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ABSTRACT 

During the last century, a number of epidemics have swept across the world 
causing similar mortality peaks in diverse human populations. In particular, the 
effects of the influenza epidemic of 1918 can be seen in urban and rural human 
aggregates separated by continents and thousands of miles. 

This paper examines mortality periodicity, due to diverse population struc- 
tures, ecology, and exposure to similar pathogens, through the use of time series 
analyses. Specifically, raw yearly mortality figures for two Italian alpine commu- 
nities, Acceglio and Bellino, are compared with those of a Mennonite congregation 
living in Kansas, United States, for the same time periods. Crosscorrelation, auto- 
correlation, and power spectrum analyses have been applied in order to identify 
possible mortality periodicity and to compare these cycles across populations. The 
mortality cycles occur at approximately 10 years in the Mennonite series, and 13 in 
Acceglio and Bellino. Explanations are proposed for these data and for the signifi- 
cant correlations exhibited by the three time series. The last century of human 
existence saw a number of major demographic changes on a world-wide basis 
resulting from a variety of technological breakthroughs and medical developments. 
For example, as a result of innovations in transportation, there has been a rapid 
breakdown of reproductive and geographical isolation of small human populations 
such as the Mennonites. Due in part to this geographical isolation, communities 
that were exposed to specific pathogens periodically experienced disease epi- 
demics, and mortality patterns were unique to each population. The incidence and 
duration of these epidemics depended in part on the demographic structure of the 
population and the unique historical events that introduced the pathogen into the 
community. 

The purpose of this paper is to explore the mortality patterns of three human 
populations living under diverse ecological conditions with exposure to various 
pandemic diseases. In particular, we examine the periodicity of mortality patterns 
using power spectral, cross-correlation and autocorrelation analyses, and explore 
some variables which may contribute to this periodicity. 
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36 Paul Aí. Lin and Michael H. Crawford 

The Populations 
Mortality data from three populations living under diverse ecological 

conditions are analyzed in this study. These populations are: Alexander- 
wohl, Kansas (a Mennonite agricultural community), and Acceglio and 
Bellino (two Alpine agricultural communes of Northern Italy). 

Alexanderwohl. The Mennonites are a Dutch Anabaptist group that 
followed the leadership of a Dutch Catholic priest, Menno Simons. These 
Mennonites were tolerated in the Netherlands during the mid-16th cen- 
tury, however, following the conquest of their homeland by Spain, they 
experienced extreme persecution. The Mennonites emigrated to East 
Prussia during the 17th century and remained there until the late 18th 
and early 19th centuries when most of them immigrated to Russia and 
established a series of colonies near the Dnieper and Molotschna Rivers 
in the Ukraine and in the Crimean Penninsula. The final migration of the 
Mennonites to the New World, established colonies in the United States, 
Canada, Central America, and Paraguay. 

The mortality records utilized for this time series analysis were de- 
rived from one Mennonite community, Alexanderwohl, whose origin can 
be traced to the Netherlands, Prussia, and Russia. Although this commu- 
nity was highly heterogeneous genetically in its origin in the Netherlands, 
it was a recognizable entity in Prussia (Przechowka) and Russia (Alexan- 
derwohl). Fifteen couples founded the Przechowka Church in 1669, and 
all but seven families of this congregation immigrated to Russia in 1821 
and settled in the Ukraine near the Molotschna River. The congregation 
adopted the name "Alexanderwohl" in honor of the Russian Czar. Almost 
all of the Alexanderwohl Mennonites migrated to the United States in 
1874. The congregation underwent fission with the majority settling in 
Goessel, Kansas, while an offshoot community was planted in Henderson, 
Nebraska. The Alexanderwohl congregation consists of 1122 parishioners 
residing on the plains of south central Kansas, in Goessel and the sur- 
rounding area. 

Acceglio and Bellino 
In 1968 Acceglio was a community of 482 persons who resided in 

seven fraziones or hamlets. It is located at the terminus of an Italian 
Alpine valley, Valle Maira, whose entrance is approximately 100 km south 
of Turin. Acceglio has been experiencing considerable population dimin- 
ution, from 911 residents in 1951 to 482 in 1968. This reduction in size is 
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Mortality Patterns in Anthropological Populations 37 

typical of these Alpine valleys where the young adults migrate to indus- 
trial centers such as Turin and Milan for employment. 

Bellino was a village of approximately 350 residents in 1970 and is 
located in the adjoining valley north of Valle Maira, called Valle Varaita. 
Bellino is a commune consisting of ten "fraziones." Lasker and his col- 
leagues from the University of Turin described the degree of reproduc- 
tive isolation and demography of two of the communities, Bellino and 
Casteldelfino. The mortality data used in our analysis of Bellino were 
obtained from Luchetti, et al. (1977). 

Methods 

A time series model is constructed in order to specify the factors 
which contribute to movements in the series and to analyze the manner in 
which these factors interact in influencing the direction and magnitude of 
the series. The choice of a time series model depends largely upon the 
investigator's understanding of the phenomenon under study and the 
objectives of the analysis. In most analyses a general time series is consid- 
ered to be a mixture of four components - trend, cyclic, seasonality, and 
irregularity. These four components are variously combined in the con- 
struction of multiplicative, additive or mixed multiplicative-additive mod- 
els. In this study, the primary analytic procedures include a combination 
of regression and time series analyses. The time series analytical model 
chosen may be referred to as a sinusoidal model, although this model is 
not mutually exclusive with the aforementioned models in its multiplica- 
tive and additive properties. It may also be assumed that the Mennonite, 
Acceglio and Bellino sequences were generated by stochastic processes. 
A probabilistic model, which treats possible stochastic processes, has 
been adopted in a separate paper (Lin and Crawford, n.d., in 
preparation). 

In time series, trend and cyclicity are relative terms, which depend 
upon arbitrarily defined unit lengths for the analysis of a series. Each of 
our three time series is considered to be a mixture of: (a) a trend, or long- 
run fluctuations; (b) fluctuations about the trend with certain regularity or 
cyclical pattern; (c) a yearly component; and (d) an irregular or random 
effect (noise). We attempt to decompose the observed mortality fluctua- 
tions into (a) and (b), which constitute the underlying signal or meaningful 
pattern of variation, upon which a noise or random variation (d), and 
possibly (c), are superimposed. Patterns of seasonal or monthly fluctua- 
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38 Paul Aí. Lin and Michael H. Crawford 

tions are subsumed in (c) and are therefore not recoverable in the present 
study. 

It is to be assumed further that a trend is due to relatively permanent 
forces operating in the same direction, while shorter-term fluctuations 
about the trend are due to a different set of causes. Given this assump- 
tion, residuals, that is, the deviations from the trend, are interpreted as 
disturbances attributable to the combination of (b), (c), and (d). Custom- 
arily, noise in a data set is "filtered" out by smoothing the series. In an 
exploratory analysis, a number of filters, or estimate equations, were 
applied to the three sequences. These included three-point and five-point 
moving averages, Sheppard s five-term equation, Spencer s 21-term 
equation, and Sheppard-Spencer hybrid seven-term equation. These 
smoothing operations noticeably increased autocorrelation and cross-cor- 
relation. However, these improvements were gained at the cost of reduc- 
tion of the variances in the original sequences. For this reason, the origi- 
nal data, rather than filtered data, are used for the analysis. Three 
extreme mortality peaks were observed, 32 in the Mennonite sequence in 
the year 1950, 37 in the Acceglio and 87 in the Bellino in the year 1918 
(Figure 1). These outliers complicate our time series procedures and 
necessitate some adjustments. These outlying values are substituted by 
the values of their nearest neighbors (31, 25, and 30, respectively), thus 

Fig. 1. Raw mortality figures from 1890 to 1967 are plotted for three populations. 
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Mortality Patterns in Anthropological Populations 39 

minimizing the undesirable effects of these extraneous values in a manner 
similar to winsorization (Dixon 1960; Dixon and Tukey 1968). 

Trend 
The essential concept of trend, as described by Kendall (1973, p. 29), 

requires smoothness and representation by a continuous and differentia- 
ble Junction of the time. The smooth component, commonly referred to 
as the secular trend, represents the general long-term sweep of the time 
series data. If the characteristics of the stochastic process remains invar- 
iant with respect to time, the process is said to be stationary. Most time 
series models require a stationary trend, that is, a trend which has no 
significant linear trend. However, in real-world situations, "probably 
very few of the time series one meets in practice are stationary" (Pindyck 
and Rubinfeld 1976, p. 502). Our initial analysis determines whether a 
trend is stationary or nonstationary (or evolutionary) in order to remove a 
nonstationary trend if it exists. A statistical procedure employed here 
consists of a test of a null hypothesis that the slope of the regression on 
time is zero, or almost zero, with the t statistic (Davis 1973, pp. 218-219): 

ř 
7ËÈ 

(1) 

J ssx 

where MSD is the variation about the regression Y¡ = b0 + b1Xi and SSX 
is found by 

SSX = E Xf    
(2) i=l 11 

For the Mennonite series the null hypothesis H0: ßj = 0 was tested 
against its alternative Hx: ß1 ̂  0. In this two-tailed test, either significant 
positive or negative slopes lead to rejection. The regression equation 
attained by routine least-squares-fitting POLYNM (Lin, n.d.) is 

Y = 22.3310 - 0.0311X 

and t = -1.20243. There are 79 observations in the Mennonite series, 
thus, there are 77 degrees of freedom associated with SSD (n - 2). At a 
significance level of 5%, the critical value of t with v = 75 degrees of 
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freedom, by harmonic interpolation, is 1.980. The value of t at a signifi- 
cance level of 20% is 1.289; thus, the test statistic value, -1.202, lies 
outside the critical region. Therefore, we may not reject the null hypoth- 
esis that the slope of the regression is zero, or nearly zero. Figure 2.1 
clearly indicates that the fitted values for the trend are essentially parallel 
to the X axis, albeit slightly sloping downward. 

The trend for Bellino, in Figure 2.3, appears to be linear and slopes 
steeply. The slope is not a critical issue here because of the use of re- 
siduals in the analysis. It may be assumed that a nonlinear curve might 
produce a better fit. Therefore, POLYNM is performed on the Bellino 
series stepwise. The F value for the first-degree regression equation is 
10.339. With 1 and 77 degrees of freedom, this F statistic is significant at 
better than the 0.001 level, indicating that a higher degree polynomial 
may be appropriate. Polynomial regression of the second-degree equation 
is then fitted to the Bellino series. To test the null hypothesis that the pth 
order term contributes nothing, the F test, given below, is applied. 

F = (fi2 with pth-order term) - ( R 2 without pth-order term) 
(1 - R2 with pth-order term) (3) 

(N-p -1) 

Fig. 2. 1. A plot comparing the observed and fitted values for the Mennonite population. 
0 represents the observed data points, * represents the fitted line. 
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where R2 is the square of the multiple correlation, that is, the proportion 
of variances of Y explained (Kim and Kohout 1975, p. 372). By substitut- 
ing the values from second-degree POLYNM we obtain 

F = 0.53573 - 0.53055 
1 - 0.53573 = 0.8479 
79-2-1 

With 1 and 76 (N- p - 1) degrees of freedom, the F values, by harmonic 
interpolation, are 3.966, 1.346, and 0.460 at significance levels of 5%, 
25%, and 50%, respectively. These F values indicate that the null hypoth- 
esis cannot be rejected and that higher polynomials are not significant. 

The Acceglio series presents a considerable difficulty in regression 
because of possibly flawed records from 1926 to 1936 wherein the mor- 
tality frequencies for the 14-year period were markedly low as contrasted 
with the other periods. In order to attain a reasonably good fit, it is 
necessary to raise the polynomial to an unusually high ninth degree. The 
result of ninth-degree POLYNM is graphically presented in Figure 2.2. 

In summary, the plots in Figure 2 facilitate the detection of the pres- 
ence of long-term trends and shorter-term fluctuations. Least squares 
regressions were employed to measure the trend components. The Men- 

Fig. 2.2. A plot comparing the observed and fitted values for the Acceglio population. 
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42 Paul M. Lin and Michael H. Crawford 

Fig. 2.3. A plot comparing the observed and fitted values for the Bellino population. 

nonite time series was decreasing by an approximately constant amount, 
0.0311, each period, the straight line or arithmetic trend being repre- 
sented by Y = 22.3310 - 0.031 IX. Similarly, the Bellino series was 
decreasing by a much larger constant, 0.2392, the nearly straight line 
being represented by Y = 25.6558 - 0.2392XJ + 0.0008X2. As to the 
Acceglio series, its oscillating trend may be better inspected graphically. 

Residuals 
The secular long-term mortality trends demonstrated above lead to a 

question of identifying causative factors which contributed to definite 
changes in the amount of change per period. Obviously, the Mennonite 
population on one hand and the Acceglio and Bellino populations on the 
other would not have been subjected to an identical set of causative 
factors. Nevertheless, there would be at least two factors common to the 
three populations which contributed to the general decline in mortality 
over the 80-year period: (1) changes in environments, the foremost being 
the positive intervention of modern medicine, especially antibiotics, and 
the improvements in hygiene; and (2) generally decreasing population 
sizes due to out-migration or fission (or budding). In Acceglio and Bellino, 
emigration of adults to the urban centers for employment was the primary 
factor responsible for the decrease in population size. The Mennonite 
community experienced two fissions during the last century based upon 
theological disagreements and factionalism. 
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Our primary interest lies in the relatively shorter, yet possibly sys- 
tematic, mortality oscillations. These short-term fluctuations, if properly 
partitioned out, are the components unaffected by a secular trend and are 
informative as to the pattern or cyclicity of mortality fluctuations. We will 
attempt to elicit the pertinent information on the short-term mortality 
fluctuations in the form of residuals. 

The mortality frequency variations each year were most likely due to 
changes in the environment facing the individuals. Unless additional 
knowledge is available, we may assume that for each observation X (year), 
possible observations on Y (mortality) would differ in a random fashion. 
This situation may be formally described by adding a random error com- 
ponent to the simplest regression model 

Yt = ßQ + ßÄ + et (4) 

where for each observation, Y is a random variable, X is fixed at a one- 
year interval or nonstochastic, and e is a random error term. Appendix I 
describes the methods employed in this analysis. 

A random disturbance term (hereafter referred to as residuals) is a 
deviation of an observed value, Y, from a fitted value, Y': et = Yt - Y'v 
Since the residuals are deviations from a fitted line they are independent 
of the trend, provided that a regression equation applied for curve fitting 

Fig. 3.1. A plot of standardized residuals against standardized fitted values for the Men- 
nonite community. 
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Fig. 3.2. A plot of standardized residuals against standardized fitted values for the Ac- 
ceglio community. 

Fig. 3.3. A plot of standardized residuals against standardized fitted values for the Bellino 
community. 
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is appropriate. The Mennonite, Acceglio and Bellino series may be con- 
sidered as appropriately detrended by first-degree, ninth-degree and sec- 
ond-degree polynomial regression, respectively, as shown in the normal 
probability distributions of the residuals (Figure 4) to be discussed short- 
ly. The residuals (Appendix II thus obtained will be used in Fourier 
series. 

In Figure 3, the standardized residuals are plotted against the stan- 
dardized predicted values. Since in the scatterplots the residuals are 
plotted against Y' values, which also represent a time dimension along the 
X axis, a direct examination of these residuals permits the identification of 
a visible pattern. 

The patterns of the standardized residuals (Figure 3) indicate the 
following conditions: (1) there is no need for adding terms to the poly- 
nomial regression equations; (2) the generally uniform band patterns sug- 
gest homoscedasticity around the regression lines, that is, relative free- 
dom from abnormalities; and (3) outliers or deviant cases are absent, that 
is, all residuals fall within the -2 to +2 standard deviation unit range, 
due to the winsorization of the original sequences. The linear regression 
of the unstandardized residuals on the fitted values yielded zero slopes in 

Fig. 4.1. Normal probability values of the residuals plotted for the Mennonite 
population. 
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all three populations, indicating that the residuals are free from the secu- 
lar trend. 

To test normality of the residuals, a graphic approach is employed 
(Figure 4). First, the ordinate of a normal distribution curve is computed 
in terms of the expected density of z of observations at any given value of 
the variable y (treated as if continuous) by the equation 

Z = e " 2 ( y-^ ) (5) 

where тг = 3.14159 and e = 2.71828. The z values are then transformed 
to a cumulative form by summing them progressively over the successive 
intervals, thus producing a sigmoid curve. Since departures from nor- 
mality are not readily recognizable in a sigmoid form, the cumulative 
distribution is replotted so that the data points define a straight line if the 
underlying distribution is normal (Dixon and Massey 1969, pp. 56-66). 
Instead of using the normal equivalent deviate (NED) (Bliss 1967, pp. 
101-107; Finney 1971, pp. 22-25), a residual is plotted in terms of probits 
in units of a as an equally spaced scale for a y ordinate at хЛт (expected 

Fig. 4.2. Normal probability values of the residuals plotted for the Acceglio population. 
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Fig. 4.3. Normal probability values of the residuals plotted for the Bellino population. 

normal value) against the corresponding point x (residual) on the abscissa. 
Because the mean of the residuals is zero, the plot is dissected into 
quadrants. 

The test of normality with the cumulative probit diagram thus ob- 
tained with routine PROBIT (Lin n.d.) is to fit the plotted data points by 
inspection with a straight line if they are normal. Except for a few per- 
centages at each end of the three sequences, the distributions of the 
residuals (Figure 4) are satisfactorily normal without major deviations 
from an overall linear trend (see Appendix III). 

Autocorrelation 

Autocorrelation, or serial correlation, occurs when the errors associ- 
ated with observations in a given time period carry over into the following 
time period. Ideally, the presence of such autocorrelation is not expected 
if the regression model is appropriate. However, the assumption that 
errors corresponding to different observations are uncorrelated, while 
being an important assumption, often breaks down in time series studies 
(Pindyck and Rubinfeld, 1976, p. 152). 

In Figure 2, the observations are not randomly scattered around the 
regression line. Instead, these deviations, or residuals, tend to occur on 
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the same side of the regression line, indicating certain degrees of autocor- 
relation. However, it is these autocorrelations that may indicate biolog- 
ically significant phenomena in the mortality trend. It may be inferred 
that the oscillating serial correlations reveal the effects of mortality causa- 
tive factors operating in one period and carrying over into the subsequent 
periods. The residuals are input into the routine AUTOCR (Davis, 1973, 
pp. 232-239) by the equation 

. _ [(n - LXXYJJ - ХВД + Л/(п - L)(n - L - 1) _ - 
lnSP=1Y? - (^=1Y^J/n(n - 1) 

 

_ cov(Y„Yi + L) 
SY 

to compute autocorrelation function, rL, defined as the linear correlation 
between a time series and the same series at a later interval of time, that 
is, at lag L. In this routine, the maximum amount of offset between the 
two series is set not to exceed n/4. 

The linear correlation (rL) of the first 19 and 20 lag intervals of the 
whole series of 79 observations (Mennonite and Acceglio) and 80 observa- 
tions (Bellino) are plotted in Figure 5. As in regression, the correlograms 
indicate that the observation for a current year is somewhat correlated 
with the observations of the previous or following years. However, the 
autocorrelation function of this kind can arise because of carry-over effects 
(Box and Jenkins 1970, pp. 33-34). It suggests that the causative factors 
which effected particular realizations in the form of residuals were not 
entirely dissipated from that year. Statistical tests of the hypothesis that 
an autocorrelation, rL, is zero are not discussed in detail here. It would 
suffice to report the statistics computed by BMDP2T Box-Jenkins Time 
Series Analysis (Dixon et al. 1981) as follows: (1) the t values of the means 
(0. 1168 for the Mennonite; 0. 1223 for the Acceglio; 0.4066 for the Bellino) 
are not significant; (2) the standard errors of the autocorrelations range 
from 0. 12 to 0. 17 at all lags; and (3) approximately 94% of the autocorrela- 
tion values fall within their 95% confidence intervals, indicating again the 
adequacy of the regression models employed and detrending of the origi- 
nal data. A few comments are to be made on the basis of inspection of the 
au tocorrelogram s . 

To begin with, it is to be noted that at the first one or two lags the 
autocorrelation function in all three sequences declines rapidly, suggest- 
ing a general stationarity. More specifically, in the Mennonite sequence, 
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Fig. 5.1. This is a plot of the autocorrelation values, 1.0 to -1.0, against the lag in the 
mortality time series for the Mennonites. 

the correlation coefficient drops rapidly from 1.0 to -0.1957 at lag 2, 
drifts upward to 0.1435 at lag 8, drops to -0.3280 at the next lag, and 
reaches the highest peak of 0.2728 at lag 11. At lag 12 the signal appears to 
move out of phase itself. The two zero crossings suggest repetitions of 
similar patterns of residual fluctuations in these segments. No such more 
or less distinct peaks are present in the Acceglio and Bellino sequences. 

Fig. 5.2. This is a plot of the autocorrelation values, 1.0 to -1.0, against the lag in the 
mortality time series for Acceglio. 
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Fig. 5.3. This is a plot of the autocorrelation values, 1.0 to -1.0, against the lag in the 
mortality time series for Bellino. 

Nevertheless, weak peaks are discernable at lag 14 in the Acceglio and lag 
6 in the Bellino sequences. These peaks and troughs observed in a plot of 
the residual series, with itself lagged in time, are local variations in the 
series suggesting the periodic components of our time series. This peri- 
odic component may be interpreted as representing mortality cycles. 
Jenkins and Watts (1968, pp. 5-6) caution that "the autocorrelation func- 
tion is sometimes difficult to interpret because neighboring values can be 
highly correlated" and consider it as an intermediate step in the estimate 
of the spectrum. In the following, Fourier series analysis will be em- 
ployed in the hope that it may better reveal the presence of periodicities, 
if any, in the data. 

Fourier Analysis 
An underlying assumption in this analysis is the existence of a regular, 

or more or less regular, periodic variation imposed in our time series. In 
the previous sections a trend, that is, a drift in the average value of the 
signal, was detected by fitting an appropriate regression. The detrending 
operation converted the original series containing a trend and a periodic 
component to the deviations (residuals) from the fitted line. The new time 
series thus obtained is interpreted as consisting of periodic components 
(signal) and a random component (noise). In a harmonic model a periodic 
trend is interpreted as a trigonometric trend. In this section the dominant 
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periodic components embodied in the new time series by Fourier analysis 
are extracted and described. 

Each of the three new series is a signal specified at discrete, equally 
spaced times and is expanded in terms of periodic functions. The discrete 
signal is derived from a continuous signal of duration or length, L (equal 
to 79 years for the Mennonite and Acceglio; 80 years for Bellino), by 
sampling the values of the signal (mortality frequencies) at a spacing of 
one year, thus a total of 79 and 80 sample values or periodic functions are 
generated. A periodic function, Y{, at a point S¡, is composed of a sum of 
the amplitudes of the component sine and cosine waves at a distance 
from the origin of the series, whose frequencies are multiples (harmonics) 
of the first harmonic or fundamental frequency. This function is repre- 
sented by (Davis 1973, pp. 261-265) 

__ ^ / 2mrXi + Q . 2nirX¡ ' ,-v __ 
Yi = 

^ 
2 ' ancos - 2mrXi 

х-"1 
+ Q ßnsm 

. 
-J-1 ) 

over the limited range - тг to тг, with the whole sum having a period of 
2tt. The coefficients an and ßn are expressed as the variance (power or 
intensity) s^ for all nth harmonic or frequency component by 

Sn = «n + ßn (8) 

Routine FOURER (Davis 1973, pp. 266-269) computes the coefficients 
and the powers for all harmonics up to the limit N/2, the Nyquist frequen- 
cy. The successive values of s* are plotted against the harmonic number n 
(or i/X) in the power spectrum, sometimes referred to as a spectrogram. 
For a possibly better impression of the true periodic structure of the time 
series, the spectrum is smoothed by the Hanning filter 

S2„=% 
+ 

f 
+ %■ (9) 

and is displayed in Figure 6. 
The intensity, s^, may be considered as a measure of the closeness of 

fit between the chosen trigometric function with frequency i/X and the 
observed data (Anderson, 1971, p. 109). The observed peaks in the spec- 
trum are expected to determine the harmonic components, although its 
interpretation may not be straightforward (Kendall 1976:98). An in- 
terpretation of the power spectrum is made within the theoretical frame- 
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Fig. 6.1. Smoothed power spectrum plot of the Mennonite mortality time series. 

work of power spectral analysis, which measures the relative contribution 
of each harmonic or frequency to the variability or oscillatory nature of 
the cyclical fluctuations. 

Results and Discussion 

Power spectrum analysis reveals the existence of periodicity in this 
mortality time series. The plots of the time series in Figures 2 and 5 are 
suggestive of periodic components. The highest peak in the Mennonite 
spectrum (Figure 6.1) occurs at a wavelength of about 3.6 years, followed 

Fig. 6.2. Smoothed power spectrum plot of the Acceglio mortality time series. 
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Fig. 6.3. Smoothed power spectrum plot of the Bellino mortality time series. 

by a second, lower one at 5.6 years. The third peak occurs at 2.6 years 
while the fourth is at 10 years. The cyclical components in the Acceglio 
and Bellino series are examined in the same manner. Information con- 
cerning the cyclical components of mortality are extracted from autocor- 
relation and power spectrum and is summarized in Table 1. The power 
spectrum cycles are ranked in descending order of wavelengths. 

There is a broad concordance between the autocorrelation and the 
power spectrum in the detection of cyclical components in that 10.5 
approximates 9.9 years in the Mennonite series, 14.0 approximates 13.2 
years in the Acceglio, and 6.0 is almost equivalent to 6.7 years in the 
Bellino. The 26.7-year cycle in the Bellino series appears to be a multiple 

Table 1 

Mortality Periodicity Interpreted from Autocorrelation and Power 
Spectrum Analyses 

Populations 

Cycles Mennonite Acceglio Bellino 

Autocorrelation 10.5 14.0 6.0 
Power Spectrum Peaks 1 9.9 13.2 26.7 

2 5.6 7.9 6.7 
3 3.6 6.1 4.4 
4 2.6 2.8 3.2 
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of its half wavelength of 13.4 years, comparable to the 13.2-year cycle in 
the Acceglio series. 

In summary, embedded in the Mennonite mortality series are 10-year 
cycles with 5.6-year subcycles. Similarly, the Acceglio series is charac- 
terized by a 13.2-year cycle with 7.9-year subcycles, and the Bellino 
series contains a 13.4-year cycle with 6.7-year subcycles. The shortest 
cycles, 2.6 years, 2.8 years, and 3.2 years in the Mennonite, Acceglio and 
Bellino series, respectively, are the highly localized variations reflecting 
the serial correlations between the adjacent data points. We propose to 
term the major periodic components, that is, the 10-year cycle in the 
Mennonite series and the 13-year cycle in the Acceglio and Bellino series, 
as the "mortality cycles." 

Crosscorrelation 

Following the demonstration of the existence of the cyclicities in the 
three series, the cycles are then compared. In autocorrelation a time 
series is compared with itself. This same technique, used to compare one 
series with another, is crosscorrelation. The equation for crosscorrelation, 
which is the same as the ordinary linear correlation but is somewhat 
different from the autocorrelation, is (Davis, 1973, p. 243) 

r =  n*SY,Yg - SY.SY,  m 
V[n»2Y? - (2Y,)2] [n«SY| - ®Yj)2] 

in which the two series are designated as YH and Y2i and n* is defined as 
the number of overlapped positions between the two chains. The equa- 
tion (10) is equivalent to 

GOV, « , ч Гт = i- î»i ¥ s2 
« , 11 i- î»i s2 

where COVj 2 is the covariance of the overlapped portions of the two 
sequences, and sx and s2 are the standard deviations of the overlapped 
segments of the two sequences. The significance of the crosscorrelation 
coefficient, rm, is assessed by the approximate test of the null hypothesis 
H0: rm = 0 
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In* - 2 t = ilfzrž 
- 2 

(12) m 

which has (n* - 2) degrees of freedom. 
The original raw data, not the winsorized residual series, are input to 

routine CROSCR (Davis, 1973, pp. 245-246). The plots of Mennonite- 
Acceglio, Mennonite-Bellino and Acceglio-Bellino crosscorrelations and 
their partial statistical data are presented in Figure 7 and Table 2. 

While the crosscorrelograms (Figure 7) help reveal the characteristics 
of the time series, they must be interpreted with great caution. The peaks 
of seemingly high crosscorrelations on both ends of a correlogram result 
from an increase in the variance of a crosscorrelation because fewer obser- 
vations are used toward the beginning and the end of "sliding" the two 
chains past each other. Therefore, little importance should be attached to 
those high crosscorrelations since a small number of observations are 
being matched. The most significant crosscorrelations are those based 
upon a comparison of the entire lengths, or nearly the entire lengths, of 
both series, lagged from one to a few years in each direction. 

With 77 (79 - 2) degrees of freedom, the t value of 2.306 on the 
Mennonite-Bellino crosscorrelation at match position 77 is above the 5% 
value ( t = 1.991 by harmonic interpolation). The high crosscorrelation 
between the Acceglio and Bellino time series at match position 79, given 
a t value of 4.235 with 77 degrees of freedom (t = 3.422), is to be expected 

Fig. 7. 1. Cross-correlogram matching the mortality time series between Mennonites and 
Acceglio. 
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Fig. 7.2. Cross-correlogram matching the mortality time series between Mennonite and 
Bellino. 

in view of their geographical proximity and ecological similarity. The 
Mennonite-Acceglio crosscorrelation is significant at the 10% level with a 
t value of 1.770 with 75 degrees of freedom (t = 1.992, 1.666 at the 5 and 
10% levels, respectively). In summary, each pair of the three time series 
is significantly, or nearly significantly, crosscorrelated. 

In some disciplines, the data utilized deal with multidimensional pat- 
terns of observations. However, the mortality fluctuations used in this 
study represent a unidimensional phenomena observed through time. 
The analysis of this phenomenon consists, in part, of fitting a theoretical 
distribution to the observations. The analyses described in this paper 

Fig. 7.3. Cross-correlogram matching the time series between Acceglio and Bellino. 
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Table 2 

Л Comparison of Cross Correlations Between Mennonite, Acceglio and 
Bellino Time Series 

Terms Being Matched 
Match  Number of Terms Correlation t 
Position (1) (2) Matched Coefficient Value 

Mennonite (1) - Acceglio (2) 
75 1 - 77 3 - 79 77 0.20734 1.836 
76 1 - 78 2 - 79 78 0.06948 0.607 
77 1 - 79 1 - 79 79 0.08341 0.734 
78 2 - 79 1 - 78 78 0.11554 1.014 
79 3 - 79 1 - 77 77 0.20027 1.770 
80 4 - 79 1 - 76 76 0.10345 0.895 
81 5 - 79 1 - 75 75 0.13326 1.149 
82 6 - 79 1 - 74 74 0.19602 1.696 

Mennonite (1) - Bellino (2) 
76 1 - 78 3 - 80 78 0.16776 1.483 
77 1 - 79 2 - 80 79 0.25415 2.306* 
78 1 - 79 1 - 79 79 0.13443 1.190 
79 2 - 79 1 - 78 78 0.09960 0.873 
80 3 - 79 1 - 77 77 0.06180 0.536 
81 4 - 79 1 - 76 76 0.14195 1.234 

Acceglio (1) - Bellino (2) 
77 1 - 79 2 - 80 79 0. 14144 1.254 
78 1 - 79 1 - 79 79 0.43461 4.235** 
79 2 - 79 1 - 78 78 0.21673 1.935 

constitute an initial step of the investigation of the relationship between 
mortality and ecological factors. We have attempted to delineate the 
observed mortality fluctuations with regression and sinusoidal models 
with the assumption that the mortality fluctuations are composed of mea- 
sureable components. Component extraction consists of curve fitting by 
linear or polynomial regression methods so that the data are decomposed 
into (1) an underlying "trend," (2) local variations or cyclical components, 
and (3) a superimposed "noise," that is, error or random component. 

The long-term secular trends, detected in all three series by curve 
fitting, show a general decline in mortality frequencies, which is primarily 
a function of corresponding decrease in population size. The original 
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series are detrended in order to minimize, if not eliminate, the effects of 
this exogenous variable (population size). In search of this periodicity, 
autocorrelation and spectral analysis are performed on the residuals, ob- 
tained from the detrending. The results indicate that each series is char- 
acterized by a number of cycles and subcycles. We have earlier proposed 
to call the major cyclical component the "mortality" cycle. The mortality 
cycle is approximately 10 years in the Mennonite series and slightly over 
13 years in the Acceglio and Bellino series. The discrepancy of some three 
years is attributed largely to the difference in complexity of population 
structure and ecological conditions. 

Despite the variation in periodicity, the patterns of the mortality 
cycles of the three populations are basically similar, as shown by the 
crosscorrelations. It may be suggested that there are underlying factors 
commonly linked to the cyclical mortality fluctuations normal to the three 
populations. We propose to call this as yet undelineated common condi- 
tion across the Atlantic Ocean "panthanasia, 

" 
broadly analogous to 

pandemicity. 

Conclusions 

From these data it is apparent that there are similar periodicities of 
mortality in populations living under different ecological conditions with 
vastly distinctive patterns of subsistence. Populations that are closer geo- 
graphically, such as Acceglio and Bellino, exhibit remarkable similarities 
in mortality patterns with high crosscorrelations at the point of maximum 
fit between these two time series. 

There is evidence to suggest that, with the developments in transpor- 
tation and communication at the turn of this century, mortality patterns 
began cycling due to pandemic diseases. However, as the role of infec- 
tious diseases in mortality trends began to diminish due to improvements 
in medical technology, the periodicity of mortality once again became 
distinctive in human populations. Thus, we have gone full cycle in death 
periodicity from unique mortality peaks occurring in small isolated com- 
munities to similar mortality periodicities due to pandemic disease, back 
to the unique although less fluctuating patterns now resulting from de- 
generative diseases. 

A number of factors contribute to the duration and size of the mor- 
tality periods. Turner (1976) in the study of mortality of the Tlaxcaltecans 
of Cuanalan noted the existence of a 15 year mortality cycle. The most 
common source of this mortality was attributed primarily to smallpox, 
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although influenza predominates in 1916 and 1918. With the exception of 
influenza, the periodicity was probably due to a build-up of a cohort of 
children who had not previously been exposed to the pathogen. Thus, the 
build-up of sufficient numbers of at-risk individuals contributes to the 
observed periodicity. The degree of geographical isolation of the popula- 
tion plays a role in the introduction of the pathogen into the community. 
The nature of the disease and whether the older members of the commu- 
nity have been exposed to it contribute to the mortality periodicity. Final- 
ly, various climatic fluctuations such as severe droughts and unusually hot 
summers or cold winters may be contributing factors to mortality 
fluctuations. 

These results suggest that the time series methodology may prove to 
be a useful tool in comparing mortality patterns on populational and 
global levels. The examination of individual population life tables and age 
specific rates was a useful beginning in mortality studies. However, 
power spectral analysis, crosscorrelation and autocorrelation are powerful 
methods that permit the formulation of broader questions concerning 
mortality and evolution. 

Appendix 

In the methods section of the text, the regression lines have been 
fitted by solving the normal equations with the least-squares criterion for 
the values of b0, b1? b2, . . . , bn. The regression model programmed into 
POLYNM and the assumptions necessary for its appropriate application 
are more specifically described in the following. 

The formal statement of the polynomial expansion regression equa- 
tion, of which the simple linear regression is a special case, is: 

Yt = ßQ + ßÄ + ß2X* + . . . + ßmX- + et (la) 
t = 1, 2, . . . ,T 

where Yt = value of the observed dependent (mortality) variable; ßQ and 
ßm = parameters in the model; ' = value of the independent (year) 
variable; and et = random error term, in the tth observation (or "trial"). 
The subscript t denotes that our three sets of data Xf (t = 1, 2, . . . , T) are 
time series with the interval between Xf and Xf + x being fixed and con- 
stant at a one-year period. The order in which Yt's occur through time is 
as important as the particular values they assume. The terms ß0 and ßm s 
in the model are parameters whose values are unknown and are to be 
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estimated from the sample data. In the simple linear regression model, 
the properties of the least square point estimators, b0 and bv are estab- 
lished by the Gauss-Markov theorem: these estimators are unbiased and 
have minimum variance among all linear unbiased estimators of ßQ and 
ßj. It should be mentioned that the Gauss-Markov theorem may not be 
applicable to a non-linear estimator because of a possibility that an estima- 
tor may be biased and have a lower mean square error than the unbiased 
estimator (Pindyck and Rubinfel, 1976, p. 52). The X/s are known con- 
stants (years) in the model. The mean of the conditional probability dis- 
tribution of Y given a value of X, denoted by fxY.x *s eQual to 

ßH + ß,Xt + ß2X* + . . . + ßmX- (2a) 

when the expected value of the error component et is zero [E(et) = 0)] for 
the tth observation. Thus, the observed value of Y in the tth observation is 
larger or smaller than |xYX by the amount et, that is, the value of the error 
component in the tth observation 

et = Yt - y; (3a) 

The polynomial expansion equations are based on the assumption that 
the observed value of Y in the tth observation, Yt, is the sum of two 
components - a random variable, et, and a constant which comprises all 
the remaining terms on the right side of the equation (la) given above. 

In passing, the "error model," described by Anderson (1971, pp. 
31-32), yt = f(t) + ut (4a), specifies that the observable yt is the sum of a 
trend in time, f(t), and an (unobservable) error, ut, and assumes that the 
trend is a polynomial of degree q 

f(t) = a() + ajt + . . . aqtq (4a) 

In this error model, a trend is fitted "in order to obtain a base-line from 
which to measure the aspects of the series that change in small units of 
time," that is, short-term cycles, fluctuations, and irregularities. Similar- 
ly, in our model, the error component in each event is the deviation 
between the observed value of mortality frequency, Y, and |xY x (the 
mean of the conditional probability distribution of Y given a value of X). 

Appendix II 

A number of methods have been proposed for examining residuals 
(Anscombe 1961; Anscombe and Tukey 1963; Draper and Smith 1966; 
Larsen and McCleary 1972). We employ graphical techniques of analysis 
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of residuals. For each case, k, the standardized observed value of the 
dependent variable Xq, is 

(Xok - XJ 
Zk" 

sq (5a) 

where Xq is the mean, and sq the standard deviation. The standardized 
predicted value is 

¿ B,(íüZÍ¡) (6a) 
i=l 

where Xp are independent variables, s¡ their standard deviations, and 
their regression coefficients. The standardized residual is 

sk = Zk - Žk. (7a) 

That is, the standardized residual thus defined is the deviation of the 
standardized predicted value from the standardized observed value, not 
standardized residual per se (Norusis, 1978, p. 41). 

Appendix III 

As mentioned earlier, our analytical procedures consist of construct- 
ing a regression model in which a mortality rate is related to the time 
variable, after which a time series model is constructed to explain the 
behavior of the residual terms for the regression. In the frequency in- 
terpretation (Anderson, 1971, p. 3), the decomposition means, in part, 
the repetitions of the entire situation, yielding a new set of observations, 
the random error terms, as a new realization of the stochastic process, ut, 
in the equation (4a). Such random terms, obtained from the decomposi- 
tion, are our time series, stricto sensu , upon which autocorrelation, 
Fourier series analysis, and cross-correlation are performed. 
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