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We present a measurement of the differential cross section for tt̄ events produced in pp̄ collisions
at

√
s = 1.96 TeV as a function of the transverse momentum (pT ) of the top quark. The selected

events contain a high-pT lepton (�), a large imbalance in pT , four or more jets with at least one
candidate for a b jet, and correspond to 1 fb−1 of integrated luminosity recorded with the D0 detector.
Objects in the event are associated through a constrained kinematic fit to the tt̄ → W bW b̄ → �νbqq̄′b̄
process. Results from next and next-to-next-to-leading-order perturbative QCD calculations agree with
the measured differential cross section. Comparisons are also provided to predictions from Monte Carlo
event generators using QCD calculations at different levels of precision.

© 2010 Elsevier B.V. Open access under CC BY license.
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The transverse momentum (pT ) of top quarks in tt̄ events pro-
vides a unique window on heavy-quark production at large mo-
mentum scales. In the standard model (SM), the lifetime of the top
quark is far shorter than the characteristic hadron-formation time
of quantum chromodynamics (QCD), which provides access to the
properties and kinematics of a “bare” quark, such as mass, charge,
spin, and pT , that are almost unaffected by bound-state forma-
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tion or final-state interactions [1]. The top quark is unique in that
it has a mass close to the scale of electroweak symmetry break-
ing. Detailed studies of the properties of this bare quark beyond
the measurement of its total production rate, such as the mea-
surement of its quantum numbers and of its couplings to other
SM particles, may indicate whether the top quark plays a privi-
leged role in the symmetry breaking. Focusing on details of the tt̄
production, measurements of differential cross sections in the tt̄
system test perturbative QCD (pQCD) for heavy-quark production
and can constrain potential new physics beyond the SM [2], e.g.,
by measuring the transverse momentum of the top quark [3].

In this Letter, we present a new measurement of the inclu-
sive differential cross section for pp̄ → tt̄ + X production at

√
s =

1.96 TeV as a function of the pT of the top quark. The measure-
ment is corrected for detector efficiency, acceptance and resolution
effects, making it possible to perform direct comparisons with dif-
ferent theoretical predictions. The data were acquired with the D0
detector at the Fermilab Tevatron Collider and correspond to an in-
tegrated luminosity of ≈ 1 fb−1. This measurement was performed
in the �+ jets decay channel of tt̄ → W bW b̄ → �ν + bb̄ + � 2 jets,
where � represents an e or μ from the decay of the W boson or
from W → τ → �. The dependence of the cross section on the pT

of the top quark was examined previously using ≈ 100 pb−1 of
Tevatron Run I data at

√
s = 1.8 TeV [4], where no deviations from

the SM were reported.
The D0 detector [5] is equipped with a 2 T solenoidal mag-

net surrounding silicon-microstrip and scintillating-fiber trackers.
These are followed by electromagnetic (EM) and hadronic ura-
nium/liquid argon calorimeters, and a muon spectrometer consist-
ing of 1.8 T iron toroidal magnets and wire chambers and scintil-
lation counters. Electrons are identified as track-matched energy
clusters in the EM calorimeter. Muons are identified by match-
ing tracks in the inner tracking detector with those in the muon
spectrometer. Jets are reconstructed from calorimeter energies us-
ing the Run II iterative seed-based midpoint cone algorithm with
a radius of 0.5 [6]. Jets are identified as originating from a b quark
using an artificial neural network (b NN) which combines several
tracking variables [7]. Large missing transverse energy, /E T (the
negative of the vector sum of transverse energies of calorimeter
cells, corrected for reconstructed muons) signifies the presence of
an energetic neutrino. Events are selected using a three-level trig-
ger system, which has access to tracking, calorimeter, and muon
information, and assures that only events with the desired topol-
ogy or with objects above certain energy thresholds are kept for
further analysis.

The analysis uses similar data samples, event selection, and
corrections as used in the inclusive tt̄ → �+ jets cross-section mea-
surements detailed in Ref. [8]. Events accepted by lepton + jets
triggers are subject to additional selection criteria including ex-
actly one isolated lepton with pT > 20 GeV/c and � 4 jets with
pT > 20 GeV/c and |η| < 2.58; at least one jet must have pT >

40 GeV/c. At least one jet is also required to be tagged by the b NN
algorithm. Additionally, we require /E T > 20 GeV (25 GeV) for the
e + jets (μ + jets) channel and electrons (muons) with |η| < 1.1
(2.0).

Our measurement uses the alpgen [9] event generator, with
pythia [10] for parton showering, hadronization, and modeling of
the underlying event, to simulate the inclusive tt̄ signal. A pythia

sample serves as a cross check. The CTEQ6L1 set of parton dis-
tribution functions (PDFs) [11] was used with a common fac-

8 Pseudorapidity is defined as η = − ln tan(θ/2) where θ is the angle measured
with respect to the proton beam coinciding with the positive z axis of a right-
handed coordinate system at the center of the detector.
Table 1
Expected yields for signal and backgrounds samples and observed event counts in
e + jets and μ + jets channels.

Sample e + jets μ + jets

tt̄ 131 108
W + jets 10 15
Z + jets 3.0 3.1
Single top 2.7 2.0
Diboson 1.3 1.3
Multijet 9.0 0.0

Summed prediction 156 130
Total background uncertainty 3.0 2.8
Predicted signal uncertainty 11 9.0

Data 145 141

torization and renormalization scale set to μ = mt + ∑
pjets

T for
mt = 170 GeV/c2. Backgrounds are modeled with alpgen + pythia

for W + jets and Z + jets production, pythia for diboson (W W ,
W Z , and Z Z ) production, and comphep [12] for single top-quark
production. The detector response is simulated using geant [13].
The simulated tt̄ signal is normalized to the cross section mea-
sured by a dedicated likelihood fit in the same final state using
the same event selections (including the b-tagging requirement)
and data as Ref. [8], namely to 8.46+1.09

−0.97 pb at a top-quark mass
mt = 170 GeV/c2 (in good agreement with the value extracted in
this study by integrating the differential cross section). The di-
boson and single top-quark backgrounds are normalized to their
SM predictions, Z + jets to the prediction from next-to-leading-
order (NLO) pQCD, and W + jets such that the predicted number
of events matches the data before applying b tagging.

The small multijet background, in which a jet is misidentified as
an isolated lepton, is non-negligible only in the e + jets channel. Its
rate is estimated from data using the large difference in the proba-
bility of electromagnetic showers of real electrons or misidentified
jets to satisfy the electron selection criteria. The details of the sam-
ple composition and the observed yields before and after requiring
the jets to be tagged as b-jet are presented in Table 1.

The selection yields 145 and 141 events in the e + jets and
μ + jets decay channels, respectively. The measured tt̄ signal frac-
tion is 0.79, indicating that this sample is suitable for detailed
studies of tt̄ production. A constrained kinematic fit to the tt̄ final
state, which takes into account the unreconstructed neutrino and
finite experimental resolution, is used to associate leptons and jets
with individual top quarks [14,15]. The fit assumes equal masses
for the two reconstructed top quarks and the two reconstructed W
boson masses are constrained to 80.4 GeV/c2. All possible permu-
tations of objects needed to produce the tt̄ system are considered,
and the solution of fitted leptonic and hadronic top-quark four-
momenta with the smallest χ2 (the goodness of the fit) is selected
for further analysis. The b-jet assignment information is not used
in the selection of the best permutation to avoid the associated ef-
ficiency loss. The effects of possibly selecting a wrong permutation
when choosing the one with the best χ2 are taken into account
in the corrections of the measurement to the parton level. The
solution with the best (second best) χ2 corresponds to the cor-
rect assignment of the quarks from the decay of the tt̄ pair in 48%
(17%) of events.

The reconstructed top-quark mass (mt ) from the best fit in data,
simulated tt̄ signal, and background is shown in Fig. 1. There is
good agreement between the data and the sum of signal and back-
ground expectations in terms of the shape, resolution, and mean
of the distribution in mt (χ2/NDF = 1.28). The pT spectrum of the
top quark (for leptonic and hadronic entries) in data, together with
predicted signal and background, is shown in Fig. 2 for the best so-
lution but now refitted with a top-quark mass fixed to 170 GeV/c2
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Fig. 1. The reconstructed top-quark mass compared with expectation. Hashed areas
represent statistical and jet energy calibration uncertainties on the prediction.

Fig. 2. The pT spectrum of top quarks (two entries per event) compared with ex-
pectation. Hashed areas represent statistical and jet energy calibration uncertainties
on the prediction.

(the value used in the inclusive cross section measurement [8]) to
improve resolution. To obtain a background-subtracted data spec-
trum, the signal purity is fitted using signal and background contri-
butions as a function of pT , and applied as a smooth multiplicative
factor to the data. The result is the background-corrected distribu-
tion shown as a solid line in Fig. 3.

The reconstructed pT spectrum is subsequently corrected for
effects of finite experimental resolution, based on a regularized
unfolding method [16,17] using a migration matrix between the
reconstructed and parton pT derived from simulation. The size of
the pT bins was chosen based on the requirement that the pu-
rity (the fraction of parton-level events which are reconstructed
in the correct pT range) is > 50%, as shown in Table 2. This also
results in pT bins which are larger than the experimental resolu-
tion for the top quark pT . The correlation between reconstructed
and correct pT is > 80%. Fig. 3 compares the reconstructed and
corrected results as a function of the pT of the top quark. The de-
pendence of the unfolding on the parton spectrum shape in the
migration matrix is tested by reweighting the distribution with ar-
bitrary functions. Shape variations of ≈ 20% induce 2–6% changes
in the differential cross section. A correction for acceptance from
Fig. 3. Comparison between the background-subtracted reconstructed top-quark pT

spectrum and the one corrected for the effects of finite experimental resolution
(two entries per event). Inner and outer error bars represent the statistical and total
(statistical and systematic added in quadrature) uncertainties, respectively.

Table 2
The migration matrix between the reconstructed (rows) and parton (columns) top-
quark pT derived from alpgen tt̄ events passed through full detector simulation.
The matrix indicates the fraction of events migrated from a given parton bin to
the reconstructed bins. The binning used for correlating reconstructed and parton
levels of pT are given at the left and top, respectively. Results in bold print are for
diagonal terms.

pT (GeV/c) 0–45 45–90 90–140 140–200 200–300 300–400

0–45 0.530 0.162 0.062 0.020 0.003 0.000
45–90 0.344 0.578 0.227 0.072 0.021 0.000
90–140 0.103 0.228 0.560 0.223 0.055 0.031
140–200 0.019 0.029 0.145 0.581 0.232 0.071
200–300 0.002 0.002 0.006 0.103 0.650 0.363
300–400 0.000 0.000 0.000 0.001 0.038 0.535

the dependence of the spectrum on kinematic restrictions of re-
constructed quantities is applied to the unfolded distributions.

The measured differential cross section as a function of the pT

of the top quark (using for each event the two measurements ob-
tained from the leptonic and hadronic top quark decays), dσ/dpT ,
is shown in Fig. 4 and tabulated in Table 3 together with the
NLO pQCD prediction [18,19]. The statistical uncertainties are es-
timated by performing 1000 pseudo-experiments where, in each
experiment, the background-corrected spectrum is allowed to vary
according to Poisson statistics and is then unfolded using the reg-
ularized migration matrix (Table 2). The largest experimental un-
certainties affecting the shape of the pT distribution include jet
energy calibration in data and in simulation (1.5–5.0%), jet recon-
struction efficiency (0.7–3.5%), and jet energy resolution (≈ 0.5%).
The residual dependence of the unfolded result on the top-quark
mass is 2–6% for mt in the 170–175 GeV/c2 range. This additional
uncertainty does not need to be considered for comparisons with
models in which mt is set to 170 GeV/c2. For the main background
sources, W /Z + jets, we have also considered the variations of the
background shape caused by uncertainties in the k-factors and in
additional scale factors for heavy-flavor jets. Other systematic un-
certainties [8] account for uncertainties in the modeling of the
signal, estimated from the difference between alpgen and pythia,
for uncertainties in the PDFs and in the b-quark fragmentation. The
uncertainty on the integrated luminosity is 6.1%. The systematic
uncertainties quoted in the following combine the uncertainty on
the normalization (independent of pT ) with the shape-dependent
systematics. The total correlated systematic uncertainty is 9.6% (in-
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Fig. 4. Inclusive dσ/dpT for tt̄ production (two entries per event) in data (points)
compared with expectations from NLO pQCD (solid lines), from an approximate
NNLO pQCD calculation, and for several event generators (dashed and dot-dashed
lines). The gray band encompasses uncertainties on the pQCD scale and parton dis-
tribution functions. Inner and outer error bars represent the statistical and total
(statistical and systematic added in quadrature) uncertainties, respectively.

Table 3
Inclusive differential cross section dσ/dpT for tt̄ production at

√
s = 1.96 TeV and

mt = 170 GeV/c2. There are two entries per event, with the total normalized to
the tt̄ production cross section. In addition to total systematic uncertainties on the
shape in pT in each bin, there is a pT -independent systematic uncertainty of 9.6%
that is not included in the table.

pT

(GeV/c)
〈pT 〉
(GeV/c)

Cross
section
(fb/GeV)

Stat. unc.
(fb/GeV)

Shape
sys. unc.
(fb/GeV)

NLO pQCD
(fb/GeV)

0–45 29 70 11 5 59.6
45–90 68 130 20 10 116
90–140 113 89 13 6 83.8
140–200 165 37 6 3 35.6
200–300 233 8.7 1.7 0.7 7.72
300–400 329 1.1 0.3 0.1 0.814

σtt̄ (pb) 8.31 1.28 7.54

cluding the uncertainty on luminosity) and the total systematic
uncertainty on the cross section, integrating over pT , is 10.7%.

Results from NLO pQCD [18,19] calculations obtained using
CTEQ61 [20] PDFs (using the scale μ = mt = 170 GeV/c2) are over-
laid on the measured differential cross section in Fig. 4. Also shown
are results from an approximate next-to-NLO (NNLO) pQCD calcu-
lation [21] computed using MSTW2008 NLO PDFs [22] and same
scales choices as the NLO result, and from the mc@nlo [23] (us-
ing CTEQ61 PDFs), alpgen, and pythia event generators. The QCD
scale uncertainty was evaluated for the NLO pQCD calculation [18,
19] by varying μ = mt = 170 GeV/c2 by factors of 2 and 1/2, and
the PDF uncertainty by the approximate NNLO code [21]. The to-
tal uncertainty is < 4% with only a small (< 1%) shape variation.
A comparison of the ratio of dσ/dpT relative to a NLO pQCD cal-
culation is shown in Fig. 5. The NLO pQCD calculations agree with
the measured cross section, however, results from alpgen (pythia)
have a normalization shift of about 45% (30%) with respect to data.
A shape comparison of the ratio of (1/σ )dσ/dpT relative to NLO
pQCD is shown in Fig. 6. All of the calculations reproduce the ob-
served shape. The χ2 and corresponding χ2 probabilities [24] for
the comparisons in Figs. 5 and 6 of predictions to data are given
in Table 4.

In conclusion, we have presented a 1 fb−1 measurement of the
differential cross section of the top-quark pT for tt̄ production
Fig. 5. Ratio of dσ/dpT for top quarks in tt̄ production (two entries per event) to
the expectation from NLO pQCD. The gray band encompasses uncertainties on the
scale of pQCD and parton distribution functions. Also shown are ratios relative to
NLO pQCD for an approximate NNLO pQCD calculation and of predictions for several
event generators. Inner and outer error bars represent statistical and total (statistical
and systematic added in quadrature) uncertainties, respectively.

Fig. 6. Ratio of (1/σ )dσ/dpT for top quarks in tt̄ production (two entries per event)
to the expectation from NLO pQCD. The gray band encompasses uncertainties on
the scale of pQCD and parton distribution functions. Also shown are ratios relative
to NLO pQCD for an approximate NNLO pQCD calculation and of predictions for
several event generators. Inner and outer error bars represent statistical and total
(statistical and systematic added in quadrature) uncertainties, respectively.

Table 4
The χ2/NDF and χ2 probability for comparisons between the measured data and
predictions using correlated (uncorrelated) uncertainties for the absolute (shape)
comparison.

Prediction Absolute Shape

χ2/NDF Prob. χ2/NDF Prob.

NLO pQCD 0.695 0.653 0.315 0.904
Approx. NNLO pQCD 0.521 0.793 0.497 0.779
mc@nlo 1.22 0.295 0.777 0.566
pythia 2.61 0.0157 0.352 0.881
alpgen 5.04 3.54 × 10−5 0.204 0.961

in the � + jets channel using pp̄ collisions at
√

s = 1.96 TeV. Re-
sults from NLO and NNLO pQCD calculations and from the mc@nlo
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event generator agree with the normalization and shape of the
measured cross section. Results from alpgen + pythia and pythia

describe the shape of the data distribution, but not its normaliza-
tion.
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