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UNITARY INTEGRATORS AND APPLICATIONS TO
CONTINUOUS ORTHONORMALIZATION TECHNIQUES*
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Abstract. In this paper the issue of integrating matrix differential systems whose solutions
are unitary matrices is addressed. Such systems have skew-Hermitian coefficient matrices in the
linear case and a related structure in the nonlinear case. These skew systems arise in a number of
applications, and interest originates from application to continuous orthogonal decoupling techniques.
In this case, the matrix system has a cubic nonlinearity.

Numerical integration schemes that compute a unitary approximate solution for all stepsizes
are studied. These schemes can be characterized as being of two classes: automatic and projected
unitary schemes. In the former class, there belong those standard finite difference schemes which
give a unitary solution; the only ones are in fact the Gauss-Legendre point Runge-Kutta (Gauss
RK) schemes. The second class of schemes is created by projecting approximations computed by
an arbitrary scheme into the set of unitary matrices. In the analysis of these unitary schemes, the
stability considerations are guided by the skew-Hermitian character of the problem. Various error
and implementation issues are considered, and the methods are tested on a number of examples.

Key words. unitary integrators, structure preserving algorithms, continuous orthonormaliza-
tion
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Notation. We consider matrices A € C"*?, A = (ai;);;2;, aij € C. We say that
A is Hermitian if A = A*, A* = AT (the conjugate transpose), and write A € Hnxn,
S is skew-Hermitian if S* = —8, and we write S € S»xn, U € C™*? is unitary
if U*U = I, and we write U € Un*P. We write 77*P to denote the set of upper
triangular matrices R € C»*P. When the matrix coefficients are functions of ¢, then
the notation is modified appropriately, e.g., C"*"(t). Capital letters are reserved for
matrices, and bold font for vectors, e.g., y € C". Time derivatives are indicated with
a “dot”, e.g., % =y.

1. Introduction. In a variety of contexts there has recently been widespread
interest in decomposition techniques for matrix functions, e.g., see [vLM], [Dav], [Me],
[Rh], [GK], [BBMN], [DOR], [Die]. Guided by the linear algebra context, unitary (or-
thogonal in the real case) factorizations have been utilized in most of these situations.
At some level, much of the computational effort is thereby reduced to integrating a
skew-Hermitian matrix system whose solution is unitary. The major application we
consider is continuous orthonormalization, where a unitary fundamental solution ma-
trix for a differential system is computed (see §2). A number of difficulties integrating
these skew-Hermitian initial value problems have been encountered [BDR), [GPL] and
special devices have been devised to improve the performance [Me], [GK]. A key dif-
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ficulty is the loss of unitariness in the fundamental solution, the effect of which at
times is a halting of the numerical integration for reasons which cannot simply be
traced back to the need to meet error tolerances. (This difficulty is observed for both
stiff and nonstiff integrators, and explicit and implicit schemes with different stability
characteristics.)

Our goal here is to study algorithms for the solution of skew-Hermitian systems
which maintain unitariness of the computed solution. There are two ways in which this
can be accomplished. One possibility is to use automatic unitary integrators: these
we define as the standard finite difference integrators which automatically maintain
unitariness during integration. We show that standard stability considerations are
somewhat inappropriate to describe these so-called unitary integrators. However, it
turns out to be simple and straightforward to modify the stability analysis for skew-
Hermitian type systems. We show that there are high-order schemes which preserve
the unitariness. In particular, the Gauss—Legendre point Runge-Kutta (or simply
Gauss RK) methods are the only standard schemes which satisfy this property. An
analysis of this in the linear case is given in §3. An extension to the nonlinear case
(which includes continuous orthonormalization, where the formulation involves a cubic
nonlinearity) is in §4. Central to our analysis is the simple fact that a differentiable
unitary matrix U(t) is the solution to a system of the form

U=HU#tU,

where H(U,t) € Snxn(t) is a skew-Hermitian (possibly nonlinear) matrix operator.
The linear case and the continuous orthonormalization case are two instances. In
§4 a natural iteration process for the discretization of such systems with Gauss RK
schemes allows us to extend the linear results on automatic unitary integration to this
nonlinear setting. Convergence results are given for this iteration scheme, which is a
particularly efficient implementation of the Gauss RK schemes in our setting.

The second possibility is to use projected unitary integrators: these consist of a
two-step process in which we first compute an approximation by virtually any scheme,
and then project this nonunitary approximation into the manifold of the unitary ma-
trices. We also present these schemes in §4. From a computational perspective, these
projected integrators are quite appealing because we can use an explicit scheme for
the basic time-stepping procedure, and thus the cost essentially reduces to that of
orthonormalizing the computed solution. An algorithmic description of the method
and computational considerations are included.

Our general viewpoint is similar to that of much recent work in numerical analysis
where emphasis is on preserving the qualitative features of the problem—in this case,
on preserving unitariness of the continuous flow at the discrete level. A case close
to ours is the integration of Hamiltonian systems with symplectic integrators (for an
excellent overview, see [Sa2]).

One of the key benefits in preserving the qualitative features here is that we can
show that numerical integration of skew-Hermitian systems with a unitary scheme
is equivalent to the exact integration of a perturbed skew-Hermitian system. Quan-
tification of this fact allows one to perform a backward error analysis for the error.
Integration with a nonunitary scheme is also equivalent to the exact integration of a
perturbed system, but one which is no longer skew-Hermitian (see §§3 and 4).

Practical implementation aspects and numerical comparisons with nonunitary
integrators are presented in §5.

It is necessary to stress at this point why and when we think it is important that
the computed solution stays unitary. Theoretical and numerical results clearly show
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that deterioration of unitariness occurring with nonunitary integrators is of the same
order of magnitude as the approximation errors. Therefore, for a small interval of in-
tegration this loss is usually not critical. However, our interest originates in problems
requiring long time integration, as in the approximation of Lyapunov exponents [GPL)],
[DRV]. In these cases, maintaining unitariness is critical. Also, the theory for meth-
ods using unitary transformations typically relies on 2-norm invariance arguments; to
rigorously apply these results to discretizations requires that computed solutions be
unitary. Finally, as will be seen, if we do not use a unitary integrator then we are de
facto modifying a skew-Hermitian type of problem into a nonskew-Hermitian one, one
which is generally either unstable or stiff for large time integration and thus presents
all sorts of different difficulties.

2. Motivation and background. Herein we set out to describe the types of
problems which have provided the motivation for this work. We begin with a number
of simple results.

LEMMA 2.1. Let U € €™, Then U € Un*n <= U = exp® for some
S € Snxn,

Proof. (<) This is obvious.

(=) Let Q € Un*n be such that Q*UQ = D = diag(+ei*s). Therefore, D =
exp*d, with A = diag()\;,7 =1,...,n), and U = QeirQ* = 5,5 :=1QAQ* . O

The next lemma is the analogue of this for time varying unitary matrices.

LEMMA 2.2. Let S(t) € C**™(t), and U(t) € C™*P satisfy

(2.1) Ut)=8S®U®), U()=Uo,UUo=1.

Then U(t) € Ur*P(t) for allt < S(t) € Sm*n(t).

Proof. Since U(t) = Z(t)Uo, where Z(t) is the fundamental solution matrix for
the system above (with Z(0) = I), we only need to show that Z(t) is unitary <=
S(t) € Snxn(t).

(=) This is obvious, since S(t) = Z(t)Z*(t), and this right-hand side is trivially
skew-Hermitian (just differentiate Z(t)Z*(t) = I).

(«) Since Z(t) = S(t)Z(t), Z*(t) = —Z*(t)S(t). This may be shown to imply
Z*(t) = Z-1(t), from which the result follows. o

Remark. Tt follows that any V € Unxn(t) satisfies V = VS for some § € S7xn(t),
since U = V* € Unxn(t).

It is of course a well-known fact that modern matrix computation relies heavily
on the robustness of unitary factorization techniques. The backbone of these is the
QR factorization, whereby a matrix A € C"*? is decomposed into the product

(2.2) A=QR,

with Q € Un»*P and R € TPxP. A natural desire is to extend this to compute contin-
uous time varying QR factorizations

(2:3) A(t) = Q()R(?)

of A(t) € C"*P(t). For general square matrices this has been considered by Rhein-
boldt [Rh]. The related problem of computing a continuous SV D has recently been
addressed in [BBMN]. (The issue of obtaining a continuous eigendecomposition for a
general A(t) has also received theoretical attention [Ka], [BO].) The key difficulty for
all of these is ensuring the smoothness (differentiability) of the factors involved, e.g.,
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Q(t). Still, under reasonable conditions these methods are applicable, and the main
computational effort then involves the integration of a matrix differential equation
whose solution is unitary. The integration of this type of system in such a way that
the approximate solution preserves unitariness is the main concern of this paper.

ODE case. Arguably, the outstanding computational difficulty in solving linear
differential systems

(2.4) y = A(t)y(t) +£(t),

lies in computing (directly or indirectly) a fundamental solution matrix, i.e., an in-
vertible Y (t) € C™*"(t) satisfying

(2.5) Y(t) = AB)Y (t).

In this context, it is a well-established fact [AMR] that a desirable approach is to
separate Y (t) into its direction and growth components. One possible way to do this
is to utilize a continuous factorization

(2.6) Y(t) = U@®)R(),

where U*U = I, R(t) € T»*n(t). Such a factorization has long been used, both as
an analytical tool [Dil] and a computational one [Ab], [Ba]. There is an important
distinction to be made between the continuous QR factorization of a fundamental
solution matrix Y'(t) and that of an arbitrary time dependent matrix. The linear
independence of the columns of Y (t) ensures the following.

LEMMA 2.3. Let Y(t) satisfy (2.5), where A(t) is continuous. Then for all t
there is a smooth and unique factorization (2.6) such that R(t) has positive diagonal
elements.

Proof. The existence and uniqueness of U(t) and R(t) are simple consequences
of applying the Gram—Schmidt procedure to the (linearly independent) columns of
Y(t). Their differentiability follows similarly by differentiating these Gram-Schmidt
equations. 0

The differential equations for U(t) and R(t) are easy to construct. Differentiating
in (2.6), it follows from (2.5) that UR + UR = AUR, so U = AU — URR-1. Since
H := U*U € Snx"(t) (see Lemma 2.2) and RR-1 € T"*", we obtain

(2.7) U=UH®U,t),
with

(2.8) H(U,t) = U*AU — RR-1
satisfying

(2.9 iSU*AV)y, ifl=m;

(U*AU) i, ifl>m;
(H)im =
—(H)mi, otherwise.
The same set of equations can be derived in the following way. We consider the
unitary change of variables y = U(t)z for (2.4) such that z(t) satisfies the modified
system

7= A(t)z + q(t).
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The matrix A(t) € T7xn if and only if U(t) satisfies the so-called Lyapunov equation
(2.10) U=AU-UA.

Moreover, in such case (2.6) holds with A = RR-!. This approach of computing the
factorization (2.6) is a familiar one in the two-point boundary value problem (BVP)
literature [Ab], [Ba], [Dav], [Me], [vLM], where it goes by the name of continuous
orthonormalization.

Assumptions ensuring unique smooth factors for a continuous SV D of Y (t), i.e.,
Y (t) = U(¢)X(t)V*(t) with smooth U(t), V(t) € Un*n(t) and diagonal X(t), are more
restrictive than those of Lemma 2.3. One can guarantee an analytic SV D of Y (t) if
Y (t) is analytic (see [BBMN]), but this requires that A(t) is analytic [Har]. To simply
have smooth (i.e., differentiable) factors seems to require noncoalescing singular values,
a condition which we do not want to impose. In any case, when feasible to compute,
an SV D still leads to an equation such as (2.7) for the unitary matrices involved (see
[GK] and [Wr]).

In general, system (2.7) can be also formulated for the matrix U*, rather than
U, in which case, U* = (H (U, t))*U*. For notational convenience, in this work we will
focus on the case in which we formally have

U=HUtU,  H(V,t) € Sr*n(t) YV eUrxn(t) V.

Remarks. (i) It is easy to see that a differentiable matrix function U(t) € C"*4(t)
satisfies U(t) € Un*4(t) <= U(t) satisfies a matrix DE

(2.11) U=HUU,tH)U,  U0)="Uy, UiUo =1,

where H € Snxn(t), for all t. This fact can be appreciated by considering, for ¢ < n,
the extension V of U, V = (U, W), V € Yn*n. Upon differentiating, V = —VV*V,
S0

WU W*w
U=—(UU*+WW*)U.

Now, let H(U) := —(UU*+WW?*). Notice that the matrix H in (2.11) is not uniquely
defined (unless ¢ = n) because the orthonormal basis problem, i.e., the extension of
U to V, does not have a unique solution.

(ii) It follows from (i) that if we have H € Sm*n(t), but UjUp # I, then
U(t) ¢ Un*9; in fact, the defect from unitariness ||I — U*U|| does not change with ¢.
Moreover, if we solve a DE of the form (2.11) with UjUs = I but with H ¢ Sn»*"(t)
for all ¢, then in general U(t) ¢ Unxa(t).

These observations lead to a better understanding of the stability characteristics
of equations (2.1) (with S(t) € S»*n(t)) and (2.7) (or (2.10)). They motivate our
treatment of numerical schemes in §§3 and 4. Looking ahead, it appears that the
usual concepts of stiff or nonstiff equations do not mean much in our context. Of
key importance is the need to keep the solution unitary since then the only stepsize
restrictions are imposed by accuracy and not stability considerations.

Because of the well-known decoupling and conditioning results for dichotomic
linear BVPs (see [Ma], [AMR]), one might suspect that a relationship exists between
the dichotomic structure of a linear system and the “stability” of the continuous or-
thonormalization equations [vLM]. However, as the next example shows, the strength

@) =-ww) (35 o)
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of the dichotomy generally need not have any impact on the integration (and solution)
of (2.7).
Ezample 2.4. Consider the matrix

_ a cos(20t) B — asin(2pt)
Alt) = (-—-ﬁ—asin(2,3t) —a cos(20t) ) Vo and f€R.

The fundamental solution Y () such that Y (0) = I can be written as

v = (2 ) (5 ).

from which we have an exponential dichotomy for a # 0. However, the solution U(t)
to (2.7) is always the rotation matrix

_ [ cos(Bt) sin(Bt)
0= (St )

regardless of a. The matrix H in (2.9) has constant coefficients, viz., H = _01 (1,). So
it is only the speed of rotation 8 which controls U(t) and not the dichotomy exponent
a. Numerically, we expect that only accuracy requirements will limit the stepsize
choice when computing U(t).

3. Automatic unitary integrators: linear case. In this section we consider
the basic problem of integrating a linear ODE system (2.1) where S(t) € S»*n(t).
From Lemma 2.2, we know that the transition matrix ®(t,to) satisfying U(t) =
®(t,t0)U(to), ®(to,to) = I, is unitary. A desirable property of any approximation
scheme for (2.1) would be that the discrete map advancing the numerical solution
maintains unitariness as well. In this section, we investigate those approximation
schemes which satisfy this property automatically, i.e., we consider those finite differ-
ence discretizations which give unitary solutions. As will be seen shortly, no consistent
linear multistep scheme can directly achieve this in general.

DEFINITION 3.1. A consistent one-step scheme of the form

(3.1) Uesr = ®u(R)Ux, k=0,1,2,...,

for (2.1) will be called an automatic unitary integrator, or scheme, if ®x(h) € Un*n,
for all £ and for all h.
We begin our analysis with the model problem

(3.2) u=1i\u, A€R,u(0)=uy, uju=1

Obviously, a unitary integrator must maintain ujux = 1, for all k, i.e., the solution
must remain on the unit sphere. In particular, the numerical scheme cannot introduce
artificial solution growth or dissipation.

FEzample 3.2. For the model problem (3.2), consider the following well-known
schemes, with u = hA:

(i) Forward Euler: ugy1 = (1 + ip)ug,

(ii) Backward Euler: ug4; = (1/(1 — ip))uy,

(iii) Implicit midpoint or trapezoidal rule: ug4+1 = ((2 +ip)/(2 — ip))uk. For-
ward and backward Euler produce solutions uy = [r(h)eitan™" #]kug, where r(h) =
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(14-42)1/2 and r(h) = (1+u2)~1/2, respectively, so the solutions spiral outward/inward
from the unit sphere with identical phase and the exponential rate r(h). In contrast,
the rules in (iii) give solutions uy = ei ktan™"(4n/(4-1*))uy which stay on the unit
sphere.

The model problem (3.2) provides useful insight into the potential for the stan-
dard integration methods to be automatic unitary integrators. From A-stability type
considerations, we realize that the method must have the imaginary axis in its sta-
bility domain. In fact, for one-step schemes of the type u; = R(ip)up with u = h\,
uju; = 1 implies that |R(iu)| = 1; so if |[R(ip)| # 1 somewhere along the imaginary
axis then the method cannot be unitary.

Next, consider a linear k-step multistep method which for the problem u = f(¢, u)
has the form

k k
Y ajumi =hY Bifmij.
=0 =0

For (3.2) one has the characteristic equation

k k

p(Q) —iuo(¢) =0, p(Q) =) a;i¢3, o(Q)=)_ B¢
Jj=0 Jj=0
To be unitary the method must have the boundary of its stability region, or “root
locus curve” defined by 6 — p(ei?)/o(ef), lie in the right half plane. Moreover,
it can be shown that a consistent linear multistep method which is stable on the
imaginary axis must be A-stable [Je]. Consequently, if the method is not A-stable
then it cannot be unitary. This limits the possibilities to methods of order < 2, and
in fact the only one of order 2 which has modulus 1 on the imaginary axis can be
seen to be the trapezoidal rule [HW, pp. 259-266]. We will not be concerned with
the possible existence of unitary first order linear multistep methods (which are not
one-step methods).

Hence, we can reduce our consideration to one-step methods (which include the
trapezoidal rule), so that the object of study becomes a rational function R(z) =
P(z)/Q(z) advancing the approximate solution of (3.2) from one step to the next by
U1 = R(ihA\)ux. We have the following lemma.

LEMMA 3.3. For the model problem (3.2), the one-step schemes of the form
Uk+1 = R(ip)ug, p = hA, are unitary if and only if they are symmetric.

Proof. After the change h to —h, zx to zx + h, we have that (see [HW]) the
method is symmetric if and only if R(iu) = 1/R(—ip). If R(ip) = 1/R(—ip), then
|R(ipn)| = 1, and hence the method is unitary. Conversely, if the method is unitary,
then |R(iu)| = 1 and therefore |P(iu)| = |Q(iu)|, so that

Riip) = P P(—ip) _ QUm)Q(—ip) _ 1
Q(ip)P(—ip)  QUu)P(—ip)  R(—ip)
Thus, we now consider the symmetric implicit RK (IRK) schemes, and as is
customary, we further restrict attention to schemes which are nonconfluent and have
positive weights. That is, if an s-stage IRK is specified by the tableau

ca | a1t ... ais

(3.3) Cs | as1 ... Qss
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then ¢; # ¢j, © # j, and b; > 0 for all 3. These basically correspond to the collocation
schemes [AMR)].
Consider now a time dependent model problem

(3.4) u(t) = iA(t)u(t), u(0) =ug, ujup=1,

with exact solution satisfying u(t)*u(t) = 1 for all t. For a unitary scheme, ujux = 1,
for all k and for all h, so the schemes that are not algebraically stable cannot be unitary.
In general ([HNW]), this forces the matrix M = (M, := biaim + bmami — bibm)f =1
to be positive semidefinite. But in fact, the only such symmetric collocation schemes
are the Gauss point RK schemes, for which M = 0 [AB].

It remains to be shown that these Gauss point RK schemes are indeed unitary. It
is convenient to show this indirectly using known results about symplectic integrators
for Hamiltonian systems.

A general linear Hamiltonian system has the form y = M (t)y, or

- 3))

where D(t), C(t) € Hrxn(t), B(t) € C**™(t) and p,q € C"(t), and thus JMJ = M*,
where J : ( o 7). Numerical integrators which preserve the qualitative features
of Ham1lton1an systems have received considerable recent attention (e.g., see [Sa2]).
Specifically, the transition matrix ®(¢,to) for (3.5) is a symplectic transformation, i.e.,
O*J® = J, and a symplectic integrator maintains this property at a discrete level.
Thus, for one-step schemes applied to (3.5), if yx+1 = ®x(h)yr then ®x(h)*J®r(h) =
J. Since Gauss RK schemes are known to be symplectic [Sal], we can prove the
following.

THEOREM 3.4. For the general system U = S(t)U, U(0) = Up, UiUs = I, with
S(t) € Snxn(t), the Gauss RK schemes are unitary.

Proof. Consider the auxiliary Hamiltonian system

= (8) =0 _s0) (8)= (5% s) (2):

Because of the simple block diagonal structure of the linear system, integration with

a Gauss RK scheme gives
_ (%) O
Ye+1 = ( 0 \Ilk(h)) Yk

Since the method is symplectic,

v (h) 0 0 I W (h) 0 ({0 —I
0 s (h) I 0 0 Ur(h) ) ~\I 0 )’
implying that Wi(h) is unitary. Since a Gauss RK scheme for (2.1) has the form
Uk+1 = ¥y U, it is unitary. 0
We conclude that for the nonautonomous linear case the Gauss RK schemes

produce the only unitary integrators from among the broad class of commonly used
difference schemes.
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Remarks. (i) The property of being a unitary integrator for a matrix system
defined by the mapping ¥y, is equivalent to \Il{\Ilk = I for all k. Although less natural
in our context, one could rewrite the matrix system in vector form and interpret the
unitary property in terms of preserving bilinear invariants. In fact, in his study of
symplectic integrators, Sanz-Serna [Sal] discusses Gauss RK schemes as they relate
to bilinear invariants. From among all known symplectic finite difference schemes, only
the Gauss RK schemes are also unitary. Interestingly, we arrive at this result using
simple stability arguments whereby classes of methods are successively eliminated. We
have been able to do this because all linear skew-Hermitian systems have eigenvalues
along the imaginary axis. It could be instructive to take an analogous approach to
study symplectic integrators for suitable classes of Hamiltonian systems.

(ii) Studies have been made of stability properties along the imaginary axis
in still other contexts, viz., for the integration of hyperbolic systems [JN] and the
investigation of spurious solutions for discretizations of IVPs (initial value problems)
[IPS].

(iii) A useful property of a unitary integrator is that unitariness is preserved
independently of the marching direction. This independence of direction is a property
shared by symplectic integrators.

It is now possible to perform an error analysis for unitary schemes. From Lemma
2.1, a discrete map advancing the solution can be written as an exponential of a
skew-Hermitian matrix, so a unitary scheme can be interpreted as exactly solving a
skew-Hermitian problem. The relationship between this and the original system can
be derived as follows.

For the model problem (3.2), a Gauss RK scheme gives

(3.6) Ukt = Rip)ue  (p= Ah),
where
(3.7) R(ip) = eid(®)

approximates the growth of the exact solution ei** over one step. Thus, we are solving
the modified skew-Hermitian problem

(3.8) u = i(h~1¢(u))u, uue = 1.

For the s-point Gauss RK scheme, R(ip) = Ps(ip)/Ps(—ip), where Po = 1, P, =
2+ iu, Ps(ip) = 2(2s — 1) Ps—1(ip) + (ip)2Ps—2(ip), s = 2,3,.... It follows that (with
P := Py(ip))

o 2R(P) S(P.)
(3.9) ¢lu) = tan ((R(Ps))z—(g(a))z)’

where R(P;) and J(Ps) are the real and imaginary parts of Ps, respectively.

Ezample 3.5. For the implicit midpoint rule (s = 1), equation (3.9) reads
é(u) = tan~1(4p/(4 — u2)). Taking a Taylor expansion about u = Ah = 0 leads,
of course, to the standard error expansion. Explicitly, if f(u) = 4u/(4 — p?) then
f(u) = p1/(1+ (ip/2)?) = p 302 o(p/2)?". Thus, tan™(f(pu)) = p — p3/12+ - =
p + g(p), and so we have ei¢(W) = eireid(w), from which the local truncation error is
et (1 — et9(n)) = +iu3 /12 + O(us).
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Example 3.5 hints at the behavior of the global error for general Gauss RK
schemes for (3.2). In fact, from (3.7), (3.8), and (3.9) we have that over one step
ei# is approximated by eitei9(#), where the precise form of g(u) depends on the spe-
cific integration rule. After k steps, the global error ey := u(tx) — uy satisfies

(3.10) er = eiku(1 — eikg(w))ug.

Thus, the global error is a periodic function, bounded in magnitude by 2. Whenever
kg(u) is a multiple of 2m, there is no error. Of course, in finite precision this might
never be exactly true. For example, consider the implicit midpoint rule (see Example
3.5). We expect no error when k =~ 24wm/(hA)3, which for realistic values of A and h
only occurs after a very large number of steps.

Another interesting consequence of the error behavior for Gauss RK schemes for
(3.2) is the following fact. Rewrite (3.8) as

(3.11) a = i(yp(p)A)u, ujuo =1, whereyp(u) = @

For the change of time variable 7 := ty(p), (3.11) can be rewritten as

(3.12) Z—: = ilu, ujug = 1.
This is precisely the same equation as (3.2) but with a different time scale. Recall-
ing that exact integration of (3.12) is numerical integration of (3.2) with Gauss RK
schemes, we see that the numerically computed solution covers the same orbit as the
exact solution, but at a different speed. The relevance of these observations is for
long time integration, since otherwise only accuracy (hence local error control) is of
concern.

These arguments trivially generalize to the constant coefficient matrix case, but
the situation is much more complicated for the general variable coefficient case (2.1).
One step of the Gauss RK scheme (3.1) gives by Lemma 2.1 ®;(h) = eBx(*)  where
By (h) € S™*n is unitarily similar to iAx(h), with diagonal Ax(h) € R™*™. Although
the results for the constant coefficient model problem apply over this interval, so that
integration with a Gauss RK scheme is still equivalent to exactly solving a modi-
fied skew-Hermitian problem, globally this modified skew-Hermitian problem has a
discontinuous right-hand side. For example, for (3.4) the Gauss RK solution

(3.13a) g1 = Ri(h)ug

can be seen as the exact solution of

(3.13b) a=iG(k,hyu, G(k,h) = %q&k(h), wiuo = 1,
with
(3:13¢) or(h) = tan~'(fi(h)), tr <t <tpy1, k=0,1,....

While fi(h) has a similar form to (3.9), it has a k (i.e., time) dependence, e.g.,
fr(h) = 4hX(te41/2)/(4 — h2X2(tx41/2)) for the implicit midpoint rule. Thus, the in-
terpretation of global errors is not as transparent as for constant coefficients problems.
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One important case in which more can be said is that of periodic variable coeffi-
cients. To see this, consider first the periodic skew-Hermitian model problem

(3.14) u=:iA(t)u, u0)=wo, uwuo=1, At+T)=A¢), T>0.

From Floquet theory [Hal], it is known that

1 T
(315)  w@) =V, pO=pE+T), v=iby, b=y /0 A(t)dt.

The following facts are easy to verify.

LEMMA 3.6. (a) The solution u(t) of (3.14) is periodic of period T <= b =
Zm, m € Z. (b) The solution u(t) of (3.14) is periodic of period T, for some T
= \ b and 2" are rationally dependent (i.e., there are integers | and m so that
b= %m).

Cons1der discretization of (3.14) with a Gauss RK scheme and stepsize h =
%, M € 7ZZ(M # 0), and the corresponding approximation 4 from (3.13a,b,c). From
periodicity of A(t) we have that (3.13) in this case is a discontinuous periodic skew-
Hermitian problem with period T'. Floquet theory gives

- - T
(3.16)  @(t) =pt)w(t), Bt)=pt+T), w=idbw, b= % /0 G(k, h)dt.

We have . . R
plt) = b CODop0), i) = ¢ o CEM D),

so at integer multiples of T" the global error is
(3.17) u(IT) — 4(IT) = p(0)(v(IT) — w(IT)), leZL.

Thus, at multiples of T' the global error only depends on the difference between the
solutions of two constant coefficient skew-Hermitian /problems We know how these
behave. In particular, v(t) = w(t) for ¢ such that (b—b)t is a multiple of 2; since b—b
is an O(h?s—1) quantity for an s-stage Gaussian rule, this could still be a long time.
The global error can be better characterized in special cases where the assumptions
of Lemma 3.6 are satisfied. An important one is when both b and b are 0, for then we
need only consider what happens for 0 < ¢t < T'. We immediately obtain

u(t) _ ﬁ(t) — p(o)v(o)elﬁ )\(s)ds (1 _ eiﬂ(G(k,h)‘A(s))ds)’

which displays at worse an O(h) deterioration in the global error.
The argument for the periodic skew-Hermitian linear system case goes along the
following lines. Suppose we have the problem
(3.18)
Ui)=St)U, U0)=U,, UiUo=1, S*t)=-S(t), St+T)=S{k), T>0.

Since U € Un*n(t), the Floquet theory gives

(3.19a)  U(t) = P(t)eBt, ,P(t)=P(t+T)ecUnxn(t), B= % / ) S(t)dt,
0



Downloaded 09/29/14 to 129.237.46.100. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

272 L. DIECI, R. D. RUSSELL, AND E. S. VAN VLECK
where B* = —B, and it suffices to assume that
(3.19Db) U(t) = P(t)eirt, A = diag()i, i =1,...,n) € Rnxn,

The results for the model problem (3.14) are now applicable. For example, Lemma
3.6 extends to read: (a) U(t) = Ut+T) < X\ = Z&mi, m; € Z, and (b)
Ut)=U(t+ f) for some T <=> all \;, T are rationally dependent.

The above results are reminiscent of the Hamiltonian case, where one seeks sym-
plectic schemes which give exact solutions to perturbed Hamiltonian systems. The
observation that we are exactly solving a perturbed skew-Hermitian linear system
may on one hand not appear to be particularly insightful, since it is true by direct
construction, simply using the property of unitariness. On the other hand, its impli-
cations are nontrivial. It allows us to limit consideration to perturbations belonging
to the same class of problems. This is not possible for nonunitary integrators, where
the nonskew-Hermitian perturbations lead to numerical instability (cf. Example 3.2
and §5).

These perturbations for a consistent one-step scheme can be quantified. For the
model problem (3.2), we still have (3.6), but now

Pi(ip)
Qp(ip)

where P; and Q) are polynomials of degrees | and p, respectively, and (with P, and
Qp evaluated at ip)

(3.20) R(ip) = Rip(ip),  Rip(ip) = = p(p)er*®),

o R@))? + (3(R))? \

(3.21) ”(")‘((m(czp>)2+(8(op))2) ’
L (S(P)RQ) - R(P)IQ)
¥(k) = tan”™? (?R(P)%(Q) 3 S(P)S(Q)) :

Thus one exactly solves the perturbed problem

(3.22) o= [ + i) v ugwo=1,

which has the exact solution u(t) = p(u)t/hei¥(Wt/hyuy. The perturbed problem is
not skew-Hermitian, and moreover, during integration one never recovers a unitary
solution.

Some general error patterns can be observed for nonunitary schemes. For con-
sistent explicit schemes Qp(z) = 1 so that p(u) > 1 (since e is approximated to at
least O(22) for small z). This means that the unstable problem (3.22) is being inte-
grated, and global errors grow in magnitude in a monotonic fashion. On the other
hand, p(i) < 1 for many implicit schemes (e.g., Radau RK schemes), which implies
that (3.22) will eventually be stiff and uy will approach zero in magnitude. Thus,
the behavior observed in Example 3.2 for the Euler rules is somewhat typical. Inter-
estingly, for both implicit and explicit nonunitary schemes, although the computed
solution does not resemble the exact solution, the angular component does accurately
approximate the exact solution’s phase ei¥(#), In other words, if we could separate
magnitude and phase for the approximate solution and keep the phase portion, we
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could continue the integration, with reasonable hope of maintaining an accurate uni-
tary approximation, as for an automatic unitary integrator. This simple observation
provides a motivation for the construction of projected unitary integrators in the next
section.

4. Automatic unitary integrators: nonlinear case. Projected unitary
integrators.

4.1. Automatic unitary integrators: nonlinear case. Here, we extend the
results about automatic unitary integrators from the linear case to a general nonlinear
case of the form
(4.1)

U=HUt)U®), U@O)=Uy, UUp=1, H(V,t)e§™"(t) VYV eC"? Wi

THEOREM 4.1. All Gauss RK schemes are automatic unitary integrators for
(4.1).
Proof. Consider the s-stage Gauss RK scheme (using (3.3))

8
(4.2a) Uk41 = Uk + hzblHklUkl,
=1
(4.2b) Ui = Uy +hZa[ijjUkj, l=1,...,s,
Jj=1

where Hy; := H (U, ti+cih). For this nonlinear system, consider further the iteration
form=0,1,2,...:

(4.3a) U = U+ 0 Y b HGUGHY,
=1
(4.3b) UT) = U+ b Y ay HEPUTHD,  1=1,...,5,
=1

where H, ,(c;") = H(U, (m) ,tr + cth). By construction, each iteration corresponds to a
discretization of some skew—Hermitian linear problem by which Theorem 3.4 yields a

unitary solution Ukm'H) To prove the theorem it suffices to show that the iteration

U in (4.3a) are explicitly

U(m+1)

(4.3b) converges. (Note that the intermediate iterates
written simply to emphasize the relationship between the iterates U, (mH),

U, ,g'fi" 1) and a linear problem.)

The system (4.2b) can be expressed in the form
(Ins — RQUWi)) Wi, = B,

where I, is the ns x ns identity matrix,

annl - aal H(Ukl) O

Q=1 ... ... .. ,
aisl o aged O H(Uks)
Ukl Uk

Uks Uk



Downloaded 09/29/14 to 129.237.46.100. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

274 L. DIECI, R. D. RUSSELL, AND E. S. VAN VLECK

The iteration (4.3b) is then
(4.4) W™ = (1 - hQW™)) ' By,

and convergence follows for h sufficiently small. 0

Remark. For continuous orthonormalization, which is the practical situation of
concern to us which leads to a nonlinear system of the form (4.1), H is constructed to
be skew-Hermitian using the unitariness of U(t). Here, the intermediate approximate
solution values Uy, for the Gauss RK scheme are generally not unitary. To prove
unitariness of Ux41 we must have each Hy; skew-Hermitian, and the approximate H
is forced by construction to be skew-Hermitian in (2.9).

In the literature on stiff IVPs, Gauss RK schemes have been regarded as expensive
because of the large systems to solve during the Newton iteration. Much effort has
gone into finding efficient ways to solve the associated nonlinear systems by alternative
means. In our case, for a nonlinearity as in (4.1), the iteration we used in the proof of
Theorem 4.1 is also of practical interest, and we have implemented it for our examples
in §5. It is easily seen that the contraction constant in the iteration (4.4) is proportional
to h||H'(U)||. Therefore, a small stepsize h is required for convergence whenever H(U)
is rapidly varying, while large h is sufficient when H(U) varies slowly (see also §5).
Of course, one might consider a different iteration for solving the nonlinear system
in (4.2b). The standard choice is Newton’s method. Unfortunately, if iteration is
not carried to convergence, then the solution need not be a unitary approximation.
Moreover, Newton iteration seems generally quite expensive. We can see this for the
continuous orthonormalization equations (2.7)—(2.9) as follows: Let

R (U*AZ + Z* AU )i, if 1 > m;
(HU, Z))im = { iIS(U*AZ + Z*AU)y,  ifl=m;
—(U*A*Z + Z*A*U)iym, otherwise,

and consider the linearization of (2.7) around a solution U(t). Thus, for the first
variation V (t) satisfies
V=UHU,V)+VH(U),

for which there is no obvious exploitable structure computationally.

4.2. Projected unitary integrators. We now consider a class of unitary in-
tegrators which can be easily constructed from nonunitary integrators. The basic
idea for one-step schemes is as follows: Let Uk be a given unitary approximation to
U(tx) and suppose the approximation Uk4+1 to U(tx) is computed by a nonunitary
scheme. A unitary approximation Uk can be formed by taking the QR factoriza-
tion U’Hl = Ug41Rr+1. Proceeding in this fashion we have constructed a unitary
integrator. The extension of this approach to multistep schemes is immediate.

The obvious advantage of this procedure is that in theory any nonunitary scheme,
even an inexpensive explicit one, suffices. Furthermore, one could intermittently
project the computed solution into the set of unitary matrices rather than at every
step, since from local error considerations the unitary component of the nonunitary
approximation is still approximated accurately for a finite number of steps. More
precisely, we have the following.

LEMMA 4.2. Suppose that Z € C**" and assume that for some p and ho > 0,
Z*Z = I+ O(h?) for 0 < h < hg. The unique QR factorization of Z such that
Z =UR, U e Urxn, R € T*n, and Ri; > 0 satisfies R = I + O(h?).
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Proof. The proof is a simple induction argument for the Gram-Schmidt
process. ]

To conclude this Section, we look at one possible way to estimate global errors for
both automatic and projected unitary integrators. Consider first automatic unitary
schemes. Let U(t,t),t > t, be the exact solution of the DE in (4.1) with initial
conditions (ICs) satisfying U*(f)U () = I, let U; be the computed solution at ¢; and
let Uj(t) be the exact solution of the system satisfying ICs Uj(t;) = U;. Then, for the
computed solution at tx we have (with to = 0)

k-1
(4.5) U =Ulte,to) + Y Ulte, tk—j)Ex—; Vk and Vh,
Jj=0

where Ej_; is the local truncation error matrix. Now consider projected unitary
integrators, assuming the projection is done at each step. Let Z; be the computed
unprojected approximations, and let Z; = @Q;R; be the QR factorization. For the
projected numerical approximations at t; we have

k-1 0
(46)  Qr=U(te,to)Ry' - Rg' + > Ultr,tr—j)Fe—j [ [ Rg:, Vk and Vh,
Jj=0 I=j

where Fj_; is the local truncation error matrix. By Lemma 4.2, each Rl_1 is the
identity matrix plus terms of the order of the local truncation error, so (4.5) and (4.6)
are qualitatively the same. Taking norms in (4.5) to bound the error would show that
local errors accumulate at worst linearly. Although no damping can be expected from
the (unitary) U(t,tr—;), the global errors from (4.5) and (4.6) are in fact trivially
bounded by 2, since the 2-norm of the difference between any two unitary matrices is
bounded by 2.

5. Numerical examples. In this section we compare the Gauss unitary integra-
tors of orders two and four, projected unitary integrators, and standard nonunitary
integrators on linear and nonlinear problems of skew-Hermitian type. We consider
fixed and variable stepsize implementations. As fixed stepsize integrators, we have
implemented second- and fourth-order Gauss RK, explicit Runge-Kutta and Adams—
Bashforth methods. As variable stepsize integrators, we used the multistep code of
Hindmarsh LSODE (with both Adams and Backward Differentiation formulas), and
the Runge-Kutta Fehlberg code RKF45. Unless otherwise noted, when using RKF45
and LSODE, both relative and absolute error tolerances are set to 10—6.

Comparison for the integration schemes is done in terms of accuracy (against the
exact solution) and preservation of unitariness. Given a matrix U we measure the loss
of unitariness as || — U*U||r where || - ||F denotes the Frobenius norm.

Implementation of Gauss methods. The nonlinear iteration (4.3a,b) is imple-
mented to solve (4.2) for the Gauss RK schemes of orders 2 and 4. In our numerical
experiments, the convergence test is that ||Fii(Uka, - .., Ugks)||oo < 10-6, where

8
Fa(Uki, - - -, Uks) = Ut — Uk, — hZaszijkj, il=1,...,s.
j=1

Note that even linear skew-Hermitian problems may require more than one iteration
to converge. As initial guess for the nonlinear iteration we simply use the past value
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Ui at all Gauss points. A more sophisticated choice would be to use an explicit
integrator to provide these initial guesses. This would in fact also yield a local error
approximation from which a variable stepsize Gauss scheme could be implemented.

Implementation of projected unitary integrators. To implement a projected uni-
tary integrator it is necessary to project the solution Uk41 onto the space of unitary
matrices. We do so using the modified Gram—Schmidt process. This is twice as ef-
ficient (see [GVL]) as a QR factorization based on Householder transformations; in
the latter case, some care must also be exercised to ensure that the R;; are positive.
Implementation of projected unitary integrators can be awkward when using existing
initial value software. For instance, LSODE uses a Nordsieck array implementation
and updating this array with projected values is rather expensive and inconvenient
to access. When using RKF45 [SWD], it is necessary to update the code’s internally
stored function values. While any nonunitary integrator may be used to form a pro-
jected unitary integrator, here we restrict attention to explicit nonunitary integrators.

A direct comparison of computational costs between the Gauss RK schemes and
the projected integration schemes is difficult to give because of several factors, includ-
ing stepsize control, frequency of projection, number of iterates of (4.3), etc. However,
a rough idea of the relative costs may be obtained by noting that a single step of a
fourth-order projected RK scheme has nearly the same cost as a single iteration of a
fourth-order Gauss RK scheme.

Ezample 5.1. Consider the trivial scalar skew-hermitian model problem

L= iU
u(0) =1.

Figure 1 shows the absolute error using the fourth order Gauss method with a fixed
step size and confirms the global error bound in (3.10).

0.5 T T

=
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F1G. 1. Global error logip (Gauss 4, h = 1,4 = iu)

Ezample 5.2. Consider the real linear skew-symmetric problem

Co 0 Bsin(at)
utt) = (—,B sin(at) 0 ) ),

U©)=1I,
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with exact solution ( ¢(t)) in(¢(t))
cos sin
U(t) = ( —sin(¢(t)) cos(4(t)) ) ’

where ¢(t) = £(1 - cos(at)).

In Table 1 the accuracy and unitariness of the computed solution are compared
for the following fixed step methods: the second-order Gauss scheme (Gauss 2), the
fourth-order Gauss scheme (Gauss 4), the second-order (Heun’s method) and the
fourth-order (the classical) Runge-Kutta schemes (RK2 and RK4), the second- and
fourth-order Adams—Bashforth methods (AB2 and AB4), and the corresponding pro-
jected unitary integrators (PRK2, PRK4, PAB2, and PAB4). In Table 2 various vari-
able stepsize codes are compared, viz., an unprojected and a projected Runge-Kutta
Fehlberg code (RKF45 and PRKF45, respectively) and LSODE with maximum order
of 2 and 4 (LSODE 2 and LSODE 4) using both Adams and BDF formulas. All
computations are for 0 <t < T = 1000. Figure 2 gives a log plot of the global error
for Gauss 2 witha=8=1.

TABLE 1
Example 2: Fixed Step Methods (h = 0.1,T' = 1000, = 8 = 1)
Method Global Error Unitary Error
Gauss 2 3.3E-04 2.2E-14
Gauss 4 6.0E-07 1.0E-14
RK 2 8.1E-02 2.4E-01
RK 4 4.3E-05 1.2E-04
AB 2 2.5E-01 8.1E-01
AB 4 1.4E-02 4.0E-02
PRK 2 2.8E-03 4.4E-16
PRK 4 7.9E-07 4.4E-16
PAB 2 1.3E-02 6.3E-16
PAB 4 3.1E-04 6.3E-16
TABLE 2
Example 2: Variable Step Methods (T' = 1000, = 8 = 1)
Method Global Error Unitary Error
RKF45 1.5E-03 4.2E-03
PRKF45 4.6E-05 4.4E-16
LSODE 2 (Adams) 9.5E-03 2.6E-02
LSODE 2 (BDF) 7.8E-03 2.2E-02
LSODE 4 (Adams) 5.9E-03 1.7E-02
LSODE 4 (BDF) 2.2E-03 6.2E-03

Example 5.3. Consider now the linear skew-Hermitian system
oo [ icos(at) Bt
ut) = ( -Gt icos(at)) Ul
U(0) =1,

with exact solution

= o00) ( 5050 o)
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F1G. 2. Global error logio (Gauss 4, h =0.25,a =8 =1).

where 6(t) = L sin(at) and ¢(t) = 5¢2.
In Tables 3 and 4 we summarize the global error and loss of unitariness in the
computed solution for various integrators with fixed stepsize and for 0 <t < T' = 1000.

TABLE 3
Example 3: Fixed Step Methods (h = 0.1,T = 1000,a = 1,3 = 0)
Method Global Error Unitary Error
Gauss 2 1.9E-04 2.5E-14
Gauss 4 3.3E-07 1.1E-14
RK 2 8.1E-02 2.3E-01
RK 4 4.3E-05 1.2E-04
PRK 2 1.6E-03 6.3E-16
PRK 4 4.1E-07 6.3E-16
TABLE 4
Example 3: Fixed Step Methods (h = 0.1,T = 1000, = 1,8 = 1)
Method Global Error Unitary Error
Gauss 2 1.99 6.0E-14
Gauss 4 1.99 5.1E-12
RK 2 Failed Failed
RK 4 Failed Failed
PRK 2 1.99 6.4E-16
PRK 4 1.99 6.5E-16

Figures 3 and 4 are log plots of the global error for different values of o and
(. Figure 3 shows that the global error remains small for @ = 1 and § = 0; this is
expected, since the coefficient matrix is periodic with mean zero (cf. §3). Figure 4
shows that the global error is rather erratic and realizes its maximum possible value
of 2fora=1and §=1.

Example 5.4. Consider the linear system

ej—v1y+ty=0, 0<e<<],
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Fig. 4. Global error logio (Gauss 4, h=0.1, a =1,8=1).

for -1 <t < +1 and v > 0 and the continuous orthonormalization equations (2.7)-
(2.9). This example corresponds to a two-point boundary value problem with a so-
lution space which changes from oscillatory for ¢ < 0 to dichotomic for ¢ > 0. The
interest is to see whether there is any impact on the integration for the unitary matrix
U(t). None is observed (see Table 5).
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TABLE 5
Example 4 (e = 0.01,y = 1, h = 0.01)
Method Unitary Error
Gauss 2 6.6E-16
Gauss 4 3.9E-15
RK 2 2.7E-01
RK 4 1.4E-02
PRK 2 4.7E-16
PRK 4 6.3E-16
RKF45 2.9E-06
PRKF45 3.1E-16

Ezxample 5.5. Consider the linear matrix differential equation

V() = (‘230 3)) Y (t).

When using continuous orthonormalization to find U(¢) with U(0) = ( (1) 2) the solution
quickly approaches V = (1)(1)) (see [VLM]). From the summary in Table 6 we see that
although RKF45 initially takes small steps in order to maintain accuracy, eventually
it takes reasonably large time steps. In fact, the maximum step-size is basically the
same value for several different error tolerances. In this respect, the time integration
for U(t) is not a stiff IVP.

TABLE 6
Example 5 (PRKF45, T = 10)

Local Error Tolerance

Minimum Step Size

Maximum Step Size

1.E-04 1.1E-02 3.2E-01
1.E-06 6.2E-03 2.3E-01
1.E-08 2.4E-03 2.4E-01
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