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HITTING TIMES FOR GAUSSIAN PROCESSES

BY LAURENT DECREUSEFOND AND DAVID NUALART1

GET/Telecom Paris and University of Kansas

We establish a general formula for the Laplace transform of the hitting
times of a Gaussian process. Some consequences are derived, and particular
cases like the fractional Brownian motion are discussed.

1. Introduction. Consider a zero mean continuous Gaussian process (Xt ,

t ≥ 0), and for any a > 0, we denote by τa the hitting time of the level a defined
by

τa = inf{t ≥ 0 :Xt = a} = inf{t ≥ 0 :Xt ≥ a}.(1.1)

Thus, the map (a �→ τa) is left-continuous and increasing, hence, with right limits.
The map (a �→ τa+) is right continuous where

τa+ = lim
b↓a,b>a

τa = inf{t ≥ 0 :Xt > a}.
Little is known about the distribution of τa . It is explicitly known in particular
cases like the Brownian motion. If X is a fractional Brownian motion with Hurst
parameter H , there is a result by Molchan [5] which stands that

P(τa > t) = t−(1−H)+o(1)

as t goes to infinity.
When X is a standard Brownian motion, it is well known that

E(exp(−ατa)) = exp
(−a

√
2α

)
(1.2)

for all α > 0. This result is easily proved using the exponential martingale

Mt = exp
(
λBt − 1

2λ2t
)
.

By Doob’s optional stopping theorem applied at time t ∧τa and letting t → ∞, one
gets 1 = E(Mτa ) = E(exp(λBτa − λ2τa/2)). Since Bτa = a, we thus obtain (1.2).
If we consider a general Gaussian process Xt , the exponential process

Mt = exp
(
λXt − 1

2λ2Vt

)
,

where Vt = E(X2
t ) is no longer a martingale. However, it is equal to 1 plus a

divergence integral in the sense of Malliavin calculus. The aim of this paper is to
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take advantage of this fact in order to derive a formula for E(exp(−1
2λ2Vτa )). We

derive an equation involving this expectation in Theorem 3.4, under rather general
conditions on the covariance of the process. As a consequence, we show that if the
partial derivative of the covariance is nonnegative, then E(exp(−1

2λ2Vτa )) ≤ 1,
which implies that Vτa has infinite moments of order p for all p ≥ 1

2 and finite
negative moments of all orders. In particular, for the fractional Brownian motion
with Hurst parameter H > 1

2 , we have the inequality

E(exp−ατ 2H
a ) ≤ exp

(−a
√

2α
)

for all α,a > 0.
The paper is organized as follows. In Section 2 we present some preliminaries

on Malliavin calculus, and the main results are proved in Section 3.

2. Preliminaries on Malliavin calculus. Let (Xt , t ≥ 0) be a zero mean
Gaussian process such that X0 = 0 and with covariance function

R(s, t) = E(XtXs).

We denote by E the set of step functions on [0,+∞). Let H be the Hilbert
space defined as the closure of E with respect to the scalar product〈

1[0,t],1[0,s]
〉
H = R(t, s).

The mapping 1[0,t] −→ Xt can be extended to an isometry between H and the
Gaussian space H1(X) associated with X. We will denote this isometry by ϕ −→
X(ϕ).

Let S be the set of smooth and cylindrical random variables of the form

F = f (X(φ1), . . . ,X(φn)),(2.1)

where n ≥ 1, f ∈ C∞
b (Rn) (f and all its partial derivatives are bounded), and

φi ∈ H .
The derivative operator D of a smooth and cylindrical random variable F of

the form (2.1) is defined as the H -valued random variable

DF =
n∑

i=1

∂f

∂xi

(X(φ1), . . . ,X(φn))φi.

The derivative operator D is then a closable operator from L2(�) into L2(�;H).
The Sobolev space D

1,2 is the closure of S with respect to the norm

‖F‖2
1,2 = E(F 2) + E(‖DF‖2

H ).

The divergence operator δ is the adjoint of the derivative operator. We say that a
random variable u in L2(�;H) belongs to the domain of the divergence operator,
denoted by Dom δ, if

|E(〈DF,u〉H )| ≤ cu‖F‖L2(�)
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for any F ∈ S. In this case δ(u) is defined by the duality relationship

E(Fδ(u)) = E(〈DF,u〉H ),(2.2)

for any F ∈ D
1,2.

Set Vt = R(t, t). For any λ > 0, we define

Mt = exp
(
λXt − 1

2λ2Vt

)
.

Formally, the Itô formula for the divergence integral, proved, for instance, in [1],
implies that

Mt = 1 + λδ
(
M1[0,t]

)
,(2.3)

where M1[0,t] represents the process (s �→ Ms1[0,t](s), s ≥ 0). However, the
process M1[0,t] does not belong, in general, to the domain of the divergence oper-
ator. This happens, for instance, in the following basic example.

EXAMPLE 1. Fractional Brownian motion with Hurst parameter H ∈ (0,1) is
a zero mean Gaussian process (BH

t , t ≥ 0) with the covariance

RH(t, s) = 1
2(t2H + s2H − |t − s|2H).(2.4)

In this case, the processes (BH
s 1[0,t](s), s ≥ 0) and (exp(λBH

s − 1
2λ2s2H)1[0,t](s),

s ≥ 0) do not belong to L2(�;H) if H ≤ 1
4 (see [2]).

In order to define the divergence of M1[0,t] and to establish formula (2.3), we in-
troduce the following additional property on the covariance function of the process
X.

(H0) The covariance function R(t, s) is continuous, the partial derivative
∂R
∂s

(s, t) exists in the region {0 < s, t, s = t}, and for all T > 0,

sup
t∈[0,T ]

∫ T

0

∣∣∣∣∂R

∂s
(s, t)

∣∣∣∣ds < ∞.

Notice that this property is satisfied by the covariance (2.4) for all H ∈ (0,1).
Define

δtM = 1

λ
(Mt − 1).(2.5)

The following proposition asserts that δtM satisfies an integration by parts for-
mula, and in this sense, it coincides with an extension of the divergence of M1[0,t].

PROPOSITION 2.1. Suppose that (H0) holds. Then, for any t > 0, and for any
smooth and cylindrical random variable of the form F = f (Xt1, . . . ,Xtn), we have

E(FδtM) = E

(
n∑

i=1

∂f

∂xi

(Xt1, . . . ,Xtn)

∫ t

0
Ms

∂R

∂s
(s, ti) ds

)
.(2.6)
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PROOF. First notice that condition (H0) implies that the right-hand side of
equation (2.6) is well defined. Then, it suffices to show equation (2.6) for a function
of the form

f (x1, . . . , xn) = exp

(
n∑

i=1

λixi

)
,

where λi ∈ R. In this case we have, for all 0 < t1 < · · · < tn,

1

λ
E

(
F(Mt − 1)

)

= 1

λ
exp

{
1

2

n∑
i=1

λiλjR(ti, tj )

}(
exp

{
n∑

i=1

λλiR(t, ti)

}
− 1

)

=
n∑

i=1

∫ t

0
exp

{
1

2

n∑
i=1

λiλjR(ti, tj ) + λ

n∑
i=1

λiR(s, ti)

}
λi

∂R

∂s
(s, ti) ds

=
∫ t

0
E

(
n∑

i=1

∂f

∂xi

(Xt1, . . . ,Xtn)Ms

∂R

∂s
(s, ti)

)
ds,

which completes the proof of the proposition. �

In many cases like in Example 1 with H > 1
4 , the process M1[0,t] belongs to the

space L2(�;H), and then the right-hand side of equation (2.6) equals

E
〈
DF,M1[0,t]

〉
H .

In this situation, taking into account the duality formula (2.2), equation (2.6) says
that M1[0,t] belongs to the domain of the divergence and δ(M1[0,t]) = δtM .

3. Hitting times. In this section we will assume the following conditions:

(H1) The partial derivative ∂R
∂s

(s, t) exists and it is continuous in [0,+∞)2.
(H2) lim supt→∞ Xt = +∞ almost surely.
(H3) For any 0 ≤ s < t , we have E(|Xt − Xs |2) > 0.

Under these conditions, the process X has a continuous version because

E(|Xt − Xs |2) = R(t, t) + R(s, s) − 2R(s, t)

=
∫ t

s

[
∂R

∂u
(u, t) − ∂R

∂u
(u, s)

]
du

≤ 2|t − s| sup
s≤u≤t

∣∣∣∣∂R

∂u
(u, t)

∣∣∣∣.
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For any a > 0, we define the hitting time τa by (1.1). We know that P(τa <

∞) = 1 by condition (H2). Set

St = sup
s∈[0,t]

Xs.(3.1)

From the results of [6], it follows that, for all t > 0, the random variable St belongs
to the space D

1,2. Furthermore, condition (H3) allows us to compute the derivative
of this random variable.

LEMMA 3.1. For all t > 0, with probability one, the maximum of the process
X in the interval [0, t] is attained in a unique point, that is, τSt = τS+

t
and DSt =

1[0,τSt ].

PROOF. The fact that the maximum is attained in a unique point follows from
condition (H3) and Lemma 2.6 in Kim and Pollard [4]. The formula for the deriv-
ative of St follows easily by an approximation argument. �

We need the following regularization of the stopping time τa . Suppose that ϕ

is a nonnegative smooth function with compact support in (0,+∞) and define for
any T > 0

Y =
∫ ∞

0
ϕ(a)(τa ∧ T )da.(3.2)

The next result states the differentiability of the random variable Y in the sense of
Malliavin calculus and provides an explicit formula for its derivative.

LEMMA 3.2. The random variable Y defined in (3.2) belongs to the
space D

1,2, and

DrY = −
∫ ST

0
ϕ(y)1[0,τy ](r) dτy.(3.3)

PROOF. Clearly, Y is bounded. On the other hand, for any r > 0, we have

{τa > r} = {Sr < a}.
Therefore, we can write using Fubini’s theorem

Y =
∫ ∞

0
ϕ(a)

(∫ τa∧T

0
dθ

)
da =

∫ T

0

(∫ ∞
Sθ

ϕ(a) da

)
dθ,

which implies that Y ∈ D
1,2 because Sθ ∈ D

1,2, and

DrY = −
∫ T

0
ϕ(Sθ )DrSθ dθ = −

∫ T

0
ϕ(Sθ )1[0,τSθ

](r) dθ.
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Finally, making the change of variable Sθ = y yields

DrY = −
∫ ST

0
ϕ(y)1[0,τy ](r) dτy. �

Notice that MY = exp(λXY − 1
2λ2VY ). Hence, letting t = Y in equation (2.5)

and taking the mathematical expectation of both members of the equality yields

E(MY ) = 1 + λE(δtM|t=Y ).(3.4)

We are going to show the following result which provides a formula for the left-
hand side of equation (3.4).

LEMMA 3.3. Assume conditions (H1), (H2) and (H3). Then, we have

E(MY ) = 1 − λE

(
MY

∫ ST

0
ϕ(y)

∂R

∂s
(Y, τy) dτy

)
.(3.5)

PROOF. The proof will be done in two steps.
Step 1. We claim that for any function p(x) in C∞

0 (R) we have

E(δtMp(Y )) = −E

(∫ t

0
Msp

′(Y )

∫ ST

0
ϕ(y)

∂R

∂s
(s, τy) dτy ds

)
.(3.6)

We can write Y = ∫ T
0 ψ(Sθ) dθ , where ψ(x) = ∫ ∞

x ϕ(a) da. Consider an increas-
ing sequence Dn of finite subsets of [0, T ] such that their union is dense in [0, T ].
Set Yn = ∫ T

0 ψ(Sn
θ ) dθ , and Sn

θ = max{Xt, t ∈ Dn ∩ [0, θ ]}. Then, Yn is a Lipschitz
function of {Xt, t ∈ Dn}. Hence, formula (2.6), which holds for Lipschitz func-
tions, implies that

E(δtMp(Yn)) = −E

(
p′(Yn)

∫ T

0
ϕ(Sn

θ )

(∫ t

0
Ms

∂R

∂s
(s, τSn

θ
) ds

)
dθ

)
.

The function r → ∫ t
0 Ms

∂R
∂s

(s, r) ds is continuous and bounded by condition (H1).
As a consequence, we can take the limit of the above expression as n tends to
infinity and we get

E(δtMp(Y )) = −E

(
p′(Y )

∫ T

0
ϕ(Sθ )

(∫ t

0
Ms

∂R

∂s
(s, τSθ ) ds

)
dθ

)
.

Finally, making the change of variable Sθ = y yields (3.6).
Step 2. We write

E(δtM|t=Y ) = E

(
lim
ε→0

∫ ∞
−∞

δtMpε(Y − t) dt

)
,

where pε(x) is an approximation of the identity, and by convention, we assume
that δtM = 0 if t is negative. We can commute the expectation with the above
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limit by the dominated convergence theorem because
∫ ∞
−∞

|δtM|pε(Y − t) dt =
∫ ∞
−∞

1

λ
|Mt − 1|pε(Y − t) dt

≤ 1

λ
sup

0≤t≤T +1
(|Mt | + 1),

if the support of pε(x) is included in [−ε, ε], and ε ≤ 1. Hence,

E(δtM|t=Y ) = lim
ε→0

∫ ∞
−∞

E
(
δtMpε(Y − t)

)
dt.(3.7)

Using formula (3.6) yields

E
(
δtMpε(Y − t)

)
(3.8) = −

∫ t

0
E

(
p′

ε(Y − t)Ms

(∫ ST

0
ϕ(y)

∂R

∂s
(s, τy) dτy

))
ds.

Hence, substituting (3.8) into (3.7) and integrating by parts, we obtain

E(δtM|t=Y )

= − lim
ε→0

E

(∫ ∞
−∞

p′
ε(Y − t)

(∫ t

0
Ms

(∫ ST

0
ϕ(y)

∂R

∂s
(s, τy) dτy

)
ds

)
dt

)

= − lim
ε→0

E

(∫ ∞
−∞

pε(Y − t)

(
Mt

∫ ST

0
ϕ(y)

∂R

∂t
(t, τy) dτy

)
dt

)
.

Notice that ∣∣∣∣
∫ ST

0
ϕ(y)

∂R

∂s
(s, τy) dτy

∣∣∣∣ ≤ T sup
0≤s,u≤T

∣∣∣∣∂R

∂s
(s, u)

∣∣∣∣‖ϕ‖∞.

Hence, applying the dominated convergence theorem, we get

E(MY ) = 1 + λE(δtM|t=Y )

= 1 − λ lim
ε→0

E

(∫ ∞
−∞

pε(Y − t)

(
Mt

∫ ST

0
ϕ(y)

∂R

∂s
(t, τy) dτy

)
dt

)

= 1 − λE

(
MY

∫ ST

0
ϕ(y)

∂R

∂s
(Y, τy) dτy

)
. �

The next step will be to replace the function ϕ(x) by an approximation of the
identity and let T tend to infinity. Notice that (3.5) still holds for ϕ(x) = 1[0,b](x)

for any b ≥ 0. In this way we can establish the following result.
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THEOREM 3.4. Assume conditions (H1), (H2) and (H3). For any a > 0 and
λ ∈ R, we have∫ a

0
E(Mτy ) dy

(3.9) = a − λE

(∫ a

0

∫ 1

0
Mzτy++(1−z)τy

∂R

∂s

(
zτy+ + (1 − z)τy, τy

)
dzdτy

)
.

Notice that we are not able to differentiate with respect to a, the integral in the
rightmost expectation of (3.9), because the (random) measure dτy , in general, is
not absolutely continuous with respect to the Lebesgue measure.

PROOF OF THEOREM 3.4. Fix a > 0. We first replace the function ϕ(x) by an
approximation of the identity of the form ϕε(x) = ε−11[0,1](x/ε) in formula (3.5).
We will make use of the following notation:

Yε,a =
∫ ∞

0
ϕε(x − a)(τx ∧ T )dx.

At the same time we fix a nonnegative smooth function ψ(x) with compact support
such that

∫
R

ψ(a)da = c and we set∫
R

E(MYε,a )ψ(a) da

= c − λ

∫
R

E

(
MYε,a

∫ ST

0
ϕε(y − a)

∂R

∂s
(Yε,a, τy) dτy

)
ψ(a)da.

The increasing property of the function x → τx implies that τa+ ∧ T ≤ Yε,a ≤
τa+ε ∧ T . Hence, Yε converges to τa+ ∧ T as ε tends to zero. Thus, almost surely,
we have

lim
ε→0

MYε,a = exp
(
λXτa+∧T − 1

2λ2Vτa+∧T

)
.

By the dominated convergence theorem,

lim
ε→0

∫
R

E(MYε,a )ψ(a) da =
∫

R

E
(
exp

(
λXτa+∧T − 1

2λ2Vτa+∧T

))
ψ(a)da.

Now, set F(t) = Mt
∂R
∂s

(t, τy). Then, assuming that ϕε(x) = ε−11[0,1](x/ε), we
have∫ y

y−ε
ϕε(y − a)MYε,a

∂R

∂s
(Yε,a, τy)ψ(a) da

= 1

ε2

∫ y

y−ε
1[0,1]

(
y − a

ε

)
F

(∫ a+ε

a
1[0,1]

(
x − a

ε

)
(τx ∧ T )dx

)
ψ(a)da

=
∫ 1

0
F

(∫ 1

0
(τy+εξ−εη ∧ T )dξ

)
ψ(y − εη)dη
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=
∫ 1

0
F

(∫ η

0
(τy+εξ−εη ∧ T )dξ +

∫ 1

η
(τy+εξ−εη ∧ T )dξ

)
ψ(y − εη)dη.

As ε tends to zero, this expression clearly converges to

ψ(y)

∫ 1

0
F

(
η(τy ∧ T ) + (1 − η)(τy+ ∧ T )

)
dη.

So, we have proved that

lim
ε→0

∫
R

MYε,aϕε(y − a)
∂R

∂s
(Yε,a, τy)ψ(a) da

(3.10)

= ψ(y)

∫ 1

0
Mzτy++(1−z)τy

∂R

∂s

(
zτy+ + (1 − z)τy, τy

)
dz.

In order to complete the proof of the theorem, we will apply the dominated con-
vergence theorem. We have the following estimate for y ≤ ST :∣∣∣∣

∫
R

MYε,aϕε(y − a)
∂R

∂s
(Yε,a, τy)ψ(a) da

∣∣∣∣ ≤ ‖ψ‖∞ sup
s,t≤T

∣∣∣∣∂R

∂s
(s, t)

∣∣∣∣ sup
t≤T

|Mt |,

which allows us to commute the limit (3.10) with the integral with respect to the
measure P × dτy on the set {(ω, y) :y ≤ ST (ω)}. In this way we get∫

R

E(Mτy )ψ(y) dy

=
∫

R

ψ(y)dy

− λE

(∫ ST

0
ψ(y)

∫ 1

0
Mzτy++(1−z)τy

∂R

∂s

(
zτy+ + (1 − z)τy, τy

)
dzdτy

)
.

Approximating 1[0,a] by a sequence of smooth functions (ψn,n ≥ 1) and letting T

tend to infinity completes the proof. �

If we assume that the partial derivative ∂R
∂t

(t, s) is nonnegative, then we can
derive the following result.

PROPOSITION 3.5. Assume that X satisfies hypotheses (H1), (H2) and (H3).
If ∂R

∂s
(s, t) ≥ 0, then, for all α,a > 0, we have

E(exp(−αVτa )) ≤ e−a
√

2α.(3.11)

PROOF. Since ∂R
∂t

(t, s) ≥ 0, we obtain

E(Mτa ) ≤ 1,

that is,

E
(
exp

(
λa − 1

2λ2Vτa

)) ≤ 1,
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or

E(exp(−αVτa )) ≤ e−a
√

2α.

The result follows. �

The above proposition means that the Laplace transform of the random vari-
able Vτa is dominated by the Laplace transform of τa , where τa is the hitting time
of the level a for the ordinary Brownian motion. This domination implies some
consequences on the moments of Vτa . In fact, for any r > 0, we have, multiply-
ing (3.11) by αr ,

E(V −r
τa

) = 1

�(r)

∫ ∞
0

E(e−αVτa )αr−1 dα

≤ 1

�(r)

∫ ∞
0

e−a
√

2ααr−1 dα(3.12)

= 2r�(r + 1/2)√
π

a−2r .

On the other hand, for 0 < r < 1,

E(V r
τa

) = r

�(1 − r)

∫ ∞
0

(
1 − E(e−αVτa )

)
α−r−1 dα

(3.13)
≥ r

�(1 − r)

∫ ∞
0

(
1 − e−a

√
2α)

α−r−1 dα.

In particular, for r ∈ [1/2,1), E(V r
τa

) = +∞.

REMARK 3.6. If X is the standard Brownian motion, its covariance s ∧ t does
not satisfy condition (H1), but we still can apply our approach. It is known from [3]
that dτa has no absolutely continuous part and that {a, τa = τ+

a } is a Cantor set,
hence, of zero Lebesgue measure. It follows from this observation and from (3.10)
that ∫

E(Mτy )ψ(y) dy =
∫

ψ(y)dy.

Choosing ψ = 1[0,a] yields to the expected result:

E

(∫ a

0
eλy−(λ2/2)V (τy) dy

)
= a.

If X has independent increments and satisfies (H3), then

E
(
e−(λ2/2)V (τa)) = e−λa.

This follows easily from the fact that X can be written as a time-changed Brownian
motion.
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REMARK 3.7. Consider that X is a fractional Brownian motion of Hurst in-
dex H = 1. Then R(s, t) = st , and consequently, Xt = Y t , where Y is a one-
dimensional standard Gaussian random variable. Then, τa = τa+ = a/Y+. It is
then easy to compute the Laplace transform of τa and we obtain

E(exp(−ατ 2
a )) = 1

2e−a
√

2α.(3.14)

We show now that our formula also yields to the right answer. We just note that
(y �→ τy) is continuous. This entails that

∂R

∂s

(
zτy+ + (1 − z)τy, τy

) = ∂R

∂s
(τy, τy) = 1

2
V ′(τy)

and ∫ a

0
E

(
exp

(
λy − λ2

2
V (τy)

))
dy

(3.15)

= a − λ

2
E

(∫ a

0
exp

(
λy − λ2

2
V (τy)

)
V ′(τy) dτy

)
.

Set

�(a,λ) = E

(
exp

(
λa − λ2

2
V (τa)

))
,

then

∂�

∂a
(a,λ) = λ�(a,λ) − λ2

2
E

(
Mτa

∂V (τa)

∂a

)
.(3.16)

Substitute (3.15) into (3.16) to obtain

∂�

∂a
= 2λ� − λ.

Then, there exists a function C(λ) such that

�(a,λ) = 1

2
+ C(λ)e2λa so that E

(
exp

(
−λ2

2
τ 2
a

))
= 1

2
e−λa + C(λ)eλa.

By dominated convergence, it is clear that, for any λ,

E

(
exp

(
−λ2

2
τ 2
a

))
a→∞−→ 0,

thus, C(λ) = 0 and

E

(
exp

(
−λ2

2
τ 2
a

))
= 1

2
e−λa.

Changing λ2/2 into α gives (3.14).
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REMARK 3.8. Consider the case of a fractional Brownian motion with Hurst
parameter H > 1

2 . Conditions (H1), (H2) and (H3) are satisfied and we obtain∫ a

0
E(Mτy ) dy

= a − λHE

(∫ a

0

∫ 1

0
Mzτy++(1−z)τy

([zτy+ + (1 − z)τy]2H−1

− |z(τy+ − τy)|2H−1)
dzdτy

)
.

Moreover, E(e−ατ 2H
a ) ≤ e−a

√
2α , and therefore, E(τ

p
a ) < ∞ if p < H . According

to (3.13), E(τ
p
a ) is infinite if pH > 1/4 and (3.12) entails that τa has finite negative

moments of all orders.
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