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THE IMPORTANCE OF STATISTICAL 
POWER WHEN TESTING FOR 
INDEPENDENCE IN ANIMAL 
MOVEMENTS' 

Robert K. Swihart2 and Norman A. Slade2 

The home range (sensu Burt 1943) provides insight 
into facets of a species' social organization and foraging 
ecology (Metzgar 1979, Mitani and Rodman 1979, 
Madison 1980, Damuth 1981, Getty 1981, Mares et 
al. 1982, Hixon et al. 1983). Considerable effort has 
been expended deriving models of home range size 
(e.g., Calhoun and Casby 1958, Jennrieh and Turner 
1969, Koeppl et al. 1975, 1977, Schoener 1981, An
derson 1982, Don and Rennolls 1983). Reliability of 
home range estimates depends, to varying degrees, on 
the extent to which assumptions underlying these es
timates are valid. For instance, statistical models of 
home range assume that locational observations are 
independent of one another (Dunn and Gipson 1977, 
.Anderson 1982, Slade and Swihart 1983), i.e., that an 
animal's position at time i is not a function of its po
sition at time i — 8. If successive observations are 
closely spaced in time this assumption probably is not 
valid, and home range size may be seriously under
estimated (Swihart and Slade 1985a, b). 

Schoener (1981) developed a statistic for detecting 
departures from independence of locational observa
tions: t2/r2, the ratio of the mean squared distance be
tween successive observations (f2) and the mean squared 
distance from the center of activity (r2). We empirically 

derived the sampling distribution of Schoener's t2/r2 

ratio and provided a method for testing the null hy
pothesis of independence between successive obser
vations (Swihart and Slade 1985a). For observations 
evenly spaced in time, we also suggested a procedure 
for determining the minimum time interval at which 
successive observations cease to be significantly cor
related. A quasi-independent subset of points separat
ed by this time interval can then be selected for use in 
analyses. 

Recently Toft and Shea (1983) emphasized the util
ity of ecologists considering the relative costs of type 
I and type II errors for the statistical tests they use. In 
testing for independence, too low an a value may result 
in a biased home range estimate, whereas too high an 
a value may result in either too many useable data 
points being eliminated or data being gathered too in
frequently. Typically, biologists rely on a levels of .05 
or lower because a represents the probability of falsely 
rejecting H0, the null hypothesis (i.e., type I error; Sokal 
and Rohlf 1981), and the biologist's hypothesis is usu
ally expressed as the alternative hypothesis (H,). How
ever, in selecting a time interval which will yield quasi-
independent locational observations, we ultimately wish 
to accept the null hypothesis of independence, so we 
should actually be more concerned with the probability 
of falsely accepting H0 (i.e., 0 or type II error). Because 
of this, we arbitrarily used an a of .25 with the hope 
that £ would be lowered to a "reasonable" level (Swi
hart and Slade 1985a). In this paper we evaluate our 
choice of a by generating power curves for our test of 
Schoener's ratio. 

Methods 
The quantity 1 — 0, or the probability of rejecting 

a false H0, is the power of a test. Power should increase 
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FIG. 1. Selected power curves for the test of independence 

of locational observations. 7 is a scalar measure of bivariate 
autocorrelation, defined in Methods. Only power curves con
structed from sample sizes of 10 (A) and 100 (B) observations 
are illustrated; intermediate sample sizes (n = 30, 50) pro
duced power curves with intermediate characteristics relative 
to the curves depicted here. For each sample size, four levels 
of a were used: .05, .10, .25, and .50. Uniform (shown here) 
and normal error terms produced nearly identical power curves. 

as truth (the actual t2/r2 ratio in our test) departs from 
the null hypothesis. The utility of power curves is that 
they enable comparisons of the effects that various a 
levels have on 0 over a wide range of autocorrelations. 

In general, first-order bivariate autocorrelation is de
scribed using a 2 x 2 matrix of autocorrelations and 
cross correlations (see Swihart and Slade 1985Z?). How
ever, power curves typically are presented as plots of 
1 - 0 vs. a scalar analog of the statistic in question 
it1/r2 in this instance). Because we were unable to find 
any scalar measures of bivariate autocorrelation in the 
literature, we defined such a measure: 

7 {PxjXj-i + PY(yi-I)/2. 

Px^-, and p , are autocorrelations between X at times 
i and i - 1 and Y at times i and i - 1, respectively. 
No cross correlation terms were included in 7 because 
Schoener's ratio does not involve cross products. In 
our simulations we restricted our generation of values 
to cases in which the autocorrelation in each dimension 

was identical, i.e., pXixnl = Pmti = 7' ^ut W1'h actual 
data Px^-i need not equal py,y,-r Although 7 may as
sume values from —1 t o 1, movement paths charac
terized by negative autocorrelations, i.e., abrupt shifts 
from one side of the home range to the other, are dif
ficult to envision. Hence, we focused on values of - j 
from 0 to 1. 

To construct power curves, a set of autocorrelated 
observations were required. If X and Y are indepen
dently distributed, autocorrelations of strength 7 may 
be generated using the equations 

and 

Xj — PxiXj-i X Xi-l (X 

Yi — PY tYi-i X ^f-I + (Y> 

where ex and eK are random error terms for X and Y. 
respectively. Using these equations we generated 1000 
sets of locational observations of size n for a variety 
of 7 values. For each 7, Schoener's ratio was calculated 
for each set, and a tally was made of the number of 
sets for which the null hypothesis of independence was 
rejected. Power curves were constructed for four levels 
of a (.05, .10, .25, .50) at each of four sample sizes (n = 
10, 30, 50, 100) and two distributions of error terms 
(a bivariate uniform distribution over the unit square 
and a bivariate normal distribution with zero mean 
and unit variance). 

Sample locations of an organism within its home 
range may not reflect the true shape of the home range. 
Because home range "shape" (i.e., eccentricity; Swihart 
and Slade 1985a) is important in calculating critical 
values of Schoener's ratio, we also constructed power 
curves based on critical values calculated using sample 
eccentricities rather than the parametric eccentricity of 
one. This served as a check on the power of the test as 
used by biologists under ordinary field conditions. 

Results and Discussion 
Power curves for Schoener's ratio are presented in 

Fig. 1. For all curves the power of the test increased 
(or, equivalently, the probability of a type II error de
creased) as 7 increased. Increases in power were most 
pronounced for large sample sizes and high values ot 
a (Fig. 1). For example, at 7 = 0.1 the probability ot 
rejecting H0 was 0.635 for n = 10 and a = .50 (Fig. 
1 A), whereas the power of the test for the same a level 
was 0.906 when n — 100 (Fig. IB). Similarly, the power 
of the test at 7 = 0.1 and a sample size of 100 was 
0.353 for a = .05 and 0.906 for a = .50 (Fig. IB). 

Using the observed estimate of eccentricity to cal
culate the critical value (Swihart and Slade 1985a) had 
little effect on the power of the test when sample sizes 
were large, but power declined slightly at small sample 
sizes. At least two factors contributed to underesti
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mation of power at small n. First, small n resulted in 
larger errors when estimating eccentricity, which in 
turn produced larger errors in the calculation of critical 
values for t2/r2. In fact, the standard deviation of sam
ple eccentricities was nearly six times larger for n = 10 
compared to n = 100 when 0 < y < 0.2. Second, n — 
10 was the lower limit at which the distributional as
sumptions necessary to calculate critical values of t2/r2 

applied (Swihart and Slade 1985a). Nonetheless, the 
effects of sampling variation on the power of the test 
of independence appeared to be small. Thus, tests of 
locational data collected in the field should closely ad
here to the power curves shown here. 

Any choice of an a level must be tempered by the 
realization that 0 will be affected as well (Toft and Shea 
1983). When testing the null hypothesis of indepen
dence, the level of $ is at least as important as the level 
of a; in general, then, power curves characterized by 
large positive slopes at low levels of y are preferable. 
High power at low levels of a indicates a small prob
ability of type II error. Curves constructed for high 
(.50) and moderate (.25) a levels exhibited steep slopes 
associated with low values of y (Fig. 1). 

We recommend testing for independence with an a 
level on the order of .25 or .50. Levels of a less than 
.25 seldom produced powers in excess of 0.50 unless 
7 was greater than 0.25 (Fig. 1); thus, the probability 
of falsely accepting the hypothesis of independence is 
greater than 0.50 for low 7. Clearly, this is an unac-
ceptably high value of /3. 

Using an a level of .50 was the most conservative 
and most powerful approach we tried; that is, j3 was 
always sm allest at this level of significance (Fig. 1). 
However, use of such a large a is twice as likely to lead 
to overestimation of the time interval necessary to 
achieve independence between successive observa
tions, as compared to a = .25. As a result, valuable 
data may be discarded prior to estimation of home 
range size. Or, if a pilot study is conducted to determine 
an appropriate sampling interval and a = .50 is used, 
the estimated sampling interval may be longer than 
necessary t o ensure collection of independent obser
vations. Based on our admittedly limited experience 
with t his test of independence, we have noticed that 
sampling intervals derived for small mammals (<200 
g) using a levels ranging from .25 to .50 usually differ 
by no more than 20-30 min. However, we suspect that 
the magnitude of this difference may increase as a func
tion o f body mass in terrestrial mammals (see Lind-
stedt and Calder 1981, Calder 1983, 1984). 
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