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The Relationship Between Geometry And Numeric Ratio As An Open 

Problem In Ledoux's Architecture: A Study Of The Floor Plans Of The 

Barrières Of Paris 

 

Abstract 

The floor plans of Ledoux's barrières of Paris, designed during the 1780s, are described using simple 

geometric constructions. Based on a study of these geometric constructions and the ratios of their parts, it 

is suggested here that the architect did not treat geometry or numeric ratio as an ideal model of 

architecture. Rather, he treated the relationship between geometry and numeric ratio as an open problem 

foreshadowing the attitude of the modern architect. 

 

Introduction 

In the Renaissance, architecture was conceived in the image of a universe, where all natural things and 

their parts were related to one another by the whole numbers. Consequently, the commensurability of 

measures became a nodal point in the architecture of the Renaissance (Wittkower, 1949). This 

mathematical precept started losing its importance for the first time in the late 17th century, when Claude 

Perrault, a founding member of the Académie Royale des Sciences in France, noted that no one had been 

successful in identifying exactly the basis of the precept, nor had anyone been able to imitate the precept 

perfectly in architecture (Perrault, 1674, 1683). The precept lost its importance even more with the 

development of such aesthetic concepts as the sublime and the picturesque in the late 17th and the early 

18th century. However, the controversy over the efficacy of commensurable ratios in architecture 

remained very much alive at the end of the 18th century. Those who upheld the Renaissance ideal 

suggested that commensurable ratios were important in architecture because it reflected the underlying 

order of the universe, while others argued that the efficacy of proportion in architecture was only a matter 

of experiment and experience (Wittkower, 1949; Scholfield, 1958).  

 During this period of controversy, Ledoux worked as an architect in France. He was fascinated 

with the sublime and the picturesque (Vidler, 1990). In several cases, he used these aesthetic concepts as 

licenses to distort physical forms and to create strong asymmetrical internal layout of architecture 

enhancing elements of surprise and novelty. As a result, it has been difficult to imagine that any 

consistent system of proportion, something like that of the Renaissance architecture, might exist in 
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Ledoux's architecture. Though a term like "Palladianism" is frequently used to characterize his 

architecture (Vidler, 1990), the role of commensurable ratios, a very important element of the 

Renaissance architecture, remains unknown in Ledoux's architecture.  

This is despite the fact that Ledoux was familiar with the classical theories of beauty and had kept 

the treatises by Vitruvius, Palladio, Serlio, and Inigo Jones in his small library of some two hundred 

twenty volumes of books (Vidler, 1990: 377). Like his Renaissance predecessor, Ledoux was convinced, 

at least in theory, that everything in art must abide by the eternal laws of nature (Architecture de C N 

Ledoux, Premier Vol., trans. Vidler, 1983: xi). However, Ledoux made no explicit reference in his 

writings to the distinction between commensurable and incommensurable ratios, and to the importance of 

commensurable ratios in architecture. Is it possible that Ledoux used commensurable ratios in his designs 

even though he failed to mention their importance in his writings?  

 

The geometric constructions of Ledoux's barrières of Paris 

In order to find out Ledoux's attitude to commensurable ratios, the floor plans of the barrières of Paris 

designed by the architect for the Ferme Gènèrale (or the royal general tax farm), between 1784 and 1789, 

were studied. These barrières were designed for some forty-five entrances of the new boundary wall of 

the city. A typical barrière, as noted by Vidler (1990), provided living and sleeping quarters for a brigade 

of seven to eight guards, and an avant-garde of four or five, plus their brigadier, rooms for a clerk or 

receiver, as well as a kitchen, an office, and a cellar for wine and wood storage. Separate sentry boxes 

were provided for the officers on duty. For larger entrances, warehouses and dépôts for confiscated goods, 

custom shed, stable, and carriage houses were also provided.  

 Since most of these barrières were already demolished by 1859 (Vidler, 1990), the floor plans of 

the barrières published in the book Architecture de C N Ledoux (1983) were used in this study. These 

floor plans were subjected to geometric constructions. The proportions of the floor plans were then 

determined from the geometric constructions that described the location of their walls in a consistent 

manner. It can be noted here that, since in a geometric construction every element is related to every other 

element by some geometric moves, it is impossible to modify the dimension of an element without 

changing the dimensions of all other elements of the construction.  

 The geometric constructions of the floor plans of all 23 barrières included in the book are 

provided in the figures in Appendix 1. In the appendix, the floor plans of the barrières are numbered 

according to the plate number of the book Architecture de C N Ledoux (1983). For example, the floor plan 

on plate-1 of the book is indexed as Ledoux-1; the floor plan on plate-3 of the book is indexed as Ledoux-
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3; and so on. For each floor plan, first, the geometric construction is shown directly on the floor plan 

allowing the reader to observe the degree of match between the plan and the parti defined by the 

construction. Then, the construction is shown separately with the number and sequence of geometric 

moves involved in the construction. For each floor plan, the important elements of the parti are also 

shown in a separate diagram.  

 It can be observed from the diagrams that a parti defined by a simple construction of circles and 

straight-lines describes, quite accurately, the positions of almost all the walls in each floor plan. However, 

the positions of the walls in relation to the parti lines are not always the same in these plans: In some 

floor plans, the parti lines follow the centerlines of the walls (Ledoux-8, 15, 23, 24, 34, & 36); in some, 

they follow the exterior sides of the walls (Ledoux-1, 3, 9, 10, &17); in some others, they follow the 

interior side of the walls (Ledoux-5, 12, & 20); and in the rest of the floor plans, the parti lines are located 

ambiguously in relation to the walls (Ledoux-6, 21, 22, 26, 28, 30, 32, 33, & 35). 

 Despite the above inconsistencies, the degree of match between each floor plan and its parti 

defined by a geometric construction is quite remarkable suggesting that a constructional logic may exist 

for each floor plan. According to this logic, the differences in the geometric processes describing the floor 

plans may be an explanation for the differences in their compositions. For example, in some plans, the 

geometric constructions proceed from the center to the periphery (Ledoux-5, 6, 8, 12, 15, 24, 30, 32, 33, 

34, 35); in some others, they proceed from the periphery to the center (Ledoux-9, 10, 17, 20, 21, 22, 23, 

26, 28, 36); and in the rest, they proceed to the center and periphery simultaneously beginning somewhere 

in the middle of the constructions (Ledoux-1, 3).  

There are, however, more important differences in the processes of geometric constructions of the 

floor plans of the barrières. Some geometric constructions involve only the divisions and sub-divisions, 

and/or the multiples and sub-multiples of a diameter of the first circle. As a consequence, in these 

constructions the relationships of the parts to each other and to the whole are defined by commensurable 

ratios. In contrast, the other constructions involve the diagonals of circumscribing squares, and/or the 

sides of inscribing squares of the first circle and/or its derivative circles. As a consequence, in these 

constructions the relationships of the parts to each other and to the whole are defined by incommensurable 

ratios, or by both commensurable and incommensurable ratios.  

 

The analysis of the numeric ratios of the barrières 

The ratios of the floor plans of the barrières, determined from their geometric constructions, are given in 

column-2 of Table 1. As identified in column-3, among these ratios, there are the commensurable and 
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incommensurable ratios, as well as the harmonic and non-harmonic or aharmonic ratios. The root-ratios 

shown in column-2 are converted to their nearest commensurable ratios in column-4. The revised types of 

ratios in column-5 now include the nearest commensurable ratios of the root-ratios. In column 6, the 

ratios mentioned by Vitruvius, Alberti, and Palladio in their texts are identified.  

 It can be noted here that there are at least four different tuning systems - Pythagorean, Tempered, 

Just, and Archytus - to generate harmonic ratios. For the Pythagorean and Tempered systems, the 

generators of harmonic ratios are 2 and 3, i.e., 2p3q; for the Just system, they are 2, 3 and 5, i.e., 2p3q5r; 

and for the Archytus system, they are 2, 3, 5, and 7, i.e., 2p3q5r7s (McClain, 1978).1  Though numerous 

ratios can be generated using the generators of these systems, the ratios of any two whole numbers of the 

following set defined by the Archytus system were used in Table 1 for the purpose of this study: 1, 2, 3, 

4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 

60, 63, 64, 70, 72, 75, 77, 80, 81, 84, 90, 91, 96, 98, and 100. The ratios generated by these numbers also 

include the ratios of the other three systems, since they include any whole number smaller than 100 that 

can be generated by 2, 3, and/or 5. In addition to the ratios generated by the above numbers, 1:√2 (the 

augmented fourth, i.e., the fourth plus a semitone)2 from the equal tempered scale was also used as a 

harmonic ratio in the study. 

 Among the writers of the classical architectural treatises, Vitruvius mentioned 1:2 (the octave), 

2:3 (the perfect fifth), 3:5 (the major sixth), and 1:√2 in relation to room dimensions (Vitruvius, Ten 

Books, Book VI. ii. 8, 1960: 189). Since the equally "tempered" scale was not known to Vitruvius, the 

                                                      

1 Except the Tempered scale, all other tuning systems are archaic. Invented by Vicenzo Galilei, the Tempered scale 

was introduced in the 16th century by Gioseffe Zarlino (McClain, 1978: 173, 175; The Oxford Dictionary of Music, 

1985: 805). Already before Ledoux began his career in architecture, Bach (1685-1750) had successfully integrated 

the old systems with the Tempered scale in his music. 

It can be mentioned here that, in the previous studies on the use of harmonic ratios in architecture only 2,3, and 5 are 

used as the generators of harmonic ratios (e.g., Wittkower, 1949; Scholfield, 1958; Howard and Longair, 1982; 

Mitrovic, 1990; March, 1996). These studies give no reason for not using 7 as a generator of harmonic ratio. 

However, 6:7 (septimal third) and 7:8 (septimal second or septimal tone) of the Archytus scale are important 

musical intervals and can be heard frequently in the music of instruments which depend wholly on the harmonic 

series for their notes, as with the older brass instruments (Baines, 1983). 

2 In an equal tempered scale, an octave space is divided into twelve equal parts, so that a "semitone" of 1/12th of the 

octave has the numerical value 12√2. In this scale, 1: √2 is a fourth augmented by a semitone for the following 

reason: 1: √2 = 1:12√26 = 1: (12√25 x 12√2) ≈ 1: (4/3 x 18/17). 



 6 

importance given to 1: √2 by him must have to be explained by the fact that it is the ratio of the side of a 

unit square to its diagonal. Alberti mentioned three groups of ratios for three different room shapes in his 

treatise. For short areas, he mentioned 1:1 (the unison), 2:3 (the sesquialtera, or the diapente, or the 

perfect fifth), 3:4 (the sesquitertia, or the diatesseron, or the perfect fourth); for intermediate areas, 1:2 

(the diapason, or the octave), 4:9 (the double sesquialtera, i.e., 22:32), and 9:16 (the double sesquitertia, 

i.e., 32:42); and for long areas, 1:3 (the triple, or the diapason diapente, i.e., 1:2 x 2:3), and 3:8 (a double 

enlarged by a sesquitertia, or the diapason diatesseron, i.e., 1:2 x 3:4) (Alberti, Ten Books, Book IX, 

Chap. vi, 1988: 306). In his treatise, Palladio mentioned the circle, the square, 1:√2, 3:4, 2:3, 3:5, and 1:2 

for room shapes (Palladio, Four Books, Book I, Chap. xi, 1965: 27). Again, it is not known whether 

Palladio was aware of the musical significance of 1:√2 (Howard and Longair, 1982; Mitrovic, 1990). 

Probably, he used the ratio for the same reason Vitruvius had used it before him. 

 According to the data provided in columns 2 & 3 of Table 1, 9 out of 23 barrières 

(approximately 40%) have only commensurable ratios; 7 barrières (approximately 30%) have only 

incommensurable ratios and the other 7 barrières (approximately 30%) have both commensurable and 

incommensurable ratios. And, out of all 62 ratios used in the floor plans of all 23 barrières, 31 ratios 

(50%) are commensurable, and 31 (50%) are incommensurable ratios. These findings may suggest that 

commensurable and incommensurable ratios, as well as the relationship between these two kinds of ratios, 

were treated as important aspects in the design of these barrières by Ledoux. 

 According to the data provided in columns 2 & 3 of Table 1, harmonic ratios also appear to be 

particularly important for the floor plans of these barrières. At least 10 barrières (approximately 43%) 

have only harmonic ratios; and out of all 62 ratios used in 23 barrières, 35 ratios (approximately 56%) are 

harmonic. When incommensurable ratios are converted to their nearest commensurable ratios (see 

column-5 of Table 1), the number of barrières with only the harmonic ratios increases to 19 

(approximately 83%); and the total number of harmonic ratios increases to 57 (approximately 92%). Also 

note that out of 31 incommensurable ratios 27 (approximately 87%) are harmonic in approximation. 

These findings may indicate that Ledoux might have used the floor plans of the barrières to investigate 

and understand the relationship between geometry and harmonic ratios, as well as the effects of the 

minute variations of harmonic ratios in architectural aesthetics.  

 In addition, Vitruvius, Alberti and Palladio mentioned 20 out of 35 harmonic ratios (57%) found 

in the geometric constructions of the floor plans of the barrières. If the nearest harmonic ratios of the 

incommensurable ratios are considered, then 24 out of 57 harmonic ratios (42%) are mentioned by 

Vitruvius, Alberti and Palladio. Since it is possible to generate a vast number of harmonic ratios using 2, 

3, 5, and 7, a very high occurrence of the harmonic ratios mentioned by Vitruvius, Alberti, and Palladio in 

Ledoux's barrières should not be explained away as fortuitous. 
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 Column-2 Column-3 Column-4 Column-5 Column-6 

 Ratios Ratio Types 

Nearest 

commensurable 

ratios of the root 

ratios 

Revised Ratio 

Types 

Used in the 

following 

classical 

texts 

Ledoux 1 x1:y1 = 2:5 C, H  C, H  

 x2:y3 = 3:5 C, H  C, H V, P 

 x3:y1 = 8:5 C, H  C, H  

 x4:y2 = √2:1 I, Ht 7:5 C, Ha V, P 

Ledoux 3 x1:x2 = 4:5 C, H  C, H  

Ledoux 5 x1:y1 = 8:3 C, H  C, H A 

 x2:y2 = 1:√5 I, AH 4:5 C, H  

 x3:y1 = 16:9 C, H  C, H A 

 x4:y3 = √2:1 I, Ht 7:5 C, Ha V, P 

Ledoux 6 x1:y1 = 1:√2 I, Ht 5:7 C, Ha V, P 

Ledoux 8 x1:x6 = 1:2/(√2-1) I, AH 5:24 C, H  

 x2:x6 = 1:2/(√3-√2+1) I, AH 2:3 C, H V, A, P 

 x5:x6 = 1:2/(√5-√2+1) I, AH 1:1 C, H V, A, P 

 x3:x6 = 1:2/(√5-1) I, AH 5:8 C, H  

Ledoux 9 x1:y1 = 2:1 C, H  C, H V, A, P 

 x2:y3 = 1:√3 I, AH 4:7 C, Ha  

 x1:y2 = 2:5 C, H  C, H  

Ledoux 10 x1:x2 = 1:(√2+1)/(√2-1) I, AH 6:35 C, Ha  

 x1:x3 = 1:3 C, H  C, H A 

Ledoux 12 x1:x2 = 1:3 C, H  C, H A 

 x1:x3 = 2:9 C, H  C, H  

Ledoux 15 x1:x2 = 1:(3-√2) I, AH 5:8 C, H  

 x1:x3 = 1:2(√2-1) I, AH 6:5 C, H  

 x1:x4 = 1:(√2-1) I, AH 5:2 C, H  

Ledoux 17 x1:y1 = 7:8 C, Ha  C, Ha  

 x2:y1 = 5:8 C, H  C, H  

 x3:y1 = 3:2 C, H  C, H V, A, P 

Ledoux 20 x1:x2 = 3:4 C, H  C, H A, P 

 x1:y1 = 1:2 C, H  C, H V, A, P 

 x1:y2 = 3:7 C, Ha  C, Ha  

Ledoux 21 x1:x2 = 4:7 C, Ha  C, Ha  

 x1:x3 = 1:4 C, H  C, H  

Ledoux 22 x1:x3 = 3:8 C, H  C, H A 

 x2:x3 = 5:8 C, H  C, H  
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 Column-2 Column-3 Column-4 Column-5 Column-6 

 Ratios Ratio Types 

Nearest 

commensurable 

ratios of the root 

ratios 

Revised Ratio 

Types 

Used in the 

following 

classical 

texts 

 x3:x5 = 8:13 C, AH  C, AH  

Ledoux 23 x1:y3 = 1:4 C, H  C, H  

 x5:y3 = √3:1 I, AH 7:4 C, Ha  

 x4:y2 = 1:(4+√3)/(4√3-1) I, AH 1:1 C, H V, A, P 

 x3:y1 = 1:(4-√3)/4(√3-1) I, AH 9:7 C, Ha  

 x3:y3 = 1:1/(√3-1) I, AH 3:4 C, H A, P 

Ledoux 24 x1:x2 = 1:√2 I, Ht 5:7 C, Ha V, P 

 x4:x3 = 1:(1+2√2) I, AH 6:23 C, AH  

 x4:x2 = 1:(2+2√2) I, AH 6:29 C, AH  

Ledoux 26 x1:x2 = 1:(1+2√2)/√2 I, AH 1:2 C, H V, A, P 

 x1:x3 = √2:1 I, Ht 7:5 C, Ha V, P 

 x3:x2 = 1:(1+2√2) I, AH 6:23 C, AH  

Ledoux 28 x3:y2 = 1:√(10-4√2)/√2 I, AH 2:3 C, H V, A, P 

 x1:y2 = 1:√(10-4√2) I, AH 1:2 C, H V, A, P 

 x2:y1 = 1:√(10-4√2)/(2+√2) I, AH 8:5 C, H  

Ledoux 30 x1:x3 = 4:9 C, H  C, H A 

 x1:x2 = 8:5 C, H  C, H  

Ledoux 32 x1:x2 = 1:√(6√2-2)/2 I, AH 11:14 C, AH  

 x1:x3 = 1:√(6√2+2)/2 I, AH 5:8 C, H  

Ledoux 33 x1:x2 = 2:3 C, H  C, H V, A, P 

 x1:x4 = 1:√5 I, AH 4:5 C, H  

 x1:x3 = 1:√14/2 I, AH 15:28 C, Ha  

Ledoux 34 x1:y1 = 5:18 C, H  C, H  

 x2:y1 = 4:9 C, H  C, H A 

Ledoux 35 x1:x2 = 2:3 C, H  C, H V, A, P 

 x1:x3 = 1:4 C, H  C, H  

Ledoux 36 x1:y1 = 1:1 C, H  C, H V, A, P 

 x1:y2 = 1:(4-√3)/2 I, AH 7:8 C, Ha  

Table 1: Important ratios found in the geometric constructions of the floor plans of the barrières of Paris 

designed by Ledoux.  

[Legends: C = Commensurable. I = Incommensurable. H = Harmonic. Ht = Harmonic in the equally "tempered" 

scale. Ha = Harmonic in the Archytas scale. AH = Aharmonic. V = Vitruvius. A = Alberti. P = Palladio.] 
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Conclusion 

It is not assumed here that Ledoux had used any particular method of geometric construction of circles 

and straight lines to design the barrières of Paris. In fact, alternative methods of geometric construction 

may exist for several of these barrières. However, when it is realized that the architect was required to 

design a large number of barrières within a very short period of time, the usefulness of a simple method 

of geometric constructions in the process of design becomes obvious. A simple geometric system would 

have allowed him to easily create compositional patterns of different kinds. It would have also allowed 

him to ensure a consistent relationship of the parts to each other and to the whole in his designs. 

 The use of geometric constructions as an aid to design is not without precedents in architecture. 

Interests in the construction of circles and squares in architecture probably originated in Plato (Timaeus 

33B; Meno, 82B-85B). Vitruvius made reference to the geometric constructions of circles and squares in 

relation to the human body in the following passage: 

 . . . in the human body the central point is naturally the navel. For if a man be placed flat on his 

back, with his hands and feet extended, and a pair of compasses centered at his navel, the fingers 

and toes of his two hands and feet will touch the circumference of a circle described there from. 

And just as the human body yields a circular outline, so too a square figure may be found from it. 

For if we measure the distance from the soles of the feet to the top of the head, and then apply 

that measure to the outstretched arms, the breadth will be found to be the same as the height, as in 

the case of plane surfaces which are perfectly square (Vitruvius, Ten Books, Book III, Chap. 1.3, 

trans. Morgan, 1960: 73). 

The Renaissance architect showed a great deal of interests in the geometric constructions of circle and 

square, particularly in the design of centrally planned churches (Wittkower, 1949). Earlier, the medieval 

architect had also used geometric constructions, but with a very different attitude: "the medieval artist 

tends to project a pre-established geometrical norm into his imagery, while the Renaissance artist tends to 

extract a metrical norm from the natural phenomena that surround him" (Wittkower, orig. 1949, 1971: 

159). In other words, while the medieval architect used geometry as an end in design, the Renaissance 

architect used it merely as a means to achieve the end. For the Renaissance architect, the end was 

probably the harmonic ratios of metrical measures. 

 Ledoux did not use the geometric construction as a representation of the universal unity in the 

way the medieval architect would have used it. As noted before, though the parti defined by a geometric 

construction was able to describe the placement of walls in the floor plans of the barrières, the placement 

of walls in relation to the parti was not always consistent in these plans. In other words, even if it were 
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true that the architect used geometry as the generator of design, he certainly was not enslaved by it. He 

had taken the liberty to modify the positions of the walls in relation to the parti using other criteria. 

Ledoux would not have taken this liberty if he had treated geometry as the end in his design.  

Neither did Ledoux use only commensurable ratios in the floor plans of the barrières in the way 

the Renaissance architect would have used it. As the study showed, he not only mixed commensurable 

with incommensurable ratios in his floor plans of the barrières, in a large number of these floor plans he 

used only incommensurable ratios, which his Renaissance counterpart would not have approved.  

It seems that the findings of this study can be explained only if the architect held an equal interest 

in geometry and harmonic ratios. That he never used geometry and harmonic ratios as totally separate 

aspects in his barrières was proven by the fact that most of the incommensurable ratios derived from 

geometric constructions were harmonic when converted to their nearest commensurable ratios. Ledoux's 

tendency to experiment with the limits of geometry and numeric ratios in the floor plans of the barrières 

probably reflected his tendency to experiment with the same in the physical form of the barrières already 

observed by others (Kaufmann, 1943; Vidler, 1984, 1990). This thesis is not far-fetched given Vidler's 

proposition that Ledoux took his inspirations from more recent quasi-scientific investigations into the 

psychological and behavioral interpretation of physiognomy (Vidler, 1990: 206-207). "This "science," 

Vidler writes: 

elaborated by the Swiss pastor Johann Caspar Lavater between 1775 and 1778, was based on the 

premise, stated in his Essays in Physiognomy, that "the exterior, the visible, the surface of objects 

indicate their interior, their properties; every external sign is an expression of internal qualities"; 

and that by careful analysis of the "characteristic lines," the contours and surfaces of a face, the 

nature of the soul within might be discovered (Vidler, 1990: 206). 

According to this science, if in order to express two very different functions - habitation and transition - in 

the physical form of the barrières, Ledoux had experimented with the established canons of physical 

form, then his experiments with geometry and numeric ratios in the internal layout of the barrières was an 

indication of it, and vice versa. The medieval architect could not have shown such an experimental 

attitude towards geometry, because he was taken over too much by the power of its universal image. 

Likewise, the Renaissance architect could not have shown such an experimental attitude toward numeric 

ratios, which, for him, represented the order of the universe. Ledoux freed geometry and numeric ratios 

from these preconceptions, while maintaining their theoretical importance. As a consequence, he was able 

to treat the relationship of geometry and numeric ratio as an open problem in architecture foreshadowing 

the modern attitude to these elements, as discussed by Wittkower (orig. 1949, repr. 1971) and Scholfield 

(1958). 
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Appendix 1 

The Relationship Between Geometry And Numeric Ratio As An Open Problem In Ledoux's 

Architecture: A Study Of The Floor Plans Of The Barrières Of Paris 
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