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Progesterone (P4) and estradiol (E2) modulate neurogenesis and synaptic remodeling in the hip-
pocampus during the rat estrous cycle and in response to deafferenting lesions, but little is known
about the steroidal regulation of hippocampal progesterone receptors associated with these pro-
cesses. We examined the neuronal expression of progesterone receptor membrane component-1
(Pgrmc1) and the classical progesterone receptor (Pgr), by in situ hybridization and immunohis-
tochemistry. Pgr, a transcription factor, has been associated with synaptic remodeling and other
major actions of P4, whereas Pgrmc1 is implicated in P4-dependent proliferation of adult neuro-
progenitor cells and with rapid P4 effects on membranes. Ovariectomized adult rats were given E2,
P4, or E2+P4 on two schedules: a 4-d model of the rodent estrous cycle and a 30-d model of
postmenopausal hormone therapy. Pgrwas hormonally responsive only in CA1 pyramidal neurons,
and the induction of Pgr by E2 was partly antagonized by P4 only on the 30-d schedule. In CA3
pyramidal and dentate gyrus (DG) neurons, Pgr was largely unresponsive to all hormone treat-
ments. In contrast to Pgr, Pgrmc1 was generally induced by E2 and/or P4 throughout the hip-
pocampus in CA1, CA3, and DG neurons. In neuroprogenitor cells of the DG (immunopositive for
bromodeoxyuridine and doublecortin), both Pgrmc1 and Pgr were detected. The differential reg-
ulation of hippocampal Pgrmc1 and Pgr by E2 and P4 may guide drug development in hormonal
therapy for support of neurogenesis and synaptic regeneration. (Endocrinology 153: 759-769,
2012)

nteractions of estradiol (E2) and progesterone (P4) drive
Ireproductive organ remodeling during ovulatory cycles
(1,2). In anticipation of implantation, uterine cell growth
is stimulated by blood elevations of E2 during the follic-
ular phase. During the luteal phase in the absence of im-
plantation, endometrial cell death (apoptosis) is promoted
by the cyclic elevation and decrease of P4 (1, 2). Moreover,
during rodent ovulatory cycles, there is cyclic synaptic
remodeling in the hippocampus (3, 4), a brain region crit-
ical for memory. In the follicular phase, hippocampal CA1
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pyramidal neurons grow additional dendritic spines and
synapses, which then regress rapidly after ovulation when
E2 falls and P4 rises (3-5). These ovarian-driven processes
have been further resolved in ovariectomized (OVX) rats
asindependent actions of E2 and P4: after induction by E2
treatment, the decline of CA1 spines is dependent on the
presence of elevated plasma P4 (4).

In these examples, E2 and P4 appear to act indepen-
dently at different phases of cyclical remodeling processes.
However, in several animal models, cotreatment with P4

Abbreviations: BrdU, Bromodeoxyuridine; DG, dentate gyrus; E2, estradiol; ER, estrogen
receptor; ERE, estrogen response element; HT, hormone therapy; ISH, in situ hybridization;
NPC, neural progenitor cell; OVX, ovariectomized; P4, progesterone; SSC, saline-sodium
citrate.
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attenuated E2-induced synaptic growth. In the OVX ma-
caque, the induction by E2 of the synaptic proteins syn-
taxin, synaptophysin, and spinophilin in CA1 neurons
was attenuated by coadministration of P4 (6). Similarly, in
the rat entorhinal cortex lesion model of Alzheimer dis-
ease, we showed that cotreatment with P4 attenuated E2-
induced neurite outgrowth in the dentate gyrus (DG) (7).
In contrast to many examples of P4-E2 cross talk through-
out the reproductive system, the proliferation of neural
progenitor cells (NPC) derived from adult rat DG was
induced by both E2 and P4, in vitro (8) and in vivo (9).
Because combined concurrent E2+P4 is commonly used
for menopausal hormone therapy (HT) (10-12), we
sought to clarify E2-P4 interactions in neuronal expres-
sion of Pgr, a transcription factor, and in progesterone
receptor membrane component-1(Pgrmcl), a putative
progesterone receptor (13, 14). Both Pgrand Pgrmc1 have
high-affinity P4 binding: Pgr, dissociation constant (K,) =
0.38 nm (15); Pgrmcl, Ky = 11 nm (16).

Neuronal responses to P4 have been associated with
both Pgrmcl and Pgr. The decline of hippocampal CA1
spines by P4 in OVX rats described above was blocked by
RU486, a specific antagonist of Pgr (4). We also observed
antagonism of neurite outgrowth by RU486 in an in vitro
model (7). However, Pgrmcl mediated in vitro prolifer-
ation of rat NPC, in which Pgr was not detected (8). Based
on these findings, we hypothesized that Pgrmcl will be
more responsive than Pgr to ovarian steroids in DG neu-
rons, whereas Pgr regulation will be more responsive in
CA1 neurons than CA3 and DG neurons.

Pgrmcl has been associated with diverse functions
across the reproductive system that are less understood
relative to Pgr. In rat ovarian granulosa cells, which lack
Pgr, Pgrmc1 mediates the antiapoptotic effects of P4 (17).
Rapid membrane effects of P4 are also mediated by
Pgrmcl,independently of Pgr, e.g. in the rapid P4-induced
Ca?" influx of the acrosome reaction (18, 19). Pgrmcl
sequences are associated with a remarkable variety of cell
functions under yet other names (13, 20, 21). During de-
velopment, Pgrmc1 mediates neuronal guidance under the
names: Vema (mouse) and VEM-1 (nematode) (22). We
verified that Vema and Pgrmcl in GenBank share amino
acid sequences. In adult rodents, Pgrmcl was detected in
the hippocampus, hypothalamus, and cerebellum (23,
24). Both E2 and P4 induced Pgrmcl in the sexually di-
morphicnucleus of the preoptic area and the ventromedial
nucleus of the hypothalamus (25). However, these reports
did not describe its cell level expression.

We extend to the cellular level prior findings of steroid
regulation of Pgrmc1 and Pgr. In whole hippocampal ex-
tracts and hypothalamic subregions, Pgr was induced by
E2 (25, 26). Whereas some studies have shown P4 antag-
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onism of E2 induction of Pgr, the P4 antagonism may be
only transient (27). Moreover, in hypothalamus and pos-
terior pituitary from chick embryos, P4 can induce Pgr
(28). Thus, P4 regulation of Pgris physiologically complex
and may vary widely between cell types. Less is known
about Pgrmc1, which showed induction by both E2 and
P4 in hypothalamic subregions (sexually dimorphic nu-
cleus of the preoptic area and ventromedial nucleus) (25).
The hippocampal regulation of Pgrmcland Pgr by E2 and
P4 is undefined.

Two hormone treatment schedules were used: a 4-d
model of rodent ovulatory cycles (4, 26, 29) and a 30-d
model of the KEEPS trial of postmenopausal HT (10, 30).
We show differential regulation of Pgrmcl and Pgr in
hippocampal neurons by E2 and P4 and discuss the po-
tential relevance to optimization of postmenopausal HT
for maintaining cognitive functions (31-33).

Materials and Methods

Animals and steroid replacement

Experiments conformed with standards of humane animal
care in the National Institutes of Health Ethical Guidelines.
Adult female Sprague Dawley rats (3 months old, 250-300 g;
nulliparous; 44 rats total — six rats per group for the 4-d re-
placement schedule and five rats per group for 30-d schedule)
were used throughout. All animal procedures were performed
under anesthesia with ketamine (80 mg/kg) plus xylazine (10
mg/kg). Experiments for the two hormone replacement sched-
ules were run separately with different cohorts of animals. None-
theless, the in situ hybridization (ISH) grain densities for both
receptors in control OVX tissues were very similar in each ex-
periment (Table 1).

Four-day replacement (Fig. 1A). Rats were bilaterally ovari-
ectomized (OVX) 2 wk before hormone replacement and treated
in four groups (n = 6 per group): 1) Vehicle, 2) E2 alone, 3) P4
alone, and 4) E2+P4. The E2 alone and E2+P4 groups received
two injections of E2 benzoate (10 ug, scin 100 ul sesame oil) 24 h
apart; other groups received only vehicle (100 wl sesame oil)
injections. On d 3, P4 alone and E2+P4 groups received P4 to
simulate the luteal phase P4 elevation (single injection, 4 mg/kg,
sc in 100 pl sesame oil), the remaining two groups (E2 and ve-
hicle) received vehicle injections. For evaluation of NPC, all
groups were given a single injection of bromodeoxyuridine
(BrdU) (100 mg/kg, ip) 1 h after last steroid injection, and killed
30 h after BrdU injection (Fig. 1A).

Thirty-day replacement (Fig. 1B). Fourteen days after OVX,
rats were implanted sc with E2 pellets (0.72 mg/30 d release;
Innovative Research of America, Sarasota, FL) or sham pellets
(Innovative Research of America) for a total of 30 d. P4 pellets
were administered to P4 alone and E2+P4 groups (50 mg/15 d
release; Innovative Research of America) starting on d 21 for a
total of 10 d. The E2 alone group received E2 pellet, then sham
implant for the last 10 d. The P4-only group received a sham
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TABLE 1. PgrmcT and Pgr ISH grain densities in hippocampal neurons on 4-d and 30-d hormone schedules

ovX E2 P4 E2+P4
Pgrmct
CA1
4-d 87 +0.6 125+ 1.67 14.9 = 1.8° 13.3 = 1.3
30-d 10.7 =14 13.8 £ 0.7¢ 16.6 = 0.67 14.4 + 0.4°
CA3
4-d 9.7 0.6 1 + 155+ 1.3° 15.9 = 1.7°
30-d 10.1 1.0 1 * 13.4 = 0.57 13.4 = 0.57
DG
4-d 51*x03 7.7 £0.97 9.3 +0.8° 8.7 +0.87
30-d 51x05 6.6 = 0.67 7.4 *0.6° 7.1 £0.1°
Pgr
CA1
4-d 92+10 144 +1.9° 17.6 = 0.79 16.5 = 1.1°
30-d 11614 16.2 £ 1.3° 15.7 = 1.3° 132 %+1.0
CA3
4-d 232 *+20 25.8 = 2.1 283+ 0.79 289 = 1.8
30-d 23.9*=0.9 27.0*=25 273 0.8 263 = 1.1
DG
4-d 4.1 £ 0.1 42 0.2 4.4 +0.2 46 0.2
30-d 3.0x04 3104 35*+0.2 3204

Pgrmc? and Pgr grain densities after hormone treatment. Emulsion-dipped slides for Pgrmc? and Pgr were exposed for different times to achieve
similar grain densities. Statistical comparisons were made within treatment groups for each receptor. Grain densities are means = sem of six rats
per hormone group for 4-d and five rats per group for 30-d schedules; 100 cells per brain in CA1 and CA3, and 120 cells per brain in DG. PgrmcT:
9, P < 0.03 vs. respective OVX group. Pgr: ¢, P < 0.05, vs. respective OVX group.

pellet for the first 20 d, followed by the P4 pellet for the last 10 d.
OVX controls received sham implants (Fig. 1B). Uterine weights
showed expected doubling of wet weight in response to E2; the
P4-only group was equivalent to OVX (data not shown). The
30-d hormone schedule with these implants yielded physiolog-
ical levels of plasma E2 and P4 in our prior study (7).

Tissue collection
After lethal anesthesia, rats were cardiac perfused with 0.9%
saline, and brains were removed from the skull. One brain hemi-

A

4-day hormone replacement

OVX E2 E2 P4 ggu

B

2wks d1  d2 d3 d4

30-day hormone replacement

ovX [E2 (30 day pellet) P4 (10 day pellet)

L l N\ l |

2wks di d20 d30

FIG. 1. Two hormone replacement schedules were studied. A, For 4-d
hormone replacement, rats (n = 6 rats per group) were given two
injections of E2 (10 ug, sc), 24 h apart, followed by single P4 injection (4
ma/kg, sc) 24 h after last E2 injection. A single injection of BrdU (100 mg/
kg, ip) was given 1 h after P4; tissue collection, 30 h after BrdU. B, For
30-d hormone replacement, rats (n = 5 rats per group) were implanted
with E2 pellet (0.72 mg/30 d release) 2 wk after OVX, followed by P4
pellet (50 mg/15 d release) in the last 10 d; tissue collection on d 30.

sphere was frozen on dry ice for ISH; the other was fixed in 4%
paraformaldehyde, followed by sucrose cryoprotection (30%
sucrose in 0.1 M phosphate buffer, pH 7.4) for immunohisto-
chemistry (IHC).

Quantitative RT-PCR

Hippocampal tissue was obtained from intact female Sprague
Dawley rats at defined stages of the estrous cycle (estrus; proes-
trus) and from OVX females. Total cellular RNA was extracted
(Tri Reagent), and cDNA was prepared (2 ug RNA; Superscript
II kit, Invitrogen, Carlsbad, CA). RT-PCR was performed with
SYBR Green I and used the following primers: rPgrmcl (for-
ward, 5'-GCCTCAAGCCGCGTGACTTC-3'; reverse, 5'-CT
GGGCAGGAGTGAGGTCAG-3');rPgr(forward,5'-GTCAGT
GGACAGATGCTA-3’; reverse, 5'-AGCTGTTTCACAAGA
TCA-3’). Standard curves were constructed from serial dilutions
of Pgrmc1 and Pgr plasmid controls and used the same primers.

ISH

Frozen brain hemispheres were sectioned sagitally (18-um)
on a cryostat and stored at —80 C until use. For ISH, [**S]JUTP-
labeled sense- and antisense riboprobes were generated by in
vitro transcription using 1 ug linearized plasmid from the fol-
lowing sequences: for Pgrmcl, nucleotides 1012-1374 of rat
Pgrmcl mRNA (34); for Pgr, nucleotides 1-548 of the steroid-
binding domain of both rat progesterone receptor isoforms
(PR-A and PR-B) [kindly provided by Dr. S.L. Petersen (35)].
Both Pgrmc1 and Pgr cRNA probes had the same specific activity
(4.9 X 10° cpm/ul) and concentration in hybridization buffer
(0.3 ng/pl/kb). Labeled probe (1 ng) was used per slide and hy-
bridized at 55 C. Posthybridization washes were performed in
50% formamide/2 X saline-sodium citrate (SSC), 0.5 X SSC, and
0.1 X SSC at 60 C. Slides were then dehydrated in graded 0.3 M
ammonium acetate-alcohol series and exposed to x-ray film for
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18-48 h. Slides were emulsion dipped (NTB2, Eastman Kodak,
Rochester, NY), developed, and counterstained in Harris mod-
ified hematoxylin according to standard procedures (36). Based
on x-ray film density, the emulsion-dipped slides were exposed
for different times to reach equivalent grain densities needed for
accurate comparison: Pgrmcl, 4 d; Pgr, 21 d. Grain density in
emulsion-dipped, developed slides was analyzed from bright-
field images (Supplemental Figs. 1 and 2 published on The En-
docrine Society’s Journals Online web site at http://end.
endojournals.org) and counted manually around individual
neurons (perikarya) that did not overlap. For CA1 and CA3
neurons, 100 cells were analyzed across six to eight images per
brain; for DG neurons, 120 cells across 10 images per brain. Cells
for analyses were chosen randomly to ensure uniform sampling.
The frequency distributions of grain densities showed negligible
overlap of sense and antisense strand grain densities (Supple-
mental Fig. 2). Cells with at least two grains per cell were clas-
sified as positive for mRNA with antisense probes; for sense-
strand background probes, few cells (<3%) had at least two
grains per cell. The data shown here were calculated from cells
with at least two grains per cell. Pgr grain cluster development
took 5 times longer than for Pgrmc1. Based on frequency dis-
tributions of grain densities for antisense and sense cRNA probes
(Supplemental Figs. 2—6), the sense-strand background controls
for all probes and regions showed no grains in most cells and few
cells showed more than two grains, yielding an average back-
ground, 0.3 = 0.03 grains per cell. We only analyzed perikarya
showing at least two grains per cell with antisense cRNA probes.

Antibodies

Primary antibodies used were: polyclonal rabbit anti-Pgrmc1
(1:300,HPA002877, Sigma-Aldrich, St. Louis, MO); polyclonal
rabbit anti-Pgr (1:50, sc-538, Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA); polyclonal goat anti-doublecortin (1:100, sc-
8066, Santa Cruz Biotechnology; Refs. 37 and 38); monoclonal
rat anti-BrdU (1:100, MCA2060, AbDSerotec, Raleigh, NC;
Refs. 39-41). Secondary antibodies used were goat antirabbit
biotinylated antibody (1:200, Vector Laboratories,), goat antirat
conjugated to Alexa Fluor 594 (1:400, Molecular Probes, Inc.,
Eugene, OR; Invitrogen), donkey antigoat conjugated to Alexa
Fluor 594 (1:400, Molecular Probes, Invitrogen). The specificity
of the Pgrmc1 antibody was confirmed by Western blotting of rat
whole hippocampal and cortical lysates. Two bands were de-
tected, a strong band at 25 kDa and a weak band at 50 kDa
corresponding to Pgrmcl monomer and dimmer, respectively
(42, 43). The Santa Cruz Pgr antibody detected both PR-A and
B isoforms. Western blot bands corresponded to PR-A and B at
approximately 95 kDa and 110 kDa (Supplemental Fig. 7A).
Specificity of the antibody was confirmed by preadsorbing the
antibody with 10-fold excess of immunizing peptide (sc-538P,
Santa Cruz Biotechnology), which depleted the Pgr bands on
Western blots (Supplemental Fig. 7B) and parikaryal staining
after IHC (Supplemental Fig. 7, C and D). We did not detect
cellular staining with the rabbit PR antibody (1:100, A0098,
DAKO Corp., Carpinteria, CA) in adult rat hippocampus, con-
firming the results of Waters et al. (44).

Immunohistochemistry (IHC)
Perfused brain hemispheres were fixed in 4% paraformalde-
hyde at 4 C for 24 h followed by cryoprotection in 30% su-

Endocrinology, February 2012, 153(2):759-769

crose/PB before sagittal sectioning as above. IHC was performed on
whole hemisphere sagittal sections according to Morgan ez al. (36),
and the dorsal hippocampus was analyzed. Briefly, sections were
fixed in 4% paraformaldehyde and permeabilized in 1% Nonidet
P-40, followed by blockingin 5% normal serum. Sections were then
incubated in primary antibodies overnight at room temperature for
Pgrmcl and Pgr and at 4 C for others. Secondary antibody incu-
bation was performed for 1 h at room temperature. The Pgrmcl
epitope was visualized by fluorescence using goat antirabbit sec-
ondary antibody conjugated to Alexa Fluor 488 (1:400, Molecular
Probes). For Pgr, sections were treated with biotinylated secondary
antibody, followed by incubation with ABC reagent (Avidin-Bio-
tin-horseradish peroxidase complex, Vector Laboratories). Pgr sig-
nal was visualized after signal amplification using tyramide-fluo-
rescein as the horseradish peroxidase substrate (Tyramide Signal
Amplification-Fluorescein, PerkinElmer). For BrdU IHC, sections
were treated with 2 N HCI (to denature DNA) at 37 C for 45 min
followed by neutralization in 0.1 M boric acid for 10 min before
blocking in normal serum. BrdU™ cells were quantified in seven
sections per animal.

Data analysis

Data are shown as means * sEm. Grain densities in Fig. 3 were
calculated as the percentage of OVX controls. Statistical com-
parisons are based on ANOVA followed by Fisher post hoc anal-
ysis, with significance at P < 0.05.

Results

Distribution of progesterone receptors in
hippocampal subregions

First, we determined the relative prevalence of Pgrmcl
and Pgr mRNA in whole hippocampus. By RT-PCR,
Pgrmcl mRNA prevalence was 4-fold above Pgr mRNA
in OVX rats. At proestrus and estrus stages, Pgrmcl was
2-fold above Pgr (Supplemental Fig. 8). The ISH exposure
times to reach equivalent grain density differed corre-
spondingly for cRNA probes of the same concentration
and specific activity (see Materials and Methods). Hip-
pocampal regions differed in neuronal expression of
Pgrmc1 and Pgr. Pgrmcl mRNA per cell was 2-fold higher
in CA1 and CA3 pyramidal neurons than in DG neurons
(Fig. 2, A and B, and Table 1). However, CA1 and CA3
neurons had similar levels of Pgrmcl mRNA. Within hip-
pocampal regions, neuronal Pgr mRNA prevalence was
highest in CA3, followed by CA1 and DG, in ratios of
4:2:1 (Fig. 2, A and B, and Table 1). These regional dif-
ferences in Pgrmcl and Pgr expression extend semiquan-
titative analyses of Intlekofer and Petersen (23).

A minority of DG neurons expressed Pgr mRNA (27 =
4.2% cells had =2 grains per cell for Pgr), whereas, Pgrmcl
was detected in most DG neurons (82 = 5.1% cells had =2
grains per cell; P < 0.0001) (Fig. 2B). Thus, 3-fold more DG
neurons had significant signal for Pgrmicl than for Pgr, in
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FIG. 2. Expression of Pgrmc? and Pgr in hippocampal neuronal layers. A, Autoradiographic film images showed differential distribution of mMRNA
for Pgrmc1 (left) and Pgr (right) in hippocampal neuronal layers. Pgrmc1 was prevalent across all three neuronal layers. By contrast, Pgr mRNA was
prevalent in CA1 and CA3 pyramidal neurons, but it was barely detected in adjacent DG neurons. B, Average grain density for Pgrmc1 and Pgr in
individual neurons of CA1 (100 cells per rat), CA3 (100 cells per rat), and DG (120 cells per rat). Pgrmc? grain density was similar in CA1 and CA3
neuronal perikarya and far below in DG neurons. *, P < 0.01 vs. CA1 and CA3. More than 80% neurons in CA1, CA3, and DG were positive for
Pgrmc1 mRNA. CA3 neurons had 2-fold more Pgr mRNA/perikaryon than CA1 and DG neurons. CA1 neurons had 2-fold Pgr over DG neurons.
More than 80% CA1 and CA3 neurons, but only approximately 25% DG neurons were positive for Pgr mRNA. **, P < 0.0001 vs. other groups.
C, Immunohistochemistry for Pgrmc1 and Pgr showed similar protein expression of both receptors as mRNA. Scale bars, 100 um. Avg., Average.

contrast to CA1 and CA3 pyramidal neurons, in which both
receptors were detected in more than 80% neurons (Fig. 2B).

Immunostaining for cell body protein levels of Pgrmicl and
Pgr (Fig. 2C) corresponded to RNA levels by ISH grain densities
(Fig. 2A). Again, Pgr protein was detected in a minority of DG
neurons. A caveat is that protein levels of Pgrmcl and Pgr can-
not be directly compared due to the different techniques used to
visualize the signals from both receptors (Methods; Pgr detec-
tion required two rounds of signal amplification, whereas

Pgrmc1 did not require amplification). Whereas Pgrmcl im-
munostaining had similar intensity throughout the hippocam-
pal cell layers (Fig. 2C), Pgr immunostaining was stronger in
CA3 than in CA1 and DG neurons (Fig. 2C).

E2 and P4 differentially regulate Pgrmc1 and Pgr
mRNA in hippocampal subregions

Two schedules of steroid replacements (E2, P4, and
E2+P4) of OVX young rats were compared: a 4-d model
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Discussion

We show that Pgrmcl and Pgr differ
markedly in expression and in regula-
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FIG. 3. Regulatlon of Pgrmc7 and Pgr mRNA by E2 and P4. A, Pgrmc7 mRNA was increased
by E2, P4, and E2+P4 in CA1, CA3, and DG neurons after both 4-d (n = 6 rats/group) and
30-d hormone replacement schedules (n = 5 rats per group). *, P < 0.03 compared with
respective OVX. B, In CA1 neurons Pgr mRNA was increased by E2, P4, and E2+P4 on the 4-d
schedule, and by E2 or P4 alone on the 30-d schedule. Modest increase in Pgr mRNA was also
seen in CA3 neurons by P4 (P4 alone and E2+4P4 group) only on the 4-d schedule. Pgr mRNA
did not respond to either the 4-d or 30-d schedule in DG neurons. **, P < 0.01 vs. OVXin
CA1.7, P < 0.01 compared with 4-d schedule in CA1. *, P < 0.05, vs. OVX in CA3 neurons.

of the ovulatory cycle and a 30-d model of HT (Fig. 1). By
ISH, Pgrmc1 mRNA was broadly induced above OVX con-
trols by 44-92% with E2 and/or P4 on both schedules in all
neuronal layers of the hippocampus (Fig. 3A and Table 1). In
contrast, Pgrinduction was regionally restricted on both hor-
mone schedules. Pgr was induced only in CA1 neurons, with
minimal response in CA3 and DG neurons (Fig. 3Band Table
1). All steroid treatments in the 4-d schedule induced Pgr
mRNA by at least 50% in CA1 neurons. However, the 30-d
schedule showed more modest effects, with Pgr induction in
CA1 only by E2 or P4 alone (~35%, P < 0.05). The absence
of induction by E2+P4 suggests antagonism. In CA3 neu-
rons, only the 4-d schedule induced Pgr mRNA, and very
modestly (22% by P4, P < 0.05; 24% by E2+P4, P < 0.04;
no response to E2 alone), whereas the 30-d schedule had no
effect. Moreover, Pgr in DG neurons was unresponsive to all
hormone schedules.

Progesterone receptor expression in NPC
Because of conflicting reports on the expression of Pgr
in NPC (see Introduction), we evaluated Pgrmcl and Pgr

tion by E2 and P4 in neurons of the
adult rat hippocampus, and discuss im-
plications for hormonal regulation of
synaptic plasticity and NPC prolifera-
tion. Overall, Pgrmcl was widely ex-
pressed throughout hippocampal neu-
rons and was induced by both E2 and P4.
In contrast, Pgr showed limited expres-
sion and regulation by steroids that dif-
fered widely among neuronal subpopulations. In those re-
sponding neurons, both acute and chronic E2 and P4
replacements gave equivalent induction of Pgrmc1 and Pgr,
with little or no mutual antagonism. We hypothesize that
Pgrmcl and Pgr mediate selective hippocampal P4 effects in
different neuron subtypes based on their different regional ex-
pression and responses to E2 and P4. These findings are relevant
to cognitive functions in postmenopausal HT.

E2+P4

Differential expression of Pgrmc1 and Pgr in
hippocampal subregions

First we discuss the neuroanatomical differences in ex-
pression of these receptors in the hippocampus, a key site
of learning and memory. Pgrmc1 was equally prevalent in
CA1 and CA3 neurons, with lower expression in DG neu-
rons. Pgr, on the other hand, was most prevalent in CA3
neurons and much less in DG neurons. CA1 neurons had
intermediate levels of Pgr mRNA. These findings at the
cellular level confirm the regional distributions of Pgrmcl
and Pgr reported by Intlekofer et al. (23). With electron
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FIG. 4. Expression of Pgrmc1 and Pgr in NPC. A and B, Colocalization of Pgrmc1 and Pgr in replicating (BrdU) NPC by double
immunohistochemistry for Pgrmc1 with BrdU (A) and Pgr with BrdU (B); individual colabeled cell magnified in inset. C and D, Double
immunohistochemistry for Pgrmc1 (C) with Doublecortin (DCX), a marker of newly generated neurons in SGZ of DG and Pgr (D) with DCX showed
colocalization of both in DCX-positive newly generated neurons; individual colabeled cell magnified in inset. Scale bars, 20 um. E, Hormonal
regulation of neurogenesis by E2 and P4 in the DG subgranular zone. Both E2 and P4 (4-d schedule; n = 6 rats per group) increased the number
of BrdU™ cells in SGZ; response to E2+P4 was slightly lower (P = 0.15; not significant). *, P < 0.03, vs. OVX. Avg., Average.

microscopy, Waters et al. (44) localized extranuclear Pgr
in axons of hippocampal neurons, with greater detection
in CA3 axons than in other hippocampal neurons. How-
ever, detection of Pgr protein by immunohistochemistry
required secondary signal amplification in the present
study. We confirmed the neuronal cell type-restricted ex-
pression of Pgr by RNA and protein content (i situ hybrid-
ization and immunohistochemistry, respectively). In con-
trast, Pgrmc1 was expressed throughout the hippocampal
neuron layers. Expression in the hippocampal hilus of

Pgrmc1 and Pgr (Fig. 2C) could represent interneurons, as
well as glia. Although this study was focused on Pgrmc1
and Pgr expression in different hippocampal neurons, we
also observed glial expression of both receptors both in
vivo, and in cultured primary glia (data not shown; our
unpublished results, Bali N., T. E. Morgan, C. E. Finch).

Differential regulation of Pgrmc1 and Pgr mRNA
In addition to the regional differences in levels of ex-
pression between hippocampal neuron types, both
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Pgrmc1 and Pgr responded differently to E2 and P4. Two
hormone replacement schedules, 4-d and 30-d (Fig. 1) in-
duced similar responses in expression. The 4-day schedule
models the normal rodent ovulatory cycle and has been
widely used in studies of hippocampal sprouting (4,29), as
well as in a few studies of neurogenesis (45). The 30-d
schedule of continual E2 with P4 in the last 10 d is a model
of the ongoing KEEPS trial of postmenopausal HT (10).
We have used this 30-d replacement schedule to show P4
antagonism of E2-dependent synaptic sprouting in re-
sponse to deafferenting lesions of the hippocampus (7).
Clinical trials for postmenopausal HT for age-associated
cognitive decline and Alzheimer disease are controversial.
The Women’s Health Initiative study, one of the largest
randomized controlled clinical trial of HT, found in-
creased breast cancer incidence in the group receiving
equine estrogens plus a progestin, and no cognitive ben-
efits (11, 12). Thus, it is imperative to study the combined
effects of E2 and P4 on cognition, cardiovascular disease,
and other health outcomes. The KEEPS trial addresses the
effects of delayed initiation of HT (critical window hy-
pothesis); KEEPS also evaluates cyclic vs. continuous P4.
In a triple transgenic mouse model of Alzheimer disease,
three consecutive 30-d cycles of E2 and P4 (present model)
were neuroprotective (30). Most animal models of long-
term HT have evaluated E2 alone (46-48). The present
studies also used a 30-d hormone schedule, as well as a 4-d
schedule to model the normal estrous cycle.

On both the 4- and 30-d replacement schedules, Pgr
was induced by both E2 and P4, but only in CA1 neurons
and not in CA3 or DG neurons. In contrast, Pgrmcl was
more broadly responsive to E2 and P4, across all neurons
examined. About 40-80% induction was seen after both
4- and 30-d schedules, with similar responses in the CA1,
CA3, and DG neurons. The similar induction in CA1 neu-
rons of both Pgrmc1 and Pgr by E2 and P4 is relevant to
synaptic remodeling. CA1 neurons are notable for synap-
tic remodeling during the rodent estrous cycle, not ob-
served in CA3 or DG neurons (Introduction). Moreover, in
OVX macaques, E2 replacement for 28 d alone induced
synaptogenesis in CA1 neurons (6). Introduction of P4 to
the last 14 d of E2 treatment antagonized the E2-mediated
increase in pre- and postsynaptic proteins, syntaxin, syn-
aptophysin, and spinophilin, whereas P4 alone treatment
increased synaptophysin in CA1 neurons. This report
gives an unusual example in which P4 alone can induce
synaptic proteins and with mutual antagonism of E2+P4,
We found similar responses of Pgr in CA1 neurons during
the 30-d schedule. However, on a 4-d schedule, there was
no indication of mutual antagonism. The differences in P4
actions when acting alone vs. E2+ P4 on a 30-d schedule
are relevant to HT strategies.

Endocrinology, February 2012, 153(2):759-769

The equal induction of Pgrmcl and Pgr by E2 and P4
raises interesting questions about transcriptional regula-
tion, particularly their autoinduction by P4. We did not
find full consensus progesterone response elements (PRE)
in the Pgr gene. However, Pgr has multiple half-PRE sites,
which, in other genes, can bind the Pgr peptides in synergy
with other cofactors (49, 50). The autoinduction by P4 is
consistent with the elevation of Pgr protein in the hypo-
thalamus during pregnancy, which peaks at d 19 of rat
pregnancy when plasma P4 is maximal, with much lower
E2 (51). The transcriptional regulation of Pgrmc1 has not
been studied. We did not find consensus PRE in the
Pgrmcl upstream promoter, but did find multiple half-
PRE sites. Thus, the P4 autoinduction of Pgrmic1 observed
in the hippocampus here and in the hypothalamus (25)
could be mediated indirectly by Pgr through binding of Pgr
peptides to half-PRE sites.

The observed E2 regulation of Pgrmc1 and Pgr could be
mediated by estrogen receptors (ER). We can dismiss a
mechanism of cross talk at the ligand-binding level, be-
cause E2 does not compete with P4 for binding to either
Pgrmcl (16) or Pgr (53); nor does P4 compete with E2 at
physiological levels for binding to ER (54). The Pgr pro-
moter contains multiple ERE (estrogen response element)
sequences that could mediate induction by E2 (55, 56, 57).
Although we did not find consensus ERE in the Pgrmcl
upstream promoter, there are multiple half-ERE sites.
Both ERa and ER 8 are expressed in hippocampal neurons
(58-60), though ERB was more prevalent in CA1 and
CA3 pyramidal neurons than in DG neurons (59, 60),
resembling the expression of Pgrmc1 and Pgr (Fig. 2). The
importance of Era to Pgr regulation is shown by the ab-
sence of induction by E2 in the hippocampus of ERKO«
mice (61).

The pharmacological specificity of Pgrmcl and Pgr
also needs further study. The antiprogestin RU486
blocked the decrease in CA1 dendritic spines during the
estrus (4) and also blocked P4 antagonism of E2-induced
neurite outgrowth in an in vitro lesion model (7). Al-
though RU486 does act on recombinant Pgr (62, 63), it is
not known whether it also acts on Pgrmc1. In addition to
Pgrmc1, three other membrane PR are recognized: the G
protein-coupled receptors mPRa, mPRB, and mPRY. Lit-
tle is known of their expression patterns in brain cell types,
P4 binding characteristics, and steroidal regulation, or P4-
specific functions (23, 25, 64-67).

CA1 neurons were the only hippocampal subregion
that showed similar hormonal responses of both Pgrmc1
and Pgr (Fig. 3). This regional restriction is interesting
because CA1 neurons are more vulnerable to Alzheimer
disease (68, 69), postischemic damage (70). and hypoxia-
induced seizure activity, relative to CA3 and DG neurons
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(71). The responsiveness of progesterone receptors to E2
and P4 is relevant to stroke because CA1 neurons are pro-
tected in rodent models of ischemia by both E2 (72, 73)
and P4 (74). The P4 neuroprotection of CA1 could be
mediated by either Pgrmcl or Pgr. The receptor involved
in CA1 neuroprotection could be identified using Pgr
knockout mice (PRKO). However, Pgrmcl knockout
mice have not been reported so far.

Pgrmc1 and Pgr expression in NPC of the
subgranular zone of DG

The DG was examined for expression of Pgrmcl and
Pgr in its P4-sensitive NPC, which have not been charac-
terized in detail. In adult female rats (9) and male mice
(75),P4 promoted the generation of nascent neurons in the
DG subgranular zone. Both E2 and P4 stimulated NPC
proliferation in cells obtained by whole hippocampus cell
sorting (9) and in an established adult rat NPC line derived
from the DG subgranular zone (8, 76), as confirmed in
vivo here. The in vitro proliferative effects of P4 involve
Pgrmcl through P4-induced kinase signaling (8). The
present study detected both Pgrmcl and Pgr in newly
formed immature neurons (Doublecortin immunoposi-
tive) in the subgranular zone. However, most DG mature
neurons lack Pgr (Fig. 2B), which may be consequent to
DG neuronal maturation, e.g. Pgr expression in the DG
peaked by postnatal d 7 and was undetectable by d 28 (77,
78). Lastly, we note the divergence in Pgr expression be-
tween NPC lines. Whereas a rat NPC line derived from the
DG subgranular zone did not have Pgr by PCR (8), Pgr
protein was detected in NPC originated from the subven-
tricular zone, another site of adult neurogenesis (52). This
difference could be outcomes of continued i1 vitro prop-
agation of the DG subgranular cell line or to the different
sites of NPC origination.

The responses of Pgrmc1 and Pgrto P4 = E2 were very
similar for both 4-d and 30-d hormone replacement sched-
ules. Pgrmc1 was increased in all hippocampal neuronal
layers on both schedules in which E2 alone, P4 alone, or
combined gave similar induction. Whereas Pgr responses
were restricted to CA1 neurons, responses to E2 and P4
alone or together were again equivalent on the 4-d sched-
ule. However, the weaker increase of Pgr in CA1 on the
30-d schedule of combined E2+P4 suggests possible an-
tagonism. Others have reported selective induction. In the
hypothalamus (25) only select nuclei showed Pgrmcl el-
evations with P4 alone or E2+P4; unlike hippocampal
responses, there was no effect of E2 alone. In contrast,
Pgrmcl (cited as 25-Dx) was increased in the hypothala-
mus of E2-primed OVX females, but this increase was
attenuated by P4 (34). Reports on Pgr are also divergent.
Aswe observed in CA1 neurons with both hormone sched-
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ules, P4 alone increased Pgr in chick embryo hypothala-
mus and posterior pituitary (28). However, Intlekofer and
Petersen (25) observed that P4 alone did not increase hy-
pothalamic Pgr mRNA. A more detailed study of the time
course is warranted because Turgeon et al. (27) showed
the transiency of P4 down-regulation of Pgr, with receptor
levels returning to the level of E2-treated controls by 12 h
after treatment.

Conclusions

Pgrmcl is widely expressed in neuronal layers of all hip-
pocampal regions and is induced by both E2 and P4. In
contrast, Pgrshows restricted regional expression and reg-
ulation by E2 and P4. The shared induction of both
Pgrmc1 and Pgr by E2-P4 in CA1 neurons may be relevant
to their capacity for E2-dependent synaptic remodeling
and to CA1 sensitivity to neurodegeneration from Alzhei-
mer disease and ischemia. The differential regulation of
hippocampal Pgrmcl and Pgr gives a rationale for devel-
opment of drugs in hormonal therapy to target multiple
receptors in the support of neurogenesis, neuroprotection,
and synaptic regeneration.
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