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A SHADOWING LEMMA APPROACH TO GLOBAL ERROR ANALYSIS FOR
INITIAL VALUE ODES*

SHUI-NEE CHOW AND ERIK S. VAN VLECK*

Abstract. The authors show that for dynamical systems that possess a type of piecewise hyperbolicity in which
there is no decrease in the number of stable modes, the global error in a numerical approximation may be obtained as
a reasonable magnification of the local error. In particular, under certain conditions the authors prove the existence
of a trajectory on an infinite time interval of the given ordinary differential equation uniformly close to a given
numerically computed orbit of the same differential equation by allowing for different initial conditions. For finite
time intervals a general result is proved for obtaining a posteriori bounds on the global error based on computable
quantities and on finding and bounding the norm of a right inverse of a particular matrix. Two methods for finding and
bounding/estimating the norm of a right inverse are considered. One method is based upon the choice of the pseudo
or generalized inverse. The other method is based upon solving multipoint boundary value problems (BVPs) with
the choice ofboundary conditions motivated by the piecewise hyperbolicity concept. Numerical results are presented
for the logistic equation, the forced pendulum equation, and the space discretized Chafee-Infante equation.
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1. Introduction. In this paper we consider initial value ordinary differential equations
and their discretization. We investigate both theoretically and numerically the global error in
computing numerical approximations. It is well known (see [Ge], IS ]) that the global error
between the numerical approximation and the actual trajectory with the same initial condition
may become large. In fact, for a numerical method of order p with a fixed stepsize of h
and a differential equation with Lipschitz constant L, classical error estimates are of the form
exp(Lt)hp at time t. On the other hand, local error control provides a tight bound in many
instances. For example, the local error is a good estimate of the global error for many stiff
initial value problems in which one-sided Lipschitz constants appear. Our contribution is to
show that global errors stay reasonably bounded for the wider class of initial value problems
that are piecewise hyperbolic with no decrease in the number of stable modes where in fact
the number of stable modes may increase. These are not stable initial value problems in the
classical sense, and the global error may not be of the order of the local error. We will show
that if the initial condition for the discrete approximation is allowed to differ from that of the
continuous trajectory, then for a large class ofproblems the global error may be represented as a
reasonable magnification ofthe local error. This is important when one is employing numerical
simulations to study qualitative as well as quantitative features of dynamical systems. In this
paper we reserve the word orbit to denote a discrete sequence of points and the word trajectory
to denote a continuous function of time.

We consider the class of problems in which there is no decrease in the number of stable
modes ofthe linear variational equation along solution paths. This is reminiscent of the case in
which there are several hyperbolic fixed points (i.e., saddle points) and a trajectory that passes
near these fixed points in which the dimension of the stable manifold of these fixed points is
not decreasing. This situation arises in certain space discretized parabolic partial differential
equations that occur as models of chemical, biological, and other physical systems.
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960 SHUI-NEE CHOW AND ERIK S. VAN VLECK

Our method is based upon showing that there exists a nearby trajectory in which there is
no local error and is somewhat similar to defect correction (see [$2]). Our approach is different
from defect correction in that we do not attempt to provide a correction, but instead estimate
the magnification of the local error that gives the global error. In [Be it is shown that in a
neighborhood of a single hyperbolic fixed point, the discrete stable and unstable manifolds of
the map defined by the numerical method converge to the stable and unstable manifolds of the
fixed point of the continuous problem. Aspects of backward error analysis for initial value
ordinary differential equations are studied in [E2] and under certain conditions it is shown that
even on an infinite time interval there exists a nearby equation that is solved exactly by the
numerical result.

The idea of showing that near an orbit with a small local error there exists an orbit with
no local error is formalized in the dynamical systems community in terms of the shadowing
lemma. Results in this direction were first given by Anosov [A] and Bowen [Bo] for uniformly
hyperbolic maps on a differential manifold. These results were generalized, and recently an
analytic proof of the shadowing lemma has been given in [CLP] under the assumption of
exponential dichotomy. The infinite time result presented in this paper is proven under the
assumption of piecewise exponential dichotomy in which the rank of the projection onto the
stable subspace is, under certain assumptions, allowed to increase with time.

Numerical methods for computing the global error for maps, where the local error is
comprised solely of roundoff error (as opposed to roundoff error and discretization error when
one is solving differential equations numerically), were initially given in [HYG1 and [HYG2]
for the logistic map and the Henon map. These mappings are not uniformly hyperbolic in the
sense of Anosov and Bowen, but are on average hyperbolic. The methods used in [HYG1 and
[HYG2] are based upon interval arithmetic to provide a sequence of intervals containing both
the orbit with the small local error and the orbit with no local error. Othernumerical methods for
shadowing of maps have been given in [CP1 ], [CP2], and [CVV2]. In [SY] a new proof of the
shadowing lemma is given and numerical methods are presented that apply to both mappings
and ordinary differential equations. The methods in [SY] are based upon performing Newton’s
method to find a zero of a certain function. They answer a slightly different question than we
do, by showing that there exists a noisy discrete approximation with some unknown initial
condition near a trajectory of the same problem with a given initial condition. The methods in
[SY] provide a rigorous verification that there exists a nearby trajectory and rigorous bounds
on the distance from the trajectory to the discrete approximation using Taylor series methods
to integrate numerically. Taylor series methods are used to obtain explicit bounds on the local
errors although the methods in [SY] may be applied with only estimates ofthe local errors. The
methods presented here do not provide rigorous bounds, but instead provide estimates using
existing initial value software and local error estimates provided by the initial value problem
(IVP) software. Our purpose is to derive numerical methods for obtaining a posteriori global
error estimates that are compatible with existing numerical integration software.

In 2 we present a notion of piecewise hyperbolicity due to Pliss [PI and present results
that give sufficient conditions for the existence ofa trajectory on the positive real line uniformly
close to a discrete numerical approximation when the linear variational equation has this type
of piecewise hyperbolicity. We show that there exists a trajectory nearby by showing that
there exists a zero of a certain mapping, F. Under certain assumptions, Newton’s method
will converge to a zero of F given a numerically computed orbit as an initial guess. We do
not actually perform Newton’s method, but find a bound on the norm of a right inverse of the
linearized function DF to prove the existence of a zero of F in a neighborhood of our initial
guess. The main result of this section (Theorem 2.3) is essentially a shadowing lemma for
the case in which the linear variational equation is piecewise hyperbolic in the sense of Pliss.
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SHADOWING LEMMA FOR GLOBAL ERROR ANALYSIS 961

This includes the case in which the linear variational equation is exponentially dichotomic. In
3 we state a result for a numerically approximating orbit of finite length and give a simple
proof in terms of quantities that are numerically computable. The result is based upon having
a right inverse for an approximation of DF and a bound on the norm of this right inverse. The
challenge to obtain accurate estimates of the global error is to minimize the norm of the right
inverse over the set of all right inverses. Section 4 is devoted to developing numerical methods
to estimate quantities necessary to apply the result in 3. Most of our efforts are in finding a
suitable right inverse and in providing a bound or estimate on the norm of this right inverse.
Two methods are developed. One is based on the choice of the pseudo or generalized inverse
as our right inverse, and the second method is based on ideas related to the well conditioning
of multipoint BVPs. These multipoint BVPs correspond to right inverses and, motivated by
the concept of piecewise hyperbolicity the interior boundary conditions, are chosen to occur
at points in which there is an increase in the number of stable modes. To provide estimates
of the global error using existing numerical ordinary differential equation (ODE) software,
all of our global error estimates are in terms of the supremum norm. Numerical examples
are presented in 5. Our methods are apElied to the logistic equation, the forced pendulum
equation, and the space-discretized Chafee-Infante equation. Conclusions and references are
presented in 6 and 7, respectively.

2. Theoretical aspects. Throughout this paper we consider both sequences and con-
tinuous functions. We reserve the notation (t) for functions and the notation x := {Xn for
sequences. Given a function (t) defined on some possibly infinite real interval and a sequence
{tn with values in this interval, we will write the restriction of.(t) to {tn} as x := {Xn where
x, := x(tn) for all n. Unless otherwise stated I111 supt II(t)ll and Ilxll supn IlXnll. In
this section lYll denotes the Euclidean norm for y v.

Consider the initial value problem

(2.1)
J f(Y’, t),

(t0) x0,

where to /I,(t) N d andf Ck(IN,I;IN) for somek > 2 Letq
N x x N be the associated solution operator so that q(x0, to, to) x0 and
q(x0, to, t) is the solution at time with initial condition x0 at to. To solve this equation
numerically, we consider one-step methods of the form

(2.2) Xn+l x. + h.(R)(f, x., t., h.),

Xn given

to advance the solution from tn to tn+l := tn + h,.
Given an orbit x := {x,} produced by a one-step method, we define a corresponding

piecewise discontinuous function that is double valued at tn, n cz, called a pseudo
solution {,(t)} as

(2.3) Jn(t) dp(xn, tn, t) for tn <_ <_ tn+l

n 0 cx so that Yc.(tn) Xn. Let 3n J.+(tn+) .(tn+l), n 0 cx denote
the local error at the nth iterate, and let Y(t) J.(t) for t. _< < t.+ so that Y(t) is well
defined.

Letl(N) denote the sequences w {w.} with wn /IUv foralln and suPn I[w,,ll < o.
Consider the operator F" I(N) /(N), where the nth iterate (F(w)). is defined for any

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



962 SHUI-NEE CHOW AND ERIK S. VAN VLECK

W (N) to be

(2.4) (F(w))n Wn+l Ck(Wn, tn, tn+l) for n 0 o

so that F measures the local error at each iterate. We wish to find a solution w (N) of
F(w) 0, i.e., a solution of the original IVP (2.1).

Consider the first variation DF(x) l(N) l(N) of F(x) defined by

(DF(x)u). Un+l x(Xn, tn, tn+l)Un,

where 4x ’= Oc/)/Oxn.
Given a pseudo solution 2(t), we construct (as in [Pal) a corresponding continuous func-

tion (t) defined by

(2.6) 5(t) [ 2(t) + (tn+l tn)-l(t Sn)6., t. < < Sn,

I :(t) + (tn+l tn)-l(t sn)n+l, sn <_ <_ tn+l,

where Sn (tn+l + tn)/2 SO that SUPn 3n implies I1 11 .
Let denote the principal matrix solution for the linear variational equation about 5(t)

so that

(2.7) OtdO(t, r) Df((t), t)dO(t, r), 0(, r) I

offor > r where Df := 53"
DEFINITION 1. Forpositive constants K, ., the system (2.7) is said to be (K, )O-hyperbolic

on the interval [a, b] iffor given s [a, b] there exists linear subspaces S(s) and U(s) of
dimension k and N k, respectively, such that, if Yo S(s),

IIO(t, a)-1 (s, a)y011 <_ Ke-Xt-SllYoll
for > s and s, [a, b], and, if yo U(s),

IIO(t, a)O-l(s, a)y011 <_ Ke-X(’-t)llYoll

for s >_ and s, t [a, b].
This is identical to the definition of exponential dichotomy on an interval that may be

found in [Co] and [AMR], where S(s) and U(s) represent the decaying and growing solution
components, respectively.

Given subspaces L, M in IRN we say that these subspaces intersect transversally if

dimL -t- dimM dim(L N M) + N.

Define Z(L, M), the angle between subspaces L, M, where 0 < Z(L, M) < r/2 by

cos(/(L, M)) max lylry21,
Ily II--Ilyll--1

where Yl 6 L, Yz 6 M and Yi-I-L N M for 1, 2.
It is assumed that (2.7) satisfies the following three hypotheses.
(HI) There is a mesh made up of what we will call the switching points,/30 < 31 <
< /m < 3m+l, where/30 to and 3m+l +cx such that (2.7) is (K, Z)-hyperbolic

with decaying/growing solution spaces Sj(t) and Uj(t) on each of the intervals [3j, 3j+l], for
j=0 m.
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SHADOWING LEMMA FOR GLOBAL ERROR ANALYSIS 963

(H2) The inequalities

dimUj(flj+) > dimUj+ (/j+)

are satisfied for j 0 m 1, and the subspaces Uj(j+) and Sj+l(j+l intersect
transversally for j 0 m 1.

(H3) There is an u > 0 such that

(Uj(fj+I), j+l (j+l)) > ot

forj 0 m-1.
Remarks.
(i) Note that (H2) implies that necessarily m < N; i.e, the number of switching points is

less than or equal to the dimension of the problem.
(ii) It is shown in [P12] that (H1)-(H3) are satisfied for differential equations of the

form (2.1) that are periodic in t, hyperbolic on the nonwandering set and satisfy the strict
transversality condition (see [Rol] and [Ro2]).

(iii) The switching points denote points in time where there is a decrease in the number
of unstable modes.

Consider now the inhomogeneous linear equation

(2.8) t(t) Df((t), t)i(t) + , (t).

The following theorem shows that (H1)-(H3) are sufficient to imply the existence of
uniformly bounded solutions of (2.8).

THEOREM 2.1 ([Pll]). There exist constants T(K, ;k, ) and o(K, ;k, or) such that if(2.7)
satisfies (H1)-(H3)for some switching points {/3j}+ with

j+ j > T(K, Z, ot)

for j m 1, thenfor any continuousfunction (t) with

II(t)ll o(K, ,
the system (2.8) has a solution Ft(t) satisfying

117(t)ll forallt.

The following theorem is an approximate implicit function theorem (basically Newton’s
method) that we use to find a zero of the function F defined in (2.4) given a sufficiently small
local error and a bounded right inverse for DF(x) defined in (2.5). Theorem 2.2 is easily
generalized to the case of doubly infinite sequences and finite sequences without change in
the proof.

THEOREM 2.2. Let F (N) --+ (N) be a C2 map. Let x be a point in (N) such
that DF(x) has a bounded right inverse DF(x) and let o > 0 be chosen so that

(2.9) IIDF(x)- DF(w)II <_ 1/(211DF(x)tlI)

for IIw xll 0. IfO < o and

(2.10) IIF(x)ll < /(2llDF(x)tll),

then the equation F(w) 0 has a solution w such that IIw xll .
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964 SHUI-NEE CHOW AND ERIK S. VAN VLECK

Proof. For the proof see [CVV ].
The following theorem gives sufficient conditions for the existence of a trajectory near an

orbit x := {xn} with IIF(x)ll _< . The result is based upon the uniform boundedness result
of Pliss (Theorem 2.1) and an application of Theorem 2.2.

THEOREM 2.3. Consider the IVP (2.1) and assume that it is solved using a numerical
method to produce an orbit x :-- {xn }o with local error uniformly bounded by > O. Let (t)
denote the corresponding pseudo solution and (t) the corresponding continuous function
constructed as in (2.6). Let hmax supn {hn and hmin infn {hn denote the maximum and
minimum stepsize, respectively. Let Lzf(, ’) denote a bound on the Lipschitz constantfor
Df in a ),-neighborhood of (t) and let Bzf(, y) denote a boundon Df in a },-neighborhood
of (t). Assume that

(i) the linear system (2.7) satisfies (H1)-(H3) with o(K, ;k, t) and T(K, ), t) defined as
in Theorem2.1 with j+l j > T(K, X, )for j m 1;

2(ii) the inequality c > r is satisfied where r hmaxL of(Yc, /2);/2+ hmaxBof(Y, 8/2)/2
and c o(K, ), t)hmin(1 p) for an arbitrary p such that 1 >> p > 0;

(iii) the inequality

hmaxLDf(, e)e<(c+s)-lc-r_
c 2

2is satisfiedfor s := hmaxBDf(, 3/2)r/(K, ., or)/2 and := 26(c r)-1

Then there exists, a solution (t) of the IVP (2.1) such that IIt(t) xll _< e for
n 0,..., cx.

Proof Since (i) holds, the Pliss Theorem implies that the inhomogeneous equation (2.8)
has a solution 8(t) satisfying I111 <_ for all continuous functions (t) such that I111 _<
r/(K, ., c). If gn "= Jt,ft"+l ,(s)ds and un "= (tn), then

(2.11)

tn+l

Un+l Un + f Df(3(s), s)(s)ds gn

tn

x(X, t,, t,+)Un gn d- rn,

where Px is defined in (2.5) and

Then we have IIrll rllunll + h2maxBzgf(, 8/2)o(K, , or)/2 --- rllull + s.
Let z,, z(tn) for n 0 o so that by (2.11) we have

(DF(x)u)n (G(z)u)n rn, for n 0 o,

where the linear operator G(z) is defined so that G(z)u g implies
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SHADOWING LEMMA FOR GLOBAL ERROR ANALYSIS 965

tn+l

(G(z)u)n Un+l Un f Df((s), s)(s)ds gn

tn

for all n.

Given a sequence g "= {gn} with IIg#ll c there exists a continuous function (t)
such that I111 _< 0(K, ., a). By the Pliss Theorem, G(z) is onto; i.e., given any sequence
g 6 (N) there exists a sequence u 6 (N) such that G(z)u g. Therefore, G(z) has a
right inverse G (z)t with

IIG(z) tll sup
IIG(z))gll

< sup
{llu}l u G(z)tg}

_< c-
IIg[l_<c Ilgll_<c

In general, if u {u,} satisfies (G(z)u), g, + r,, then (DF(x)U)n gn and Ilull
IIG(z)tll(c + rllull + s) so that (ii) implies (1 r/c)llull <_ IIG(z)tll(c + s). Thus, if (ii) is
satisfied,

IIDF(x)tll sup
IlDF(x)tgll

< sup
ilgll_<c C ilgll_<c

{llull u DF(x)tg}

c+s)< (C r)-1
c

Now apply the Fixed Point Theorem to F with IIF(x)ll _< and IIOF(x)ll _< (c+___)(c_
r)-1 For e0 := e and Ix w ll _< 0 and using (iii), we have (2.9) satisfied since

IIDF(x) DF(w)ll < hmaxLDf(, )llx wll <
c 2 < (2IIDF(x) II)-.

Thus, there exists a solution w I(N) of F(w) 0 such that IIw. x.II < . Define
o(t) ck(w,, t,, t) for tn < < tn+l and n 0 to complete the proof. [3

3. Numerical aspects. We now consider the case in which we have produced a finite
orbit using a numerical method. We would like to know whether there is a trajectory satisfying
the same differential equation but with a nearby initial condition such that the trajectory is
close to the numerically computed orbit at the mesh points. Our intent is to provide verifiable
assumptions given certain numerically computable quantities so that we may apply the theorem
and obtain an a posteriori bound on the global error.

In this section, let lyll denote the supremum norm for y 1v. Consider the IVP (2.1)
and for some finite positive integer M consider the orbit {xn }0 produced using (2.2). Let ’n (t)
denote the pseudo solution defined as in (2.3) and let (t) := :7,,(t) for tn < < t,,+l. Let
denote a bound on the local error. Consider the linearized problem about the pseudo solution

(3.) Df(;(t), t)u.

Define the operator F"/({0, M}) -->/({0 M }) by

(3.2) (F(x))n x,,+ ck(xn, t, tn+)

and its first variation DF(x) /({0 M}) --->/({0 M }) by

(3.3) (DF(x)u)n Un+ Ckx(X., t., t.+)un,

where bx is defined as in (2.5).
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966 SHUI-NEE CHOW AND ERIK S. VAN VLECK

Let (t) be a function with the property that liar(t) (t)l[ 8 for all t. For one-step
methods with an associated Taylor polynomial, an obvious choice for the function (t) is the
interpolant defined locally by the Taylor polynomial corresponding to the numerical method.
In particular, for the Runge-Kutta Felberg integrator RKF45 used for the examples in 5 we
employ the associated fifth-order interpolant. The function (t) may be discontinuous at the
mesh points. Consider the linearization about 3,

(3.4) fi Df((t), t)u.

We define G(z) l({0 M}) --+ l({0 M- }) by

(3.5) (G(z)U)n Un+l (l)(tn+l, tn)Un,

where is defined as in (2.7).
Let A,, denote a quadrature formula used to approximate (t,+l, t,,). Let s denote a

bound on the relative error in the quadrature approximation, i.e.,

(3.6)

Define the operator H(A) :/({0 M}) --+/({0 M 1 }) by

(3.7) (H(A)u)n Un+l Anun.

We now state the following theorem similar to Theorem 2.3, but with assumptions that
may be easily verified computationally.

THEOREM 3.1. Consider the IVP (2.1) and assume that it is solved numericallyproducing
an orbit x :-- {xn} with local error uniformly bounded by > O. Let (t) denote the
corresponding pseudo solution and let 3(t) denote a function with the property that [[2(t)
3(t)ll < 3 for all t. Let An denote the quadrature formula used to approximate the linear
variational equation about 3(t) from tn to tn+. Let hmax suPn{h,} denote the maximum
stepsize. Let LDf(2, Y) denote a boundon the Lipschitz constantfor Df in an y-neighborhood
of(t). Assume that

(i) the inequality c > r + s is satisfied where IIH(A)tll <_ c- and H(A) is defined in

(3.7), H(A) is a right inverse of H(A), r hmaxLDf(c, ), and s is defined in, (3.6);
(ii) the inequality

hmaxLof(J, ) < (c r s)/2

is satisfiedfor e 2(c r s) -1

Then there exists a solution Co(t) of the IVP (2.1) such that II(t) xll for
n--0 M.

Proof Given a sequence g:= {gn}y-, we have that u :-- {Un}ou is a solution of
(DF(x)U)n gn if (H(A)u)n gn + rn + sn, where sn is defined to be

s. := [(t.+, t.)

and

+1

’n [)x(Xn, tn, tn+l) (I)(tn+l, tn)lUn f s, s)]u,ds.

t.
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SHADOWING LEMMA FOR GLOBAL ERROR ANALYSIS 967

By (3.6) we have that IlSnll sllu.II and we have that

IIrll hmaxZDf(., )llu,,ll,

so that Ilrnll rllull. For IIgll 1, we have

Ilull IIH(A)tlI sup{llgll + IIrll + IIsll} c-1(1 q- rllull + sllull)

so that by (i)

Ilull (c r s) -1.

Thus,

IIDF(x)tll sup IlOF(x)tgll <_ sup {llull" u- DF(x)tg}
Ilgll--1 Ilgll--1

<(c-r-s)-1.

Now apply the Fixed Point Theorem to F with IlF(x)[I and [IDF(x)tll (c r
s) -1 For e0 := e and IIx wll _< 0 and using (ii), we have (2.9) satisfied since

IIDF(x) DF(w)II <_ hmaxLDf(., E)IIx wll (c- r- s)/2 <_ (2llDF(x)tll) -1.

Thus, there exists a solution to 6 /({0 M}) of F(to) 0 such that Ilw xll .
Define t(t) (wn, tn, t) forth < < tn+l andn 0 M- 1 to complete the
proof. [3

Remarks. (i) Note that no explicit bounds on the inverses of f or Df or on higher-order
derivatives are required.

(ii) The theorem may be applied to maps by simply using 3 as a bound on the roundoff
error and by setting r s 0.

4. Algorithms. In this section we present algorithms to estimate quantities needed to
apply Theorem 3.1. To apply Theorem 3.1 we must supply a bound on a right inverse of H(A).
Since the norm of the right inverse of H(A) measures to a large degree the magnification of the
local error that gives the global error, it is advantageous to find, if possible, a right inverse of
H(A) that has small norm. Our philosophy is to use existing ODE solvers and other existing
software to develop methods for obtaining an accurate estimate of the global error. As such,
our error estimates will be in terms of the supremum norm, I1’ II := I1" I1, since most
ODE solvers provide error estimates in this norm. We will use the absolute and relative local
error tolerances that are provided by most standard solvers. Our intent is to provide practical
estimates but not necessarily rigorous bounds on the global error. Most of our effort will be
devoted to finding a suitable right inverse H(A)t and to obtaining a bound or estimate of
IIn(A)tlloo.

An obvious choice for the right inverse is the pseudo or generalized inverse. In this case
finding the right inverse is trivial, but estimating or bounding its norm may be difficult. If
we consider H(A) as a matrix and write H(A) in terms of its singular value decomposition,
then H(A) UE VT where U, V are orthogonal and E is a nonnegative diagonal matrix. If
H(A) is full rank, then IIH(A)*IIa 1/trl where tr is the smallest singular value of H(A).
The difficulty with using the pseudo inverse is that although the pseudo inverse is optimal
in the 2-norm sense it is not necessarily optimal in the cxz-norm sense. In fact, in general,
IlH(A)tlloo < /NMIIH(A)tIIz for an ODE in IN and an orbit of length M.
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968 SHUI-NEE CHOW AND ERIK S. VAN VLECK

For explicit one-step methods, H(A) has the matrix form

(4.1) H(A) ".. "..
--AM-1 IN

where H(A) is an M. N x (M + 1) N matrix, A is an N x N matrix, and IN is the N x N
identity matrix. The matrix A advances the discrete solution of the linear variational equation
from ti to t+. Note that H(A)H(A)r is a symmetric block tridiagonal matrix. We will restrict
attention to explicit one-step methods, although similar results will apply for implicit one-step
methods and multistep methods. The matrix H(A) has the form of a multiple shooting matrix
for a linear boundary value problem, but without the N additional rows that are used to specify
the boundary conditions. The next approach will be to outline strategies for adding boundary
conditions and thus specifying a right inverse for H(A).

Our second approach to finding a right inverse involves appending boundary conditions
at multiple points to obtain a well-conditioned BVP (see [dHM2] and [Ma2]). In this way
we obtain a linear multipoint BVP. Our challenge is to find boundary conditions, possibly at
more than the initial and terminal times, so that a BVP has a uniformly bounded solution.
When appending boundary conditions we look for switching points to dynamically change
the number of stable and unstable components. In particular, if we have k stable directions
initially, then up to a suitable orthogonal change ofvariables (see [MS]), we adjoin the boundary
condition

0 0,

where I, is the k k identity matrix. Similarly, if at the terminal time there are unstable
directions, then we adjoin the boundary condition

( ) u(mh’l) "-’0"

The intermediate switching points flj for j tn produce boundary conditions of the
form

0 0 u(flj) =0.
0 0 0k+j-I

These are linear boundary conditions so that appending boundary conditions is equivalent to

adding N rows to H(A) in (4.]).
To apply Theorem 3. I, we must have estimates of the following quantities:
I. 8, the local absolute error for the original problem (2. I);
2. hrnax, the maximum stepsize;
3. L Df, a bound on the Lipschitz constant of Df;
4. c-’, a bound on IIn(A)tllo;
5. s, the local relative error for the quadrature formula of the linearized problem.
Our basic algorithm is as follows.

ALGORITHM.
Step 1. Integrate simultaneously

Yc f(x, t),
ft Df(x(t), t)u
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SHADOWING LEMMA FOR GLOBAL ERROR ANALYSIS 969

from tj to tj+l with initial data xj and uj I for j 0 M 1, where hj tj+l tj is the
stepsize chosen by the integrator with given absolute and relative error tolerances to obtain
estimates for d;, s, and hmax. Thus, we obtain the xj and Aj for all j.

Step 2. Find a bound or estimate c- for IIH(A)rlloo, where H(A) is either the pseudo
inverse or a right inverse formed by adjoining boundary conditions.

Step 3. Compute a posteriori bounds for L zf.
Step 4. If (i) and (ii) in Theorem 3.1 are satisfied, then apply the theorem to obtain the

global error e := 26(c s r)-.
Remarks. (i) By integrating both the original equation and the linear variational equa-

tion simultaneously, we obtain an approximation of the linear variational equation about the
interpolant defined by the numerical method.

(ii) The local and relative error tolerances provide bounds for 3 and s, respectively.
(iii) The a posteriori bounds for Lzf may be obtained as in [SY] using Gronwall’s in-

equality or using coarse a priori bounds as we have done for the examples in 5.
(iv) The quantity r in Theorem 3.1 may be computed in terms of 3, hmax, LDf.
We now present the details of implementations for finding a right inverse and an oo-norm

bound or estimate on this right inverse in Step 2. The first method we consider is based on
finding the smallest singular value of the matrix H(A) in (4.1). The second method is based
on adjoining boundary conditions and solving a suitable linear inhomogeneous BVP.

Instead of directly finding the smallest singular value trl of the matrix H(A), we will find
the smallest eigenvalue 1 of the symmetric block tridiagonal matrix H(A)H(A)r and then
set trl /]. We find . by the Lanczos process (see [GvL]). The Lanczos process is an
iterative method for finding the extremal eigenvalues of a matrix. The method generates a
sequence of tridiagonal matrices whose eigenvalues are progressively better estimates of the
extremal eigenvalues of the original matrix that is typically large and sparse. The convergence
to the extremal eigenvalues is rapid provided the relative spacing between these eigenvalues
is large (see [GvL]). We have made modifications to the software package LAS2 (see [Ber])
to apply the Lanczos procedure to symmetric block tridiagonal matrices B := H(A)H(A) r,
where H(A) is of the form (4.1). We employ the error estimation procedure that is provided as
part of the software. Although there is no guarantee that we have actually found the smallest
eigenvalue, we were able to confirm that for smaller examples the Lanczos process did in fact
provide accurate estimates of the smallest eigenvalue.

Remarks. (i) The use of the pseudo inverse has the advantage that information about the
number of stable and unstable modes is not necessary.

(ii) The use of the Lanczos method to take advantage of the sparse structure of H(A) may
be implemented in a memory efficient or a time efficient manner by either recalculating the
Ai, M or by storing the Ai, respectively.

(iii) As was remarked above, we obtain a supremum norm estimate of --crl- as an
estimate of the norm of the pseudo inverse of H(A).

The boundary value problem approach is based on considering the difference equation

(4.2) Un+l Anun + gn

along with the appended boundary conditions where g {gn} is an arbitrary sequence with
lgl Ioo 1. We have that

(4.3)
IlH(A)tlloo= sup IlH(A)tglloo

sup {llulloo "u satisfies (4.2)}.
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970 SHUI-NEE CHOW AND ERIK S. VAN VLECK

Our task now is to replace the problem (4.2) for an arbitrary sequence g of norm one
with a problem for a fixed sequence and obtain a bound on IIH(A)t I1. This is similar to the
situation when one is attempting to estimate the norm of the inverse of a matrix for condition
number estimation. We will replace the arbitrary sequence g with a sequence in which every
element is of absolute value one.

Since our multipoint BVP may be thought as a several-coupled two-point BVP, it suffices
to consider the difference equation

Un+l Anttn q" gn,
0 IN-k 0

o
where for simplicity we let M denote the number of iterates between (possible intermediate)
boundary points, and we let u0 denote the value at the left boundary point. Here Q0is an
appropriately chosen permutation matrix (see [MS], [dHM1 ]) and QM is an orthogonal matrix
to be determined below.

To solve the BVP, we decouple using an orthogonal decoupling transformation. Using the
modified Gram-Schmidt method (see [GvL]), we obtain the decomposition Qn+l Rn A, Qn
for n 0 M 1, where Rn is upper triangular with positive diagonal elements and Qn+l

Tuis orthogonal. Then the decoupling transformation is given by v,, Qn n and the decoupled
equation is

l)n+l Rnvn + hn,
(4.4) (00 0) (IN-k O)Ik vo Yo, 0 0

where hn Qrn+l&" We note that for 0 or M if denotes the time of an initial or
terminal boundary point, then ?’t is the vector of all zeros. If the left boundary point of our
two-point BVP is an intermediate boundary point of the multipoint BVR then the components
of the vector Y0 are given by

Y(j)= { )0’j=l N-k+l,

Vj j N- k + 2 N.

Similarly, if the right boundary point of our two-point BVP is an intermediate boundary point
of the multipoint BVP, then the components of the vector YM are given by

(j)

1,,/) uM j N-k- 1,

O,j=N-k N.

We now write the recursion in block form by setting

where vn(2) is a k-vector and

Rn(ll) Rn(12)
Rn(22) )"

Then for any integer 0 _.< J < M we have that

(4.5a)
O(2)
n+J+l

n+d-I

-’ 0(22) (22)h(2)
n+d i+1

i=n

+ h.+ + +.
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SHADOWING LEMMA FOR GLOBAL ERROR ANALYSIS 971

and

(4.5b)

n+J-1

1)n(1) E [R}ll) "Rn(ll)]-I{R}12)v2)’k- h(1)}i

f/?(ll) ,0(11)]_1., (1) /(1) /?(12) .(2)+ t’n+J ’n tl)n+J+l "’n+J .n+J.Un+jl.I

For a matrix C and a vector b, let ICI denote the corresponding matrix and Ibl the cor-
responding vector whose elements consist of the absolute value of the elements of C and b,
respectively. Let 1:= (1 1)r denote the vector with all elements equal to one. Consider
now the sequence w {wn} formed as follows:

(4.6a)

n+J-1

+J+l- E I"n+j" ll
i=n

+l + I-.+.
and

(4.6b)

n+J-I

Wn(1) E I[Rll)’"e(nll)]-l[{lR12)lw}2)"’l}
i=n

() R(ll)-n (I) (12), .|(2),-I-It"n+j l{ + 1 +1 .wn+_.tOn+J+l ’n+J

It is easy to see that we have the following lemma.
LEMMA 4.1. If Yo, YM in (4.4) are nonnegative vectors, thenfor v computed in (4.5) and

w computed in (4.6), we have that Ilvll _> I]wllforallsequences h in (4.5) with Ilhll 1.
As a consequence of this lemma, we have that NIIvll _> I]H(A) I1 since the supremum

norm condition number of an N x N orthogonal matrix is bounded by N.
Remarks. (i) To determine the switching points (times where there is a change in stability),

/?(J’J)we monitor the diagonal elements of the upper triangular matrices Rn If I"m-l > and

IR"J)I < for some j, < j < N, then the ruth iterate is a candidate to be a switching
point. Since the number of unstable modes cannot be increased, we only decrease the number
of unstable modes when the magnitude of the diagonal element of Rn has magnitude less than
one over several iterates.

(ii) We compute the sequence w in (4.5) to account for roundoff errors using the methods
in [Wi].

(iii) Other decoupling transformations are possible besides discrete orthogonal decou-
piing transformation. In particular, the Riccati transformation (see [DOR1 ], [DOR2], [Me ])
allows us to integrate a subset of the N2 variables in the linear variational equation and may
be better conditioned in the supremum norm. Another choice for a decoupling transformation
is the continuous orthogonal transformation or continuous orthonormalization [D], [Me2].

5. Numerical examples. In this section we apply the algorithms for estimating the global
error to three example problems. All computations were performed on a Silicon Graphics
workstation with 64 megabytes of memory in double-precision arithmetic (machine epsilon
2.2E- 16). All computations were done using the Runge-Kutta Fehlberg integrator RKF45

of Shampine and Watts [SWD]. We have chosen RKF45 for convenience since it is a widely
used automatic integrator with absolute and relative error tolerances. In Tables through 6
we use T or Time to denote the final value of the independent variable t, Iterates to denote the
number of timesteps that were taken, and CPU Time is the CPU time recorded in seconds. For
the BVP method c- is a bound on the infinity-norm of a right inverse, and for the singular
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972 SHUI-NEE CHOW AND ERIK S. VAN VLECK

value decomposition (SVD) method c-1 is an estimate of the infinity-norm of the pseudo
inverse. We use to denote the local error tolerance and e is our global error estimate.

Example 5.1. The first problem we consider is the logistic equation

3) y(1 y), y(0) , >> > 0,

which was also considered in [Be ].
We let the switching point/1 be the time tn such that y(tn) " 1/2, where n {0 M}.

This choice for the switching point is consistent with our theoretical results. In fact, for the
exact solution x(t) of the logistic equation with x(0) 1/2, the fundamental matrix solution
about x(t) is (K, )-hyperbolic for K 4 and . 1 with S(t) I for [0, +c) and
U(t) for (-o, 0]. When employing the boundary value method as outlined in 4,
we adjoin the condition u (/1) 0 to the linear variational equation.

For this problem we have LDf 2. Tables and 2 show our results for approximate
orbits between the fixed points x 0 and x 1. For the SVD method presented in 4 we
have included the 2-norm bound for IIH(A)tll in parentheses. We compute our numerical
orbit with initial data y(0) - 0 and numerically integrate from 0 to T so that
y(T) - 1 . In Table 1, 1.E 2 and y(T) 1 , while in Table 2, 1.E 4 and
y(T) . 1- .

TABLE

Example 5.1. (T 9.22, Iterates 188, 8 1.E 07)

Method CPU time c-l

BVP .04 24.31 4186E-6
SVD .61 309.71 (22.6) 6.20E-5

TABLE 2

Example 5’1. (T 18.46, Iterates 390, 8 1.E 07)

Method CPU time c-l ,
BVP .08 24.28 4.86E-6
SVD 1.26 459.15 (23.25) 9.20E-5

For the SVD method we attained convergence in less than 100 Lanczos iterations.
Example 5.2. The next example we consider is the forced pendulum equation

j + a2 + sin y b cos t, .(0) y(0) 0,

where a 0.2 and b 2.4. This equation was considered in [SY]. For this equation, we
found that the optimal choice was to maintain one stable and one unstable mode throughout,
although the linear variational equation is not uniformly hyperbolic. There are changes in
stability, but there is not a monotone decrease in the number of unstable modes. Thus, we
adjoin boundary conditions to obtain a two-point boundary value problem such that in the
decoupled variables v, we have the boundary conditions

(0
when we integrate from =/50 0 to =/31 Time, where the values of Time are given in
Tables 4 and 5.

For this problem we have LDf 1.
In our computations using the SVD method we attained convergence in the smallest

eigenvalue of H(A)H(A)r to machine precision in less than 20 Lanczos iterations. For both
the BVP and SVD method we were not able to compute for longer orbits due to memory
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SHADOWING LEMMA FOR GLOBAL ERROR ANALYSIS 973

TABLE 3

8 Iterates
.E- 150,000
1.E-12 300,000
l.E-12 500,000

Example 5.2. BVP method
-1Time CPU time c

922 75 848,974
1165 137 ’857,602
1942 251 896,58’3

3.40E-05
3.44E-06
3.40E-06

TABLE 4

Example 5.2. SVD method

8 Iterates
I.E-11 150,000
1.E-08 150,000
1.E-06 150,000

Time CPU time c- e
922 472 808 1.62E-08
3677 469 802 1.61E-05
9229 634 799 1.60E-03

constraints, although less memory intensive implementations for both methods are possible
by storing intermediate values of the orbit and then recomputing portions of the sequence
An }0M- as needed.

Although our methods serve different purposes than those considered in [SY] we now
compare our results with the results obtained in [SY]. They obtain rigorous local error bounds
through the error term of a fixed order, fixed stepsize Taylor series method. As such they
obtain global error bounds. For the forced pendulum equation, Sauer and Yorke in [SY] were
able to prove the existence of a trajectory within 1.E -9, a computer-generated orbit obtained
using a seventh-order Taylor series method with a fixed step-size of At 3.E 3 to obtain
local errors bounded by .E 18 for 0 < _< 30, 000 on a machine with machine precision
of 1.E 28. Our computations are performed using a standard fixed order, variable stepsize
method, RKF45, in which we provide the local error tolerances and the integrator chooses
the stepsize. In this way we obtain local error estimates, but not rigorous bounds on the local
errors. For the BVP and the SVD methods presented in 4, our global error estimates are not
rigorous bounds due to the local error estimation. Our use of the Lanczos method to estimate
the smallest singular value of the matrix H(A) defined in (4.1) seems to provide a reliable
estimate for the norm of the pseudo inverse. For the forced pendulum equation, with the same
parameter values and initial condition reported on in [SY], we were able to obtain a global
error estimate of approximately .E 3 with a local error estimate of .E 6 for a trajectory
of length 0 _< _<, 10, 000 on a machine with machine precision approximately 1.E 16.

Example 5.3. The final example we consider is the space discretized Chafee-Infante
equation with Neumann boundary conditions (see [Ch]). The Chafee-Infante equation is
given by

vt --21)xx -Ji-- f(v),

vx(O) Vx(1) 0,

v(x, 0) given,

where f(v) v l)3. We consider the system of ODEs that is obtained after the above
equation is discretized in its spatial variable. In particular, we consider the finite difference
discretization

/-- [vi+-2vi+v_l]+f(vi),i--

U0 UI, UN+I 1)N,

vi(O) given,

where k /(N 1).
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974 SHUI-NEE CHOW AND ERIK S. VAN VLECK

TABLE 5

3 Iterates
.E-10 5,000
1.E-10 10,000
1.E-10 20,000

Example 5.3. BVP method

Time CPU time c’ e

6.34 451 57,698 1.15E--05
13.29 1490 259,811 5.20E’05
27.91 2220 492,733 9.86E-05

TABLE 6

Example 5.3. SVD method

3 Iterates Time CPU time c-1 ,
1.E’I0 5,000 6134 922 577 1.15E-07
1.E-08 5,000 15.31 3677 593 1.14E-05
1.E-06 5,000 36.51 9229 581 1.16E-03

The Chafee-Infante equation is a gradient system and its attracting set consists of the
equilibrium solutions and the connections between the equilibrium solutions (see [H]). It is
known (see [Mal ]) that the number of monotone pieces of the solution v, or lap number, is
nonincreasing as a function of time. It is also known (see [BF]) that the dimension of the
unstable subspace of an equilibrium solution is equal to the lap number of the equilibrium
solution. We found that for a sufficiently fine discretization in space and sufficiently close to
the attracting set, the number of unstable modes is nonincreasing along solution paths. It has
recently been shown in [AD] and [LS] that for various discretizations of semilinear parabolic
equations, the stable and unstable manifolds of the discretized problem converge to those of
the continuous problem (see also [HLR]).

We set N 30 and 10-1 in our experiments and use the values LDf 6. We use the
initial data vi(O) cos(3(i 1)zr/(N 1)) and monitor the eigenvalues of the matrix Rn to
determine when we have attained the maximum number of unstable modes (during the initial
transient there was an increase in the number of unstable modes). For all the experiments with
the BVP method and for the SVD method with 3 1.E 10, we only provide an error bound
for the portion of the trajectory in which the number of unstable modes is nonincreasing. For
the other examples in which the SVD method was used we include the initial transient phase.
For all of our computations the number of unstable modes decreased from three to one.

In our computations with the BVP method we used J 0 in (4.6(a), (4.6(b)). Somewhat
better results were obtained using a larger value of J. For the SVD method, we obtained con-
vergence to machine precision of the smallest eigenvalue of H(A)H(A)" within 20 Lanczos
iterations.

6. Conclusions. In this paper we have shown that for a wide class ofpiecewise hyperbolic
initial value ODEs, the global error in computing a discrete numerical approximation of a
trajectory may be obtained as a reasonable magnification of the local error provided that we
allow the true trajectory and the discrete approximation to have different initial conditions.
The type of piecewise hyperbolicity we consider occurs in the case of several hyperbolic fixed
points and certain space discretized parabolic partial differential equations.

From our numerical experiments it seems clear that although the SVD method was more
expensive than the BVP method, we were able to obtain global error estimates with the SVD
method for much smaller local error tolerances and longer time intervals. The SVD method
gave better results than the BVP method but was more expensive in terms ofboth memory and
time. It would be interesting to see if a more efficient Lanczos method could be developed
specifically for the types of problems obtained when performing global error analysis. The
cost of numerically integrating the linear variational equation may be decreased in the BVP
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case by employing the Riccati transformation as a decoupling transformation in the case where
there are very well-defined changes in the number of stable modes.

Our methods for providing global errors are not dependent on the particular integration
method, although, in this paper, we restricted our attention to explicit one-step methods. In
principle, any numerical integration scheme may be used, including implicit one-step methods
and linear multistep methods. The amount of modification necessary depends on the particular
implementation that one wishes to use. In order to use LSODE, for example, one would have
to update the Nordsieck array before each step.

An interesting case for which we were not able to obtain good results is the case near a
periodic orbit. This has been explored in [Be2], ILl ], and [E2]. In particular, for the case in
which Ai for all i, it is easy to see that the global error will grow linearly as a function of
the length M of the orbit. This is due to the absence of hyperbolicity in solutions of systems
of this type. Near a periodic orbit one does not expect to have hyperbolicity in the direction
of the flow. It would be interesting to see if our methods could be applied to periodic systems
to obtain global error estimates for those directions that are not in the direction of the flow.

Acknowledgments. We are grateful to Luca Dieci, Timo Eirola, Bob Russell, and the
referees for helpful remarks on an earlier version of this paper.
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