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In this paper we ®rst present a multidimensional version of the characterization of the conditional

independence in terms of a factorization property proved by Alabert et al. in the scalar case. As an

application, we prove that the solution of a particular two-dimensional linear stochastic differential

equation with boundary condition, considered by Ocone and Pardoux, is not a Markov ®eld.
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1. Introduction

Consider the following d-dimensional stochastic differential equation of Stratonovich type:

dXt � [AX t � a(t)] dt �
Xk

i�1

[Bi X t � bi(t)] � dW i
t, 0 < t < 1, (1:1)

with the af®ne boundary condition

F0 X 0 � F1 X 1 � f : (1:2)

Ocone and Pardoux (1989) provide necessary and suf®cient conditions for the existence and

uniqueness of a solution and establish suf®cient conditions for the solution to be a Markov

®eld. The Markov ®eld property was studied by means of the co-area formula. In the

Gaussian case (i.e., Bi � 0 for all i) the Markov ®eld property is always true. In the non-

Gaussian case a suf®cient condition for the process fX tg to be a Markov ®eld is that

a � b1 � . . . � bk � 0, and Ö tÖ
ÿ1
s is a diagonal matrix for all 0 < s < t < 1, where Ö t is

the d 3 d matrix-valued process solution of

dÖ t � AÖ t dt �
Xk

i�1

BiÖ t � dW i
t, 0 < t < 1, Ö0 � Id:
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Nevertheless the Markov ®eld property for a general process solution to (1.1) and (1.2) was

left as an open problem by Ocone and Pardoux (1989).

In a recent paper (Alabert et al. 1995), we proved a characterization of the conditional

independence of two independent random variables given a particular function of them, in

terms of a factorization property. As an application of this result, we studied the Markov

®eld property for solutions of stochastic differential equations with boundary conditions at

the end-points of the time interval. The approach developed by Alabert et al. (1995)

allowed us to extend some of the results obtained by Nualart and Pardoux (1991) and

Donati-Martin (1991) using the method of change in probability.

Our aim here is to use the approach introduced by Alabert et al. (1995) to prove that

there exists a stochastic differential equation with boundary conditions of the form (1.1)

whose solution is not a Markov ®eld. The counterexample will be the following two-

dimensional stochastic differential equation:

dXt � 1 1

0 0

� �
Xt � dW 1

t �
0 0

0 1

� �
Xt � dW 2

t , (1:3)

t 2 [0, 1], with the boundary condition

1 1

0 0

� �
X 0 � 0 0

1 1

� �
X 1 � 1

1

� �
: (1:4)

This equation was considered by Ocone and Pardoux (1989), but with their technique, based

on the co-area formula, they were not able to say whether or not the solution was a Markov

®eld.

To prove that the solution to (1.3) and (1.4) is not a Markov ®eld we shall make use of a

characterization of the conditional independence of ó-®elds in terms of a factorization

property (Theorem 2.1). The particular example studied in this paper provides an illustration

of the general method developed by Alabert et al. (1995) to check that the Markov property

fails. The main result of the paper is proved in Section 3. In addition to Theorem 2.1 we

shall apply the techniques of the anticipating stochastic calculus.

2. Conditional independence of ó-®elds and factorization
properties

In this section we shall give the de®nitions of local independence of ó-®elds and local

conditional independence of two ó-®elds with respect to a third ó-®eld. Moreover we shall

provide a multidimensional version of Theorem 2.1 of Alabert et al. (1995), which

characterizes the conditional independence in terms of a factorization property.

Let (Ù, F , P) be a probability space and for any sub-ó-®eld G of F and B 2 F let us

denote by G jB the trace of G on B de®ned by G jB � fA \ B, A 2 G g. Note that, if G is

generated by a random variable X, then G jB � ófX jBg, where X jB is the restriction of X to

the set B. We shall give the following de®nition of local independence of ó-®elds.
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De®nition 2.1. Let F 1 and F 2 be two sub-ó-®elds of F and let B 2 F with P(B) . 0. We

say that F 1 and F 2 are independent on the set B if their traces F 1jB and F 2jB are

independent on (B, F B, P(:jB)).

Clearly two ó-®elds can be locally independent on some set B without being

independent. On the other hand, if two ó-®elds are independent, then they may not be

locally independent on some subset B 2 F , unless this set is of the form B � B1 \ B2,

with B1 2 F 1 and B2 2 F 2.

It is interesting to point out that the local independence of two ó-®elds F 1 and F 2 on a

covering fBi, i 2 Ig of disjoint sets of Ù, does not imply the independence of F 1 and F 2.

Let us now introduce the notion of local conditional independence. In the sequel we shall

write

F 1
G̀

F 2

to mean that the ó-®elds F 1 and F 2 are conditionally independent given the ó-®eld G .

De®nition 2.2. Let F 1, F 2 and G be sub-ó-®elds of F and let B 2 F with P(B) . 0. We

say that F 1 and F 2 are conditionally independent with respect to G on B if

F 1jB
G̀ jB

F 2jB:

Recall the following result (Rozanov 1982, p. 57):

Lemma 2.1. Let A1
B̀ 0

A2 and let us assume that

B 1 �A1 _B 0, B 2 �A2 _B 0, B 0 � B 1 _B 2:

Then,

A1

`
B 1_B 2

A2:

Proposition 2.1. Let (Ù, F , P) be a probability space, F 1, F 2 and G three sub-ó-®elds of

F , B1 2 F 1 and B2 2 F 2 such that P(B) . 0, where B � B1 \ B2. Then

F 1
G̀

F 2 ) F 1jB
G̀ jB

F 2jB: (2:1)

Proof. From Lemma 2.1 we get

F 1
G̀

F 2 ) F 1

`
G _ó fB1,B2g

F 2:

Since the traces of G and G _ ófB1, B2g on B coincide, it is suf®cient to prove (2.1) when

B 2 G . That is, given A1 2 F 1 and A2 2 F 2, we have to show that

�E[1A1\A2\BjG jB] � �E[1A1\BjG jB]�E[1A2\BjG jB], (2:2)
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where �E denotes the mathematical expectation on the space (B, F jB, �P) and �P � P(:jB).

Note that, if X is a bounded random variable and B 2 G , then

�E[X jG jB] � E[X jG ] a:s: on B: (2:3)

From (2.3), the conditional independence of F 1 and F 2 given G , and the fact that

E[1BjG ] � 1 a.s. on B, we get

�E[1A1\A2\BjG jB] � E[1A1\A2\BjG ]

� E[1A1\B1
jG ]E[1A2\B2

jG ]

� E[1A1\B1
jG ]E[1A2\B2

jG ]E[1B1\B2
jG ]

� (E[1A1\B1
jG ]E[1B2

jG ])(E[1A2\B2
jG ]E[1B1

jG ])

� E[1A1\BjG ]E[1A2\BjG ]

� �E[1A1\BjG jB]�E[1A2\BjG jB]

a.s. on B and the result is proved. u

In general we cannot deduce that two ó-®elds are conditionally independent if they are

conditionally independent of the sets of some partition of the space Ù. For this reason the

localization procedure will be useful just for proving negative results, i.e., that two ó-®elds

are not conditionally independent, being suf®cient to prove this on a subset of the form

B1 \ B2.

We shall now state a multidimensional version of Theorem 2.1 of Alabert et al. (1995)

on the characterization of conditional independence in terms of a factorization property. The

proof would be analogous to that of Theorem 2.1 of Alabert et al. (1995).

Let (Ù, F , P) be a probability space and F 1 and F 2 two independent sub-ó-®elds of

F . Consider two functions g1: Rd 3 Ù! Rd and g2: Rd 3 Ù! Rd, set B(E) � fx 2 Rd ,

jxj, Eg, and denote by ë the Lebesgue measure on Rd . We shall assume that gi is

B (Rd)
 F i measurable, for i � 1, 2. Let us introduce the following conditions on the

functions gi.

(H1) For every x 2 Rd and y 2 Rd the random vectors g1(y, :) and g2(x, :) possess

absolutely continuous distributions and the function

ä(x, y) � sup
0,E,E0

1

[ë(B(E))]2
Pfjxÿ g1(y)j, E, jyÿ g2(x)j, Eg

� �
is locally integrable in R2d, for some E0 . 0.

(H2) For almost all ù 2 Ù, and for any jîj, E0, jçj, E0 the system

xÿ g1(y, ù) � î,
(2:4)

yÿ g2(x, ù) � ç,

has a unique solution (x, y) 2 R2d .

(H3) For almost all ù 2 Ù, the functions y! g1(y, ù) and x! g2(x, ù) are con-
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tinuously differentiable and there exists a non-negative random variable H such that

E(H) ,1 and

sup
j yÿ g2(x,ù)j,E0

jxÿ g1( y,ù)j,E0

fjdet [I ÿ =g1(y, ù)=g2(x, ù)]jÿ1g < H(ù), a:s:

where =gi denotes the Jacobian matrix of gi.

Hypothesis (H2) implies the existence of two random vectors X and Y determined by the

system

X (ù) � g1(Y (ù), ù),
(2:5)

Y (ù) � g2(X (ù), ù):

Theorem 2.1. Let g1 and g2 be two functions satisfying the preceding hypotheses (H1)±

(H3). Then the following statements are equivalent.

(i) F 1 and F 2 are conditionally independent given the random variables X, Y.
(ii) There exist two functions Fi: R2d 3 Ù! R, i � 1, 2, which are B (R2d)
 F i

measurable for i � 1, 2, such that

jdet [I ÿ =g1(Y ) =g2(X )]j � F1(X , Y , ù)F2(X , Y , ù), a:s:

Remark 2.1. Some of the conditions appearing in the above hypotheses can be weakened or

modi®ed and the conclusion of Theorem 2.1 will continue to hold.

(i) In hypothesis (H3) we can replace H(ù) by H1(ù)H2(ù), with Hi(ù) F i

measurable for i � 1, 2, and assume only H1(ù)H2(ù) ,1 a.s.
(ii) In (H1) the local integrability of the function ä(x, y) holds if the densities

f 1(y, z) and f2(x, z) of g1(y) and g2(x) are locally bounded in Rd 3 Rd . Furthermore,
if we assume that there exist two open subsets of Rd , V1 and V2, such that
Pf(X , Y ) 2 V1 3 V2g � 1, with X, Y de®ned by (2.5), then we can assume that (H1)
holds just for (x, y) 2 V1 3 V2.

We conclude this section with the following lemma, whose proof may be found in

Alabert et al. (1995, p. 1269).

Lemma 2.2. Consider two independent ó-®elds F 1, F 2 on a probability space (Ù, F , P),

and two random variables G1, G2 such that Gi is F i measurable for i � 1, 2. The following

statements are equivalent.

(a) There exist two random variables H1 and H2 such that Hi is F i measurable,

i � 1, 2, and

1ÿ G1G2 � H1 H2:

(b) G1 or G2 is constant a.s.
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3. Application to a linear stochastic differential equation with
boundary condition

Let W � f(W 1
t , W 2

t ), t 2 [0, 1]g be a standard two-dimensional Wiener process. Consider the

following system of stochastic differential equations with a linear boundary condition at the

end points of the time interval [0, 1]:

dX t � 1 1

0 0

� �
X t � dW 1

t �
0 0

0 1

� �
X t � dW 2

t , t 2 [0, 1],

(3:1)
X 1

0 � X 2
0 � 1, X 1

1 � X 2
1 � 1,

where Xt � (X 1
t , X 2

t ). In this section we shall prove that the solution to this equation is not a

Markov ®eld using Theorem 2.1 and a suitable localization procedure.

Because of the boundary condition, we cannot expect the solution to be adapted to the

Wiener ®ltration and the circle on the right-hand side of (3.1) denotes the extended

anticipating Stratonovich integral (see Nualart 1995 for more details). Ocone and Pardoux

(1989) proved that (3.1) admits a unique solution that can be computed explicitly. To

simplify the computations, let us make the following linear change in variables:

Yt � X 1
t � X 2

t ,

Zt � X 2
t :

(3:2)

Then (Yt, Zt) is the solution to the following stochastic boundary value problem:

dYt � Yt � dW 1
t � Zt � dW 2

t ,

dZt � Zt � dW 2
t , t 2 [0, 1], (3:3)

Y0 � Y1 � 1,

and (3.3) is equivalent to (3.1). An easy computation yields the solution to (3.3) is the two-

dimensional process

Yt � eW 1
t � Z0

� t

0

eW 1
tÿW 1

r eW 2
r � dW 2

r,

(3:4)

Zt � Z0 eW 2
t ,

t 2 [0, 1], where Z0 is the random variable:

Z0 � 1ÿ eW 1
1�1

0

eW 1
1ÿW 1

r eW 2
r � dW 2

r

� eÿW 1
1 ÿ 1�1

0

eW 1
r�W 2

r � dW 2
r

: (3:5)

Let us recall the de®nition of a Markov ®eld.
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De®nition 3.1. A continuous process fX t, t 2 [0, 1]g is said to be a Markov ®eld if, for any

0 < s , t < 1, the ó-®elds ófX r, r 2 [s, t]g and ófX u, u 2 [0, s] \ [t, 1]g are conditionally

independent given ófX s, Xtg.

The main result of the present section is the following.

Theorem 3.1. The two-dimensional process f(X 1
t , X 2

t ), t 2 [0, 1]g, solution of (3.1), is not a

Markov ®eld.

Before proving this theorem let us show a technical lemma.

Lemma 3.1. For all t 2 (0, 1] the random vector

Rt � eÿW 1
t , eW 2

t ,

� t

0

eÿW 1
r�W 2

r � dW 2
r

� �
possesses an in®nitely differentiable density, and the support of the law of Rt is [0, 1)2 3 R.

Moreover the density of Rt belongs to the Schwartz space of rapidly decreasing functions.

Proof. The stochastic process fRtg solves the following stochastic differential equation in R3:

dR1
t � ÿR1

t � dW 1
t ,

dR2
t � R2

t � dW 2
t ,

dR3
t � R1

t R2
t � dW 2

t ,

with the initial condition R0 � (1, 1, 0). Note that the vector ®elds

A1 �
ÿx1

0

0

0@ 1A, A2 �
0

x2

x1x2

0@ 1A,

satisfy the hypoellipticity HoÈrmander condition at point (1, 1, 0) (see, for example, Ikeda and

Watanabe 1989). In fact, we have that the Lie bracket between A1 and A2 is

[A1, A2] �
0

0

ÿx1x2

0@ 1A,

and we see that the vectors A1(1, 1, 0), A2(1, 1, 0) and [A1, A2](1, 1, 0) span R3. Thus

HoÈrmander's theorem implies that for any t 2 (0, 1] the vector Rt has an in®nitely

differentiable density belonging to the Schwartz space (see, for example, Stroock 1983). The

fact that the support of the law of Rt is [0, 1)2 3 R is an immediate consequence of the

support theorem of Stroock and Varadhan for diffusion processes (see, for example, Ikeda

and Watanabe 1989). u
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Proof of Theorem 3.1. We shall divide the proof into several steps. The ®rst step is a

straightforward consequence of the change in variables (3.2).

Step 1. The process f(X 1
t , X 2

t ), t 2 [0, 1]g is a Markov ®eld if and only if the process

f(Yt, Zt), t 2 [0, 1]g, solution of (3.3), is a Markov ®eld.

Let us de®ne the two ó-®elds

F i
s, t � ófWr ÿ Ws, r 2 [s, t]g,

F e
s, t � ófWu, u 2 [0, s]g _ ófW1 ÿ Wu, u 2 [t, 1]g,

for 0 < s , t < 1.

Step 2. The process f(Yt, Zt), t 2 [0, 1]g is a Markov ®eld if and only if, for any 0 < s ,
t < 1,

F i
s, t

`
ó fYs, Zs,Yt , Z tg

F e
s, t: (3:6)

Proof of Step 2. By De®nition 3.1 the process f(Yt, Zt), t 2 [0, 1]g is a Markov ®eld if and

only if

óf(Yr, Zr), r 2 [s, t]g `
ó fYs, Zs,Yt , Z tg

óf(Yu, Zu), u 2 [0, s] [ [t, 1]g (3:7)

for any 0 < s , t < 1.

We have to prove that, for any 0 < s , t < 1, (3.7) is equivalent to (3.6). From the

inclusions

óf(Yr, Zr), r 2 [s, t]g � F i
s, t _ ófYs, Zs, Yt, Ztg,

óf(Yu, Zu), u 2 [0, s] [ [t, 1]g � F e
s, t _ ófYs, Zs, Yt, Ztg,

we have that (3.6) implies (3.7).

The converse implication will be a consequence of the two following inclusions:

F i
s, t � óf(Yr, Zr), r 2 [s, t]g, (3:8)

F e
s, t � óf(Yu, Zu), u 2 [0, s] [ [t, 1]g: (3:9)

We shall prove that (3.8) is true and the proof of (3.9) would follow the same lines.

From (3.3) we obtain that for all r 2 [s, t]

Zr � Zs eW 2
rÿW 2

s ,

which implies, using that Z0 6� 0 a.s. (as a consequence of Lemma 3.1), that

ófW 2
r ÿ W 2

s , r 2 [s, t]g � ófZr, r 2 [s, t]g:
In order to show (3.8) it remains to prove that
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ófW 1
r ÿ W 1

s , r 2 [s, t]g � óf(Yr, Zr), r 2 [s, t]g, (3:10)

and we can assume that 0 , s , t , 1. This would follow from the heuristic equality

W 1
r ÿ W 1

s �
� r

s

Yÿ1
u � dYu ÿ

� r

s

ZuYÿ1
u � dW 2

u

but, in order to give a formal proof, some technical work involving anticipating stochastic

integrals is needed.

Consider the following adapted stochastic differential equation, for r 2 [s, t]:

dYr(x1, x2) � Yr(x1, x2) � dW 1
r � Zr(x1, x2) � dW 2

r,

dZr(x1, x2) � Zr(x1, x2) � dW 2
r, (3:11)

Ys � x1, Zs � x2:

Passing from the Stratonovich to the ItoÃ form, we obtain, for each r 2 [s, t],

dYr(x1, x2) � Yr(x1, x2) dW 1
r � Zr(x1, x2) dW 2

r � 1
2
[Yr(x1, x2)� Zr(x1, x2)] dr,

dZr(x1, x2) � Zr(x1, x2) dW 2
r � 1

2
Zr(x1, x2) dr (3:12)

Ys � x1, Zs � x2:

Our aim is to show that a stochastic integral of the form� r

s

ö(Yu)Yu dW 1
u, r 2 [s, t],

is óf(Yr, Zr), r 2 [s, t]g measurable for any function ö 2 C1b (R). Then we shall take a

sequence of functions ön 2 C1b (R) converging to 1=x on fx 6� 0g in order to deduce the

measurability of the increments of W 1 on [s, t] with respect to óf(Yr, Zr), r 2 [s, t]g. Given

ö 2 C1b (R) we de®ne

ø(y) �
� y

0

ö(x) dx:

Applying the ItoÃ formula to ø(Yr) we get

dø(Yr(x1, x2)) � ö(Yr(x1, x2)) dYr(x1, x2)� 1
2
ö9(Yr(x1, x2))[Y 2

r(x1, x2)� Z2
r(x1, x2)] dr

� ö(Yr(x1, x2))Yr(x1, x2) dW 1
r � ö(Yr(x1, x2))Zr(x1, x2) dW 2

r

� 1
2
[ö(Yr(x1, x2))[Yr(x1, x2)� Zr(x1, x2)]

� ö9(Yr(x1, x2))[Y 2
r(x1, x2)� Z2

r(x1, x2)]] dr: (3:13)

Note that Yr(x1, x2) and Zr(x1, x2) are linear functions of (x1, x2), and we have that

(Yr(x1, x2), Zr(x1, x2))j(x1,x2)�(Ys, Zs) � (Yr, Zr). For any [a, b] � [s, t] the stochastic integrals�b

a

ö(Yr(x1, x2))Yr(x1, x2) dW 1
r
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and �b

a

ö(Yr(x1, x2))Zr(x1, x2) dW 2
r

have continuous versions in the parameter (x1, x2). This follows easily from Kolmogorov's

continuity criterion. From (3.13) we get� r

s

ö(Yè(x1, x2))Yè(x1, x2) dW 1
èj(x1,x2)�(Ys, Zs)

� ø(Yr)ÿ ø(Ys)ÿ I r
s ÿ 1

2

� r

s

[ö(Yè)(Yè � Zè)� ö9(Yè)(Y 2
è � Z2

è)] dè,

where

I r
s �

� r

s

ö(Yè(x1, x2))Zè(x1, x2) dW 2
èj(x1,x2)�(Ys, Zs)

:

Note that

I r
s � lim

jðj#0

Xnÿ1

i�0

ö(Yti
)Z ti

(W 2
t i�1
ÿ W 2

t i
),

where ð � fs � t0 , t1 , � � � , tn � tg, and the convergence holds in probability (Russo

and Vallois 1993). Therefore we obtain that� r

s

ö(Yè(x1, x2))Yè(x1, x2) dW 1
èj(x1,x2)�(Ys, Zs)

(3:14)

is measurable with respect to óf(Yr, Zr), r 2 [s, t]g.
We claim that fW 1

r ÿ W 1
s , r 2 [s, t]g is a semimartingale with respect to the enlarged

®ltration fF i
s,r _ ófYs, Zsg, r 2 [s, t]g and, as a consequence, (3.14) coincides with the

semimartingale integral � r

s

ö(Yu)Yu dW 1
u,

which implies that this integral is measurable with respect to óf(Yr, Zr, r 2 [s, t]g. By

Theorem 1.1 of Jacod (1985), the process fW 1
r ÿ W 1

s , r 2 [s, t]g is a semimartingale with

respect to the ®ltration fF i
s,r _ ófYs, Zsg, r 2 [s, t]g if for each r 2 [s, t] the law of

(Ys, Zs) conditioned by F i
s,r is absolutely continuous with respect to the Lebesgue measure

on R2. Let us check this absolute continuity property. It suf®ces to show that the law of

(Ys, Zs) conditioned by F i
s, t is absolutely continuous with respect to the Lebesgue measure

on R2. Taking into account (3.4) and (3.5), the vector (Ys, Zs) can be written as T (A, B),

where A and B are the random vectors given by

A � eÿW 1
s , eW 2

s ,

� s

0

eÿW 1
r�W 2

r � dW 2
r, eÿ(W 1

1ÿW 1
t ),

�1

t

eÿ(W 1
rÿW 1

t )�(W 2
rÿW 2

t ) � dW 2
r

 !
,
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B � eÿ(W 1
tÿW 1

s ), eW 2
tÿW 2

s ,

� t

s

eÿ(W 1
rÿW 1

s)�(W 2
rÿW 2

s ) � dW 2
r

� �
and T is the transformation

T (x1, x2, x3, x4, x5, á1, á2, á3) � x2(á3 � x5á1á2)� x3x4á1

x3 � x1x2(á3 � x5á1á2)
,

x1x2x4á1 ÿ x2

x3 � x1x2(á3 � x5á1á2)

� �
:

Note that B is F i
s, t measurable and A is independent of F i

s, t. Then the absolute continuity of

the law of (Ys, Zs) conditioned by F i
s, t follows from the fact that A has an in®nitely dif-

ferentiable density due to Lemma 3.1 and the transformation T veri®es det [=xT (=xT ) t] . 0

a.e., where =xT denotes the Jacobian matrix of T in the variables (x1, . . . , x5). In order to

show the positivity of this determinant we ®x (á1, á2, á3) 2 (0, �1)2 3 R and consider the

change in variables

x5 � á3 � á1á2x5,

x4 � á1x4,

x3 � (x3 � x1x2x5)ÿ1,

x2 � x2x3,

x1 � x1x2:

Then it suf®ces to observe that det (=�T (=�T ) t) . 0 a.e., where

�T (x1, x2, x3, x4, x5) � (x2x5 � x4 ÿ x1x4x5, x1x4 ÿ x2):

Indeed, a simple computation yields

det [=�T (=�T ) t] � (1� x4)2 � (x2
4 � x2

1 � 1)(x2 ÿ x1x4)2:

So we have proved that
� r

s
ö(Yu)Yu dW 1

u is óf(Yr, Zr), r 2 [s, t]g measurable for all

r 2 [s, t] and ö 2 C1b (R).

Consider now a sequence of smooth functions ön 2 C1b (R) such that ön(x) � 1=x if

jxj. 1=n, and jön(x)j < n� 1 for all x. We have that

ön(Yu)Yu ! 1fYu 6�0g a:s:

By the dominated convergence theorem for stochastic integrals with respect to a semi-

martingale (Protter 1990), we obtain that� r

s

ön(Yu)Yu dW 1
u

converges in probability to � r

s

1fYu 6�0g dW 1
u,

Non-Markovian stochastic two-point boundary value problem 381



which is therefore óf(Yr, Zr), r 2 [s, t]g measurable. We have that PfYu � 0g � 0, for all

u 2 (0, 1]. This implies that the last integral coincides with W 1
r ÿ W 1

s and (3.10) holds.

Hence the proof of Step 2 is complete. u

We are going to use the following notation. For any 0 < a , b < 1 set

La,b �
�b

a

eÿ(W 1
rÿW 1

a)�(W 2
rÿW 2

a) � dW 2
r:

Note that La,b has the same distribution as R3
bÿa, where Rt is the stochastic process

introduced in Lemma 3.1. De®ne, for 0 , s , t , 1,

B1 � fÿ2 , W 1
s ,ÿ1, 1 , W 2

s , 2, 1 , L0,s , 2g,
B2 � fÿ2 , W 1

t ÿ W 1
s ,ÿ1, 1 , W 2

t ÿ W 2
s , 2, 1 , Ls, t , 2g,

B3 � fÿ2 , W 1
1 ÿ W 1

t ,ÿ1, 1 , W 2
1 ÿ W 2

t , 2, 1 , Lt,1 , 2g:
Note that B2 2 F i

s, t, B1, B3 2 F e
s, t, and B1 and B3 are independent. Moreover, as a con-

sequence of Lemma 3.1 we have that P(Bi) . 0 for i � 1, 2, 3. Set

B � B1 \ B2 \ B3: (3:15)

Step 3. Fix 0 , s , t , 1. The conditional independence (3.6) implies the following

factorization property. There exist two maps Fi: R4 3 B! R, i � 1, 2, where B is the set

de®ned in (3.15), which are measurable with respect to the ó-®elds B (R4)
 F i
s, tjB and

B (R4)
 F e
s, tjB, respectively, such that

1� eÿW 2
t�W 1

t

Lt,1

(eW 2
sÿW 1

s Ls, t � L0,s) � F1(Ys, Zs, Yt, Zt)F2(Ys, Zs, Yt, Zt), a:s: (3:16)

Proof of Step 3. The result will be a consequence of Theorem 2.1 applied to the probability

space (B, F jB, PjB). In order to apply this theorem we have to determine two maps:

g1, g2: R2 3 B! R2

satisfying the assumptions (H1), (H2) and (H3), such that g1 is B (R2)
 F i
s, tjB measurable,

g2 is B (R2)
 F e
s, tjB measurable and, for almost every ù 2 B,

(Zs(ù), Yt(ù)) � g1(Ys(ù), Zt(ù), ù),
(3:17)

(Ys(ù), Zt(ù)) � g2(Zs(ù), Yt(ù), ù):

Remark 3.1. In comparison with other applications of the factorization method (Alabert et al.

1995, Section 4), in the present case we combine the components of the random vectors

(Ys, Zs) and (Yt, Zt). In fact here we are able to determine (Zs, Yt) as a function of (Ys, Zt)

and fWr ÿ Ws, r 2 [s, t]g and (Ys, Zt) as a function of (Zs, Yt) and fWu, u 2 [0, s]g,
fW1 ÿ Wu, u 2 [t, 1]g.
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The system (3.17) holds with the following af®ne functions:

g1(y1, y2) � (y2 eÿ(W 2
tÿW 2

s ), eW 1
tÿW 1

s (y1 � y2 eÿ(W 2
tÿW 2

s) Ls, t)),

g2(x1, x2) � (eW 1
s � x1 eW 1

sÿW 2
s L0,s, (eÿ(W 1

1ÿW 1
t ) ÿ x2)(Lt,1)ÿ1):

We have to check that the maps g1 and g2 comply with the assumptions (H1)±(H3). The

Jacobian matrices of mappings g1 and g2 are

= y g1 � 0 eÿ(W 2
tÿW 2

s)

eW 1
tÿW 1

s e(W 1
tÿW 1

s)ÿ(W 2
tÿW 2

s) Ls, t

" #
and

=x g2 � eW 1
sÿW 2

s L0,s 0

0 ÿ(Lt,1)ÿ1

" #
:

A simple computation gives

det [I ÿ = y g1 =x g2] � 1� eÿW 2
t�W 1

t

Lt,1

(eW 2
sÿW 1

s Ls, t � L0,s): (3:18)

On the set B this determinant is larger than 1 and hypothesis (H3) holds.

To prove (H2), it will be suf®cient to show that for all ù 2 B the linear map on Rn

Ãù(x1, x2, y1, y2) � ((x1, x2)ÿ g1(y1, y2, ù), (y1, y2)ÿ g2(x1, x2, ù))

is bijective. This is a consequence of the fact that for all ù 2 B we have

det [=x, yÃù] � det [I ÿ = y g1(y1, y2, ù) =x g2(x1, x2, ù)] . 1:

Finally, in order to show condition (H1) we have to see that the laws of the random

variables g1(y1, y2) and g2(x1, x2) conditioned by the set B possess densities which are

locally bounded in all their variables. Note that there exist constants 0 , a1 , a2 , 0 such

that on the set B we have a1 < Ys, Zs, Yt, Zt < a2. Let us denote the densities of

g1(y1, y2) and g2(x1, x2) by f g1( y1, y2)(z1, z2) and f g2(x1,x2)(z1, z2), respectively. By Remark

2.1 it is suf®cient to show that the functions f g1( y1, y2)(z1, z2) and f g2(x1,x2)(z1, z2) are

bounded when (y1, y2, z1, z2) or (x1, x2, z1, z2) belong to [a91, a92] where 0 , a91 , a92. Note

®rst that g1(y1, y2) has the same law as

(y2(R2
tÿs)

ÿ1, y1(R1
tÿs)

ÿ1 � y2(R1
tÿs)

ÿ1(R2
tÿs)

ÿ1 R3
tÿs),

where fRt, t 2 [0, 1]g is the stochastic process introduced in Lemma 3.1. Denote the density

of Rt by r t(r1, r2, r3). Then the density of g1(y1, y2) will be

f g1( y1, y2)(z1, z2) �
�1

0

r tÿs

y1

è
,

y2

z1

,
y1(z2 ÿ è)

èz1

� �
y2

1 y2

z3
1è

3
dè

�
�1

0

r tÿs y1î,
y2

z1

,
y1

z1

(z2îÿ 1)

� �
y2

1 y2

z3
1

î dî,
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and this is bounded when (y1, y2, z1, z2) 2 [a91, a92] because by Lemma 3.1 we have

r tÿs(r1, r2, r3) < cn=(r2
1 � r2

2 � r2
3)n for each n > 1, where cn is a constant.

The random vector g2(x1, x2) would be treated in a similar way. u

To complete the proof it will be suf®cient to prove that (3.16) leads to a contradiction.

Step 4. As in Step 3 ®x 0 , s , t , 1. Then, the factorization property (3.16) does not hold.

Proof of Step 4. Let us rewrite (3.16) in terms of (Ys, Zs, Yt, Zt). From (3.4) we have

Z0 eW 1
1ÿW 1

t�W 2
t Lt,1 � 1ÿ Yt eW 1

1ÿW 1
t ,

Z0 eW 1
tÿW 1

s�W 2
s Ls, t � Yt ÿ Ys eW 1

tÿW 1
s ,

Z0 eW 1
s L0,s � Ys ÿ eW 1

s :

Substituting these equalities in (3.16) yields

1� eW 1
1ÿW 1

t

1ÿ Yt eW 1
1ÿW 1

t

(Yt ÿ eW 1
t ) � F1(Ys, Zs, Yt, Zt)F2(Ys, Zs, Yt, Zt), a:s: on B:

A simple computation gives

1ÿ eW 1
1 � F1 F2(1ÿ Yt eW 1

1ÿW 1
t ), a:s: on B, (3:19)

where the map F2(x1, x2, x3, x4)(1ÿ x3 eW 1
1ÿW 1

t ) is still B (R4)
 F e
s, tjB measurable.

If we set G1 � eW 1
1ÿW 1

t eW 1
s and G2 � eW 1

tÿW 1
s, it follows from Lemma 2.2 that (3.19)

implies the following property: one (or both) of the random variables G1 and G2 is almost

surely constant on B with respect to the conditional law given (Ys, Zs, Yt, Zt). This

condition holds only if there exists a measurable function h: R4 ! R such that

eW 1
1ÿW 1

t eW 1
s � h(Ys, Zs, Yt, Zt) a:s: on B

or

eW 1
tÿW 1

s � h(Ys, Zs, Yt, Zt) a:s: on B:

To ®nd a contradiction it suf®ces to show that the random vectors

A1 � (Ys, Zs, Yt, Zt, eW 1
s , eW 1

1ÿW 1
t ) (3:20)

and

A2 � (Ys, Zs, Yt, Zt, eW 1
tÿW 1

s ) (3:21)

possess absolutely continuous distributions. This follows easily from the fact that these

vectors can be obtained as transformations of the vector

C � (eÿW 1
s , eW 2

s , L0,s, eÿ(W 1
tÿW 1

s), eW 2
tÿW 2

s , Ls, t, eÿ(W 1
1ÿW 1

t ), eW 2
1ÿW 2

t , Lt,1): (3:22)

Note that the components of C are independent and with the same distributions as R1
s , R2

s ,
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R3
s , R1

tÿs, R2
tÿs, R3

tÿs, R1
1ÿ t, R2

1ÿ t, R3
1ÿ t where fRtg is the stochastic process introduced in

Lemma 3.1. We have A1 � T1(C) and A2 � T2(C), where

T1(x) � 1

x1

� x3

x1

Ö(x), x2Ö(x),
1� (x3 � x1x2x6)Ö(x)

x1x4

, x2x5Ö(x),
1

x1

,
1

x7

� �
,

T2(x) � 1

x1

� x3

x1

Ö(x), x2Ö(x),
1� (x3 � x1x2x6)Ö(x)

x1x4

, x2x5Ö(x),
1

x4

� �
and

Ö(x) � x1x4x7 ÿ 1

x3 � x1x2x6 � x1x2x4x5x9

:

Then the absolute continuity of the laws of A1 and A2 follows from that of the random vector

C (as a consequence of Lemma 3.1), and the property det [=Ti(=Ti)
t] . 0, a.e. for i � 1, 2.

The positivity of these determinants can be proved by means of suitable change of variables.

For instance, in the case of T2, put

x7 � Ö(x),

x2 � x2x7,

x5 � x2x5x7,

x4 � 1

x4

,

x3 � x1x2x6 � x3,

x1 � 1

x1

,

x6 � x6:

Then the problem reduces to check that det [=�T2(=�T2) t] . 0, a.e. where

�T2(x) � (x1(1� x7x3)ÿ x2x6, x2, (1� x3x7)x1x4, x5, x4),

and this is easy. The transformation T1 is handled in the same way. The proof of Theorem 3.1

is now complete. u

Acknowledgements

This paper was written while the ®rst author was visiting the Universitat de Barcelona with a

HCM fellowship of the European Union.

References

Alabert, A., Ferrante, M. and Nualart, D. (1995) Markov ®eld property of stochastic differential

equations. Ann. Probab., 23, 1262±1288.

Non-Markovian stochastic two-point boundary value problem 385



Donati-Martin, C. (1991) EÂ quations diffeÂrentielles stochastiques dans R avec conditions auxs bords.

Stochastics Stoch. Reports, 35, 143±173.

Ikeda, N. and Watanabe, S. (1989) Stochastic Differential Equations and Diffusion Processes, 2nd edn.

Amsterdam: North-Holland.

Jacod, J. (1985) Grossissement initial, hypotheÁse (H)9, et theÂoreÁme de Girsanov. In T. Jeulin and M.

Yor (eds), Groississement de Filtrations: Exemples et Applications, pp. 15±35. Lecture Notes in

Math. 1118. Berlin: Springer-Verlag.

Nualart, D. (1995) The Malliavin Calculus and Related Topics, Probability and its Applications.

Berlin: Springer-Verlag.

Nualart, D. and Pardoux, E. (1991) Boundary value problems for stochastic differential equations,

Ann. Probab., 19, 1118±1144.

Ocone, D. and Pardoux, E. (1989) Linear stochastic differential equations with boundary conditions.

Probab. Theory Rel. Fields, 82, 439±526.

Protter, Ph. (1990) Stochastic Integration and Differential Equations. Appl. of Math. 21. Berlin:

Springer-Verlag.

Rozanov, Yu. A. (1982) Markov Random Fields. Berlin: Springer-Verlag.

Russo, F. and Vallois, P. (1993) Forward, backward and symmetric stochastic integration, Probab.

Theory Rel. Fields, 97, 403±421.

Stroock, D.W. (1983) Some applications of stochastic calculus to partial differential equations. In P.L.

Hennequin (ed.), EÂ cole d'EÂ teÂ de ProbabiliteÂs de Saint-Flour, XI, pp. 267±382. Lecture Notes in

Math. 976. Berlin: Springer-Verlag.

Received November 1995 and revised November 1996

386 M. Ferrante and D. Nualart


	mke1
	mke2
	mke3
	mke4
	Definition•––2.1.
	mke5
	mke6
	Definition•––2.2.
	Lemma•––2.1.
	Proposition•––2.1.
	Proof.
	mke7
	mke8
	mke9
	Lemma•––2.2.
	Theorem•––2.1.
	Remark•––2.1.
	mke10
	mke11
	mke12
	mke13
	mke14
	Definition•––3.1.
	Definition•––3.1.
	Lemma•––3.1.
	Proof of Theorem 3.1.
	Theorem•––3.1.
	mke15
	mke16
	mke17
	mke18
	mke19
	Proof of Step 2.
	Step•––2.
	mke19
	mke20
	mke21
	mke22
	mke23
	mke24
	mke25
	mke26
	Proof of Step 3.
	Step•––3.
	mke27
	mke28
	mke29
	mke30
	mke31
	Proof of Step 4.
	Step•––4.
	mkr1
	mkr2
	Acknowledgements
	References
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11

