (Stan Development Team, 2014). 

Summary of Bayesian Model-Comparison Tools 

Evaluation of traditional SEMs remains an area of active research in numerous contexts, 

such as establishing appropriate cutoff values for fit indices with no known sampling distribution 

(Curran et al., 2003; Fan & Sivo, 2005, 2007, 2009; Hu & Bentler, 1998, 1999; Marsh et al., 

2004), invariance testing (Cheung & Rensvold, 2002; Chen, 2007; Meade et al., 2008), model 

selection (Bollen et al., 2014; Preacher, 2006; Preacher & Merkle, 2012; Vrieze, 2012), and 

model modification (Kaplan, 1990; MacCallum, 1986; MacCallum et al., 1992; Saris et al., 1987, 

2009; Sörbom, 1989; Whitaker, 2012).  It is therefore no surprise that the same topics in the 

context of BSEM are far from settled. 

Bayes factors are an area of active research.  Gelman et al. (2013) described the 

evaluation of hypotheses about continuous parameters as problematic, but van de Schoot, 

Hoijtink, Hallquist, and Boelen (2012) recently proposed a method to test hypotheses of 

inequality constraints against their complements using Bayes factors.  Although it is not 

automated in any software, they provide instructions for the user to run the Bayesian model in 

the popular SEM software Mplus, save the appropriate information, and calculate the Bayes 

factor manually.  Morey and Rouder (2011) also recently extended the calculation of a Bayes 
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factor, but they generalized it to test interval hypotheses rather than point hypotheses. 

Recent research on invariance testing in a Bayesian framework include novel approaches 

that do not require fitting the series of nested models as described in Cheung and Rensvold 

(2002).  For example, Verhagen and Fox (2013) proposed specifying an IRT measurement model 

as a multilevel IRT model, in which responses to indicators of the same construct are considered 

repeated measures nested within individuals as well as within groups (across which the 

researcher wishes to test invariance of item parameters).  This generalizes easily to other latent 

variable models, such that factor loading estimates would be random across groups, and items 

would be considered invariant if the random effect had variance close to zero (i.e., not 

significantly different from zero).  Muthén and Asparouhov (2013) propose a two-stage approach 

in which differences among factor loadings between groups are first estimated using small-

variance priors centered at zero, after which any group loading differences that are flagged as 

significantly different from zero are freed, while all others are constrained to equality.  Both of 

these proposals seem promising, but are new and need to be validated using Monte Carlo 

simulations of various scenarios. 

Gelman et al. (2014, pp. 172–173) provide simpler calculations of DIC and WAIC from 

the variance of the posterior distribution of log-likelihoods instead of differences between means: 

 pDDIC = 2 × Var(log[𝑝(𝑌 | 𝛉)]) (26) 

and 

 pDWAIC = ∑ Var(log[𝑝(𝑌𝑛 | 𝛉)])𝑁
𝑛=1  (27) 

The calculations yield asymptotically equivalent results, but for WAIC, summing posterior 

variances across individual log-likelihoods results in greater computational stability than using 

differences.  For DIC, however, (26) is less numerically stable, although it always results in a 
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positive estimate of pD, unlike (24).  Further research is necessary to establish how discrepant 

these computational methods are when fitting latent variable models to finite samples.  I will 

refer to DIC1 and WAIC1 when using the mean-deviations method in (24) and (25) to calculate 

pD, and DIC2 and WAIC2 when using the variance method in (26) and (27) to calculate pD. 

Regardless of which computation of DIC and WAIC is preferable, they are perhaps 

among the most fruitful of areas for future research, if for no other reason than they are simpler 

to compute than Bayes factors, are available in standard software (DIC, at least), and require 

fewer assumptions or restrictions on model specification than Bayes factors.  The use of small-

variance priors to identify local sources of model misfit also seems particularly promising 

because of its straightforward application and interpretation.  Because this method is expected to 

be sensitive to prior specification, it is necessary to investigate its power in different types of 

models, different levels of misspecification, different sample sizes, and different levels of prior 

information.  Because PPP is also easily computed, and it is provided in the popular BSEM 

software Mplus (using the χ
2
 statistic as criterion), future research into its finite sampling 

behavior is also warranted.  

Because small-variance priors are so easily implemented and information criteria are so 

easily computed, they are likely to be adopted quickly by applied researchers interested in using 

Bayesian methods.  The goal of this dissertation is to provide information about the finite 

sampling behavior of these tools, so that practical guidance can be given for how to apply these 

methods to real data.  Information criteria are the focus of Study 1, and small-variance priors are 

the focus of Study 2. 

PART II: Assessing Bayesian Tools for Selecting an Optimal Measurement Model 

In Study 1 I investigate DIC, which is readily available in popular Bayesian modeling 
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software (BUGS and JAGS) and in SEM software that provides Bayesian estimation options 

(Amos and Mplus).  I also investigate the more recently proposed WAIC, as well as SE estimates 

meant to characterize the sampling variability of WAIC. 

Monte Carlo Design for Study 1 

Table 1 summarizes the manipulated variables and their levels.  I imposed invariance 

constraints across either two groups (in a single-factor, multiple-group model) or two occasions 

(in a two-factor, single-group model) on factor loadings and item intercepts for a single latent 

factor with four standard normal indicators.  Fewer parameters were estimated in multiple-group 

models than in longitudinal models, which include four residual correlations between the same 

items measured over time.  However, the longitudinal models must reproduce 16 additional 

observed covariances between items across time that the multiple-group models do not, so this 

design reveals the effect of model type on DIC and WAIC variability and model preference. 

Figure 1 depicts the data-generating model with fixed and manipulated population 

characteristics.  In the data-generating model, the latent factor in each group or occasion was 

~N(μ = 0, σ = 1).  In the longitudinal model, the factor correlation between Times 1 and 2 was 

set to 0.5.  In conditions without DIF, factor loadings for Items 1–4 range from moderate to high 

(similar to Hu & Bentler, 1998, 1999; Kim & Yoon, 2011; Stark, Chernyshenko, & Drasgow 

2006): λ
T
 = [0.65, 0.70, 0.75, 0.80].  In every condition, error variances were set to 1 – λ

2
, so that 

the total variance of each indicator remained σ
2
 = 1 (i.e., θ

T
 = [0.5775, 0.51, 0.4375, 0.36] in the 

no-DIF conditions).  Item intercepts in the no-DIF conditions had a mean of zero: τ
T
 = [0.2, 0.3, 

0.0, −0.5].  Because the latent means were zero, the intercepts were also the indicator means. 

Effect size (i.e., magnitude of DIF) was manipulated incrementally to investigate how 

model preferences are affected as the competing models become less appropriate.  Five levels of 
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uniform DIF were manipulated simultaneously with five levels of nonuniform DIF.  Differences 

in the Item-3 intercepts (Δτ3) varied from 0 to −0.8 in increments of 0.2.  Because the total item 

variances are one, these are standardized mean-differences (i.e., Cohen’s d), so the magnitude of 

DIF ranged from small (d = 0.2) to large (d = 0.8) according to Cohen’s (1988) criterion.  An 

effect size for nonuniform DIF is not as straightforward because it represents differences in 

regression slopes (in our case, correlations, because factor and indicator variances are one), so I 

consulted past simulation studies for guidance.  Differences in the Item-4 factor loadings (Δλ4) 

varied from 0 to −0.4 in increments of 0.1, which is the same range used by Meade et al. (2008), 

although they varied DIF in increments of 0.02.  Similarly, Kim and Yoon (2011) defined small 

and large DIF as Δλ = −0.2 and −0.4, respectively, and Stark et al. (2006) defined small and 

large DIF as Δλ = −0.15 and Δλ = −0.4, respectively. 

 

Table 1 

Manipulated Variables in Monte Carlo Design for Studies 1 and 2 

Study 
Variable 

Name 
Description Levels 

1 & 2 Type Type of invariance under investigation 2 groups or 2 occasions 

1 & 2 N  Total sample size (ng = N / 2) 200, 300, 400, 600, or 800 

1 & 2 DIF 
Magnitude of DIF (Δλ4 and Δτ3): focal 

group (or second occasion) is lower than 

the reference group (or first occasion) 

Δλ4 = 0.0, 0.1, 0.2, 0.3, or 0.4 

Δτ3 = 0.0, 0.2, 0.4, 0.6, or 0.8 

1 Parsimony 

Whether the model has parsimony error.  

Correlated errors are added for a pair of 

variables (e.g., a testlet), which are 

excluded from the analysis model 

ρ21 = 0.0 or 0.2 

2 Prior 
SD of normal prior for Δλ and Δτ, 

constrained near zero: ~N(μ = 0, σ = ?) 
σ = 0.05 or 0.10 

Note. Study 1 focuses on model selection.  Study 2 focuses on DIF detection. 
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Figure 1. Population model(s) for data generation in Study 1.  Solid lines represent population 

characteristics that are constant across all models, whereas dashed lines represent varying 

conditions described in the textboxes.  The population model for Study 2 excludes parsimony 

error (i.e., there are no unmodeled residual correlations between Items 1 and 2 in the population) 

but is otherwise equivalent. 

 

Because DIF is not the only possible source of model misspecification, an unmodeled 

residual correlation (ρ21 = 0 or 0.2) between the first two items was manipulated as a source of 

parsimony error (also referred to as model error or approximation discrepancy; MacCallum, 

2003).  A minor error correlation such as this might be quite common in practice, reflecting a 

testlet or negatively worded items.  Omitting these parameters from the analysis model when it 
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exists in population would mean that when using ML, the analysis model would not be able to 

perfectly reproduce the population covariance matrix and mean vector; thus, the expected value 

for the χ
2
 test statistic would be greater than the model’s df (the expected value under the H0 of 

perfect fit).  The AIC asymptotically chooses among competing models the one that minimizes 

out-of-sample predictive errors (Vrieze, 2012).  DIC and WAIC are Bayesian generalizations of 

AIC (Gelman et al., 2013; Vehtari & Ojanen, 2012), so it is of interest to see how they perform 

when the true population model is not among the competing models, as well as how variability 

of model preferences is affected when parsimony error is added to sampling error. 

Similar sample size (N) conditions from past research on testing invariance in CFA (e.g., 

Meade & Bauer, 2007) were chosen to investigate how variability in model preferences changes 

as more information is provided by the observed data.  The total sample size has five levels, in a 

similar range of small to large sample sizes seen in past research: N = 200, 300, 400, 600, and 

800.  For multiple-group models, these are divided into ng = 100, 150, 200, 300, and 400 per 

group.  A two-group situation with equal group sizes mimics common situations, such as when 

invariance is tested between sexes or experimental groups, and a two-occasion model would be 

used to test invariance in pre- and postintervention conditions.  As N increases, sampling 

variability of parameter estimates decreases, as does the sampling variability of some fit 

indices—even ones whose means are not sensitive to N, such as CFI and RMSEA.  But the 

variability of information criteria increases with N (the number of individual likelihoods), 

whether the information criteria are calculated using χ
2
 (whose expected value increases 

proportionally with N) or using the log-likelihood directly.  So it is difficult to anticipate how 

increasing N will affect variability in model selection using DIC or WAIC. 

This will be a 2 (multiple-group or longitudinal model) × 5 (N = 200, 300, 400, 600, or 
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800) × 5 (magnitude of DIF; see Table 1) × 2 (presence or absence of parsimony error) factorial 

design.  To reduce the sampling variability between conditions, I simulated data from the 

longitudinal model and analyzed it using the longitudinal model as well as the multiple-group 

model by treating the observations at separate occasions as separate groups, ignoring items’ 

residual covariances across time.  For each replication, I simulated data for the largest N and 

drew subsets from that sampling frame for other sample size conditions. 

Procedure. I generated 500 samples of multivariate normal data from each population’s 

model-implied mean vector and covariance matrix using the mvrnorm function in the R 

package rockchalk (Johnson, 2015).  Bayesian models were fit to data with the Bayesian 

modeling software Stan (Stan Development Team, 2014), using the R package rstan (version 

2.5).  I monitored convergence by checking Gelman and Rubin’s (1992) potential scale-reduction 

factor (�̂�) after each run.  Starting with 500 burn-ins, if �̂� for any model parameter exceeded 

1.10, I ran the model again, doubling the iterations until either convergence was reached or the 

number of iterations exceeded 100,000.  I saved the posterior M, SD, and 95% credible limits for 

each model parameter, which were estimated using 1000 iterations from each of three chains 

(regardless of how many iterations were needed for the burn-in phase), yielding 3000 draws from 

the target posterior distribution for stable 95% credible intervals.  All estimated parameters had 

noninformative or weakly informative priors (see Appendix), making results similar to MLE.  

Models were fit with MLE using lavaan (Rosseel, 2012), to compare WAIC and DIC to AIC. 

For each replication, I fit a sequence of three models commonly used to test measurement 

equivalence (e.g., Cheung & Rensvold, 2002).  A configural (or “form”) invariance model 

specifies the same number of factors and pattern of freely estimated parameters for each group or 

occasion, none of which are constrained to equality across groups or time.  The model was 
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identified by fixing the factor variance to one and the factor mean to zero for both groups (or 

occasions).  A metric (or “weak”) invariance model establishes a common scale of measurement 

by constraining factor loadings to equality across groups or time.  Because the latent scale of 

measurement is identified in the first group by fixing the factor variance to one, the factor 

variance for the second group (or occasion) is freely estimated.  A scalar (or “strong”) invariance 

model establishes a common scale and location by constraining factor loadings and item 

intercepts to equality across groups or time.  The latent scale and location are identified in the 

first group by fixing the factor mean and variance to zero and one, so the factor mean and 

variance for the second group (or occasion) are freely estimated.  The factor correlation and each 

item’s residual correlation were also estimated in the longitudinal conditions. 

When DIF is nonexistent, the scalar invariance model is the true model, but even when 

DIF is small (or when parsimony error is present), the scalar invariance model might be the 

optimal measurement model if it does not result in a large amount of misfit.  When DIF is large, 

the configural and metric invariance models are overparameterized and the scalar invariance 

model is underparameterized.  I also fit a fourth model in which all loadings and intercepts were 

constrained except for the fourth loading and the third and fourth intercept, which is what would 

be fit if the correct DIF parameters were identified (the likelihood of correct DIF detection is 

investigated in Study 2).  In the presence of DIF and parsimony error, the fourth model is the true 

model, but it is overparameterized when DIF = 0.  I included this model to see to what degree 

DIC and WAIC can distinguish between the fit of the optimal (but imperfect) measurement 

model and the fit of the true model when DIF is present, as well as the true scalar invariance 

model from the slightly overparameterized partial invariance model when DIF is absent. 

Results and Discussion 
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Out of all 200,000 fitted models (4 models × 500 replications × 100 conditions), only 15 

did not converge on a stable posterior distribution that yielded �̂� < 1.1 for all model parameters, 

although only seven of these had any �̂� > 1.2.  Nonconvergence occurred almost exclusively in 

conditions of the smallest sample size (N = 200) and largest DIF (Δτ3 = −0.8 and Δλ4 = −0.4) 

when fitting the most constrained model (scalar invariance).  Although the posterior-mean 

estimates of the parameters were in an acceptable range, the between-chain variability was so 

great that it resulted in very large outliers of DIC2.  Therefore, these 15 observations were 

ignored when calculating measures of variability and relative efficiency of information criteria, 

which are strongly affected by these outliers.  However, they were included when recording 

model preferences, which are made based on rankings rather than magnitude of information 

criteria.  Only DIC2 was noticeably affected by these nonconverged models, and as shown in 

sections below, the greater variability of DIC2 and of its model preferences makes it the least 

preferable information criterion regardless. 

Variability of information criteria. Because information criteria are calculated from the 

sum of individual log-likelihoods, their magnitude is linearly related to N.  Analyses of variance 

(ANOVAs) for each information criterion indicated that more than η
2
 = 99% of their variability 

is explained by N, so to assess the influence of other Monte Carlo factors, separate ANOVAs 

were run for each information criterion at each level of N, treating DIF (five levels), parsimony 

error (present or absent), invariance model (four levels), and model type (multiple-group or 

longitudinal) as independent variables.  I used Type I SS to calculate η
2
 because the removal of 

so few nonconvergent observations resulted in no practical difference between Types I and III 

SS.  Cohen (1988) provided criteria for interpreting the size of η
2
 (negligible < 1% < small < 6% 

< moderate < 14% < large).  Nonnegligible effect sizes are reported in Table 2. 
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Table 2 

Effect Sizes (η
2
) of Monte Carlo Factors on Information Criteria 

  Total Sample Size 

Information Criterion Monte Carlo Factor 200 300 400 600 800 

WAIC1 DIF 42.9% 50.7% 54.2% 58.6% 61.5% 

 Invariance Model 5.1% 6.1% 6.5% 7.2% 7.6% 

 Parsimony 5.3% 6.2% 6.7% 7.2% 7.4% 

 Type (multiple-group / -time) 2.2% 2.6% 2.7% 3.0% 3.3% 

 DIF × Invariance Model 4.7% 5.5% 5.8% 6.3% 6.6% 

WAIC2 DIF 42.5% 50.2% 53.7% 58.0% 60.9% 

 Invariance Model 5.0% 6.1% 6.5% 7.1% 7.4% 

 Parsimony 5.2% 6.0% 6.5% 7.0% 7.2% 

 Type (multiple-group / -time) 2.7% 3.2% 3.5% 3.8% 4.2% 

 DIF × Invariance Model 4.6% 5.4% 5.7% 6.1% 6.4% 

DIC1 DIF 27.4% 31.6% 33.3% 35.5% 37.0% 

 Invariance Model 3.7% 4.2% 4.4% 4.7% 4.9% 

 Parsimony 3.2% 3.6% 3.9% 4.1% 4.2% 

 Type (multiple-group / -time) 33.8% 36.6% 38.0% 39.4% 40.2% 

 DIF × Invariance Model 3.1% 3.6% 3.7% 4.0% 4.1% 

DIC2 DIF 13.6% 21.6% 26.4% 29.8% 30.9% 

 Invariance Model 2.2% 1.3% 1.1% 1.1% 1.3% 

 Parsimony 4.7% 6.2% 7.0% 7.0% 7.2% 

 Type (multiple-group / -time) 11.5% 25.4% 32.9% 39.7% 41.9% 

 DIF × Invariance Model 1.2% 1.5% 1.6% 1.8% 1.9% 

AIC DIF 30.4% 36.2% 39.4% 42.8% 45.3% 

 Invariance Model 3.3% 4.3% 4.8% 5.4% 5.9% 

 Parsimony 3.5% 4.1% 4.5% 4.9% 5.1% 

 Type (multiple-group / -time) 12.0% 15.1% 16.9% 19.1% 20.6% 

 DIF × Invariance Model 3.7% 4.3% 4.7% 5.1% 5.4% 

Note. Only effects with η
2
 > 1% are shown. 
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All factors (DIF, parsimony error, invariance model, and model type) had substantial 

main effects on each information criterion, as did the interaction between DIF and invariance 

model.  No other interactions had substantial effects on any information criteria.  Although 

overall sampling variance increases with N, so does the proportion that is explained.  For WAIC, 

the only large effect size was the main effect of DIF, which explained between 42–62% of 

variability in WAIC.  All other effects on WAIC were small to medium, which is illustrated by 

the similar asymptotic behavior of WAIC1 among panels in Figure 2.  Means are shown only for 

the most asymptotic condition (N = 800); plots at other Ns look very similar, with uniformly 

lower means.  Because it shows almost identical behavior, no Figure is provided for WAIC2.  

 

Figure 2. Mean WAIC1 across conditions when N = 800.  Lines for the Partial Invariance model 

(true when DIF > 0) are barely visible, obscured by lines for the Configural Invariance model. 
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The substantial interaction is illustrated by the steeper slopes for the scalar invariance 

model as DIF increases.  The small-to-medium effect of parsimony error is reflected by the small 

change in intercepts between the top and bottom panels, and the even smaller change in 

intercepts between left and right panels shows how small the effect of model type is.  This is 

ideal behavior for an information criterion because only model misspecification (in the form of 

DIF, parsimony error, and model constraints) seems to have noticeable effects on their expected 

behavior.  It is surprising that average values of WAIC showed so little discrepancy between 

models when there is little or no DIF, but this is common to DIC and AIC as well, and model 

preferences reported in the next section show clear preferences for the most parsimonious model.   

The mean behavior of AIC seems less ideal because although it is mostly affected by DIF 

(η
2
 = 30–45%), it is also largely affected model type (η

2
 = 12–21%).  This might imply that even 

holding other characteristics of the data (N) and model (level of misspecification) constant, 

model preferences might be affected merely by whether the invalid constraints are made in a 

multiple-group or longitudinal context.  This unideal behavior is even more apparent in DIC1, 

which is even more affected by model type (η
2
 = 34–40%) than by DIF (η

2
 = 27–37%).  Whereas 

Figure 3 shows that AIC tends to be somewhat higher for multiple-group models, Figure 4 shows 

that DIC1 tends to be noticeably lower for multiple-group models.  Other than this effect of 

model type, the other effects (parsimony error, invariance model and its interaction with DIF) 

remain qualitatively similar to the mean behavior of WAIC. 

DIC2, on the other hand, has behaved more erratically.  Like DIC1, it is more influenced 

by model type (η
2
 = 11–42%) than by DIF (η

2
 = 13–31%), except when N = 200.  But Figure 5 

shows that there are smaller differences in mean DIC2 across invariance models, implying less 

discrepancy among models, and the intersecting lines imply less consistent preferences. 
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Figure 3. Mean AIC across conditions, when N = 800. 

 

 

Figure 4. Mean DIC1 across conditions, when N = 800. 
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Figure 5. Mean DIC2 across conditions, when N = 800. 

 

Whereas mean behavior of information criteria were affected by all Monte Carlo factors, 

parsimony error and invariance models had no noticeable effect on the variance of most 

information criteria.  Figure 6 shows that when N = 800, model type also had negligible 

influence on the SD of WAIC and AIC, but the SD of DIC1 was consistently much larger for 

multiple-group than longitudinal models.  As with the means in Figures 2–5, plots at smaller Ns 

look very similar.  Overall, AIC had the lowest SD, which is not surprising because the 

punishment term is a constant (twice the number of parameters), whereas for DIC and WAIC the 

fit and punishment terms are both random variables.  Figure 6 excludes DIC2 in order to more 

clearly see differences between the other four information criteria.  Figure 7 includes DIC2, 

which consistently has much greater variance than other information criteria.  Furthermore, DIC2 

is more variable for the least restrictive configural invariance model, especially for larger DIF. 
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Figure 6. Standard deviations of four information criteria across conditions, when N = 800. 

 

 

Figure 7. Standard deviations of all five information criteria across conditions, when N = 800. 
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The high variability of DIC2 makes it less preferable than DIC1, which is further 

illustrated by relative efficiency of DIC1 to DIC2 (i.e., the ratio of DIC2 variance to DIC1 

variance).  Figure 8 shows that at smaller sample sizes and larger DIF, the sampling variance of 

DIC2 can be as much as 100 times the sampling variance of DIC1, but even at larger sample sizes 

and smaller DIF, the variance of DIC2 is often at least twice that of DIC1. 

 

 

Figure 8. Relative efficiency of DIC1 to DIC2. 

 

The greater variability of DIC2 is expected and consistent with past research (Gelman et 

al., 2013).  By contrast, the posterior-variance computation of pD for WAIC results in less 

sampling variability because the posterior variance is calculated separately for each observation, 
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then summed across observations, which creates stability (Gelman et al., 2013).  Figure 9 shows 

that this gain in precision is small, but consistent.  WAIC1 has consistently greater sampling 

variance than WAIC2, but it is always between 2–5%.  The gain in precision for WAIC2 appears 

greater for longitudinal models than for multiple-group models, but this slight difference may not 

generalize to other types of models.  Model misspecification (large DIF, parsimony error) leads 

to slightly greater discrepancies in precision, particularly for the scalar invariance model, which 

has the most invalid constraints. 

 

 

Figure 9. Relative efficiency of WAIC2 to WAIC1. 
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As expected, the more efficient computation of WAIC is WAIC2, and the more efficient 

computation of DIC is DIC1.  Figure 10 compares the efficiency of these two information 

criteria.  For multiple-group models, DIC1 has more than 40% greater sampling variability than 

WAIC2, making WAIC2 the preferred information criterion.  For longitudinal models, DIC1 is 

slightly more efficient, but WAIC2 is still 92.9-95.4% as efficient as DIC1.  Equivalently, the 

reciprocal relative efficiency indicates that for longitudinal models, WAIC2 has only 4.8–7.6% 

greater sampling variance than DIC1, so their model preferences may have nearly equal 

consistency across samples.  This is investigated in the section on model rankings. 

 

 

Figure 10. Relative efficiency of WAIC2 to DIC1. 
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To evaluate the newly proposed SE estimates for WAIC (Vehtari & Gelman, 2014), I 

calculated relative SE bias within each condition to illustrate how the observed variability of 

WAIC compares to its average estimated SE: 

 Relative SE bias = 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝐸−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝐷

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝐷
. (28) 

Figure 11 reveals WAIC2 SEs to be 20–28% smaller than observed sampling SDs.  Similar 

patterns were observed for WAIC1 (not depicted), but bias for WAIC1 was consistently about 2% 

more negative than bias for WAIC2.  Longitudinal models appear to have less bias than multiple-

group models, but this difference is slight and may not generalize to other types of models.  Bias 

appears to decrease as DIF increases, and when DIF is large, bias is somewhat less extreme for 

the most constrained model (scalar invariance). 

 

Figure 11. Relative SE bias for WAIC2. 
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Impact of model misspecification. Before reporting model rankings and preferences 

using each information criterion, it is important to understand the impact of making invalid 

parameter constraints on model fit and on estimates of the latent mean and variance in the second 

group or occasion
6
.  To reveal the degree to which model misspecification impacted expected 

values (free of sampling error) of the latent mean and variance estimates in the second group or 

occasion, I fit the scalar invariance model to each of 10 population covariance matrices and mean 

vectors (five levels of DIF and 2 levels of parsimony error).  I specified the largest sample size 

condition (N = 800 in the longitudinal model, or 400 per group in the multiple-group model) for 

the purposes of calculating descriptive fit indices (CFI and RMSEA).   

Figure 12 shows that as DIF increases, bias of the second factor mean becomes more 

negative.  DIF on the x axis can be interpreted as Cohen’s d, and because the first factor variance 

= 1, values on the y axis can be interpreted as Glass’ Δ—a variation on Cohen’s d calculated 

using the variance of a reference group rather than a pooled variance.  Bias is negligible when 

DIF is medium or less (i.e., | Δτ3 | < 0.5), but bias becomes substantial (but still small) as DIF 

becomes large (i.e., | Δτ3 | = 0.8).  Bias is slightly more extreme in multiple-group than 

longitudinal models, and for both models the bias is less extreme when there is parsimony error. 

Figure 13 shows that as DIF increases, bias of the second factor variance becomes more 

negative.  Bias on the y axis can be interpreted as change proportional to the true variance of one.  

When factor loadings have no more than medium DIF (i.e., | Δλ4 | < 0.2), the second factor 

variance is only 10–15% lower than the true variance.  When DIF is large, negative bias is 

almost 25% when there is no parsimony error, but less than 20% when there is parsimony error.  

There is no noticeable difference in bias between longitudinal and multiple-group models. 

                                                 
6
 Latent mean and variance parameters remain fixed to zero and one for the first group or occasion. 
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Figure 12. Effect of DIF, model type, and parsimony error on latent-mean bias. As DIF values 

vary from Δτ = 0 to −0.8 by 0.2 on the x axis, DIF values for Δλ simultaneously vary from 0 to 

−0.4 by 0.1. 

 

 

Figure 13. Effect of DIF, model type, and parsimony error on latent-variance bias. As DIF varies 

from Δλ = 0 to −0.4 on the x axis, DIF values for Δτ simultaneously vary from 0 to −0.8 by 0.2. 
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Figures of average bias calculated using parameter estimates from each sample size 

condition show the same patterns as Figures 12 and 13.  Figures 14 and 15 indicate how model 

fit is affected by plotting large-sample approximations of expected values of popular practical fit 

indices.  CFI and RMSEA both indicate unacceptably poor fit when DIF is large (i.e., | Δλ4 | > 

0.25 and | Δτ3 | > 0.5), regardless of model type or parsimony error (using Bayesian estimation, 

we would expect PPP to be close to zero).  When DIF is absent but there is parsimony error (far-

left of grey lines in Figures 14 and 15), the model still fit very well, verifying that the unmodeled 

residual correlations do not introduce enough misfit to justify rejecting the model altogether.  Fit 

indices without parsimony error eventually converge to the same value as DIF increases.  For 

CFI there is little difference between model types, but RMSEA is more sensitive to DIF-related 

misfit in multiple-group models than in longitudinal models.  

 

 

Figure 14. Effect of DIF, model type, and parsimony error on CFI. As DIF values vary from Δλ 

= 0 to −0.4 on the x axis, DIF values for Δτ simultaneously vary from 0 to −0.8 by 0.2. 
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Figure 15. Effect of DIF, model type, and parsimony error on RMSEA. As DIF values vary from 

Δλ = 0 to −0.4 on the x axis, DIF values for Δτ simultaneously vary from 0 to −0.8 by 0.2. 

 

Model rankings and preferences. Among the three models fit in sequence to each 

replication (configural, metric, and scalar invariance), the lowest information criterion indicates 

which model should be preferred as providing an optimal balance between parsimony and 

predictive accuracy.  The scalar model is the correct model when DIF = 0, so ideally it would be 

the most commonly preferred model in these conditions.  Fit is still good and latent parameter 

estimates are only minimally biased when DIF is minimal, so choosing the more constrained 

metric or scalar models might not lead to substantive interpretations whose invalidity is of 

practical consequence.  Fit is only adequate when DIF is moderate, so the configural model 

should be expected have the lowest information criteria, indicating the invariance constraints are 

not tenable and thus steps should be taken to identify items with DIF (investigated in Study 2). 

Model preferences are depicted in Figure 16, in which each panel compares AIC, DIC1, 
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WAIC1, and WAIC2; only N and DIF vary across panels, as model preferences of these four 

information criteria did not vary substantially across model type or parsimony error.  The two 

black lines depict WAIC1 (solid) and WAIC2 (dashed), which are very similar in all panels.  

Surprisingly, although the WAIC2 calculation seemed preferable due to slightly less sampling 

variability than WAIC1, the scalar model is chosen slightly less often by WAIC2 when DIF is 

absent; however, this difference is slight and of no practical consequence.  The dashed grey line 

depicts DIC1, whose model preferences are very similar to WAIC in all conditions, so their 

differences in sampling variability appear to have no practical consequence.  AIC’s model 

preferences (solid grey line) are provided for comparison to using MLE, although other fit 

indices are typically used to test invariance in a frequentist framework (e.g., ΔCFI). 

 

Figure 16. Model preferences based on ranked AIC, DIC1, WAIC1, and WAIC2.  Results are 

collapsed across model types (multiple-group vs. longitudinal) and presence of parsimony error. 
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When DIF is absent (bottom row of panels), the scalar invariance model is the most 

commonly preferred model, although it is only chosen in 50–65% of samples, and the 

overparameterized configural and metric invariance models would each be selected in up to 25% 

of samples.  WAIC1 has the highest rates of choosing the correct (scalar) model in a Bayesian 

context when DIF is absent, but those rates are not as high as when using AIC in MLE (89% 

regardless of N). 

When DIF is minimal (Δλ4 = −0.1, Δτ3 = −0.2), DIC1 and WAIC already prefer the scalar 

model the least often, although AIC prefers it slightly more often when N = 200.  In these 

conditions, WAIC and DIC1 prefer the metric model more often than the scalar model, and the 

configural model is preferred most often, especially as N grows.  AIC also prefers the configural 

model least, but AIC prefers the metric model most often, although the discrepancy between 

metric and configural decreases as N increases, until configural is the most preferred model when 

N = 800.  Minimal DIF should not lead to grossly invalid substantive conclusions, so these 

variable model preferences should not be problematic. 

When DIF is moderate (Δλ4 = −0.2, Δτ3 = −0.4), DIC1 and WAIC consistently prefer the 

configural model, which is correct.  The scalar model was never preferred by any criteria, and 

the metric model was chosen by DIC1 and WAIC in less than 10% of samples when N > 200.  

When N = 200, DIC1 chose the metric model in 10.5% of samples, whereas both WAICs chose 

the metric model in 16% of samples.  In contrast, AIC chose the metric model about as often as 

the configural model when N = 200, but chose the configural model more frequently as N 

increased.  When DIF is large (Δλ4 ≥ −0.2, Δτ3 ≥ −0.4), WAIC and DIC1 almost exclusively 

prefer the configural model (96–100% of samples; only < 99% when N ≤ 300), but AIC still 

chooses the metric model in up to 17% of samples except in the largest N or DIF conditions.  
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DIC2 is depicted separately in Figure 17 because its behavior varies more across model 

type and parsimony error.  When DIF is absent or minimal, all models appear nearly equally 

preferable at larger N, although the metric and scalar model appears only slightly more 

preferable at smaller N.  When DIF is substantial (top three rows of panels), the metric model is 

typically the most frequently chosen.  The configural model is the second most frequently 

chosen, at varying rates across N, DIF, model type, and parsimony error.  At the largest DIF and 

N ≥ 400, metric and configural models are both chosen in about half of longitudinal samples with 

parsimony error.  In all other conditions of substantial DIF, the overly constrained metric 

invariance model would most frequently be chosen, potentially leading to invalid inferences 

about differences in latent-variable variance. 

 

Figure 17. Model preferences based on ranked DIC2. 
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Based on the model selection rates, WAIC and DIC1 apparently lead to practically 

equivalent decisions, in spite of their differences in variability.  Because their variability differs 

so little across models within a condition (i.e., holding the model, sample, and population 

characteristics constant), relative efficiency has little consequence on model selection behavior. 

When DIF is substantial, WAIC and DIC1 more consistently choose the configural model than 

AIC would when using MLE, so researchers using Bayesian CFA would more often correctly 

choose to search for DIF among the items to establish partial invariance.  Unfortunately, WAIC 

and DIC1 also choose either the configural or metric model about half the time when DIF is 

completely absent, indicating a high rate of what would be called Type I errors in a ML context.  

Using MLE for comparison, AIC seems to choose the correct scalar model at a much higher rate 

(almost 90% across conditions), but when substantial DIF is present, it takes greater N and DIF 

for AIC to more consistently choose the appropriate configural model.  Under no condition did 

DIC2 show preferences for the most preferable model, so I do not recommend its use for 

selecting an optimal measurement model in Bayesian CFA. 

Researchers may also be interested in using SEWAIC to calculate a 95% CI for WAIC, 

which would indicate whether the most highly preferred model is substantially or “significantly” 

more preferable than the second most highly preferred model.  Figures 18 presents the rate at 

which the 95% CI of the most highly preferred model’s WAIC excludes the second most highly 

preferred model’s WAIC.  The rates in Figure 18 therefore represent “rejection” rates if applied 

researchers were to use SEWAIC in a similar way to using the SE of a mean-difference to test 

whether it is significantly different from a particular value (e.g., zero) for the H0.  Similarly, 

Figures 19 and 20 present rates at which the 95% CIs of the first and second most highly 

preferred models’ WAICs, respectively, contain the third most highly preferred model’s WAIC. 
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Figure 18. How often the lowest WAIC’s 95% CI contains the next lowest WAIC. Note that the 

y axis is zoomed in on 0–10%. 

 
Figure 19. How often the lowest WAIC’s 95% CI contains the highest WAIC. 
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Figure 20. How often the second lowest WAIC’s 95% CI contains the highest WAIC. 

 

Given the negative bias of SEWAIC, 95% CIs should favor higher “power” to detect 

significant parsimony-adjusted differences in fit between models.  Regardless of whether that 

were true, this method rarely indicates substantial differences between the top two ranked 

models.  Only when DIF is most extreme would the top models ever appear distinguishable in 

practice, and even in these conditions the models would be indistinguishable in less than 10% of 

samples.  Note that the y axis in Figure 18 is zoomed in on the 0–10% range, whereas Figures 19 

and 20 have y axes that span the entire 0–100% range.   

The most highly preferred model is almost always distinguishable from the third ranked 

when DIF is high (top two rows of Figure 19), especially when N is large.  But the first ranked 

model is seldom distinguishable from the third ranked model when DIF is moderate and never 

distinguishable when DIF is negligible or absent.  The second and third ranked models depicted 
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in Figure 20 are mostly distinguishable under the same conditions as seen in Figure 19, although 

not as often as the first and third ranked are.  The WAIC rankings in Figure 16 show much 

clearer preference for the configural model over both the metric and scalar models, even when 

DIF is moderate, so using SEWAIC to judge model equivalence appears more conservative than 

desirable, at least under the conditions in this simulation.  Figures 2 and 16 suggest that on 

average, the top ranked model under large DIF is the configural model, followed by the metric 

and configural models.  So using SEWAIC, the most restrictive scalar model would frequently be 

deemed less tenable than the metric or configural models (i.e., the top two ranked models), 

which would be appropriate.  But as Figure 2 implies, the metric and configural models would 

typically be deemed indistinguishable because their WAICs are more similar. 

The results of Study 1 imply that among configural, metric, and scalar invariance models, 

WAIC and DIC1 will tend to prefer the least constrained model in the presence of substantial 

DIF, effectively rejecting the H0 of measurement invariance.  In practice, researchers faced with 

this information must then identify which indicators have DIF in order to establish at least partial 

measurement invariance.  If a researcher identifies only the correct parameters that differ across 

groups or occasions, the correct partial invariance model should be the most preferred.  Figure 21 

shows model rankings as in Figure 16, but including the correct partial invariance model in DIF 

conditions.  Consistent with the overlapping lines in Figure 2, WAIC and DIC1 suggest the fit of 

the partial invariance model is practically indistinguishable from the configural model, especially 

when DIF ≥ 0.2; however, AIC strongly prefers only partial invariance model in all conditions 

when DIF is present, which is the more parsimonious model.   

In the next section, I investigate the frequency with which true DIF can be detected with 

small-variance priors for DIF parameters. 
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Figure 21. Model preferences (including the partial invariance model) based on ranked AIC, 

DIC1, WAIC1, and WAIC2.  Results are collapsed across model types (multiple-group vs. 

longitudinal) and presence of parsimony error. 

 

PART III: Assessing Bayesian Tools for Detecting DIF 

Study 1 indicates that substantial uniform and nonuniform DIF cause WAIC and DIC to 

prefer the least constrained model: configural invariance.  In practice, this situation would lead 

researchers to locate the offending parameter(s).  The focus of Study 2 is to evaluate Muthén and 

Asparouhov’s (2012) method for utilizing highly informative priors to identify neglected 

parameters (in this context, identifying DIF parameters).  An advantage of testing invariance in a 

Bayesian framework is that the model can be parameterized to directly address specific research 
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questions.  So rather than estimating independent factor loadings in each group (λ1 and λ2), a 

common factor loading can be estimated (λ) along with a difference parameter (Δλ) in Group 2.  

For example, the factor loading in Group 1 is λ, and the factor loading in Group 2 is λ + Δλ, so 

the parameter Δλ directly represents the degree of nonuniform DIF for that item.   

The H0 of invariance (Δλ = 0) can be tested by checking whether the 95% credible 

interval—or Bayesian confidence interval (BCI)—for Δλ or Δτ includes zero.  The power to 

detect DIF is expected to increase with N and the effect size (i.e., the actual magnitude of DIF 

between the populations).  I expect Type I error rates for non-DIF items to be less than nominal 

(i.e., less than 5% when using 95% BCI to test H0) because the informative prior will constrain 

the posterior estimates of DIF parameters to remain very close to zero.  Informative priors 

impose the same constraint on DIF parameters that are truly nonzero, so power is also expected 

to be greater when a larger prior variance (i.e., a less informative prior) is used, allowing data to 

exert greater influence on the estimated posterior distribution.   

Monte Carlo Design for Study 2 

Table 1 summarizes the manipulated variables and their levels.  The same population 

models were used to generate longitudinal or multiple-group data for Study 2 as in Study 1 (see 

Figure 1), with the exception of parsimony error because unmodeled residual correlations are not 

expected to influence estimates of measurement parameters.  In Study 2, I also manipulate the 

magnitude of standard deviation (σ) used to specify prior distributions for DIF parameters, so 

this will be a 2 (multiple-group or longitudinal model) × 5 (N = 200, 300, 400, 600, or 800) × 5 

(magnitude of DIF) × 2 (prior σ = 0.05 or 0.10) factorial design. 

Normal priors with μ = 0 were specified for Δλ and Δτ, with σ = 0.05 or 0.10, 

corresponding to approximately 95% probabilities that Δλ or Δτ falls within 0.10 or within 



80 

 

0.20, respectively.  This constraint quantifies the prior belief that DIF parameters are unlikely 

to exceed these limits, which could be considered negligible or small differences on a 

standardized scale.  In practice, researchers should choose prior variances (or corresponding 

limits) that reflect what would be considered ignorable differences in the scale of the observed 

variables being modeled.  I chose these priors based on practical suggestions in Muthén and 

Asparouhov (2012) and on Monte Carlo simulation results in Jorgensen, Garnier-Villarreal, 

Pornprasertmanit, and Lee (2014).  Because the priors are a model assumption and do not affect 

data generation, I analyzed the same data by fitting each model twice (once for each level of 

prior σ), in addition to the same variance-reduction techniques across levels of N and model type 

that I discussed at the end of the Monte Carlo Design section of Study 1. 

I also fit models using MLE as a point of comparison because Muthén and Asparouhov 

(2012, p. 317) suggested that the small-variance priors should provide information about model 

modification that is superior to the use of MIs in MLE.  Their reason for this claim is that MIs 

assume only one parameter will be freed and that all other parameter estimates will remain fixed 

at their current estimates when the model is fit again, whereas Bayesian estimates of nontarget 

parameters are all provided in a single model.  Informative priors should also minimize Type I 

errors, resulting in fewer spurious modifications.  To compare their performance in each 

condition, I recorded whether the highest significant MI corresponds to the equality constraint 

that should be freed to reflect true DIF.  Models fit using MLE do not include small-variance 

priors for DIF parameters, but constrain the measurement parameters to exact equality, which is 

analogous to specifying a prior with μ = 0 and σ = 0 for the DIF parameter. 

Procedure. As in Study 1, I used R to generate data (500 replications per condition), 

rstan to fit Bayesian models to data (monitoring �̂� for convergence, saving 1000 post-burn-in 
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draws from each of three chains; see priors in the Appendix), and lavaan to fit models to data 

using MLE.  I fit three models to the data: Model 1 to detect nonuniform DIF and Models 2f and 

2b to detect uniform DIF using the forward or backward approach
7
, respectively.  The backward 

approach is expected to fail when there is substantial DIF because the analysis model incorrectly 

equates parameters that differ in the data-generating model—that is, testing an item for DIF 

requires that the equated anchor items have no DIF, and violating that assumption leads to 

detecting DIF where it does not exist (Woods, 2009).  Using Bayesian estimation, DIF 

parameters are estimated for all items simultaneously, so no items are used as anchors.  

Furthermore, the prior constraints on DIF parameters should decrease the frequency of Type I 

errors.  I therefore test both the forward and backward approaches in Study 2 because I 

hypothesize the backward approach for Bayesian CFA will not result in inflated Type I errors. 

To identify nonuniform DIF, Model 1 corresponds to a configural invariance model that 

is almost a metric invariance model.  The factor loadings were constrained nearly to equality by 

specifying an informative prior with μ = 0 for the DIF parameters (Δλ1–4).  The first factor 

variance was fixed to one in order to set the scale, and the second factor variance was freely 

estimated.  Although the loadings could differ between groups or occasions, the model should 

still be identified if the priors for DIF parameters adequately constrain the parameter space.  

Factor means were both fixed to zero, and item intercepts were free to vary across groups or 

time.  The factor correlation and each item’s residual correlation were also estimated in the 

longitudinal conditions.  Items with nonuniform DIF were flagged if the Δλ was unlikely to be 

                                                 
7
 In a frequentist framework, CFA and IRT methods have been compared for detecting DIF, including a comparison 

of the forward approach commonly use in CFA (i.e., starting with a free baseline model and adding constraints to 

loadings or discrimination parameters, then adding constraints to intercepts, thresholds, or difficulty parameters) to 

the backward approach commonly used in IRT (i.e., starting with a fully constrained baseline model, then relaxing 

location and scaling parameters for each item).  Kim and Yoon (2011) and Stark et al. (2006) found that both 

approaches provide sufficient power to detect DIF, but the backward approach is prone to high Type I error rates. 
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zero (i.e., when the 95% BCI did not include zero).  Using ML estimation, I also recorded 

whether the largest MI corresponded to the fourth factor loading. 

To identify uniform DIF using Model 2b (the backward approach), all factor loadings 

were constrained to exact equality across groups or time (i.e., no Δλs will be estimated), and only 

the first factor variance was fixed to one.  This corresponds to starting with the most constrained 

model, then releasing constraints on measurement parameters (starting with location parameters), 

which is the more common approach in IRT.  Item intercepts were constrained nearly to equality 

by specifying an informative prior with μ = 0 for the DIF parameters (Δτ1–4).  The first factor 

mean was fixed to zero in order to set the location, and the second factor mean was freely 

estimated.  Although the intercepts could differ between groups or occasions, the model should 

still be identified if the priors for DIF parameters adequately constrained the parameter space.  

The factor correlation and each item’s residual correlation were also estimated in the longitudinal 

conditions.  Items with uniform DIF were flagged if the Δτ was unlikely to be zero (i.e., when 

the 95% BCI did not include zero).  Because Model 2b also contains an incorrectly constrained 

loading, I recorded whether one of the two largest MIs (instead of only the highest) corresponded 

to the third intercept. 

Using Model 2f (the forward approach) differs from Model 2b only in that the fourth 

factor loading was freely estimated (no prior constraints) in each group or occasions, and thus the 

fourth intercept was not constrained to near-equality.  This corresponds to the situation where the 

fourth item is correctly flagged for nonuniform DIF in Model 1 (using the forward approach)—

how often this is likely to happen in practice is an outcome in the current investigation.  The 

factor correlation and each item’s residual correlation were also estimated in the longitudinal 

conditions.  Items with uniform DIF were flagged if the Δτ was unlikely to be zero (i.e., when 
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the 95% BCI did not include zero). I also recorded whether the largest MI corresponded to the 

third intercept. 

Results and Discussion 

Nonconverged models. Out of all 50,000 data sets (500 replications × 100 conditions), 

Models 2b and 2f—which estimated DIF in four and three intercepts, respectively—almost 

always converged on a stable posterior distribution that yielded �̂� < 1.1 for all model parameters.  

Nonconvergence occurred frequently with Model 1, which estimated DIF in four factor loadings.  

Nonconvergence was somewhat more problematic with larger priors, but much more problematic 

with larger N.  Figure 22 shows that convergence was never lower than 21%, so there were 

always at least 105 observations to analyze within each condition. 

 

Figure 22. Convergence rates for each model across conditions. 
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Investigating nonconverged models from all conditions revealed the same pattern.  Trace 

plots of the parameter estimates showed that all three chains converged on a stable estimate of 

the posterior, but at least one of the chains converged on a different posterior than the other(s).  

This indicates a multimodal posterior, so two distinct solutions could be found to reproduce the 

data equally well.  For example, the most common solution yielded posterior means of factor 

loadings, error variances, and the factor SD that were close to the true population values.  

However, in the other solution, the second factor SD had a remarkably higher posterior mean 

(close to 2), the first factor loadings had much smaller posterior means (close to 0.4), and the 

second factor loadings were close to zero (i.e., estimated DIF was close to −0.4).  Although the 

DIF parameters were constrained to be close to zero, the priors were not informative enough to 

identify the model, so sometimes a chain would settle in a different region of the posterior.  This 

problem was exacerbated by less informative priors and by larger N, which overwhelmed the 

already insufficient prior. 

Refitting the models with more constrained priors on DIF parameters might help the 

convergence problem, but that would decrease their “power” to detect DIF by shrinking BCIs.  

In the condition with worst convergence, adding weakly informative priors to factor loadings and 

the Group-2 factor SD solved the convergence problem (see details in Part IV).  Because at least 

100 replications in each condition converged on the target posterior, and results did not 

substantially change by changing the priors (i.e., mean parameter estimates and rejection rates 

were similar), I removed nonconverged solutions and proceeded with analysis.   

Variability of parameter estimates.  Because Monte Carlo sample sizes were unequal 

across conditions, partial-η
2
 was calculated from ANOVA results using Type III SS.  As shown 

in Table 3, Estimates of the second latent mean were largely influenced by the magnitude of DIF 
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in the population (partial-η
2
 = .785), the model (partial-η

2
 = .16), and moderately by the 

interaction between DIF and model (partial-η
2
 = .08); all other factors had negligible effects 

(partial-η
2
 < .01).  Figure 23 illustrates that bias in latent means grows with DIF, and more so in 

Model 2f (in which the invalid constraint on λ4 is released) than in Model 2b.  The same factors 

affected estimates of the second latent SD.  Figure 24 shows bias only when an invalid constraint 

is placed on λ4.  Model 1 places an approximate equality constraint on λ4, whereas Model 2b 

places an exact equality constraint on λ4, but both levels of constraint lead to similar bias in the 

latent SD.  For these models, greater DIF leads to greater bias, but for Model 2f there is no bias 

at any level of DIF, which characterizes the interaction between DIF and Model. 

 

Table 3 

Effect Sizes (partial-η
2
) of Monte Carlo Factors on Parameter Estimates 

 Latent Parameter  DIF Parameter 

Monte Carlo Factor M SD  Δλ4 Δτ3 

N    19.0% 54.3% 

DIF 78.5% 13.0%  6.7% 96.1% 

Prior σ    42.5% 70.7% 

Type (multiple-group / -time)     3.5% 

Model (i.e., Model 1, 2b, or 2f) 
a
  15.9% 20.5%    

N × DIF     37.3% 

N × Prior σ    6.7% 6.6% 

DIF × Prior σ     55.6% 

DIF × Type     1.4% 

DIF × Model 
a
 8.2% 8.5%    

N × DIF × Prior σ     3.4% 

Note. Only effects with η
2
 > 1% are shown.  Type III SS used to calculate partial-η

2
. 

 
a
 The effect of Model was only included as a factor in ANOVAs for latent M and SD.  
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Figure 23. Bias in the second latent mean grows in magnitude as DIF increases. 

 

 

Figure 24. Average posterior mean of the second latent SD by DIF. 
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The DIF parameter in Model 1 (Δλ4) is largely influenced by the magnitude of N and the 

prior σ, moderately by their interaction, and moderately by the magnitude of DIF (see Table 3).  

Figure 25 illustrates the nature of the interaction: Δλ4 is greater in absolute value when the prior 

σ is less informative, but the difference between prior σ = 0.05 and 0.10 is smaller when larger N 

overwhelms the prior.  Greater DIF in the population is expectedly reflected in lower (i.e., more 

negative) Δλ4 estimates, but it is also noteworthy that the misfit due to the invalid constraint on 

Δλ4 also manifests in higher estimates of Δλ1–3, which are compensated by the negatively biased 

latent SD in Figure 24. 

 

 

Figure 25. Average posterior mean of Δλs by DIF, prior σ, and N. 
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The DIF parameter in Model 2b (Δτ3) is largely influenced by the magnitude of DIF, N, 

and the prior σ, as well as interactions among these factors (see Table 3).  Figure 26 looks very 

similar to Figure 25, but the y-axis has a wider range, illustrating why the effect sizes for Δτ3 are 

so much larger than for Δλ4.  The nature of the interactions is similar: Δτ3 is greater in absolute 

value when the prior σ is less informative, but the difference between prior σ = 0.05 and 0.10 is 

smaller when larger N overwhelms the prior.  As for Δλ4, greater DIF in the population is 

reflected in lower (i.e., more negative) Δτ3 estimates, and the misfit due to the invalid constraint 

on Δτ3 also manifests in higher estimates of Δτ1–2 and Δτ4, which are compensated by the 

negatively biased latent mean in Figure 23.  Similar results were found for Model 2f. 

 

Figure 26. Average posterior mean of Δτs by DIF, prior σ, and N. 
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Rejection rates. I report rejection rates for all DIF estimates, as well as the frequency 

with which the ML modification indices.  When DIF exists (Δλ4 and Δτ3), this is power: p(Test
+
 | 

DIF
+
).  In the absence of DIF, this is the Type I error rate: p(Test

+
 | DIF

–
).  Because control of 

familywise Type I error rates typically leads to a reduction in power, researchers may choose to 

compromise by allowing inflation of Type I error rates, so long as the number of falsely rejected 

hypotheses is only a small proportion (e.g., 5%) of all rejected hypotheses (Maxwell & Delaney, 

2004).  Therefore, I also report the false discovery rate (FDR = p(DIF
–
 | Test

+
), which is the 

complement of the positive predictive value (PPV = 1 − FDR = p(DIF
+
 | Test

+
).  FDR is 

discussed further in Maxwell and Delaney (2004, pp. 230–234). 

 

Figure 27. Rejection rates for Δλs by DIF, prior σ, and N.  The bottom panels depict only one 

parameter (λ1) for which DIF = 0, but the same pattern was observed for λ2 and λ3. 
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As seen with DIF estimates, rejection rates were primarily influenced by magnitudes of 

population DIF, N, and prior σ.  Because model type (multiple-group or longitudinal) had only 

negligible influence on rejection rates, results are collapsed across those conditions.  The top 

panels of Figure 27 show adequate power (~80%) to detect small DIF (Δλ4 = 0.2) only when N = 

800, but moderate or large DIF is detectable when N > 300, particularly using prior σ = 0.1.  The 

dotted lines show that in the absence of DIF, Type I error rates are close to zero, and negligible 

DIF (Δλ4 = 0.1) is also typically detected in less than 5% of samples.  The bottom panels show 

that other factor loadings without DIF also have very low Type I error rates (0% in over half of 

the conditions).   

The top panels of Figure 28 show very high power (100% for Δτ > 0.2 when N > 200), 

even for negligible DIF when (a) N > 400 and prior σ = 0.05 or (b) N = 800 and prior σ = 0.1.  

Again, Type I error rates are close to 0% in the absence of DIF.  However, the bottom panels 

reveal that when there is substantial DIF (Δτ > 0.2), Type I errors are highly inflated for non-DIF 

items (Δτ2 and Δτ4 show similar results to Δτ1).  The reason for this can be seen in Figure 23.  

Because τ3 is actually lower in Group 2 (or Occasion 2), the constraint imposed on τ3 by the 

informative priors causes positive biases in Group 2’s τ3.  As DIF increases, the latent mean in 

the second group (or occasion) becomes more negatively biased to compensate for the invalid 

near-equality constraint, so that the observed item means can be more accurately reproduced 

(�̅�3 = τ3 + λ3 × 𝑓𝑎𝑐𝑡𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅).  The negatively biased Group-2 factor mean in turn causes the other 

item intercepts to become positively biased, so that their means can be more accurately 

reproduced.  The effect of the invalid constraint on the DIF estimate is distributed among 

multiple non-DIF items, so Type I errors can be controlled by only releasing the constraint for 

the largest DIF estimate.  Figure 29 shows Type I errors near 0%, with no loss of power. 
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Figure 28. Rejection rates for Δτs by DIF, prior σ, and N.  The bottom panels depict only one 

parameter (τ1) for which DIF = 0, but the same pattern was observed for τ2 and τ4. 

 

 
Figure 29. Maximum-DIF rejection rates for Δτs by DIF, prior σ, and N.  The bottom panels 

depict only τ1, but the same pattern was observed for τ2 and τ4. 
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The FDRs in Figure 30 reinforce the conclusion that constraints on intercepts must be 

released sequentially rather than all at once.  As DIF and N increase, mean FDR for intercepts 

approaches 75% because DIF would be detected in all four intercepts, yet only one of those 

parameters actually has DIF (i.e., three out of four discoveries are false).  FDR may be more 

acceptable using a sequential method, but fitting a sequence of models (as is required when using 

MIs in MLE) was not part of the current investigation.  Figure 30 also shows that FDRs for 

factor loadings are much more acceptable (typically below or close to 5%).   

 

 

Figure 30: False discovery rates (FDR) for DIF in intercepts and factor loadings by population 

DIF, prior σ, and N. 



93 

 

The current best practice for detecting DIF in CFA is to use MIs to search for equality 

constraints that should be released, with a Bonferroni correction for the number of constraints 

being tested.  For Models 1 and 2b (testing four loadings and all four intercepts, respectively), 

the corrected α = .05 / 4 = .0125, which is associated with a critical χ
2
(1) value of 6.24, assuming 

the research focuses only on MIs for measurement parameters constrained to equality across 

groups or occasions.  For Model 2f (testing three intercepts, assuming nonuniform DIF in Item 4 

was detected in Model 1), the corrected α = .05 / 3 = .0167, which is associated with a critical 

χ
2
(1) value of 5.73.  

 

Figure 31: Power and Type I error rates for detecting DIF in intercepts and factor loadings using 

modification indices in MLE. 
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To contrast the Bayesian method under investigate to current best practices in CFA, the 

top row of Figure 31 presents the power to detect true DIF in each model.  The bottom row of 

Figure 31 shows Type I error rates, which indicate the proportion of replications in which the 

largest significant MI among validly constrained measurement parameters showed evidence of 

DIF.  In the presence of large DIF, MIs had near 100% power to detect it, in which case the Type 

I error rates were near zero.  But when DIF was small or absent, Type I error rates were closer to 

nominal levels (i.e., around 5%), which are higher than the error rates using the Bayesian small-

variance priors (see Figure 32).  Just as model type had negligible effect on DIF estimates and 

rejection rates using Bayes, MIs were similar for longitudinal and multiple-group models, so 

rejection rates in Figure 31 are collapsed across those conditions. 

Figure 32 directly compares the Type I error rates using MLE and Bayesian estimation.  

Because MLE does not incorporate priors, the grey lines are the same in the left and right panels.  

The grey lines (indicating Type I error rates for MIs) are only close to zero when DIF and N are 

large, in which case the largest MI typically corresponds to the parameter with DIF.  Black lines 

(indicating Type I error rates using BCIs) remain much closer to zero, so fewer Type I error rates 

will be made using small-variance priors with Bayesian estimation than using MIs with MLE.   

Figure 33 directly compares power using MLE and Bayesian estimation.  Again, grey 

lines are the same in the left and right panels.  For factor loadings, MIs and BCIs have similar 

power, except that MIs have much better power to detect large DIF with smaller N when priors 

are more informative (prior σ = 0.05).  For intercepts, MIs typically have greater power to detect 

smaller DIF when N is small, but this discrepancy is negligible when N is large and priors are 

more informative. 
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Figure 32. Type I error rates by DIF, prior σ, and N. 

 

 

Figure 33. Power by DIF, prior σ, and N. 
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As expected, power to detect DIF—using MIs or BCIs—increases with sample size (N) 

and effect size (DIF).  In the case of BCIs, prior variance had the expected effect on nonuniform 

DIF detection: less informative priors yielded greater power.  This was generally the case with 

intercepts as well, except that for small N and small DIF, more informative priors yielded slight 

greater power to detect uniform DIF.  No noticeable differences were found between multiple-

group and longitudinal models. 

PART IV: General Discussion 

Measurement equivalence is a necessary assumption if latent parameters are to be 

compared across different contexts (e.g., subpopulations or occasions of measurement), so 

testing this assumption is the focus of much research.  Much practical advice can be found for 

testing degrees of measurement equivalence using CFA, particularly when using MLE for 

continuous indicators.  For example, configural invariance can be tested by inspecting whether 

the model fits well, using the χ
2
 test statistic or alternative fit indices (AFIs) as criteria.  Metric 

and scalar invariance can be tested by calculating Δχ
2
 statistics or ΔAFIs (e.g., ΔCFI < .01; 

Cheung & Rensvold, 2002) as criteria for judging whether equality constraints are tenable.  

Advice is also available for other special cases, such as when using WLS to estimate CFA with 

binary and ordinal indicators (e.g., Kim & Yoon, 2011), and although many questions remain 

unanswered, this is a very active area of research. 

Bayesian estimation methods (e.g., Gibbs sampling) are becoming more popular due to 

their availability and ease of use in population SEM software packages such as Mplus, but in 

contrast to the quantity of advice available using MLE or WLS, very little advice has been 

offered for  testing measurement equivalence when using Bayesian methods.  As of the time of 

this writing, I found only one methodological article about Bayesian estimation for testing 
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measurement equivalence in CFA (Asparouhov & Muthén, 2014), and it involves using a new 

technique called alignment, which is similar to rotation methods in EFA.  The alignment method 

appears to perform well in initial simulation studies, but for a real scale administered in eight 

countries, Cieciuch, Davidov, Schmidt, Algesheimer, and Schwartz (2014) found strikingly 

different results compared to traditional methods (i.e., full scalar invariance for all 19 items using 

Bayesian alignment vs. partial invariance of only 12 items found in previous studies).  More 

simulation studies are needed to discover under what conditions the alignment method might 

produce invalid results.  Additional Bayesian methods have been developed in an IRT 

framework (e.g., multilevel parameterization; Verhagen & Fox, 2013), which could also be 

adapted for CFA. 

The question of how best to test measurement equivalence in Bayesian CFA is therefore 

an open one.  Although an advanced user of general Bayesian modeling software could manage 

to program posterior distributions of differences in model fit between nested models, most 

practicing researchers would only use statistical tools that are easily calculated or readily 

available.  The only such tool for model comparison in Bayesian SEM is the DIC provided in 

standard output of Mplus and Amos.  The motivation for Study 1 is to assess how often 

researchers using DIC would correctly prefer the most parsimonious scalar invariance model 

when equality constraints for measurement parameters are valid, as well as how often the least 

parsimonious configural model would be preferred when those equality constraints are invalid.  

Because DIC is a generalization of AIC, DIC’s performance was compared with MLE results, as 

well as with the newly proposed WAIC, which is greater generalization of AIC than DIC 

because it utilizes the full posterior distribution rather than a central-tendency point estimate. 

Study 1 showed that AIC has lower Type I error rates than DIC or WAIC, in the sense 
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that in the absence of DIF, AIC is more likely to prefer the most parsimonious (scalar invariance) 

model.  Nonetheless, Type I errors using DIC and WAIC are rare, so they would all be good 

tools to selecting the appropriate measurement model when measurement equivalence is a valid 

assumption.  However, AIC makes more Type II errors than WAIC and DIC, particularly at 

smaller N and small-to-moderate DIF.  That is, in the presence of DIF, DIC and WAIC more 

consistently prefer the configural model than AIC does, leading to the appropriate conclusion 

that some measurement parameters differ across contexts.  These results were similar regardless 

of model type (longitudinal and multiple-group) or presence of parsimony error (a correlated 

residual in the population that was constrained to zero in the model).  Although WAIC has less 

sampling variability than DIC, model choices would be nearly equivalent in practice, so 

researchers can confidently use the readily available DIC to choose an appropriate measurement 

model when fitting a CFA with a Bayesian estimation method. 

After concluding that DIF exists, a researcher’s next goal would be to identify which 

equality constraints are invalid, to establish partial measurement invariance so latent parameters 

could still be compared across contexts.  In MLE, only MIs are available to identify items with 

DIF, but past research has noted several limitations of MIs, notably that specification searches 

often lead to an incorrect final model (MacCallum et al., 1992).  Muthén and Asparouhov (2012, 

2013) suggested that using Bayesian estimation methods, parameters could be approximately 

(rather than precisely) constrained with small-variance priors.  Study 2 was an investigation of 

how well this method would work for identifying whether indicators had uniform or nonuniform 

DIF. 

Bayesian DIF parameters are all estimated simultaneously with other model parameters, 

so rather than searching for items to free one at a time, Muthén and Asparouhov (2012) 
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insinuated that all invalid constraints could be identified in one step.  But because invalid 

constraints are compensated for by multiple other parameters
8
, Bayesian estimates of truly 

nonzero DIF parameters are not independent of DIF estimates that are truly zero.  Because the 

effects of unmodeled DIF are distributed across other model parameters, the best practice is to 

only release the constraint for the largest DIF estimate, and then fit the model again.  Thus, one 

predicted advantage over MIs is lost: the ability to identify all DIF parameters in a single step, 

rather than one at a time in a specification search (Muthén & Asparouhov, 2012).   

The only other bases for discriminating between Bayesian posterior DIF estimates and 

ML MIs are to compare (a) their power to detect an invalid constraint, (b) their Type I error rates 

in the presence of an invalid constraint, and (c) their Type I error rates in the absence of invalid 

constraints.  In each case, using BCIs would result in less frequent Type I errors than using MIs.  

Bayesian and ML methods both have high power when N and DIF are at least moderately large, 

but when N or DIF are small, MIs have noticeably greater power to detect uniform DIF than 

BCIs do; however, power to detect nonuniform DIF is typically similar for BCIs and MIs. 

Limitations and Future Directions 

Although the current investigations included several conditions that would be commonly 

encountered in practice, results presented here may not generalize to other conditions.  

Limitations of the current investigation are discussed below. 

Measurement equivalence was tested for multiple-group and longitudinal models, and 

                                                 
8
 A parameter could be constrained to equal a constant (typically zero or one), or two or more free parameters could 

be constrained to equality.  The degree to which these constraints are invalid can bias other parameter estimates.  For 

example, an omitted cross-loading can exaggerate the correlation between the two factors on which the item truly 

loads.  In the context of testing measurement equivalence, invalid equality constraints across groups (or occasions) 

introduce bias not only in the measurement parameter but also in the associated latent parameters.  For example, if a 

factor loading truly is truly lower in Group 2 than in Group 1, constraining the groups’ loadings to equality will 

result in an estimate that is a compromise between the two true values.  To minimize the effect of that invalid 

constraint on model fit, Group 2’s factor variance will be underestimated, which in turn causes all other loadings for 

that factor to be overestimated.  The fewer items there are to share that balance, the worse the bias. 
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results differed only negligibly.  However, only two-group or two-occasion situations were 

investigated, and the two groups had equal sample sizes.  This mimics common situations such 

as pretest–posttest designs or studies comparing men to women or treatment to control groups.  

But situations with unbalanced groups are also common (e.g., comparing clinical to general 

populations).  Short (2014) found that fit indices in MLE (including AIC) tend to have lower 

power to detect nonequivalence of intercepts as the discrepancy between group sizes increases, 

although the power to detect nonequivalence of factor loadings was generally unaffected by 

sample-size ratio, especially at larger N.  The degree to which sample-size ratio affects DIC, 

WAIC, or estimates of DIF parameters is a topic that warrants further investigation. 

Studies comparing more than two groups (e.g., several races or countries to whom a scale 

was administered) or more than two occasions are also common.  In these cases, the method for 

detecting DIF that was the focus of Study 2 may be too unwieldy in practice.  A single reference 

group or occasion would be chosen (e.g., the group on which the scale was normed, or the first 

occasion of measurement), and DIF parameters would be specified to characterize how 

measurement parameters in each other group (or occasion) differ from those of the reference 

group.  If, for example, two groups both have significantly lower factor loadings than the 

reference group, then another model may need to be specified to test whether those two groups 

differ from each other.  Because small-variance priors identify DIF well only when the largest is 

released, multiple comparisons for each parameter make the sequential specification search more 

complex, just as it does for using MIs.  The Bayesian method results in far fewer Type I errors 

than using MIs, but future research is required to establish whether that result generalizes to 

several groups or occasions. 

Only four indicators per construct were used, which is near the minimum necessary (i.e., 
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three) for just-identification of a construct, but scales with many more items are common, 

especially during scale development or assessment, when items with DIF can be identified for 

removal.  The number of indicators was shown to influence how much impact DIF has on other 

model parameters.  It is possible that with enough indicators per construct, the impact of DIF will 

be distributed across so many other loadings or intercepts that a sequential search would be 

unnecessary to control Type I errors.  Because more steps in a specification search lead to more 

potential errors (MacCallum et al., 1992), discovering the number of items necessary to simplify 

the process of DIF detection is an important avenue for further research. 

Model 1 in Study 2 was under-identified enough to cause as low as 21% convergence in 

conditions with large N.  If a practicing researcher is confronted with evidence of 

underidentification, then the model must include weakly informative priors for the Group-1 

factor loadings and Group-2 latent SD.  The most problematic condition (N = 800, σprior = 0.1, 

DIF = 0) had 21% convergence for the multiple-group model and 22% convergence for the 

longitudinal model.  I specified weakly informative priors for factor loadings ~ lognormal(μ = 

−0.2, σ = 0.3), with the bulk of its density roughly between λ = 0.5 and 1.2, and for the factor SD 

~ lognormal(μ = 0, σ = 0.25), with the bulk of its density roughly between 0.6 and 1.6.  These 

weakly informative priors led to 100% convergence for the multiple-group and longitudinal 

models.  Parameter estimates and rejection rates were similar the results found in Part III, with 

bias ranging between −0.005 and 0.007.  Future research would be helpful to establish guidelines 

for choosing appropriately weak priors in cases when an applied researcher has little or no 

information about differences in factor variances across groups or occasions. 

Choosing priors for the DIF parameters themselves would also be helpful, so I offer some 

practical advice here.  When no clear substantive or theoretical choice is apparent, priors for DIF 
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parameters may need to be chosen based on characteristics of the data.  I used priors that seemed 

appropriate for the scale of the observed indicators and latent constructs (both were standard 

normal).  Because the total indicator variances were close to one (exactly one in the population), 

the error variance estimates could not exceed one, nor could the factor loadings.  Thus, factor 

loadings and error variances were originally specified with a uniform prior between zero and 

one.  Because the observed variances between groups or occasions did not differ greatly, it 

would be reasonable to assume that the factor variances differ minimally, so I originally 

specified a uniform prior between zero and two for the second factor variance.  As the follow-up 

simulation showed, convergence problems caused by the “hard” boundaries in a uniform prior 

can be solved with priors whose high-density regions correspond roughly to the same limits but 

are unbounded.  Priors for DIF parameters were specified as N(μ = 0, σ = 0.05 or 0.10).  The 

values for σ seemed appropriate because 95% of values would be within 0.1 or 0.2, 

respectively.  Allowing that much DIF to occur corresponds to allowing small amounts of DIF to 

be considered approximately equal, which would have negligible effect on latent parameter 

estimates (see Figures 12 and 13). 

Assuming measurement equivalence holds, “impact” has been a term used to indicate 

true differences in latent parameters (Stark et al., 2006).  No true differences in latent parameters 

existed in the population, yet impact can commonly be expected in practice and is certainly an 

important research question.  Impact could complicate the effect of DIF on latent parameters.  

For example, if Group 2 has a higher factor loading than Group 1, but Group 2’s latent SD is also 

higher, then the factor loadings may appear equivalent if both latent variances are both fixed to 

one.  When using constrained Bayesian estimates of DIF parameters to identify DIF, latent 

parameters are allowed to differ, just as they are allowed to differ in constrained models when 
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using MIs to identify DIF with MLE; therefore, the magnitude and direction of impact relative to 

DIF should not prevent adequate DIF detection with good control of Type I errors.  However, 

this is an open question left for future research. 

Lastly, although little practical difference was found between the model choices using 

WAIC1, WAIC2, and DIC1, it is unclear whether these results generalize to other situations in 

which competing models are compared in terms of fit and parsimony.  Configural, metric, and 

scalar invariance models share an identical functional form; they differ only in terms of equality 

constraints.  Thus their claims about how data are generated from a population process are nearly 

identical.  It is entirely possible that WAIC and DIC model choices would differ more 

substantially when the models being compared are not so similar (e.g., common-factor vs. 

simplex models to describe a large set of similar items responded to in a sequence).  Because the 

theoretical support for preferring WAIC to DIC is so strong (Gelman et al., 2013; Vehtari & 

Gelman, 2014; Vehtari & Ojanen, 2012), it is surprising to find so little practical difference in 

their applied behavior, especially given the evidence in Study 1 confirming the predicted smaller 

sampling variability of WAIC.  Further research is warranted to distinguish between the relative 

practical values of DIC and WAIC. 

Conclusions 

In conclusion, practicing researchers interested in using Bayesian CFA to investigate 

measurement equivalence can be confident that WAIC and DIC are useful tools for deciding 

whether a search for DIF is warranted.  If the scalar invariance model is not the optimal model, 

then small-variance priors for DIF parameters can be added to the metric and scalar models in 

order to identify nonuniform and uniform DIF, respectively.  Contrary to Muthén and 

Asparouhov’s (2012) suggestion, if any DIF parameter’s BCI excludes zero, it is best to release 
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the prior constraint only for the largest DIF estimate and fit the model again to search for any 

additional DIF parameters.  This appears especially important when testing for uniform DIF, as 

Type I errors were very frequent when testing all intercepts simultaneously rather than testing 

only the largest Δτ; however, this may not generalize to conditions other than those investigated 

in Study 2.  As long as only the parameter with the largest DIF estimate is freed, then Type I 

errors are unaffected by whether the forward or backward approach is used; however, the 

forward approach (i.e., first identifying DIF in factor loadings, then searching for uniform DIF 

only among items with equal loadings) yields greater power than the backward approach.  Care 

should be taken to assign appropriate priors to DIF parameters, by taking into account the 

variability of the data and any information available in past research.  A sensitivity analysis can 

reveal whether results are influenced by the location of the prior distribution.   

When both measurement and latent parameters are allowed to differ (to some degree) 

across contexts, lack of identification may manifest in multiple chains stabilizing on different 

posterior distributions.  Convergence to a target posterior distribution can be helped by 

specifying reasonable, weakly informative priors with “soft” boundaries; specifying a fixed 

boundary, even if is near a logical limit for the parameter, can cause convergence problems.  In 

Study 2, such a constraint was apparently necessary for Model 1 (testing factor loadings for 

DIF), particularly with larger N.   If more informative priors are required to identify the model, a 

sensitivity analysis may also be appropriate to ascertain the degree to which results are 

influenced by the choice of prior distribution(s). 

Bayesian methods investigated in Study 2 are more complicated to implement than using 

MIs in MLE, but the advantage is that the incorporation of small-variance priors for DIF 

parameters result in fewer Type I errors.  Thus, specification searches using BCIs would result in 
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fewer deviations from the correct model than specification searchers using MIs.  However, both 

methods are tedious, necessitating several models to be fit in sequence.  This disadvantage of 

both MIs and BCIs makes the recently proposed alignment method (Asparouhov & Muthén, 

2014; Muthén & Asparouhov, 2013) highly desirable because it simplifies the process to fitting 

only one or two models.  Future research must, however, indicate the degree to which the 

alignment method provides valid results under a wide variety of conditions. 
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Appendix 

Prior Distributions for Model Parameters 

Parameter Prior Distribution 

Factor loadings (λ) U(0, 1) 

Nonuniform DIF(Δλ) N(0, σprior) 

Intercepts (τ) N(0, 5) 

Uniform DIF(Δτ) N(0, σprior) 

Residual variances (θ) U(0, 1) 

Group-2 Factor Mean N(0, 5) 

Group-2 Factor SD U(0, 2) 

Group-2 Factor Correlation U(−1, 1) 

 


