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We present measurements of the tW b coupling form factors using information from electroweak single
top quark production and from the helicity of W bosons from top quark decays in tt̄ events. We set
upper limits on anomalous tW b coupling form factors using data collected with the D0 detector at the
Tevatron pp̄ collider corresponding to an integrated luminosity of 5.4 fb−1.

© 2012 Elsevier B.V. Open access under CC BY license.
The top quark is being studied in unprecedented detail with the
large data samples from Run II of the Fermilab Tevatron collider.
Since the top quark is by far the most massive known fermion,
with a coupling to the Higgs field of order unity, these studies may
shed light on the mechanism of electroweak symmetry breaking
and provide hints of new physics. Within the standard model (SM),
the top quark coupling to the bottom quark and the W boson
(tW b) has the V − A form of a left-handed vector interaction. We
consider a more general form for the tW b coupling to allow for
departures from the SM [1]. We look for physics beyond the SM in
the form of right-handed vector couplings or left- or right-handed
tensor couplings, described by the effective Lagrangian including
operators up to dimension five [2]:

L = g√
2
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f L
V P L + f R

V P R
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where MW is the mass of the W boson, q is its four-momentum,
Vtb is the Cabibbo–Kobayashi–Maskawa matrix element [3], and
P L = (1−γ5)/2 (P R = (1+γ5)/2) is the left-handed (right-handed)
projection operator. In the SM, the left-handed vector coupling
form factor is f L

V = 1, the right-handed vector coupling form factor
is f R

V = 0, and the tensor coupling form factors are f L
T = f R

T = 0.
We assume real coupling form factors, implying C P conservation,
and a spin- 1

2 top quark which decays predominantly to W b.
An alternative parameterization of anomalous couplings through

effective operators has been proposed recently [4,5]. The anoma-
lous coupling limits presented in this Letter can be translated into
the operator parameterization [5]:
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where Λ is the scale of the new physics and v = 246 GeV is the
scale of electroweak symmetry breaking. C (3,3+3)

φq , C33
φφ , C33

dW and

C33
uW are constants for dimension-six gauge-invariant effective op-

erators for third generation quarks, involving the Higgs field (φ),
the W boson, up-type (u) and down-type (d) quarks. The constants
C are assumed to be real.
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Indirect constraints on the magnitude of the right-handed vec-
tor coupling and tensor couplings exist from measurements of the
b → sγ branching fraction [6]. General unitarity considerations re-
quire the anomalous tensor couplings to be less than 0.5 [7]. While
the b → sγ limits are tighter than the direct limits presented in
this Letter, they include assumptions that are not required here, in
particular that there is no new physics affecting the b quark other
than anomalous tW b couplings. Direct constraints on anomalous
tW b couplings have been obtained from previous D0 analyses [8,9]
and from an analysis of LHC results [10].

This Letter describes a combination of recent W boson helic-
ity [11] and single top quark [8] measurements, using the same
procedure as in a previous combination of W boson helicity with
single top quark information in D0 data [9]. Deviations from the
SM expectation in the coupling form factors manifest themselves
in two distinct ways that are observable at D0: (i) by altering the
fractions of W bosons from top quark decays produced in each of
the three possible helicity states, and (ii) by changing the rate and
kinematic distributions of electroweak single top quark production.
We translate W boson helicity fractions [11] into form factors us-
ing the general framework given in Ref. [12]. By combining these
with the single top quark anomalous couplings analysis [8], we ob-
tain posterior probability density distributions for the anomalous
coupling form factors. Three separate scenarios are investigated
using the same dataset, for f R

V , f L
T , and f R

T . In each scenario we in-
vestigate the anomalous coupling form factor and the SM coupling
form factor f L

V simultaneously and set the other two anomalous
coupling form factors to zero. We form a two-dimensional poste-
rior density as a function of two coupling form factors and then
marginalize over the SM coupling to obtain a 95% C.L. limit on the
anomalous coupling.

This analysis is based on data collected with the D0 detec-
tor [13–16] corresponding to an integrated luminosity of 5.4 fb−1.
For the W boson helicity analysis, tt̄ events are selected in both
the lepton plus jets (tt̄ → W +W −bb̄ → �νqq̄′bb̄, requiring a lep-
ton, missing transverse energy and at least four jets) and dilepton
(tt̄ → W +W −bb̄ → �ν�′ν ′bb̄, requiring two leptons, missing trans-
verse energy and at least two jets) channels [11].

We use the alpgen leading-order Monte Carlo (MC) event
generator [17], interfaced to pythia [18], to model tt̄ events as
well as W + jets and Z + jets background events. We gener-
ate tt̄ events with both SM V − A and V + A couplings, and
reweight these to model any given W boson helicity state. We
use the CTEQ6L1 parton distribution functions [19] and set the
top quark mass to 172.5 GeV, consistent with the world aver-
age top mass [20]. The response of the D0 detector is simulated
using geant [21]. The presence of additional pp̄ interactions is
modeled by overlaying the simulation with data events, selected
from random beam crossings matching the instantaneous lumi-
nosity profile in the data. The background from multijet produc-
tion, where a jet is misidentified as an isolated electron or muon,
is modeled with data events containing lepton candidates that
pass all of the lepton identification requirements except one, but
otherwise resemble the signal events. We use MC to model the
smaller background from dibosons. The SM single top quark back-
ground is modeled using the comphep MC event generator [22]
normalized to theory predictions [23]. In the W boson helicity
analysis, the possible presence of anomalous couplings does not
significantly modify the small background from single top quark
production. A multivariate likelihood discriminant that uses both
kinematic and b quark lifetime information distinguishes tt̄ events
from background, separately in the lepton plus jets and dilepton
channels. A requirement on the likelihood selects 1431 lepton plus
jet events and 319 dilepton events with expected backgrounds
of 404 ± 32 and 69 ± 10 events, respectively, where the uncer-
Fig. 1. (Color online.) Likelihood contours at the 68% C.L. and the 95% C.L. as a func-
tion of W boson helicity fractions. Statistical uncertainties and systematic uncer-
tainties that are uncorrelated with the single top quark measurement are included.
The squares, triangles and upside-down triangles show f R

V , f L
T and f R

T varying in
fifty equal-size steps such that their ratio to f L

V goes from zero to ten-to-one. The
dashed triangle denotes the physically allowed region.

tainty includes both statistical and background modeling compo-
nents.

We determine the fractions of W bosons with left-handed, lon-
gitudinal, and right-handed helicity ( f− , f0, and f+ , respectively).
The SM predicts f− = 30%, f0 = 70%, and f+ ≈ O(10−4) [24]. The
fractions are measured in a fit to the distribution of the angle θ∗ ,
where θ∗ is the angle between the direction opposite to the top
quark and the direction of the down-type fermion (charged lep-
ton or down-type quark) from the decay of the W boson, both in
the W boson rest frame. A binned maximum likelihood fit com-
pares the cos θ∗ distribution of the selected events to expectations
from each W boson helicity state and the background. In the lep-
ton plus jets channel, each possible assignment of the four leading
jets in the event is considered to reconstruct the two top quarks in
the event, based on the χ2 of a kinematic fit and the compatibility
between the assigned jet flavor and b quark lifetime information.
For the W boson that decays hadronically, we do not attempt to
determine which of the daughter jets corresponds to the up-type
quark. Rather we select one jet at random. Since this introduces
a sign ambiguity, we can only distinguish the longitudinal helic-
ity from the other two states and can no longer distinguish left-
handed and right-handed helicity states. In the dilepton channel,
we determine the momenta of the two neutrinos using an alge-
braic solution. Since the system is kinematically underconstrained,
we assume a value for the top quark mass of 172.5 GeV to per-
form the kinematic reconstruction. We vary both the longitudinal
and right-handed helicity fractions f0 and f+ in the fit and find
the relative likelihood of any set of helicity fractions being consis-
tent with the data. The result is presented in Fig. 1, which also
demonstrates how non-SM values for the coupling form factors
could alter the W boson helicity fractions.

The result is interpreted in terms of the coupling form factors
in Fig. 2, which shows that the W boson helicity measurement
only constrains ratios of the coupling form factors and not their
magnitude. These distributions provide one of the inputs to the
combined constraint on the coupling form factors. Table 1 shows
the limits obtained from only the W boson helicity analysis with
the additional assumption that f L = 1.
V
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Fig. 2. (Color online.) Likelihood density as a function of tW b coupling form factors, for (a) right-vector vs. left-vector couplings, (b) left-tensor vs. left-vector couplings, and
(c) right-tensor vs. left-vector couplings, using information from the W boson helicity measurement only. All systematic uncertainties are included. Each color corresponds
to a contour of equal likelihood density.
Table 1
Observed upper limits on anomalous tW b couplings at 95% C.L. from W boson
helicity assuming f L

V = 1, from the single top quark analysis, and from their combi-
nation, for which no assumption on f L

V is made.

Scenario Only W helicity Only single top Combination

| f R
V |2 0.62 0.89 0.30

| f L
T |2 0.14 0.07 0.05

| f R
T |2 0.18 0.18 0.12

The other input to the form factor constraint comes from the
search for anomalous tW b couplings in the single top quark final
state. Both t-channel (the exchange of a W boson between a light
quark and a heavy quark) and s-channel (the production and decay
of a virtual W boson) modes contribute to single top quark pro-
duction at the Tevatron. Single top quark production was observed
by the CDF and D0 Collaborations [25,26], and the t-channel mode
was also isolated by the D0 Collaboration [27].

Both the single top quark production cross section and kine-
matic distributions are modified by anomalous couplings. The sin-
gle top quark cross section may also differ from the SM prediction
because |Vtb| < 1, but that is not considered here. We assume that
single top quark production proceeds exclusively through the tW b
vertex and not through the exchange of a new particle. We also
assume that |Vtd|2 + |Vts|2 � |Vtb|2, i.e., top quark production and
decay through light quarks is negligible.

The single top quark anomalous couplings analysis selects
events in which the top quark decays to a W boson and a b quark,
followed by the decay of the W boson to an electron or muon,
and a neutrino. The final state contains two or three jets, one from
the top quark decay, one produced together with the top quark,
and possibly a third jet from initial-state or final-state gluon ra-
diation. The event selection is identical to that in the anomalous
coupling single top quark analysis [8] and the SM single top quark
analysis [28], except that events with four jets are removed from
the sample to avoid overlap with the W boson helicity analysis.
One or two of the jets are required to be b-tagged, i.e., identified
as originating from B hadrons [29]. To increase the search sensi-
tivity, the data are divided into four independent analysis channels
based on jet multiplicity (2 or 3), and number of b-tagged jets (1
or 2).

We use Bayesian neural networks (BNN) [30] to discriminate
between the single top quark anomalous coupling signal and the
backgrounds. For each of the three coupling scenarios, the signal
in the BNN training consists of only that particular anomalous
single top quark couplings sample while the background in the
training consists of all SM backgrounds plus SM single top quark
events. The main background contributions to the single top quark
analysis are those from W + jets, tt̄ and multijet production. The
background modeling and normalization procedures are the same
as in the W boson helicity analysis. The tt̄ contribution to the
background is small and is modeled by simulated SM tt̄ events
and normalized to the theoretical cross section [31]. The effect of
anomalous couplings on the tt̄ background is negligible. We model
the single top quark signal using the comphep MC event genera-
tor [22] where anomalous tW b couplings are considered in both
the production and decay of the top quark.

We use the four-vectors of the reconstructed final state particles
in the BNN training (transverse momentum pT , pseudorapidity η,
angle �φ with respect to the lepton, and the mass of each jet), i.e.,
twelve variables for events with two jets and sixteen variables for
events with three jets. We add four angular variables that are par-
ticularly sensitive to the anomalous couplings. These are cosines
of angles between various final state objects in the top quark rest
frame.

The BNN output is used in a Bayesian analysis that determines
a posterior density as a function of the anomalous coupling and
the SM coupling, separately for each scenario. Fig. 3 shows the
probability density distributions from the single top quark anoma-
lous couplings search, and the middle column of Table 1 gives the
anomalous coupling form factor limits obtained from the single
top quark anomalous couplings analysis alone. These differ slightly
from those given in Ref. [8] due to the exclusion of the 4-jet sam-
ple.

We account for all systematic uncertainties and their correla-
tions among different analysis channels, and sources of signal or
background, in the two analyses. Systematic uncertainties in the
W boson helicity measurement are detailed in Ref. [11]. They arise
from finite MC statistics and uncertainties on the top quark mass,
jet energy scale, and MC models of signal and background. Vari-
ations in these parameters can change the measurement in two
ways: by altering the estimate of the background (i.e., if the back-
ground selection efficiency changes) and by modifying the shape of
the cos θ∗ templates. Systematic uncertainties on the tt̄ normaliza-
tion do not affect the measurement. We also assign a systematic
uncertainty to account for differences between the input f0 and
f+ values and the average fit values in pseudo-experiments.

Systematic uncertainties on the signal and background models
in the single top quark anomalous couplings analysis are estimated
using the methods described in Ref. [28]. The dominant sources
of uncertainty are the jet energy scale, b-tag modeling, and MC
models of signal and background, with smaller contributions from
background normalizations, top quark mass, and object identifica-
tion.

Uncertainties that only affect the W boson helicity mea-
surement are MC statistics and the tt̄ cos θ∗ template modeling
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Fig. 3. (Color online.) Form factor posterior density distribution for (a) right-vector vs. left-vector couplings, (b) left-tensor vs. left-vector couplings and (c) right-tensor vs.
left-vector couplings, using information from the single top quark analysis only, for events with two or three jets. All systematic uncertainties are included.

Fig. 4. Posterior density distribution for the combination of W boson helicity and single top quark measurements for (a) right-vector vs. left-vector form factors, (b) left-tensor
vs. left-vector form factors and (c) right-tensor vs. left-vector form factors. All systematic uncertainties are included.
uncertainty. Uncertainties that only affect the single top quark
anomalous coupling analysis are those related to signal modeling
and background normalization, including luminosity, object recon-
struction, and b-tag modeling.

We use a Bayesian statistical analysis [32] to combine the
W boson helicity result with that of the single top quark anoma-
lous couplings analysis. The likelihood from the W boson he-
licity analysis shown in Fig. 2 is used as a prior to the analy-
sis of single top anomalous couplings analysis. For each anoma-
lous coupling form factor scenario ( f R

V , f L
T , and f R

T ), we compare
the corresponding BNN output for data with the sum of back-
grounds and two signal models, the anomalous coupling model
and the SM ( f L

V ). In the f L
T scenario the two amplitudes inter-

fere for single top quark production, which is taken into account
through a superposition of three signal samples: one with only
left-handed vector couplings, one with only left-handed tensor
couplings, and one with both coupling form factors set to one
(which also includes the interference term). For tt̄ production all
interference terms are accounted for properly in all three scenar-
ios.

We then compute a likelihood as a product over all separate
analysis channels. We assume Poisson distributions for the ob-
served counts and use Gaussian distributions to model the uncer-
tainties on the signal acceptance and background yields, including
correlations of systematic uncertainties. The uncertainties are eval-
uated through MC integration in an ensemble of 200,000 samples.
Each sample has the same data distribution but signal and back-
ground contributions that are shifted by the systematic uncertain-
ties, i.e., the signal and background shapes and normalizations as
well as the prior from the W boson helicity change for each sam-
ple. The final posterior is the ensemble average of all individual
posteriors.

The two-dimensional posterior probability density is computed
as a function of | f L

V |2 and | f X |2, where f X is f R
V , f L

T , or f R
T .
These probability density distributions including both W boson
helicity and single top quark anomalous coupling information are
shown in Fig. 4. We observe no significant anomalous contribu-
tions.

We compute 95% C.L. upper limits on the anomalous form fac-
tors by integrating over the left-handed vector contribution to ob-
tain one-dimensional posterior probability densities. The limits are
given in Table 1. Compared with the results obtained using only
the single-top search, the combination improves the limits on the
form factors significantly because the individual analyses provide
complementary information.

The 95% C.L. limits on the coupling operators in the opera-
tor notation based on Eq. (2) are |C (3,3+3)

φq | < 14.7, |C33
φφ | < 18.0,

|C33
dW | < 2.5, and |C33

uW | < 4.1, assuming a new physics scale of

Λ = 1 TeV. The limit on C (3,3+3)
φq is obtained from the f R

V sce-

nario filter by setting f R
V = 0 and integrating the resulting | f L

V |2
posterior density starting at | f L

V |2 = 1 to find the 95% C.L. limit
on the anomalous contribution. Limits for the other operators are
obtained from the corresponding form factor limits. These lim-
its are a significant improvement over previous limits. A separate
analysis of Tevatron and early LHC results [10] provides limits on
anomalous couplings that appear stronger than those presented
here even though it uses less information. This is mainly due to
the use of priors that are flat in the coupling rather than the cou-
pling squared as is done here.

In summary, we have presented a study of tW b couplings that
combines W boson helicity measurements in top quark decay
with anomalous couplings searches in the single top quark final
state, thus using all currently applicable top quark measurements
by D0. We find consistency with the SM and set 95% C.L. lim-
its on anomalous tW b couplings. Our limits represent significant
improvements over previous D0 results beyond the increase in lu-
minosity.
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