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Abstract. We consider infinite systems of ODEs on the two-dimensional integer lattice, given
by a bistable scalar ODE at each point, with a nearest neighbor coupling between lattice points.
For a class of ideal nonlinearities, we obtain traveling wave solutions in each direction eiθ, and we
explore the relation between the wave speed c, the angle θ, and the detuning parameter a of the
nonlinearity. Of particular interest is the phenomenon of “propagation failure,” and we study how
the critical value a = a∗(θ) depends on θ, where a∗(θ) is defined as the value of the parameter a at
which propagation failure (that is, wave speed c = 0) occurs. We show that a∗ : R→ R is continuous
at each point θ where tan θ is irrational, and is discontinuous where tan θ is rational or infinite.
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1. Introduction. In the study of crystal growth in material science, there is
often an underlying spatial lattice which plays an important role in the evolution and
dynamics of the system. Anisotropy is a central feature in such problems [5], [37], and
a microscopic lattice structure can be a source of anisotropy which is observable on a
macroscopic scale. For example, wave motion in a lattice may exhibit a velocity which
is direction dependent; in addition, the lattice may cause a freezing or “pinning” of the
wave motion, which does not occur for such motion in a continuum. These phenomena
were described in the context of crystal growth by Gibbs [16, p. 324] almost 120 years
ago and more recently examined by Cahn [3] for diffuse interfaces.

Systems of differential equations with an underlying lattice structure occur in
mathematical models in many different scientific disciplines. Besides material science
(see, for example, [4]), we mention biology [20], [39], and pattern recognition [12], [13].
See also the survey papers [8], [9], [21], and [24], for numerous additional references.

In this paper we study an idealized system of lattice differential equations, which
exhibits all of the above phenomena, and which lends itself to rigorous mathematical
analysis of these phenomena. In particular, we consider the infinite system of ODEs

(1.1) u̇i,j = α(∆u)i,j − f(ui,j), (i, j) ∈ Z2,

on the two-dimensional integer lattice Z2. Here each variable ui,j = ui,j(t) is real
valued, α > 0 is a parameter, f : R → R is a given function, and ∆ denotes the
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456 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

discrete Laplacian, defined as

(1.2) (∆u)i,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j .

Typically one takes a function f with a cubic-like shape (a double well potential)—for
example,

(1.3) f(u) = u(u− a)(u− 1),

where a ∈ (0, 1) is a so-called “detuning” parameter. If f is locally Lipschitz, then the
initial value problem for (1.1) is well posed in l∞(Z2), and we obtain local existence
and uniqueness of solutions in that space in both forward and backward time. (Quite
generally, if D is any countable set, we let l∞(D) denote the Banach space of all
bounded functions ϕ : D → R or ϕ : D → C, with the supremum norm.)

Let us briefly examine the (linearized) stability of certain equilibrium solutions of
(1.1). If f(b) = 0 for some b ∈ R, then the spatially homogeneous element u0 ∈ l∞(Z2)
defined by u0

i,j = b for all (i, j) ∈ Z2 is an equilibrium of (1.1). The linearized stability
of (1.1) at this equilibrium is determined from the spectrum of L = α∆ − f ′(b)
considered as an operator in l∞(Z2). Let us write the discrete Laplacian ∆ in (1.2) as
∆ = SH +S−1

H +SV +S−1
V − 4I, where SH and SV denote the horizontal and vertical

shift operators on l∞(Z2), namely (SHu)i,j = ui+1,j and (SV u)i,j = ui,j+1. We have
that spec(SH) = spec(SV ) = S1, where S1 = {λ ∈ C | |λ| = 1} is the unit circle in the
complex plane, and where spec(T ) denotes the spectrum of an operator T . Therefore,

spec(SH + S−1
H ) = spec(SV + S−1

V ) = [−2, 2]

by the spectral mapping theorem. We also note that if X is any Banach space, and
T1 and T2 are two bounded linear operators on X which commute, T1T2 = T2T1, then

(1.4) spec(T1 + T2) ⊆ spec(T1) + spec(T2),

where here A1 + A2 denotes the set of all sums a1 + a2, with a1 ∈ A1 and a2 ∈ A2,
for subsets A1, A2 ⊆ C. This result follows from the general theory of commutative
Banach algebras; see, in particular, Theorem 11.23 in [33]. As SH+S−1

H and SV +S−1
V

commute, we therefore have from (1.4) that

(1.5) spec(∆) ⊆ [−8, 0].

In fact, one sees that equality holds in (1.5). Given any λ ∈ [−8, 0], there exist
ζ1, ζ2 ∈ S1 such that λ = ζ1 + ζ−1

1 + ζ2 + ζ−1
2 − 4. Thus the element u ∈ l∞(Z2) given

by ui,j = ζi1ζ
j
2 satisfies ∆u = λu, and so λ ∈ spec(∆).

It follows now that spec(L) is the interval

spec(L) =

 [−8α− f ′(b), −f ′(b)] for α ≥ 0,

[−f ′(b), −8α− f ′(b)] for α ≤ 0.

Thus we have linearized stability if f ′(b) > max{0,−8α} holds, and linearized in-
stability if on the other hand f ′(b) < max{0,−8α}. In particular, if f ′(b) > 0 (for
example with f as in (1.3), with a ∈ (0, 1), and b = 0 or 1), the equilibrium b is stable
for any α ≥ 0. In fact, such an equilibrium is stable for α < 0 sufficiently near zero,
namely for α > −f ′(b)/8.
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TRAVELING WAVES ON A LATTICE 457

By analogy with the related PDE

(1.6) ut = α∆u− f(u), x ∈ R2,

for u = u(t, x), where here ∆ denotes the usual Laplacian ∆ = D2
x1

+ D2
x2

, one
expects that traveling wave solutions will play an important role in understanding
the dynamics of (1.1). However, one soon sees that the structure of such solutions
for the lattice system (1.1) is richer and much more complex than for the PDE (1.6).
The study of traveling wave solutions of (1.6) leads to the second order ODE

(1.7) −cϕ′ = αϕ′′ − f(ϕ)

for ϕ : R → R, with appropriate boundary conditions for ϕ(±∞). (See in particular
the pioneering work in [15] on this problem.) On the other hand, for lattice equations
such as (1.1), one typically instead obtains a differential-difference equation.

More specifically, consider the analogue of (1.1)

(1.8) u̇i = α(ui+1 − 2ui + ui−1)− f(ui), i ∈ Z,

in one space dimension. Following [44], consider solutions ui(t) of the form

(1.9) ui(t) = ϕ(i− ct),

for some unknown function ϕ : R→ R and unknown wave speed c ∈ R. For c 6= 0, we
easily see that (1.9) is equivalent to the requirement that ui(t+1/c) = ui−1(t) for all i
and t. Quite generally, any solution (1.8) of the form (1.9) may be considered a trav-
eling wave solution. Substitution of (1.9) into (1.8) yields the differential-difference
equation

(1.10) −cϕ′(ξ) = α

(
ϕ(ξ + 1)− 2ϕ(ξ) + ϕ(ξ − 1)

)
− f(ϕ(ξ))

for ϕ(ξ). If we assume that f has a cubic-like shape, as for example (1.3), with
f(0) = f(1) = 0, then it is natural to impose the boundary conditions

(1.11) ϕ(−∞) = 0, ϕ(∞) = 1,

indicating that ui → 0 or 1 as i→ −∞ or ∞, respectively. As noted above, if α ≥ 0
then the two spatially homogeneous equilibria b = 0, 1 are stable.

In contrast to the second order equation (1.7), the differential-difference equation
(1.10) is a genuinely infinite-dimensional problem. As described in the work of Rusti-
chini [34], [35], the natural setting for an equation such as (1.10) is the Banach space
C[−1, 1] of continuous functions on [−1, 1]. This is in the spirit of the general treat-
ment [18] of Hale and Verduyn Lunel, in which differential equations with retarded
arguments (such as involving ϕ(ξ−1) but not ϕ(ξ+1)) are placed in a function space
setting. Moreover, while a great deal is known about retarded differential equations,
with the exception of Rustichini’s work very little of any general theory addresses the
so-called “mixed”-type equations (1.10) in which both forward ξ + 1 and backward
ξ−1 shifts of the argument ξ appear. Nevertheless, existence of solutions for a class of
problems exemplified by (1.10), (1.11) is proved in [44] and [19] (see also [43]). More
recently, a systematic study of the general theory of such mixed equations, and of the
global structure of the solutions, was initiated in [22], [23], and this should provide
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458 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

additional tools for the analysis of the present problems. Results on problems with
Fisher-type (monostable) nonlinearities are given in [39] and more recently in [42] and
[45]. Finally, for results on traveling waves in a circular ring see [1], [40], and [41],
and for traveling waves for discrete-time problems see [11].

An important qualitative difference between traveling wave solutions of the two
systems (1.6) and (1.8) is the occurrence of “propagation failure” in the discrete system
(1.8). To describe this phenomenon, which was studied in [20] (see also [32]), first
consider the PDE (1.6) and the related ODE (1.7). Let f be the cubic nonlinearity
(1.3), and impose the boundary conditions (1.11). Associated with the second order
system (1.7), which is a damped Hamiltonian system, is the energy function E : R2 →
R given by

(1.12) E(ϕ,ϕ′) =
α

2
(ϕ′)2 − F (ϕ),

dF

dϕ
= f.

If ϕ(ξ) satisfies (1.7), then

(1.13)
dE

dξ
= −c(ϕ′(ξ))2

holds, for E = E(ϕ(ξ), ϕ′(ξ)) evaluated along the solution. (We caution the reader
that the function E is related to, but different from, the energy functional

V =

∫
Ω

α

2
|∇u|2 − F (u) dx,

associated with the original PDE (1.6) on a bounded domain Ω ⊆ R2. If u(t, x)
satisfies (1.6) on Ω, with appropriate boundary conditions, then

dV

dt
= −

∫
Ω

u2
t dx ≤ 0

holds, for V evaluated along this solution.) Observe that the quantity (1.13) is ev-
erywhere nonpositive if c ≥ 0, and is everywhere nonnegative if c ≤ 0. Also note that
for a solution ϕ of (1.7) satisfying the boundary conditions (1.11), the function E in
(1.12) has the limits −F (0) and −F (1) respectively, as ξ → −∞ and ξ → ∞. By
examining the values of F (0) and F (1) and by considering the sign of c, one easily sees
from (1.12), (1.13) that for any such solution, the quantities a− 1/2 (where a is the
parameter in the function f) and c have the same sign. In particular, when a = 1/2
one obtains a standing wave, namely, a solution with c = 0; but for any a 6= 1/2, we
necessarily have a nonzero wave speed c 6= 0.

In contrast to the above scenario, the situation for the lattice system (1.8), with
the differential-difference equation (1.10), with (1.11), is very different. Here there is
no discrete analogue of the energy function E for (1.10) (despite the fact that there is
an analogue of the functional V for (1.1)). We will show that typically there exists a
nontrivial interval |a−1/2| ≤ γ, with γ > 0, in which c = 0 must hold for any traveling
wave solution of (1.10), (1.11). Thus, in order to obtain a wave traveling with nonzero
speed c 6= 0 (propagation), it is necessary to choose the parameter a at least a distance
γ away from the center value 1/2, that is, one requires that |a−1/2| > γ. Throughout
the interval |a− 1/2| ≤ γ the standing wave fails to propagate along the lattice.

An elementary argument based on the implicit function theorem partially confirms
this phenomenon. Define a map

G : l∞(Z)× R× R→ l∞(Z)
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TRAVELING WAVES ON A LATTICE 459

given in coordinate form by

G(u, α, a)i = α(ui+1 − 2ui + ui−1)− f(ui, a),

where we denote the dependence of the nonlinearity f in (1.3) on a. Certainly
G(u0, 0, a) = 0 for any a, where u0 ∈ l∞(Z) denotes the element

u0
i =

 0, i < 0,

1, i ≥ 0.

Moreover, G is Fréchet differentiable, and if a ∈ (0, 1), then its Fréchet derivative
DuG(u0, 0, a) with respect to its first argument is an isomorphism in l∞(Z), being
given by a diagonal operator with entries −Duf(u0

i , a) 6= 0. The implicit function
theorem ensures that given any a ∈ (0, 1), then for α sufficiently near 0 there exists
a solution u∗ = u∗(α, a) near u0 to the equation G(u, α, a) = 0. The solution u∗

thus corresponds to a standing wave, namely a solution of (1.10) with c = 0. With
additional arguments, one might expect to conclude monotonicity, u∗i < u∗i+1, of
this solution in i and also conclude that the boundary conditions (1.11) hold for
this solution (which we do later, but for a different nonlinearity f). Thus, for any
a ∈ (0, 1), one would have that |a − 1/2| ≤ γ = γ(α) for all sufficiently small α > 0.
Note in particular this implies that γ(α)→ 1/2 as α→ 0. See [27] for further results
in this spirit, where in particular uniform and explicit estimates on the range of α for
which the implicit function theorem is valid are given.

We must add a cautionary note. For (1.10), (1.11), it is not obvious that a solution
(even if monotone in ξ) is unique for a given c. In fact, it is not obvious for a given α
and a that the wave speed c for which a solution exists is unique. One might expect
that for a particular α and a, there may be several solutions of (1.10), (1.11) with
either equal or different wave speeds c and with either c = 0 or c 6= 0 or both. And
even if, for each α and a, there is a unique wave speed c = c(α, a), it is not obvious
that this c depends monotonically on a. In this paper we shall consider a particular
f , related to but different from (1.3), and prove such uniqueness and monotonicity
claims for traveling waves, which we construct in a fairly explicit fashion. In [23] such
results are proved for a general class of f including (1.3).

There is a further richness of structure that arises in problems on a two-dimensional
lattice, stemming from the fact that one may consider different directions of motion
of a traveling wave. As a result of the symmetry imposed by the lattice Z2, the exis-
tence and speed of a wave generally will depend on the direction eiθ of motion, with a
special role accorded those directions for which the slope tan θ is rational. Let θ ∈ R
be given, denote

(1.14) σ = sin θ, κ = cos θ,

and consider solutions of (1.1) of the form

(1.15) ui,j(t) = ϕ(iκ+ jσ − ct)
for some c ∈ R, where again ϕ : R→ R. We may consider solutions of the form (1.15)
to be traveling waves on the lattice Z2, in the direction eiθ. Substitution of (1.15)
into (1.1) leads to the equation

(1.16) −cϕ′(ξ) = α

(
ϕ(ξ + κ) + ϕ(ξ − κ) + ϕ(ξ + σ) + ϕ(ξ − σ)− 4ϕ(ξ)

)
− f(ϕ(ξ)),
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460 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

and again, it is natural to impose the boundary conditions (1.11). Note that if θ is
an integer multiple of π/2, then (1.16) reduces to (1.10) considered above. On the
other hand, if θ−π/4 is an integer multiple of π/2, then under the change of variables
ψ(ξ) = ϕ(2−1/2ξ), (1.16) is equivalent to the equation

(1.17) −21/2cψ′(ξ) = 2α

(
ψ(ξ + 1)− 2ψ(ξ) + ψ(ξ − 1)

)
− f(ψ(ξ)),

which is the same as (1.10), but with rescaled parameters c and α. For other values
of θ, one does not expect any reduction of (1.16) to a simpler equation such as (1.10).
Unfortunately, the results in [19] do not cover this extension of the equation (1.10)
to (1.16), although one strongly expects analogues of their results to hold for a broad
class of nonlinear f .

In section 6 the relation between the wave speed c and detuning parameter a is
plotted graphically in Figure 1, for several choices of θ, for the idealized piecewise
linear nonlinearity (3.1), (3.2). Propagation failure is clearly visible on this graph
as a jump discontinuity in a, at c = 0. Also see Table 1 in section 4, where γ(θ) is
tabulated for various values of both θ and α. In particular, the limits γ → 1/2 as
α → 0, and also γ → 0 as α → ∞, are suggested. In fact, these limits are rigorously
established in section 4. Extensive calculations of the wave speed c as a function of
a, α, and θ, as well as calculations of the wave profile ϕ(ξ) itself for various a, α, and
θ, are to be found in [14].

Let us summarize the contents of this paper. In section 2, we prove a general
result about solutions of (1.1) which are monotone in a given direction eiθ, but which
are not necessarily traveling wave solutions (1.15). In particular, we prove that if an
initial condition is monotone in some direction, then so is the solution for all future
time. This general result holds for any Lipschitz nonlinearity f .

Section 3 is devoted to a brief discussion of the technical aspects of discontinuous
functions f , and the meaning of solutions of (1.1) for such f .

In section 4, we obtain traveling wave solutions (1.15) with speed c 6= 0 for a
particular piecewise linear f with a discontinuity, in every direction eiθ. Although
the mechanics of this involves straightforward applications of the Fourier transform,
considerable care is required in order to justify our calculations. We prove various
monotonicity properties of the solution here. In all of this analysis, it is necessary to
employ some of the general machinery of dynamical systems, such as the Mel’nikov
method. We also examine the range of the detuning parameter a for which these
solutions exist, as a function of θ, and we observe the phenomenon of propagation
failure. In particular, we note that the critical values a∗ = 1/2±γ(θ) of the parameter
a at which propagation failure first occurs, are functions which are continuous in θ
only at points such that the slope tan θ is irrational, and are discontinuous at θ for
which tan θ is rational or infinite.

In section 5, we construct traveling wave solutions with speed c = 0, that is,
equilibrium solutions, by taking limits c→ 0 of the solutions constructed in section 4.
We prove that these solutions are unique within a given class of monotone solutions,
and also that they exhibit some rather subtle continuity properties (such as possessing
a dense set of discontinuities whenever tan θ is irrational). When tan θ is rational or
infinite, we obtain a finite number (two or three) of distinct equilibrium solutions,
modulo translation on the lattice, while for tan θ irrational, we obtain uncountably
many such solutions.

Finally, in section 6, we summarize our results, and broadly discuss some related
topics.
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TRAVELING WAVES ON A LATTICE 461

2. Monotonicity of solutions. In this section we consider the role of mono-
tonicity of solutions. In particular, all the traveling wave solutions we construct will
turn out to be increasing functions ϕ(ξ) of the wave variable ξ. In order to underscore
the importance of solutions with such monotonicity properties, we note here that if
ϕ is a solution of equation (1.16) for some c 6= 0, and if in addition ϕ(ξ) is strictly
increasing in ξ, both for ξ ≤ −T , and for ξ ≥ T , for some T > 0, then in fact ϕ(ξ) is
strictly increasing in ξ for all ξ ∈ R. We do not present a formal proof of this fact,
although we do prove a closely related result in Theorem 4.6, and we observe that a
simple modification of this proof yields the claimed result.

Here we consider more general solutions of the lattice system (1.1), which may
or may not be traveling waves (1.9), but which are monotone in the wave variable ξ.
More precisely, let θ ∈ R be fixed, and let σ, κ, be as in (1.14). Define the set

(2.1) D = {iκ+ jσ | i, j ∈ Z}.
We observe, for later use, that if the ratio tan θ = σ/κ is irrational, then D is a dense
subset of R, while if tan θ is either rational or infinite, then there exists a quantity
ν > 0 such that

(2.2) D = {nν | n ∈ Z},
and so D is a discrete subset of R. We say that an element u ∈ l∞(Z2) in the phase
space of (1.1) is a monotone θ-wave if there exists a function ϕ : D → R such that

ui,j = ϕ(iκ+ jσ) for (i, j) ∈ Z2

and such that ϕ is nonincreasing:

ϕ(ξ1) ≤ ϕ(ξ2) if ξ1 ≤ ξ2 with ξ1, ξ2 ∈ D.
Let M(θ) ⊆ l∞(Z2) denote the set of all monotone θ-waves u. The next result shows
quite generally that the set M(θ) is positively invariant for the system (1.1).

Theorem 2.1. Assume that f : R → R is locally Lipschitz and that α > 0, and
consider a solution u(t) of the lattice system (1.1). Suppose that u(0) ∈ M(θ) for
some θ ∈ R. Then u(t) ∈M(θ) for all t ≥ 0 for which the solution is defined.

It is not hard to see that the unique solution of (1.1), with an initial condition
u(0) ∈M(θ), is obtained by solving the system

(2.3) ϕt(t, ξ) = αLϕ(t, ξ)− f(ϕ(t, ξ)), ξ ∈ D,
with the appropriate initial condition and then setting ui,j(t) = ϕ(t, iκ + jσ). Here,
ϕ(t, ·) ∈ l∞(D) for each t, and L : l∞(D) → l∞(D) is the bounded linear operator
given by

(2.4) Lϕ(ξ) = ϕ(ξ + κ) + ϕ(ξ − κ) + ϕ(ξ + σ) + ϕ(ξ − σ)− 4ϕ(ξ),

so (2.3) is an ODE in l∞(D). To prove Theorem 2.1, we shall actually prove a
slightly more abstract result for a class of systems containing (2.3). One easily sees
that Theorem 2.1 is a direct consequence of the following result, via (2.3), with Λ =
αL+ 4αI, and g(u) = f(u) + 4αu.

Proposition 2.2. Let D ⊆ R be any countable set, let Λ : l∞(D)→ l∞(D) be a
bounded linear operator, and let g : R→ R be a locally Lipschitz function. Define the
set

M = {ϕ ∈ l∞(D) | ϕ(ξ1) ≤ ϕ(ξ2) whenever ξ1 ≤ ξ2, with ξ1, ξ2 ∈ D},
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462 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

and assume that

Λϕ ∈M whenever ϕ ∈M.
Consider the differential equation

(2.5)
dϕ

dt
= Λϕ− g(ϕ)

in the space l∞(D), where by g(ϕ) we mean coordinatewise evaluation, that is, g(ϕ)(ξ) =
g(ϕ(ξ)) for each ξ ∈ D for ϕ ∈ l∞(D). Then for any solution ϕ(t, ξ) of (2.5), we have
that

ϕ(t, ·) ∈M for t ≥ 0, if ϕ(0, ·) ∈M,
for as long as this solution is defined.

Proof. First define a map ρ : l∞(D)→ l∞(D) by

ρϕ(ξ) = sup
ζ∈(−∞,ξ]∩D

ϕ(ζ).

Clearly, ρϕ ∈M, and also ρϕ = ϕ holds whenever ϕ ∈M; that is, ρ is a retraction of
l∞(D) onto M. In addition, one easily checks that

‖ρϕ1 − ρϕ2‖ ≤ ‖ϕ1 − ϕ2‖,
in the l∞(D) norm, that is, ρ is Lipschitz with Lipschitz constant 1.

Now consider, in place of (2.5), the system

(2.6)
dϕ

dt
= ρΛϕ− g(ϕ),

with the same initial condition ϕ(0, ·) ∈M, and let ϕ̃(t, ξ) denote the solution of (2.6)
with this initial condition. Certainly, this solution is unique, as ρ is Lipschitz. We
shall prove that ϕ̃(t, ·) ∈ M for all t ≥ 0 for which this solution is defined. From this
it follows that Λϕ̃(t, ·) ∈ M, hence that ρΛϕ̃(t, ·) = Λϕ̃(t, ·) for such t, since Λ maps
M into itself, and because ρ is the identity on M. Therefore, ϕ̃(t, ·) also satisfies (2.5),
that is, ϕ(t, ·) = ϕ̃(t, ·) ∈M, as desired.

To prove that ϕ̃(t, ·) ∈ M for positive time, fix any two points ξ1, ξ2 ∈ D, with
ξ1 < ξ2. We must prove that

(2.7) ϕ̃(t, ξ1) ≤ ϕ̃(t, ξ2) for t ≥ 0,

starting at t = 0 where (2.7) holds. Let η(t) = ϕ̃(t, ξ2)−ϕ̃(t, ξ1). Then for any compact
interval [0, T ] on which the solution is defined, there exists a constant K, such that

(2.8)

η̇(t) = ρΛϕ̃(t, ξ2)− ρΛϕ̃(t, ξ1)− g(ϕ̃(t, ξ2)) + g(ϕ̃(t, ξ1))

≥ −g(ϕ̃(t, ξ2)) + g(ϕ̃(t, ξ1))

≥ −K|ϕ̃(t, ξ2)− ϕ̃(t, ξ1)| = −K|η(t)|,
where in the first inequality we have used the fact that ρΛϕ̃(t, ·) ∈ M, and where K
is an appropriate local Lipschitz constant for g. But now, because η(0) ≥ 0, it follows
immediately from the differential inequality (2.8) that η(t) ≥ e−Ktη(0) for t ≥ 0. This
establishes (2.7), and proves the proposition.

Remark. A general open question, suggested by the above result, is to determine
the ultimate evolution of solutions of the system (1.1) which are monotone θ-waves.
In particular, one can ask when such solutions approach traveling waves (1.15) in the
class M(θ).
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TRAVELING WAVES ON A LATTICE 463

3. Discontinuous nonlinearities. It is generally very difficult to obtain rig-
orous results of a global nature, beyond the most elementary properties, for systems
such as (1.1) with a general nonlinearity f . One approach, which has the potential to
yield some understanding of the differential equation, is to consider idealized nonlin-
earities f which are either step functions, or are piecewise linear. In such cases, one
hopes that the system (1.1) will succumb to explicit calculations which can provide
insight into the dynamics of the problem. Indeed, McKean [28] adopted this approach
in his studies of the Nagumo equation.

In taking this approach, there arises the issue of whether such special nonlinear-
ities are representative of more general f , that is, whether the phenomena observed
persist in a robust fashion for a larger class of f , or whether they are merely arti-
facts of the discontinuities in f and its derivative f ′. One must be prepared to prove
theorems which address such issues, as they arise in the course of the calculations.
We mention that this approach, of studying idealized nonlinearities, has been taken
in [26] with some success for classes of differential-delay equations arising in a different
context, and we shall see that it bears fruit in the present case.

Below, we consider a class of piecewise linear f which are modeled on the cubic
(1.3). Specifically, we consider

(3.1) f(u) = f(u, a) = u− h(u− a),

where h denotes the Heaviside function

(3.2) h(u) =

 0, u < 0,

1, u > 0,

and where a ∈ (0, 1) as before. Our interest is in obtaining two-dimensional traveling
wave solutions (1.15) of (1.1), specifically, solutions (1.16) satisfying the boundary
conditions (1.11). In particular, we wish to study the dependence of these solutions
on the parameters α and a in the system, and also on the direction of propagation
eiθ of the wave.

The issue immediately arises as to what one means by a solution of (1.1) when f
is discontinuous. For our purposes, it will be sufficient to regard f (and the Heaviside
function h) as set-valued functions, with f(u) and h(u) singleton sets for u 6= a, and
u 6= 0, respectively, and

f(a) = [a− 1, a], h(0) = [0, 1],

compact intervals given by “filling in” the jump discontinuities in the graphs of f
and h. In this setting, by a solution of (1.1) we mean u(t) ∈ l∞(Z2) for which
each coordinate function ui,j(t) is absolutely continuous, and satisfies the differential
inclusion

u̇i,j(t) ∈ α(∆u(t))i,j − f(ui,j(t))

for almost every t. One can make a corresponding characterization of a solution of
the differential-difference equation (1.16), at least when c 6= 0. In fact, each solution
of (1.16) for c 6= 0 and with f as in (3.1) that we obtain, will satisfy ϕ(ξ) = a at
only one value of ξ. At that point, the derivative ϕ′(ξ) with respect to ξ will have
a jump discontinuity, and elsewhere the solution will be C1 and will satisfy (1.16) in
the classical sense.

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



464 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

4. Nonzero wave speed. In this section we fix the piecewise linear function f
as in (3.1), (3.2), with a ∈ (0, 1), and consider solutions of (1.16) for some c 6= 0, with
the boundary conditions (1.11). As always, σ and κ are given by (1.14). We keep
α > 0 fixed.

In what follows, for ease of notation we shall let Lϕ denote the expression (2.4).
We do not necessarily assume that L is to be interpreted as an operator on the space
l∞(D), as before, although we shall say so when this is the case. Generally, we shall
allow the variable ξ in the expression Lϕ(ξ) to take any real value.

We shall construct solutions of (1.16), (1.11) using the Fourier transform. How-
ever, a certain amount of care is needed in order that one may rigorously justify
the calculations. In particular, we shall initially assume that our solution ϕ satisfies
ϕ(ξ) = a for only one value of ξ. Without loss we may take this value to be ξ = 0 (by
translating the argument ξ), and therefore, we will assume that

(4.1) ϕ(ξ) < a for ξ < 0, ϕ(ξ) > a for ξ > 0,

in view of the boundary conditions (1.11). We are thus excluding any solutions which
cross the value ϕ(ξ) = a more than once. It follows from (4.1) that one has

(4.2) h(ϕ(ξ)− a) = h(ξ) for ξ 6= 0,

and so f(ϕ(ξ)) = ϕ(ξ)−h(ξ) for ξ 6= 0, by (3.1). With the condition (4.2), the system
(1.16) now takes the form

(4.3) −cϕ′(ξ) = αLϕ(ξ)− ϕ(ξ) + h(ξ)

of a linear inhomogeneous equation which can be approached with transform methods.
The assumption (4.1) on the solution ϕ will be justified a posteriori; that is, after we
construct ϕ satisfying (4.3), and also ϕ(0) = a, we shall show that it also satisfies
(4.1), and so is indeed a solution of (1.16).

We prove, in Theorem 4.6, that the solution ϕ is in fact strictly increasing through-
out all of R. One expects that every solution of (1.16), (1.11) that is increasing for all
large |ξ| is increasing on R. While we do not actually prove this fact for the nonlinear-
ity (3.1) (although see [23], however), we do see that it holds for a class of continuous
f , including the cubic (1.3), in a remark following the proof of Theorem 4.6.

The Fourier transform of ϕ, given by

(4.4) ϕ̂(s) =

∫ ∞
−∞

e−isξϕ(ξ) dξ,

is well defined for complex s satisfying Ims < 0, with |Ims| sufficiently small, provided
that ϕ(ξ) is bounded as ξ →∞, and that ϕ(ξ)→ 0 exponentially fast as ξ → −∞. (Of
course, with the boundary conditions (1.11) there is a problem with the convergence
of (4.4) for Im s ≥ 0.) Before proceeding further, we need the following lemma as
justification of our calculations.

Lemma 4.1. Let ϕ be a solution of (4.3), (1.11) for some c 6= 0. Then there exists
ε0 > 0 such that

(4.5) |ϕ(ξ)| ≤ Keε0ξ for ξ ≤ 0

for some K > 0.
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TRAVELING WAVES ON A LATTICE 465

Proof. Let ψ(ξ) = ϕ(−ξ). Then from (4.3) we have that

(4.6) cψ′(ξ) = αLψ(ξ)− ψ(ξ)

for all ξ > 0, with ψ(ξ) → 0 as ξ → ∞, by (1.11). Let ψ̂(ξ) denote (for this proof
only) the Laplace transform

ψ̂(s) =

∫ ∞
0

e−sξψ(ξ) dξ,

which is analytic in the right half-plane Re s > 0. In a standard fashion, after a
calculation, we obtain from (4.6) that

(4.7) ψ̂(s) =
q(s)

P (s)
,

where

(4.8)

q(s) = cψ(0) − α

(
eκs
∫ κ

0

e−sξψ(ξ) dξ − e−κs
∫ 0

−κ
e−sξψ(ξ) dξ

+eσs
∫ σ

0

e−sξψ(ξ) dξ − e−σs
∫ 0

−σ
e−sξψ(ξ) dξ

)
,

P (s) = cs+ 1 − α(eκs + eσs + e−κs + e−σs − 4).

By integrating by parts, we see that∫ κ

0

e−sξψ(ξ) dξ = − e−sξψ(ξ)

s

∣∣∣∣κ
ξ=0

+
1

s

∫ κ

0

e−sξψ′(ξ) dξ,

and similarly for the other three integrals in (4.8). In particular, one has that q(s) =
cψ(0) +O(|s|−1) as |Im s| → ∞, uniformly for Res bounded. From this and also from
the formula for P (s), therefore, one easily has from (4.7) that

(4.9) ψ̂(s) =
ψ(0)

s
+O(|s|−2) as |Im s| → ∞,

uniformly for Re s bounded. But now the asymptotic expression (4.9) justifies the
inversion formula for the Laplace transform, and in particular justifies shifting the
integration contour around any singularities on the imaginary axis. We therefore
have

(4.10)

ψ(ξ) =
1

2πi

∫ ε0+i∞

ε0−i∞
esξψ̂(s) ds

=
1

2πi

∫ −ε0+i∞

−ε0−i∞
esξψ̂(s) ds+

1

2πi

∑
Re s=0

esξres(ψ̂, s)

=
1

2πi

∫ −ε0+i∞

−ε0−i∞
esξ
(
ψ̂(s)− ψ(0)

s

)
ds+

1

2πi

∑
Re s=0

esξres(ψ̂, s),
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466 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

where ε0 > 0 is sufficiently small, where, generally, res(g, z) denotes the residue of a
meromorphic function g at a point z, and where the sum in (4.10) is taken over all

poles of ψ̂ on the imaginary axis, if any exist. The limits of integration denote contour
integrals along the vertical lines t→ ±ε0 + it for t ∈ R in the obvious way.

The first equality in (4.10) is simply the Laplace inversion formula, and is justified

by the fact that ψ̂ has no poles in the right half plane. The second equality in (4.10)
follows from shifting the contour of integration (in this case, a vertical line) around

any poles of ψ̂ on the imaginary axis, and ε0 > 0 is small enough that ψ̂ has no poles
in the strip −ε0 ≤ Re s < 0. The third equality in (4.10) follows from the identity

1

2πi

∫ ε+i∞

ε−i∞

esξ

s
ds =

 1, ε > 0,

0, ε < 0,

for ξ > 0, which is just the inversion formula for the function g(ξ) = 1 and its
transform ĝ(s) = 1/s.

It is now clear from (4.9) that the third integral in (4.10) enjoys the estimate∣∣∣∣ 1

2πi

∫ −ε0+i∞

−ε0−i∞
esξ
(
ψ̂(s)− ψ(0)

s

)
ds

∣∣∣∣ ≤ Ke−ε0ξ for ξ ≥ 0

for some K > 0; in particular, this term approaches zero as ξ →∞. By assumption,
we also have that ψ(ξ) → 0 as ξ → ∞, and it follows directly from this that each of
the residues in the summation in (4.10) vanishes, that is,

res(ψ̂, s) = 0 for Im s = 0.

Thus, |ψ(ξ)| ≤ Ke−ε0ξ for ξ ≥ 0, which is equivalent to (4.5), as desired.
Let us now proceed with the construction of a solution to (4.3), (1.11). In order

to justify our calculations more properly, let us consider the Fourier transform

ϕ̂ε(s) =

∫ ∞
−∞

e−isξϕε(ξ) dξ, ϕε(ξ) = e−εξϕ(ξ),

where ε > 0 is sufficiently small. By Lemma 4.1, if ϕ satisfies (4.3), (1.11), then
ϕε(ξ)→ 0 exponentially fast, both as ξ → −∞ and ξ →∞, provided that 0 < ε < ε0.
In particular, ϕε belongs to L1(R)∩L2(R) in this case. Also, from (4.3), the function
ϕε(ξ) satisfies the equation

(4.11)

−cϕ′ε(ξ) = α

(
eεκϕε(ξ + κ) + e−εκϕε(ξ − κ) + eεσϕε(ξ + σ)

+e−εσϕε(ξ − σ)− 4ϕε(ξ)

)
− (1− cε)ϕε(ξ) + e−εξh(ξ).

Taking the Fourier transform of both sides of (4.11) yields, in a standard fashion,

(4.12) ϕ̂ε(s) =
1

(is+ ε)R(s− iε) ,

where

(4.13)
R(s) = −ics+ 1− α(eiκs + e−iκs + eiσs + e−iσs − 4)

= −ics+ 1 + 2α(2− cosκs− cosσs).
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TRAVELING WAVES ON A LATTICE 467

Clearly, ϕ̂ε ∈ L1(R) ∩ L2(R), and so by the Fourier inversion theorem,

(4.14) ϕ(ξ) = eεξϕε(ξ) =
1

2π

∫ ∞
−∞

e(is+ε)ξϕ̂ε(s) ds,

which is an absolutely convergent integral. Using (4.12), we write (4.14) as

(4.15) ϕ(ξ) =
1

2πi

∫ −iε+∞
−iε−∞

eisξ

sR(s)
ds,

where again the limits of integration denote the obvious contour integral along a
horizontal line. We note that, apart from a simple pole at s = 0, the integrand in
(4.15) is holomorphic in the horizontal strip −ε ≤ Im s ≤ 0 for small ε. We therefore
wish to shift the contour of integration in (4.15) to obtain

(4.16) ϕ(ξ) =
1

2πi

(∫
Cε

+

∫
Sε

)
eisξ

sR(s)
ds,

where Cε denotes the two half-lines (−∞,−ε] and [ε,∞) in the real axis, and Sε
denotes the half-circle t → εeit for −π ≤ t ≤ 0, with the contour oriented in the
direction of increasing Res. For any fixed ξ ≥ 0, such a shift of the contour is justified
by the boundedness of eisξ in the strip −ε ≤ Im s ≤ 0, and by the uniform estimate
1/(sR(s)) = O(|s|−2) of decay as |Re s| → ∞ in this strip.

The integrals along the two components of Cε may be combined, giving

(4.17)

1

2πi

∫
Cε

eisξ

sR(s)
ds =

1

2πi

(∫ −ε
−∞

+

∫ ∞
ε

)
eisξ

sR(s)
ds

=
1

2πi

∫ ∞
ε

eisξ

sR(s)
− e−isξ

sR(−s) ds

=
1

π

∫ ∞
ε

A(s) sin sξ

s(A(s)2 + c2s2)
ds+

c

π

∫ ∞
ε

cos sξ

A(s)2 + c2s2
ds,

where we denote

(4.18) A(s) = 1 + 2α(2− cosκs− cosσs)

as the real part of R(s), when s is real. The integral around the half-circle Sε yields
2πi times half the residue of the integrand at s = 0, as ε→ 0; that is,

(4.19)
1

2πi

∫
Sε

eisξ

sR(s)
ds =

1

2
+ o(1) as ε→ 0.

Inserting (4.17) and (4.19) into (4.16) and letting ε→ 0, we obtain

(4.20) ϕ(ξ) =
1

2
+

1

π

∫ ∞
0

A(s) sin sξ

s(A(s)2 + c2s2)
ds+

c

π

∫ ∞
0

cos sξ

A(s)2 + c2s2
ds,

an explicit formula for our solution.
Remark. The formula (4.20) was derived under the assumption that ϕ was a

solution of equation (4.3), for some c 6= 0, and satisfied the boundary conditions (1.11).
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468 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

Conversely, by construction, the function ϕ given by (4.20) satisfies the differential
equation (4.3).

Remark. From (4.20), we see directly the symmetry property

(4.21) ϕ(ξ, c) = 1− ϕ(−ξ,−c)
for the solution ϕ(ξ) = ϕ(ξ, c).

Remark. From (4.15), we have that |ϕ(ξ)| = O(eεξ) as ξ → −∞ and so ϕ satisfies
the first boundary condition ϕ(−∞) = 0 in (1.11). By the symmetry property (4.21),
the other boundary condition ϕ(∞) = 1 of (1.11) also holds.

The following result describes additional properties of ϕ, which will be needed
shortly.

Proposition 4.2. Letting ϕ(ξ, c) denote the function in (4.20), we have that
ϕ(ξ, c) is analytic in c and jointly continuous in (ξ, c) for real c 6= 0. In addition, for
each such c, the derivative

ψ(ξ) = ψ(ξ, c) = Dcϕ(ξ, c)

with respect to c is bounded as ξ → ±∞ and for ξ 6= 0 satisfies the equation

(4.22) −ϕ′(ξ)− cψ′(ξ) = αLψ(ξ)− ψ(ξ),

obtained by differentiating (4.3) with respect to c.
Proof. We shall actually prove the claims about ϕ and its derivative for all c ∈ C

with Re c 6= 0. For any compact subset of {c ∈ C | Re c 6= 0}, there exists a uniform
lower bound

(4.23) |A(s)2 + c2s2| ≥ K1(1 + s2) for s ≥ 0

for the term in the denominators of (4.20). (Note that if Re c = 0 and c 6= 0, then
A(s)2 + c2s2 = 0 at some s > 0.) This in turn yields a uniform upper bound of the
form K2(1 + s2)−1, valid for bounded ξ, for each of the two integrands in (4.20). This
estimate, and the analyticity of the integrands in c and continuity in (ξ, c) for each s,
imply the analyticity and continuity claims for ϕ.

The boundedness of ψ is easily proved by differentiating the formula (4.20) with
respect to c under the integral sign, again using the estimate (4.23). Differentiating
(4.3) yields (4.22), once one justifies exchanging the order of derivatives, ψ′(ξ, c) =
Dcϕ

′(ξ, c). However, this follows from standard arguments.
In order that ϕ satisfy (1.16) with f as in (3.1), it is necessary that

(4.24) ϕ(ξ) ≤ a for ξ < 0, ϕ(ξ) ≥ a for ξ > 0

both hold. In particular, we require that ϕ(0) = a, or equivalently that

(4.25) a− 1

2
=
c

π

∫ ∞
0

ds

A(s)2 + c2s2
.

We see that this formula expresses the relation between the parameter a in the non-
linearity, and the wave speed c of the solution. Later, we shall prove that in fact the
strict inequalities (4.1) hold whenever (4.25) holds, with c 6= 0.

Let us define the function

(4.26) Γ(c) = ϕ(0, c)− 1

2
=
c

π

∫ ∞
0

ds

A(s)2 + c2s2
,
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TRAVELING WAVES ON A LATTICE 469

the right-hand side of (4.25). Clearly, Γ is an odd function of c, and by Proposition 4.2,
it is analytic for (real) c 6= 0, where the integral (4.26) converges. On the other hand,
Γ is discontinuous at c = 0, as the following result shows. Indeed, the right-hand limit
Γ(0+) is not zero, but rather is a positive quantity Γ(0+) = γ.

Theorem 4.3. Let Γ(c) be defined by (4.26) for each real c 6= 0. Then Γ is odd
and analytic, and

(4.27) |Γ(c)| < 1

2

for all such c. In addition,

(4.28) lim
c→∞Γ(c) =

1

2
, lim

c→0+
Γ(c) = γ,

where γ > 0 is the quantity

(4.29) γ = lim
T→∞

1

2T

∫ T

0

ds

A(s)

where the limit in (4.29) always exists.
Proof. The oddness of Γ is obvious, and the analyticity follows from Propo-

sition 4.2. The inequality (4.27) follows from the fact that A(s) ≥ 1, with strict
inequality for some s, which gives

|Γ(c)| < |c|
π

∫ ∞
0

ds

1 + c2s2
=

1

2
.

To prove the limits (4.28), change variables in (4.26) to obtain (with c > 0)

(4.30) Γ(c) =
1

π

∫ ∞
0

ds

A(s/c)2 + s2
.

An application of the Lebesgue dominated convergence theorem, and the observation
that A(0) = 1, yield the first limit in (4.28).

The second limit, c → 0+, on the other hand, is more subtle. Let us first ob-
serve that the function A is almost periodic. By a basic property of almost periodic
functions (see, for example, [36]), given any ε > 0 there exists τε > 0 such that every
interval of length τε contains an ε-translation number T , that is, a number T for
which |A(s + T ) − A(s)| ≤ ε for all s ∈ R. Moreover, we may assume without loss
that τε →∞ as ε→ 0. There exists in particular an ε-translation number Tε satisfy-
ing Tε ∈ [τε, 2τε]. Let ε, and the quantities τε and Tε, remain fixed in the following
argument until we note otherwise. We shall assume that ε ≤ 1/4.

Define a function Aε : R→ R of period Tε by setting

Aε(s) = A(s) for 0 ≤ s < Tε, Aε(s+ Tε) = Aε(s) for s ∈ R.
We claim the following: that for every integer n, there exists ρn ∈ R such that

|A(s)−Aε(s+ ρn)| ≤ 2ε for nTε ≤ s < (n+ 1)Tε.

To prove this claim, let us first observe that

(4.31) |A(s)−Aε(s)| ≤ ε for − Tε ≤ s < Tε.
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470 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

Indeed, the inequality in (4.31) is trivial for 0 ≤ s < Tε, and for −Tε ≤ s < 0 we have
that

|A(s)−Aε(s)| = |A(s)−Aε(s+ Tε)| = |A(s)−A(s+ Tε)| ≤ ε,
by the periodicity of Aε and the fact that Tε is an ε-translation number for A. Now
fix any integer n, and let ρn be an ε-translation number for A satisfying ρn ∈ [−(n+
1)Tε,−nTε]. This interval contains such ρn, as its length is Tε ≥ τε. For any s
satisfying nTε ≤ s < (n+ 1)Tε we have that −Tε ≤ s+ ρn < Tε, and hence that

|A(s)−Aε(s+ ρn)| ≤ |A(s)−A(s+ ρn)|+ |A(s+ ρn)−Aε(s+ ρn)| ≤ ε+ ε = 2ε,

where we use the fact that ρn is an ε-translation number; we also have (4.31). This
establishes the claim.

For ease of notation let us denote Anε (s) = Aε(s + ρn) for every n. Noting by
(4.18) that 1 ≤ A(s) ≤ 1 + 8α, we have that

|A(s) +Anε (s)| ≤ 2A(s) + 2ε ≤ 2 + 16α+ 2ε

for nTε ≤ s < (n + 1)Tε. Writing the integrand in (4.30) as a sum of integrals from
ncTε to (n+ 1)cTε for n ≥ 0, we have that∣∣∣∣∣Γ(c)− 1

π

∞∑
n=0

∫ (n+1)cTε

ncTε

ds

Anε (s/c)2 + s2

∣∣∣∣∣
=

1

π

∣∣∣∣∣
∞∑
n=0

∫ (n+1)cTε

ncTε

(
1

(A(s/c)2 + s2)
− 1

(Anε (s/c)2 + s2)

)
ds

∣∣∣∣∣
(4.32)

=
1

π

∣∣∣∣∣
∞∑
n=0

∫ (n+1)cTε

ncTε

Anε (s/c)2 −A(s/c)2

(A(s/c)2 + s2)(Anε (s/c)2 + s2)
ds

∣∣∣∣∣
≤ 1

π

∫ ∞
0

(2 + 16α+ 2ε)2ε

(1 + s2)((1− 2ε)2 + s2)
ds ≤

(
2 + 16α+ 2ε

(1− 2ε)2

)
ε ≤ (10 + 64α)ε,

where we have used the fact that Anε (s/c) ≥ 1− 2ε ≥ 1/2. We have further, using the
periodicity of Aε, that

1

π

∞∑
n=0

∫ (n+1)cTε

ncTε

ds

Anε (s/c)2 + s2
=

1

π

∞∑
n=0

(∫ (n+1)cTε

ncTε

ds

Anε (s/c)2 + (ncTε)2
+ En

)
.

=
1

π

∞∑
n=0

(
c

∫ Tε

0

ds

Aε(s)2 + (ncTε)2
+ En

)
,(4.33)

where the error term

En =

∫ (n+1)cTε

ncTε

(ncTε)
2 − s2

(Anε (s/c)2 + s2)(Anε (s/c)2 + (ncTε)2)
ds

is easily seen to satisfy

(4.34) |En| ≤
∫ (n+1)cTε

ncTε

(2n+ 1)(cTε)
2

(1/4 + s2)(1/4 + s2/4)
ds ≤ 48cTε

∫ (n+1)cTε

ncTε

s

(1 + s2)2
ds
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TRAVELING WAVES ON A LATTICE 471

for n 6= 0, where we have again used the fact that Aε(s/c) ≥ 1/2. Also, |E0| ≤
16(cTε)

3/3 is easily verified. At this point, note from (4.34) that

(4.35)
∞∑
n=0

|En| ≤ 16(cTε)
3/3 + 48cTε

∫ ∞
cTε

s

(1 + s2)2
ds→ 0 as c→ 0.

Denoting

F (t) =
1

Tε

∫ Tε

0

ds

Aε(s)2 + t2
=

1

Tε

∫ Tε

0

ds

A(s)2 + t2
,

we may write the final summation involving the integral in (4.33) as

(4.36)
1

π

∞∑
n=0

c

∫ Tε

0

ds

Aε(s)2 + (ncTε)2
ds =

cTε
π

∞∑
n=0

F (ncTε).

Regarding the right-hand side of (4.36) as a Riemann sum, and noting the limit (4.35),
we have from (4.33) that

(4.37)

lim
c→0

1

π

∞∑
n=0

∫ (n+1)cTε

ncTε

ds

Anε (s/c)2 + s2
=

1

π

∫ ∞
0

F (t) dt

=
1

πTε

∫ Tε

0

∫ ∞
0

1

A(s)2 + t2
dt ds =

1

2Tε

∫ Tε

0

ds

A(s)
,

where an application of Fubini’s theorem has allowed us to interchange the order of
integration in (4.37). To complete the proof of the theorem, we simply note that the
second limit in (4.28), with γ as in (4.29), follows directly from (4.32) and (4.37) by
letting ε→ 0.

Remark. Let us observe from (4.18) and (4.29), that γ → 1/2 as α → 0. This is
consistent with our earlier observations for smooth f , showing that for small coupling
parameter α, the interval [1/2−γ, 1/2+γ] of propagation failure expands throughout
the interval (0, 1).

Remark. With a bit more effort, we see that γ → 0 as α → ∞. As the limit
α→∞ corresponds to the continuous PDE limit (1.6) of the discrete equation (1.1),
this is consistent with the fact that there is no propagation failure for the PDE. To
prove that γ → 0 for this limit, take any positive δ < 1, let cos ε = 1 − δ, with
ε ∈ (0, π/2), and define

(4.38) Jn = [(2πn− ε)/|κ|, (2πn+ ε)/|κ|], J =
∞⋃

n=−∞
Jn,

assuming that κ 6= 0 (if κ = 0, take σ = ±1 in place of κ). By (4.18), if A(s) ≤ 1+2αδ,
then one has 1− cosκs ≤ δ, and hence that s ∈ J . Thus

(4.39)
1

2T

∫ T

0

ds

A(s)
≤ 1

2T

∫
[0,T ]\J

ds

1 + 2αδ
+

1

2T

∫
[0,T ]∩J

ds,

and it follows from (4.39) and from the structure (4.38) of J that

(4.40) γ = lim
T→∞

1

2T

∫ T

0

ds

A(s)
≤ 1

2(1 + 2αδ)
+

ε

2π
.
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472 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

Regarding γ as a function of α, we now have from (4.40) that

lim sup
α→∞

γ ≤ ε

2π
,

and hence that γ → 0 as α→∞, as ε can be taken arbitrarily small.
In addition to the analytical dependence of Γ on c 6= 0, this function also depends

at least continuously on the direction parameter θ ∈ R, again for c 6= 0. On the other
hand, the dependence of the limits Γ(0±) = ±γ on θ is rather subtle. In particular,
the quantity γ = γ(θ) in (4.29), considered as a function of θ, is continuous (in fact,
constant) at those θ ∈ R for which tan θ is irrational, and is discontinuous at those
θ ∈ R for which tan θ is rational or infinite. To see this, first let

(4.41)

B(θ1, θ2) =
(
1 + 4α− α(eiθ1 + e−iθ1 + eiθ2 + e−iθ2)

)−1

= (1 + 4α)−1
∞∑
k=0

(α/(1 + 4α))k(eiθ1 + e−iθ1 + eiθ2 + e−iθ2)k

=

∞∑
m=−∞

∞∑
n=−∞

βm,ne
i(mθ1+nθ2),

where we note the above sums are all absolutely convergent, and we also see that
βm,n > 0 for all m,n ∈ Z. From the definition (4.18) of A(s), we have that 1/A(s) =
B(κs, σs), so we may substitute (4.41) into (4.29), and express γ = γ(θ) in terms of
the Fourier coefficients βm,n, obtaining

(4.42)

γ = γ(θ) = lim
T→∞

1

2T

∫ T

0

∞∑
m=−∞

∞∑
n=−∞

βm,ne
i(mκ+nσ)s ds

=
1

2

∑
mκ+nσ=0

βm,n.

First suppose that tan θ = σ/κ is irrational. Then the final sum in (4.42) has
only a single term,

(4.43) γ(θ) =
β0,0

2
,

On the other hand, suppose that tan θ is either rational or infinite. In this case there
exists a quantity ν > 0, and integers M,N , such that

(4.44) κ = Mν, σ = Nν

and such that M and N have no common factor, that is, their greatest common
divisor is gcd(M,N) = 1. In fact, this ν is the same quantity as in (2.2). Then
mκ + nσ = (mM + nN)ν vanishes if and only if m = −Nk and n = Mk for some
integer k. We therefore have that

(4.45) γ(θ) =
1

2

∞∑
k=−∞

β−Nk,Mk.
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TRAVELING WAVES ON A LATTICE 473

Note that the quantity (4.45), for tan θ rational, is strictly greater than the corre-
sponding quantity (4.43) for tan θ irrational.

The quantity γ(θ) is given as a sum (4.43) or (4.45) of the coefficients βm,n, and
in turn each βm,n is given as an infinite series obtained by a binomial expansion of the
middle line in (4.41). Interestingly, the quantity γ(θ) can also be evaluated directly,
in some cases explicitly, without resorting to an infinite series. To see this, let

(4.46)

B̃(w, z) =

(
1 + 4α− α(w + w−1 + z + z−1)

)−1

=
∞∑

m=−∞

∞∑
n=−∞

βm,nw
mzn,

so that B(θ1, θ2) = B̃(eiθ1 , eiθ2), where the sum in (4.46) is absolutely convergent, at
least for complex w and z in a neighborhood of the unit circle S1 ⊆ C. Assuming
that tan θ is either rational or infinite, and with M and N as above, we have directly
from (4.46) that

(4.47)

1

4πi

∫
S1

z−1B̃(zM , zN ) dz =
1

4πi

∫
S1

∞∑
m=−∞

∞∑
n=−∞

βm,nz
Mm+Nn−1 dz

=
1

2

∑
Mm+Nn=0

βm,n =
1

2

∞∑
k=−∞

β−Nk,Mk = γ(θ).

The first integral in (4.47) is a contour integral of a rational function, which can in
principle be evaluated with the residue theorem. We denote the integrand there by
Q(z), that is,

Q(z) = z−1B̃(zM , zN ) =

(
(1 + 4α)z − α(zM+1 + z−M+1 + zN+1 + z−N+1)

)−1

.

For the case of tan θ = 0 we have M = 1 and N = 0, which yields

Q(z) = −α−1

(
z2 − (α−1 + 2)z + 1

)−1

.

One easily checks that Q has two poles z = z± = (α−1 + 2± (α−2 + 4α−1)1/2)/2, and
that 0 < z− < 1 < z+. Therefore Q(z) = −α−1(z − z−)−1(z − z+)−1, and from the
first integral in (4.47)

γ(0) =
1

2α(z+ − z−)
=

1

2(1 + 4α)1/2
.

A similar calculation of γ(θ) can be made for θ = π/4, that is, with tan θ = 1.
Alternatively, the change of variables ψ(ξ) = ϕ(2−1/2ξ) takes equation (1.16) with
θ = π/4 into equation (1.17), as described earlier, and this implies that γ(π/4) equals
the value of γ(0) with 2α in place of α. That is,

γ(π/4) =
1

2(1 + 8α)1/2
.
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474 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

Calculation of γ(θ) for values of θ with tan θ rational but with θ not an integer
multiple of π/4 leads generally to a rational function Q with a denominator which is
a polynomial of degree greater than two. The calculation of the poles and residues of
Q, and hence of the quantity γ(θ), rapidly becomes unwieldy.

If tan θ is irrational, then (4.43) holds, so we wish only to calculate β0,0. To this
end, we have from (4.46) for any fixed w ∈ S1 that

(4.48)

1

2

∞∑
m=−∞

βm,0w
m =

1

4πi

∫
S1

z−1B̃(w, z) dz

=
−α−1

4πi

∫
S1

(
z2 − (α−1 + 4− w − w−1)z + 1

)−1

dz

=
1

2α(z+ − z−)
,

by a calculation similar to one above, where here

z± = z±(w) =
1

2

(
α−1 + 4− w − w−1 ± ((α−1 + 4− w − w−1)2 − 4)1/2

)
are the poles of the integrand in (4.48), and where 0 < |z−(w)| < 1 < |z+(w)|. We
have therefore from (4.43) and (4.48) that

(4.49)

γ(θ) =
β0,0

2
=

1

4πi

∫
S1

dw

αw(z+(w)− z−(w))

=
1

4πi

∫
S1

dw

((w + 4αw − αw2 − α)2 − 4α2w2)1/2
.

One observes that the final integral in (4.49), with further simplification, can be
expressed in terms of complete elliptic integrals, to yield an expression for γ(θ) in
closed form. However, we refrain from further calculations in this direction.

As will become clearer with our further analysis, the lattice system (1.1) with
nonlinearity (3.1) can support a traveling wave (1.15), (1.11) (at least one which
is monotone in the wave parameter ξ) with speed c 6= 0, in the direction eiθ, only
when the detuning parameter a satisfies |a − 1/2| > γ = γ(θ). That is, a must be
sufficiently far away from the value 1/2 at which the nonlinearity is symmetric. For
|a− 1/2| ≤ γ(θ), one expects instead a standing wave, that is, wave speed c = 0. The
range [1/2−γ(θ), 1/2+γ(θ)] of parameter values at which no nontrivial traveling wave
occurs is the range of so-called propagation failure. Our results therefore will show
that for the ideal nonlinearity (3.1), propagation failure occurs for every direction eiθ,
although the effect is more pronounced for angles of rational slope, as in this case
γ(θ) is larger than for angles of irrational slope.

Remark. Table 1 presents the values of γ(θ) for several choices of θ, namely, when
tan θ = 0, 1, and 0.1, and also for tan θ irrational. A range of values of α is chosen.
Note in particular how γ(θ) for tan = 0.1 is very close to the corresponding value for
tan θ irrational.

Remark. Although the limit Γ(0+) = γ(θ) is independent of θ, so long as tan θ is
irrational, this is not generally the case for Γ(c) for c 6= 0. Denoting Γ(c) = Γ(c, θ),
and taking two values θ1 and θ2 where both tan θ1 and tan θ2 are irrational, one
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TRAVELING WAVES ON A LATTICE 475

Table 1
Values of γ(θ) for various values of θ and α.

tan θ

0.0 1.0 0.1 Irrational

0.1 0.42257713 0.37267800 0.36478641 0.36478641
0.2 0.37267800 0.31008684 0.29326612 0.29326612
0.3 0.33709993 0.27116307 0.24776696 0.24776695
0.4 0.31008684 0.24397502 0.21584215 0.21584210
0.5 0.28867513 0.22360680 0.19201185 0.19201168α
0.6 0.27116307 0.20761370 0.17344295 0.17344253
0.7 0.25649459 0.19462474 0.15850807 0.15850723
0.8 0.24397502 0.18380366 0.14619956 0.14619805
0.9 0.23312620 0.17460757 0.13585715 0.13585470
1.0 0.22360680 0.16666667 0.12702862 0.12702492

generally expects that Γ(c, θ1) 6= Γ(c, θ2) for c 6= 0, despite the fact that these two
quantities approach the same limit as c→ 0.

Remark. We believe that the pathological behavior of γ(θ) described above,
namely, that γ(θ) is continuous where tan θ is irrational and discontinuous where
tan θ is rational or infinite, is not an artifact of the discontinuity of f . That is, we
believe the same phenomenon occurs for smooth nonlinearities f such as the cubic
function (1.3). We expect that a rigorous mathematical treatment of this problem
would entail a delicate, and probably difficult, analysis of the functional differential
equation (1.16) in the singularly perturbed case c→ 0.

We now return to our task of justifying the calculation of the function ϕ. In
particular, we must show that ϕ satisfies (4.24) whenever (4.25) holds with c 6= 0, in
order to conclude that ϕ indeed satisfies the original equation (1.16) of interest. We
shall in fact show that ϕ is a strictly increasing function, thereby establishing (4.24).

Lemma 4.4. The function R, in (4.13), possesses a simple root s = −iz0 with
z0 > 0, and we have iR′(−iz0) > 0. Moreover, there exists ε0 > 0 such that if s ∈ C
is any other root of R satisfying Im s ≤ 0, then in fact Im s < −z0 − ε0.

Proof. Consider

(4.50) R(−iz) = −cz + 1 + 2α(2− coshκz − coshσz).

The expression (4.50), considered as a function of z ≥ 0, is positive at z = 0, negative
for large z, and has a negative second derivative with respect to z, for all z ≥ 0. This
implies the existence of a unique z0 > 0 at which R(−iz0) = 0, and moreover implies
that s = −iz0 is a simple root of R, and that the quantity iR′(−iz0) is positive. Let
us also note that R(−iz) > 0 whenever 0 ≤ z < z0.

Consider now any other s = u − iz, where u is real, z ≥ 0, and R(s) = 0. From
(4.13) we have that

(4.51)
0 = R(u− iz) = −icu− cz + 1 + 2α(2− cosκu coshκz − cosσu coshσz)

−2iα(sinκu sinhκz + sinσu sinhσz)

after a calculation, and taking the real part of (4.51) gives

(4.52) 0 = −cz + 1 + 2α(2− cosκu coshκz − cosσu coshσz) ≥ R(−iz),
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476 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

where we note the formula (4.50). Necessarily z ≥ z0, as R(−iz) > 0 if 0 ≤ z < z0

holds.
All that remains now is to show that z > z0 + ε0 for some ε0 independent of the

root s, unless s = −iz0. Taking the imaginary part

(4.53) 0 = −cu− 2α(sinκu sinhκz + sinσu sinhσz)

of (4.51) first shows that there is a bound |u| ≤ K on the real part of all roots s in
the strip z0 ≤ z ≤ z0 + 1, and so this strip contains only finitely many roots of R. It
is therefore enough to prove that the only root of R on the horizontal line Im s = −z0

is the root s = −z0 obtained above. Suppose, therefore, that z = z0. Then the
inequality in (4.52) is an equality, and so cosκu = cosσu = 1, by (4.50). Therefore
sinκu = sinσu = 0, and so u = 0 by (4.53). Thus we have s = −iz0, as desired.

Corollary 4.5. The solution ϕ of (4.3), given by (4.20), satisfies

(4.54) ϕ(ξ) = Cez0ξ +O(e(z0+ε0)ξ) as ξ → −∞,

where z0 and ε0 are as in Lemma 4.4 and where C > 0. The derivative ϕ′ satisfies
the formula

(4.55) ϕ′(ξ) = Cz0e
z0ξ +O(e(z0+ε0)ξ) as ξ → −∞

obtained by formally differentiating (4.54). The analogous results for ξ →∞, obtained
from (4.21), hold. In particular, there exists T > 0 such that

(4.56) ϕ′(ξ) > 0 for |ξ| ≥ T.

Proof. We use the contour integral formula (4.15), which is valid for all sufficiently
small ε > 0. Arguing much as before, we shift the contour Im s = −ε downward, past
the pole at s = −iz0, to the contour Im s = −z0 − ε0, where here z0 and ε0 are as in
Lemma 4.4. We obtain

ϕ(ξ) = − eisξ

sR′(s)

∣∣∣∣
s=−iz0

+
1

2πi

∫ −i(z0+ε0)+∞

−i(z0+ε0)−∞

eisξ

sR(s)
ds = Cez0ξ +O(e(z0+ε0)ξ),

where C = 1/(iz0R
′(−iz0)) is positive, by Lemma 4.4. This proves (4.54).

To prove the asymptotic formula (4.55) for the derivative, one first notes from
the differential equation (4.3) that

(4.57) ϕ′(ξ) = Kez0ξ +O(e(z0+ε0)ξ) as ξ → −∞,

for some real K. Integrating (4.57) from −∞ to ξ must yield (4.54), and so necessarily
K/z0 = C.

Finally, as in the statement of the result, the symmetry relation (4.21) easily
yields the analogues of (4.54), (4.55), as ξ → ∞, and in particular we have (4.56).

Theorem 4.6. The solution ϕ of (4.3), given by (4.20), is strictly increasing on
the real line. In particular, ϕ also satisfies (1.16), with (1.11), where the nonlinearity
f is given by (3.1).

Proof. We first prove, basically using a maximum principle, that

(4.58) 0 < ϕ(ξ) < 1
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TRAVELING WAVES ON A LATTICE 477

for all ξ ∈ R. Suppose that (4.58) is false, say ϕ(ξ) ≥ 1 for some ξ. Now certainly
(4.58) holds for |ξ| ≥ T , with T as in (4.56) in Corollary 4.5. Therefore, if we let
η = sup{ϕ(ξ) | ξ ∈ R}, we have that η ≥ 1, and so there exists ξ0 ∈ R such that
ϕ(ξ0) = η and ϕ(ξ) < η for all ξ < ξ0 (we take the leftmost point at which ϕ(ξ)
achieves its maximum η). Necessarily, αLϕ(ξ0) < 0, by the formula for L. Therefore,
both the left- and right-hand limits, as ξ → ξ0, of the right-hand side of the differential
equation (4.3) are negative. But then, the two limits ϕ′(ξ0−) and ϕ′(ξ0+) are both
nonzero, and have the same sign, and this contradicts the fact that the piecewise C1

solution η achieves its maximum at ξ0. This establishes the inequalities (4.58).
Now, by noting the boundary conditions (1.11) and by using (4.58), we may

assume, by increasing T if necessary, that both

(4.59) ϕ(ξ) < ϕ(T ) for ξ < T, ϕ(ξ) > ϕ(−T ) for ξ > −T
hold. For any τ > 0, define the function

ψτ (ξ) = ϕ(ξ + τ)− ϕ(ξ),

and observe, using (4.56), that

(4.60) ψτ (ξ) > 0 if either ξ ≥ T or ξ ≤ −T − τ.
Let us also note that if τ > 2T, then ψτ (ξ) > 0 for all ξ ∈ R. Indeed, for such τ

this conclusion follows easily from (4.56) and (4.59), using the fact that for each ξ we
have that either ξ < −T , or else that ξ + τ > T .

Now define the quantity

τ0 = inf{τ > 0 | ψτ (ξ) > 0 for all ξ ∈ R}.
We certainly have that τ0 ∈ [0, 2T ]. If in fact τ0 = 0, then we have immediately that
ϕ is everywhere strictly increasing, and we are done. Let us assume, therefore, that
τ0 > 0, and seek a contradiction.

For simplicity write ψ∗(ξ) = ψτ0(ξ). Certainly ψ∗(ξ) ≥ 0 for all ξ ∈ R. Also, in
light of (4.60), there exists a point ξ0 ∈ [−T − τ0, T ] such that ψ∗(ξ0) = 0. Since all
such points at which ψ∗ vanishes lie in that interval, we may without loss assume that
ξ0 is chosen as the leftmost such point, that is, we have that ψ∗(ξ) > 0 for ξ < ξ0,
and hence that αLψ∗(ξ0) > 0. Finally, we note that since ϕ satisfies the differential
equation (4.3), the function ψ∗ satisfies the equation

(4.61) −cψ′∗(ξ) = αLψ∗(ξ)− ψ∗(ξ) + h(ξ + τ0)− h(ξ)

on the line.
We now argue much as in the early part of the proof. In particular, we see

that both the left- and right-hand limits of the right-hand side of equation (4.61) are
positive, at ξ = ξ0. This contradicts the fact that ψ∗ achieves its minimum at ξ0, and
thereby proves the theorem.

Remark. With minor modifications, the above proof shows that if a solution ϕ of
(1.16), (1.11), with c 6= 0, and continuous f : R → R satisfying f(u) ≥ 0 for u ≥ 1
and f(u) ≤ 0 for u ≤ 1, is strictly increasing for |ξ| ≥ T for some T > 0, then it is
increasing for all ξ ∈ R. (Note that this class of f includes the cubic (1.3).) In practice,
one might expect to establish that a given solution was strictly increasing for large
|ξ|, by considering the linearization of (1.16) around limiting values ϕ(±∞). This
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478 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

approach, for a class of equations with retarded arguments (time-delay systems), has
been taken in [7], and more recently in [22], [23], for mixed equations such as (1.16),
although a considerable amount of analysis is required for this.

We close this section by studying the function Γ, which provides the relation
(4.26) between the wave speed c and the detuning parameter a. In particular, we
prove a strictly monotone relation between these parameters. This implies that c 6= 0
is uniquely determined from a in the range γ < |a−1/2| < 1/2 and thereby addresses
some of our earlier concerns about the uniqueness of traveling waves.

Theorem 4.7. The function Γ given by (4.26) satisfies

(4.62) Γ′(c) > 0 for all real c 6= 0.

In particular, for each a ∈ (0, 1), (4.25) has exactly one solution c 6= 0 if and only if
|a − 1/2| > γ and has no solution c 6= 0 if and only if |a − 1/2| ≤ γ. The solution
c = c(a) depends analytically on a, for |a− 1/2| > γ.

Proof. While one may differentiate the expression involving the integral in (4.26)
directly, the resulting formula for Γ′(c) unfortunately provides no insight as to the
sign of this quantity. We therefore take an alternate approach, and work directly with
the differential equation, and calculate Dcϕ(0, c). Our techniques are related to, and
motivated by, those connected with the so-called Mel’nikov method [29] (see also [6])
for studying homo- and heteroclinic orbits of dynamical systems. In particular, this
general approach has been used for equations with retarded arguments in [7] and [17],
and very recently [23] in this spirit for mixed equations of a general form.

Let c 6= 0 be fixed. We have that Γ(c) = ϕ(0, c) − 1/2, where ϕ(ξ, c) denotes
the solution (4.20) of (4.3), (1.11), and so Γ′(c) = ψ(0, c), where ψ = Dcϕ, as in
Proposition 4.2. Denote η(ξ) = ϕ′(−ξ, c). Then the function η is C1 on the interval
(−∞, 0] and [0,∞) and undergoes a jump discontinuity

(4.63) η(0+)− η(0−) = ϕ′(0−, c)− ϕ′(0+, c) =
1

c

at the origin, by (4.3). As η(ξ) = ϕ′(−ξ, c) and hence η(−ξ) = ϕ′(ξ, c) = ϕ′(−ξ,−c)
by (4.21), we have by Corollary 4.5 that the function η decays exponentially at ±∞.
Differentiating (4.3) gives

(4.64) cη′(ξ) = αLη(ξ)− η(ξ)

for ξ 6= 0, and it follows directly from (4.64) that η′ also decays exponentially at ±∞.
In particular, both η and η′ are integrable functions.

Now multiply both sides of (4.22) by η(ξ) and integrate the resulting expression
from −∞ to ∞. Denoting ϕ(ξ) = ϕ(ξ, c) and ψ(ξ) = ψ(ξ, c), we obtain

(4.65)

−
∫ ∞
−∞

(ϕ′(ξ) + cψ(ξ))η(ξ) dξ =

∫ ∞
−∞

(αLψ(ξ)− ψ(ξ))η(ξ) dξ

=

∫ ∞
−∞

(αLη(ξ)− η(ξ))ψ(ξ) dξ

by a small calculation. Also, integrating by parts on the two intervals (−∞, 0] and
[0,∞) and using (4.63) and (4.64) give

−c
∫ ∞
−∞

ψ′(ξ)η(ξ) dξ = −cψ(0)(η(0−)− η(0+)) + c

(∫ 0

−∞
+

∫ ∞
0

)
ψ(ξ)η′(ξ) dξ

= ψ(0) +

∫ ∞
−∞

ψ(ξ)(αLη(ξ)− η(ξ)) dξ.
(4.66)
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TRAVELING WAVES ON A LATTICE 479

Combining (4.65) and (4.66) and simplifying, we obtain

(4.67) Γ′(c) = ψ(0) =

∫ ∞
−∞

ϕ′(ξ)η(ξ) dξ =

∫ ∞
−∞

ϕ′(ξ)ϕ′(−ξ) dξ.

The right-hand integral of (4.67) is nonnegative by Theorem 4.6. In fact, for large
|ξ| the integrand ϕ′(ξ)ϕ′(−ξ) is strictly positive, by (4.56) of Corollary 4.5. Thus
Γ′(c) > 0, as claimed.

The remaining claims of the theorem now follow directly from (4.62) and from
Theorem 4.3, using in particular the implicit function theorem.

Our construction of discrete traveling wave solutions of equation (1.1), with f as
in (3.1), is easily extended to a broader class of nonlinearities of the same general
type. Specifically, consider

(4.68) f(u) = u−
n∑
k=1

bkh(u− ak),

where 0 < a1 < a2 < · · · < an < 1 and where

n∑
k=1

bk = 1, bk > 0 for each k = 1, 2, . . . , n.

When n = 1, of course, the function f in (4.68) reduces to the one (3.1) considered
above. For any quantities ξ1 < ξ2 < · · · < ξn and c 6= 0, denote

ψ(ξ, ξ̂, b̂, c) =
n∑
k=1

bkϕ(ξ − ξk, c),

where ϕ(ξ, c) is the solution (4.20) of (4.3) and where we denote ξ̂ = (ξ1, ξ2, . . . , ξn)

and b̂ = (b1, b2, . . . , bn). The function ψ is increasing in ξ, since all the coefficients bk
are positive, and one easily sees that ψ satisfies (1.16) with (1.11), with f as in (4.68),

if and only if ψ(ξj , ξ̂, b̂, c) = aj for each j; that is,

(4.69)

n∑
k=1

bkϕ(ξj − ξk, c) = aj , j = 1, 2, . . . , n

holds. Without loss we may normalize ξn = 0 by a translation of ξ. With this,
and with the quantities ak and bk in the nonlinearity f given, observe that equation
(4.69) is a system of n equations in the n unknowns ξ1, ξ2, . . . , ξn−1, and c, so one
expects generically at most a finite number of solutions. In contrast to the case n = 1
considered earlier, however, it is not ruled out that for some values ak there might
be multiple solutions (ξ̂, c) to (4.69). See the related results in [2] and [38] for the
spatially continuous (nonlattice) case.

Quite generally, let Φ(ξ̂, c) denote the expression in the left-hand side of (4.69),

considered as an element of Rn. One wishes to understand the mapping (ξ̂, c) →
Φ(ξ̂, c), and in particular the range of Φ in Rn and the number of times a given value
a ∈ Rn is assumed by Φ. Theorem 4.7, in particular, has no clear generalization to
the case n > 1, and one would expect appropriate counterexamples to exist.

One is also interested in the dependence of Φ on the direction eiθ of the traveling
wave, and of course one expects behavior at least as complicated as in the case n = 1.

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



480 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

5. Zero wave speed. In this section we consider solutions of (1.16), (1.11) with
wave speed c = 0. An essential difference from the case of nonzero c is that, in view of
(1.15), one is only concerned with values ϕ(ξ) for ξ ∈ D, where D ⊆ R is the countable
set (2.1). Recall that if the ratio tan θ = σ/κ is irrational, then D is a dense subset of
R, while if tan θ is rational or infinite, then (2.2) holds for some quantity ν > 0, and
D is a discrete subset of R.

In the spirit of the previous section, we shall construct solutions of equation (1.16)
which satisfy

(5.1) ϕ(ξ) < a for ξ ∈ (−∞, ξ0) ∩D, ϕ(ξ) > a for ξ ∈ (ξ0,∞) ∩D,
which is a condition analogous to (4.1). In view of the special role of the set D, we
do not necessarily take ξ0 = 0 as the point where ϕ(ξ) crosses the value a but rather
consider arbitrary ξ0 ∈ R. In particular, we may have either ξ0 ∈ D or ξ0 6∈ D. In
fact, when tan θ is irrational we shall obtain uncountably many solutions to (1.16),
(1.11), with c = 0, parameterized, basically, by the equivalence classes of ξ0 modulo
the set D. Of course, a solution ϕ of (1.16) on D that satisfies (5.1) also satisfies the
inhomogeneous linear equation

(5.2) 0 = αLϕ(ξ)− ϕ(ξ) + h(ξ − ξ0),

since f(ϕ(ξ)) ⊆ ϕ(ξ)− h(ξ − ξ0) for ξ ∈ D.
Although we need only consider solutions of (1.16) which are defined for ξ ∈ D,

that is, solutions ϕ : D → R, we shall in fact first construct solutions ϕ : R → R
of (5.2) defined on the whole real line and then consider their restriction to D. We
shall show there is no loss of generality in this approach, at least within the class of
bounded solutions satisfying (5.1).

We shall obtain our solutions by taking limits c→ 0 of the traveling wave solutions
constructed in the previous section. Before doing this, we introduce a bit of notation
which will prove useful. Let τ ∈ R (typically, we shall take τ ∈ [0, 1]), and define the
function hτ : R→ R by

(5.3) hτ (u) =

 h(u) for u 6= 0,

τ for u = 0.

That is, hτ is just the Heaviside function (3.2) with the specific value τ assigned to
hτ (0). Unlike the set-valued function h, each function hτ is single-valued. Also set

(5.4) h− = h0, h+ = h1,

the function hτ with τ = 0 and 1, and observe that h±(u) = h(u±) are the left- and
right-hand limits of h.

Now let ϕ(ξ, c) denote the solution to (4.3), (1.11) for c 6= 0, and consider a
sequence cn → 0, with each cn 6= 0. Because, by Theorem 4.6, the solution ϕ(ξ, c)
is increasing and uniformly bounded in ξ, after possibly passing to a subsequence we
have the limit

(5.5) ϕ(ξ, cn)→ ϕ∗(ξ)

pointwise, for all but countably many ξ ∈ R, for some nondecreasing limit function
ϕ∗ : R→ [0, 1]. The function ϕ∗ need not be continuous, and in fact we shall shortly
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TRAVELING WAVES ON A LATTICE 481

show that it necessarily has discontinuities. As ϕ∗ is monotone, all of its discontinuities
are jumps, and so we may define two other functions ϕ± : R→ [0, 1] by

ϕ−(ξ) = ϕ∗(ξ−), ϕ+(ξ) = ϕ∗(ξ+),

the left- and right-hand limits, respectively, of ϕ∗ at each point ξ ∈ R. The functions
ϕ− and ϕ+ are left- and right-continuous, respectively, on R, and they equal ϕ∗ almost
everywhere. Although it is not apparent here, the functions ϕ± are independent of
the sequence cn used in their definition. We prove this fact below.

In order to take the limit cn → 0 in the differential equation (4.3), we must first
write that equation in integrated form. Fix any ξ ∈ R and integrate (4.3) to obtain

(5.6) −c(ϕ(ξ)− ϕ(0)) =

∫ ξ

0

αLϕ(ζ)− ϕ(ζ) + h(ζ) dζ.

Upon taking the limit c = cn → 0 in (5.6), with ϕ(ζ) = ϕ(ζ, cn), we obtain, using the
Lebesgue dominated convergence theorem, that

(5.7) 0 =

∫ ξ

0

αLϕ∗(ζ)− ϕ∗(ζ) + h(ζ) dζ,

for all ξ. Differentiating (5.7) now yields the equation

(5.8) 0 = αLϕ∗(ξ)− ϕ∗(ξ) + h(ξ),

which holds for almost every ξ ∈ R.
Equation (5.8), involving the function ϕ∗, is inadequate for our purposes since it

only holds almost everywhere in ξ. In particular, one is concerned that equation (5.8)
may fail at all points of the set D, which has measure zero. To address this situation,
consider the functions ϕ±. We certainly have that

(5.9) 0 = αLϕ±(ξ)− ϕ±(ξ) + h±(ξ)

holds almost everywhere, with h± as in (5.3), (5.4), since Lϕ±, ϕ±, and h± agree
almost everywhere with Lϕ∗, ϕ∗, and h, respectively. In fact, (5.9), with either choice
+ or − of ±, holds for all ξ ∈ R. One sees this directly from the fact that both ϕ−
and h− are left-continuous on R and that both ϕ+ and h+ are right-continuous on R,
so (5.9) may be obtained at every ξ ∈ R by taking the appropriate one-sided limit.

Let us define the linear combination

ϕτ (ξ) = τϕ+(ξ) + (1− τ)ϕ−(ξ).

One now has from (5.9) and the definition (5.3) of hτ that the equation

(5.10) 0 = αLϕτ (ξ)− ϕτ (ξ) + hτ (ξ),

holds for all ξ ∈ R. We know that the limits ϕτ (±∞) exist, by the monotonicity of
ϕτ . We have directly, by taking the limits ξ → ±∞ in (5.10), that

(5.11) ϕτ (−∞) = 0, ϕτ (∞) = 1;

that is, ϕτ satisfies the boundary conditions (1.11).
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482 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

Questions of whether the monotonicity of ϕτ is strict or not become important.
Unlike the case c 6= 0 of the previous section, ϕτ may be constant on some intervals,
as we see in Corollary 5.3, although these cannot be too large, by Theorem 5.1. It is
here that the difference between the cases of rational and irrational slope tan θ become
more pronounced.

Theorem 5.1. Let τ ∈ [0, 1]. If tan θ is irrational, then the function ϕτ is strictly
increasing on R. If tan θ is rational or infinite, then ϕτ (ξ) < ϕτ (ξ + ν) for all ξ ∈ R,
where ν is as in (2.2). In any case, if we define

(5.12) ϕτ (ξ, ξ0) = ϕτ (ξ − ξ0),

then for any τ ∈ [0, 1] and ξ0 ∈ R, the function ϕτ (·, ξ0) restricted to the set D is
strictly increasing.

Proof. Let τ ∈ [0, 1] be fixed throughout this proof. We first observe that for such
τ , the function ϕτ is nondecreasing everywhere on R, as it is a convex combination of
the nondecreasing functions ϕ±. Now suppose that I ⊆ R is an interval on which ϕτ
is constant; that is, ϕτ (ξ1) = ϕτ (ξ2) for all ξ1, ξ2 ∈ I. From (5.10) and the formula
(2.4) for L, we have that

(5.13) ϕτ (ξ+κ) = −ϕτ (ξ−κ)−ϕτ (ξ+σ)−ϕτ (ξ−σ) +
1

α

(
(1 + 4α)ϕτ (ξ)−hτ (ξ)

)
,

and in particular we see that the right-hand side of (5.13) is nonincreasing for ξ ∈ I
(in particular, since hτ is nondecreasing, by the choice of τ). On the other hand,
the left-hand side of (5.13) is nondecreasing for all ξ ∈ R and hence is constant for
ξ ∈ I. We therefore conclude that ϕτ is also constant on the interval I + κ; that is,
ϕτ (ξ1) = ϕτ (ξ2) for all ξ1, ξ2 ∈ I+κ, where we denote generally I+ρ = {ξ+ρ |ξ ∈ I},
for any real number ρ.

In a similar fashion, we conclude that ϕτ is constant on each of the three intervals
I−κ and I±σ. It now follows directly, using (2.1), that ϕτ is constant on the interval
I+ρ for each ρ ∈ D. Suppose, in addition, that the interval I on which ϕτ is constant
contains two distinct points ξ1, ξ2 ∈ I, with ξ2−ξ1 ∈ D. One then easily sees that the
translates I + ρ for ρ ∈ D cover the real line R, overlapping so that the function ϕτ
is constant on all of R. This, however, contradicts the limits (5.11), so we conclude
that no such points ξ1, ξ2 exist.

It follows, therefore, that if ξ1 < ξ2 are any two real numbers such that ξ2−ξ1 ∈ D,
then necessarily ϕτ (ξ1) < ϕτ (ξ2) must hold. From this fact, from the density of D
if tan θ is irrational, and from (2.2) if tan θ is rational, the claims of the theorem
follow.

Let us observe that for any real τ and ξ0, the function ϕ(ξ) = ϕτ (ξ − ξ0) given
by (5.12) satisfies the equation

(5.14) 0 = αLϕ(ξ)− ϕ(ξ) + hτ (ξ − ξ0)

for all ξ ∈ R and, in particular, for all ξ ∈ D. The next result proves that this is the
only such bounded solution of (5.14).

Proposition 5.2. Let τ, ξ0 ∈ R. Then a bounded function ϕ : D → R satisfies
(5.14) for all ξ ∈ D if and only if ϕ(ξ) = ϕτ (ξ, ξ0) for all ξ ∈ D.

Proof. We have already observed that ϕτ (ξ, ξ0) satisfies (5.14) on D, so all that
is needed is to prove uniqueness of this solution in the space l∞(D). Suppose that
ϕ, ϕ̃ ∈ l∞(D) are two solutions to (5.14), and let ψ = ϕ − ϕ̃. Then ψ satisfies the
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TRAVELING WAVES ON A LATTICE 483

homogeneous equation (αL− I)ψ = 0 in l∞(D). We wish to show that ψ is the zero
element in l∞(D), and to this end, it suffices to show that 1 6∈ spec(αL), where here
we regard L as a bounded linear operator on the space l∞(D).

We may write

(5.15) L = Sκ + S−κ + Sσ + S−σ − 4I

in terms of the translation operators Sρ : l∞(D)→ l∞(D), defined for each ρ ∈ D as
Sρη(ξ) = η(ξ+ρ) for all ξ ∈ D. We observe that ‖Sρ‖ = 1 for the operator norm, and
that also S−1

ρ = S−ρ. From this, and from the spectral mapping theorem, we have
that spec(Sρ) ⊆ S1 and hence that

(5.16) spec(Sρ + S−ρ − 2I) ⊆ [−4, 0].

It follows now from (5.15) and (5.16), and the inclusion (1.4) for commuting operators,
that spec(αL) ⊆ [−8α, 0]. Thus 1 6∈ spec(αL), as desired.

Remark. We conclude from the uniqueness claims of Proposition 5.2 that the
functions ϕ∗ (defined almost everywhere) and ϕ± and ϕτ , obtained after taking the
limit (5.5) of the traveling waves with nonzero speed are independent of the particular
sequence cn → 0 chosen. In particular, from the symmetry property (4.21), we
conclude that ϕ∗(ξ) = 1− ϕ∗(−ξ) almost everywhere and hence that

(5.17) ϕ−(ξ) = 1− ϕ+(−ξ)
for all ξ ∈ R.

Corollary 5.3. Assume that tan θ is either rational or infinite, with ν as in
(2.2). Then for each integer n, the function ϕτ is constant on the interval (nν, (n +
1)ν).

Proof. Fix n, take ξ1, ξ2 ∈ (nν, (n+ 1)ν), and consider the functions ϕτ (ξ,−ξi) =
ϕτ (ξ + ξi), for i = 1, 2. We observe that hτ (ξ + ξ1) = hτ (ξ + ξ2) for all ξ ∈ D,
in view of (2.2), and conclude using the uniqueness result of Proposition 5.2 that
ϕτ (ξ,−ξ1) = ϕτ (ξ,−ξ2) for all ξ ∈ D. In particular, taking ξ = 0, we have that
ϕτ (ξ1) = ϕτ (ξ2), as desired.

The next result characterizes the locations of the discontinuities of ϕτ . In par-
ticular, when tan θ is irrational, we have that ϕτ is discontinuous everywhere on the
countable dense set D.

Proposition 5.4. If τ ∈ [0, 1], then the left- and right-hand limits ϕ−(ξ) ≤ ϕ+(ξ)
of ϕτ exist at each ξ ∈ R. The point ξ is a discontinuity of ϕτ if and only if ξ ∈ D,
and if so, the value of the jump there equals

(5.18) [ϕ](ξ) =


βm,n if ξ = mκ+ nσ and tan θ is irrational ,∑
mM+nN=k

βm,n if ξ = kν and tan θ is rational or infinite,

where the quantities βm,n are the Fourier coefficients (4.41). Here we denote

(5.19) [ϕ](ξ) = ϕ+(ξ)− ϕ−(ξ)

for any ξ ∈ R, and if tan θ is rational or infinite, we have ν > 0, M , and N as in
(4.44), with M and N having no common factor. In particular, we have at ξ = 0 that

(5.20) ϕ−(0) =
1

2
− γ < 1

2
+ γ = ϕ+(0),
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484 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

where γ > 0 is the quantity (4.29).
Proof. Certainly the left- and right-hand limits of ϕτ exist and equal ϕ±(ξ), since

ϕτ is nondecreasing and equals the function ϕ∗ almost everywhere. With [ϕ](ξ) as in
(5.19), and [h](ξ) = h+(ξ) − h−(ξ), we have from (5.9) and the definition (2.4) of L
that

(5.21) (1+4α)[ϕ](ξ) = α

(
[ϕ](ξ+κ)+[ϕ](ξ−κ)+[ϕ](ξ+σ)+[ϕ](ξ−σ)

)
+[h](ξ),

for each ξ ∈ R.
First suppose that ξ0 ∈ R \ D. Then sum both sides of (5.21) over all points

ξ ∈ D + ξ0. Each term in the sum is nonnegative, and the sum is finite. Moreover,
as [h](ξ) = 0 for each term in the sum, we obtain (1 + 4α)Φ = 4αΦ and hence Φ = 0,
where

(5.22) Φ =
∑

ξ∈D+ξ0

[ϕ](ξ).

Thus each term in (5.22) is zero, so each ξ ∈ D + ξ0, including ξ0, is a point of
continuity of ϕτ . Thus, all discontinuities of ϕτ must lie in D.

Now suppose that tan θ is irrational. Each ξ ∈ D has a unique representation
ξ = mκ+ nσ for integers m and n. Denote

ϕm,n = [ϕ](mκ+ nσ),

multiply both sides of (5.21) at this ξ by ei(mθ1+nθ2) for θ1, θ2 ∈ R, and sum over all
m and n. Denoting

Φ(θ1, θ2) =

∞∑
m=−∞

∞∑
n=−∞

ϕm,ne
i(mθ1+nθ2),

which is an absolutely convergent series and hence a continuous function of θ1 and
θ2, we obtain

(5.23) (1 + 4α)Φ(θ1, θ2) = α(e−iθ1 + eiθ1 + e−iθ2 + eiθ2)Φ(θ1, θ2) + 1,

where we note that [h](ξ) = 0, except for [h](0) = 1. From (5.23) it follows that
Φ(θ1, θ2) = B(θ1, θ2), as in (4.41), and hence that ϕm,n = βm,n for all m,n, as
claimed in (5.18).

Suppose now that tan θ is rational or infinite, and let ν, M , and N be as in the
statement of the proposition. Let ϕk = [ϕ](kν) denote the jump at each point kν ∈ D,
multiply both sides of (5.21) by eikθ1 for θ1 ∈ R, and sum over k. Letting

Φ(θ1) =

∞∑
k=−∞

ϕke
ikθ1 ,

we obtain

(1 + 4α)Φ(θ1) = α(e−iMθ1 + eiMθ1 + e−iNθ1 + eiNθ1)Φ(θ1) + 1,

and this gives

(5.24) Φ(θ1) = B(Mθ1, Nθ1) =
∞∑

m=−∞

∞∑
n=−∞

βm,ne
i(mM+nN)θ1
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TRAVELING WAVES ON A LATTICE 485

from (4.41). Again, (5.18) easily follows from (5.24).
Finally, (5.20) is a consequence of the formula (5.18) at ξ = 0, the fact that

ϕ−(0) = 1−ϕ+(0), which follows from the symmetry relation (5.17) and the formulas
(4.43), (4.45), for γ.

Having constructed the functions

(5.25) ϕ(ξ) = ϕτ (ξ, ξ0) = ϕτ (ξ − ξ0)

which satisfy (5.14), we now determine the conditions under which these functions
satisfy the nonlinear equation

(5.26) 0 = αLϕ(ξ)− f(ϕ(ξ))

for ξ ∈ D, that is, (1.16) with c = 0. In particular, we determine the relation between
the parameters τ ∈ [0, 1] and ξ0 ∈ R in (5.25), and the detuning parameter a in the
nonlinearity f .

Consider ϕ as in (5.25) for some τ ∈ [0, 1] and ξ0 ∈ R. In order for ϕ to satisfy
equation (5.26) for ξ ∈ D, it is necessary and sufficient that

(5.27) hτ (ξ − ξ0) ∈ h(ϕ(ξ)− a)

for all ξ ∈ D, in view of (5.14) and the formula (3.1) for f . We recall here that h
is considered as a set-valued function. Now suppose that the inequalities (5.1) hold.
Then (5.27) holds for all ξ ∈ D \ {ξ0}. Thus if ξ0 6∈ D, the inclusion (5.27) holds for
all ξ ∈ D, and the function ϕ satisfies (5.26) for ξ ∈ D. On the other hand, if ξ0 ∈ D,
then ϕ satisfies (5.26) for ξ ∈ D if and only if (5.27) holds at ξ = ξ0, that is, if and
only if

(5.28) τ ∈ h(ϕτ (0)− a).

At this point it is natural to consider the two cases of rational and irrational slope
tan θ separately. In the following discussions it will be convenient to identify two
solutions of (5.26) which differ by a translation of ξ by an element of D. Specifically,
if ϕ(ξ) and ϕ̃(ξ) both satisfy (5.26) for ξ ∈ D, we shall say these two solutions are
equivalent if there exists ξ1 ∈ D such that ϕ̃(ξ) = ϕ(ξ+ ξ1) for all ξ ∈ D. By a family
of solutions, we shall mean an equivalence class of such solutions, and we shall say
that such ϕ and ϕ̃ belong to the same family.

Case I: tan θ is rational or infinite. Let us first observe that, without loss, we
may take ξ0 ∈ D. Indeed, ϕτ is constant on each interval (nν, (n + 1)ν) between
the points of D, by Corollary 5.3. If ξ0 6∈ D, then there exists ξ1 ∈ D such that
ϕτ (ξ − ξ0) = ϕ0(ξ − ξ1) for all ξ ∈ D (in fact, ξ1 is just the point of D nearest to ξ0
on the left), so we may replace ϕτ (ξ, ξ0) with ϕτ (ξ, ξ1).

We next see that one way for (5.28) to hold is for

(5.29) ϕ−(0) ≤ a ≤ ϕ+(0),

with τ ∈ [0, 1] uniquely determined so that ϕτ (0) = a. In this case, the function
(5.25) does indeed satisfy the inequalities (5.1), by Theorem 5.1, and so is a solution
of (5.26).

Another possibility for (5.28) to hold is that ϕτ (0) < a, in which case we must
have τ = 0, and so ϕ(ξ) = ϕ0(ξ, ξ0) = ϕ−(ξ − ξ0). The first inequality in (5.1) must
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486 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

now hold. The second inequality holds if and only if it holds at ξ = ξ0 + ν, that is, if
and only if

(5.30) a < ϕ(ξ0 + ν) = ϕ−(ν) = ϕ+(0),

where the final equality in (5.30) is a consequence of the fact that ϕ−(ξ) = ϕ+(ξ) is
constant on each interval (nν, (n+1)ν). Thus, we have the solution ϕ(ξ) = ϕ−(ξ−ξ0)
to (5.26), provided that

(5.31) ϕ−(0) < a < ϕ+(0).

In a similar fashion, if the strict inequalities (5.31) hold, we also have ϕ(ξ) = ϕ+(ξ−ξ0)
as a solution. However, again in view of the fact that ϕ is constant on each interval
(nν, (n + 1)ν), the solutions ϕ−(ξ − ξ0) and ϕ+(ξ − ξ0) are seen to be equivalent;
specifically, we have that ϕ−(ξ − ξ0) = ϕ+(ξ − ξ0 − ν) for ξ ∈ D.

Thus if the strict inequality (5.31) holds, we have two distinct families of solutions
of (5.26), namely ϕ(ξ) = ϕτ (ξ − ξ0) with ϕτ (0) = a, and ϕ(ξ) = ϕ±(ξ − ξ0). At the
endpoints of the interval (5.31), that is, for a = ϕ±(0), these two families become the
same.

Case II: tan θ is irrational. Here we shall obtain uncountably many distinct fami-
lies of solutions, generally corresponding to the various equivalence classes of ξ0 mod-
ulo D. First suppose that ξ0 ∈ D. Then one sees, by arguing as in the case of rational
tan θ, that we obtain three families of solutions to (5.26), namely ϕ(ξ) = ϕτ (ξ − ξ0)
with ϕτ (0) = a, and both ϕ(ξ) = ϕ−(ξ−ξ0) and ϕ(ξ) = ϕ+(ξ−ξ0), where in all cases
a satisfies (5.29). In contrast to the previous case, however, the families containing
ϕ−(ξ − ξ0) and ϕ+(ξ − ξ0) are distinct. In particular, the ranges of the functions
ξ → ϕ−(ξ− ξ0) and ξ → ϕ+(ξ− ξ0) are disjoint, as a result of the strict monotonicity
of ϕ, in Theorem 5.1, and so these solutions are not obtained from one another by a
translation of ξ. Similarly, the solution ϕτ (ξ, ξ0), with ϕτ (0) = a, is not equivalent
to either ϕ±(ξ − ξ0), except for the obvious relations ϕ0(ξ, ξ0) = ϕ−(ξ − ξ0) at τ = 0
and ϕ1(ξ, ξ0) = ϕ+(ξ − ξ0) at τ = 1 when a = ϕ−(0) and a = ϕ+(0), respectively.

When ξ0 ∈ D, therefore, we have three distinct families of solutions to equation
(5.26) when a satisfies (5.31), and two families at both a = ϕ−(0) and a = ϕ+(0).

Now consider ξ0 6∈ D. In this case, as noted earlier, all we need to do is to
verify the inequalities (5.1); the inclusion (5.28) need not be verified. In view of the
strict monotonicity of ϕ and the density of D, we see that (5.1) holds if and only if a
satisfies (5.29). Moreover, Proposition 5.4 implies that the solution ϕ = ϕτ (ξ, ξ0) is
independent of τ , since ξ − ξ0 6∈ D and hence ϕ−(ξ − ξ0) = ϕ+(ξ − ξ0) for ξ ∈ D. We
finally observe that if ξ0 − ξ1 6∈ D, then the solutions ϕτ (ξ − ξ0) and ϕτ (ξ − ξ1) have
disjoint ranges for ξ ∈ D and therefore are not equivalent. Thus, we have distinct
families of solutions ϕτ (ξ, ξ0) for distinct values of the parameter ξ0, modulo D, and
this gives uncountably many families of solutions to equation (5.26), for each a.

Remark. By (5.20) of Proposition 5.4, we see that we have constructed, for each a
satisfying |a−1/2| ≤ γ, a class of traveling wave solutions with wave speed c = 0. This
exactly complements the range γ < |a− 1/2| < 1 for which we have constructed such
solutions with wave speed c 6= 0. The relation c = c(a) of Theorem 4.7, between the
detuning parameter of f in (3.1), and the wave speed c, thus extends as a continuous
function throughout the range 0 < a < 1.

Interestingly, the solutions (5.25) obtained above for the discontinuous nonlinear-

ity f in (3.1) are also solutions for certain continuous nonlinearities f̃ . We take this
as partial confirmation of the fact that the traveling wave solutions with speed c = 0,
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TRAVELING WAVES ON A LATTICE 487

and the phenomenon of propagation failure over a range of parameters is not merely
an artifact of the discontinuity in f but rather is a robust phenomenon which one
should observe for a large class of nonlinearities.

Specifically, suppose that f̃ : R→ R is any continuous function satisfying both

(5.32) f̃(u) = u for u ≤ ϕ−(0), f̃(u) = u− 1 for u ≥ ϕ+(0).

Then, with a satisfying (5.29) and with ϕ as in (5.25) any of the solutions to (5.26)
considered above, we have that

(5.33) ϕ(ξ) 6∈ (ϕ−(0), ϕ+(0))

and hence that f(ϕ(ξ)) = f̃(ϕ(ξ)) for all ξ 6= ξ0. In particular, if ϕ(ξ) = ϕτ (ξ, ξ0)
is one of the solutions to (5.26) with ξ0 6∈ D, in the case of irrational slope tan θ, it
follows that (5.33) holds for all ξ ∈ D, so ϕ satisfies the equation

(5.34) 0 = αLϕ(ξ)− f̃(ϕ(ξ)),

that is, (5.26) with f̃ replacing f , for ξ ∈ D. The same holds true of the solutions
ϕ(ξ) = ϕ±(ξ − ξ0) with ξ0 ∈ D, since they satisfy (5.33) for all ξ ∈ D, including
ξ = ξ0.

If ϕ(ξ) = ϕτ (ξ, ξ0) with ξ0 ∈ D and tan θ rational, then one sees that ϕ satisfies
(5.34) for ξ ∈ D if and only if (5.34) is satisfied at ξ = 0, namely, if and only if

(5.35) f̃(ϕτ (0)) = ϕτ (0)− τ.

We use the fact that ϕτ satisfies (5.10) in making this conclusion. By (5.32), (5.35)

always holds at τ = 0 and τ = 1, corresponding to ϕ(ξ) = ϕ±(ξ−ξ0). In addition, if f̃

is C1, then necessarily f̃ ′(0) = f̃ ′(1) = 1, which implies that the quantity f̃(ϕτ (0))−
ϕτ (0) + τ is positive for τ > 0 near 0, and is negative for τ < 1 near 1. In this case
there necessarily exists at least one value τ ∈ (0, 1) at which (5.35) holds, and this
gives a corresponding solution (5.25) to equation (5.34).

Thus, each solution constructed above to the equation (5.26) with the discontin-
uous nonlinearity f possesses at least one counterpart solution to the equation (5.34)

with the smooth nonlinearity f̃ .

6. Conclusions. In this paper we have studied traveling wave solutions for an
infinite system of bistable ODEs on a two-dimensional spatial lattice. The traveling
waves correspond to a moving planar interface. We have found that there is a range
of values of the detuning parameter a, which corresponds to a driving force, for which
the velocity is zero. This is called propagation failure. The onset of motion of the
interface is governed by the normal direction eiθ of the interface. For each direction,
we determine the values a∗ = 1/2±γ(θ) of a for which motion of the interface begins.
The lowest value of γ(θ) occurs when tan θ is irrational; in fact, γ(θ) is shown to be
constant and continuous at irrational values of tan θ (see (4.43)), and is shown to be
discontinuous at rational and infinite values of tan θ (see (4.45)).

In Figure 1 the wave speed c is plotted against the detuning parameter a, for
α = 1 and for three values of θ, namely for tan θ = 0, 1, and 0.1. Many of the
phenomena we have studied are suggested in this figure. In particular, propagation
failure clearly manifests itself as a vertical jump in the graph between the values
1/2± γ(θ), when c = 0. One further sees that the magnitude of the jump is smallest
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Fig. 1. Graph of wave speed c versus detuning parameter a, for α = 1 and various θ.

when tan θ = 1/10 and largest when tan θ = 0. Generally, if tan θ is rational, of the
form tan θ = p/q written in lowest terms, we define the interplanar spacing to be the
quantity λ = (p2+q2)−1/2. If tan θ is irrational, then we define λ = 0. The interplanar
spacing is the distance between adjacent lines of slope tan θ passing through the lattice
points. The fraction 1/10 is “nearer” to an irrational (as measured by the smallness
of the interplanar spacing) than are the fractions 0/1 or 1/1, so we expect γ(θ) to be
smaller there. One also sees the monotone relation between c and a and the limits
a → 0, 1 as c → −∞,∞, respectively, are suggested. Indeed, one sees how c is given
as a continuous function of a ∈ (0, 1). One can also see that the function c = c(a, θ)
varies continuously in θ as well (the pathological behavior of γ(θ) noted in section 4
notwithstanding). The proof of this relies on the fact that for fixed c 6= 0, the quantity
Γ(c) in equation (4.26) varies continuously with θ, an immediate consequence of the
Lebesgue dominated convergence theorem.

It is possible to conclude from our theory that many of the curves c = c(a, θ),
for various values of θ, must cross in the region where c 6= 0. Indeed, one sees such
crossings in Figure 1. Quite generally, let C(θ) ⊆ R2 denote the curve c = c(a, θ) in
the region c 6= 0, namely

C(θ) = {(c, a) ∈ R2 | c = c(a, θ) with γ(θ) < |a− 1/2| < 1/2}

= {(c, a) ∈ R2 | c 6= 0 and a = 1/2 + Γ(c), with Γ(c) as in (4.26)}.
Now fix two different values θ0 and θ1, for which tan θ0 and tan θ1 are distinct rational
numbers in the range [0, 1]. Also fix a positive value of c = c′ at which the two values
a0 and a1 for which (c′, ai) ∈ C(θi) are different. Without loss assume a0 > a1, so
that the curve C(θ0) lies above the curve C(θ1) at c = c′. Now using the continuous
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TRAVELING WAVES ON A LATTICE 489

dependence of Γ(c′) on θ noted above, we may take a value θ = θ2 near enough to θ0

so that the value a = a2 for which (c′, a2) ∈ C(θ2) satisfies a2 > a1. That is, the curve
C(θ2) also lies above C(θ1) at c = c′. On the other hand, we have γ(θ2) < γ(θ1) for the
limiting values of Γ(θi) at c = 0, for all θ2 near θ1, and so for such θ2 the curve C(θ2)
lies below C(θ1) for all small positive values of c. Necessarily then, C(θ2) must cross
C(θ1) at some positive value of c. Indeed, we see the phenomenon described above
quite clearly in Figure 1, for the values tan θ0 = 0, tan θ1 = 1, and tan θ2 = 0.1.

There remains much work to be done on this problem. Generally, the presence
of a lattice makes for a much richer and more complex set of dynamical phenomena
than would occur in a PDE, such as ut = α∆u− f(u), in Rn. Although the traveling
wave equation (1.7) for this PDE is independent of the dimension n, the traveling
wave equation for the lattice system (equation (1.16) for the lattice Z2) depends not
only on the dimension n, but also on the underlying lattice. Even though we have
restricted our attention in the present paper to the lattices Z and Z2, it appears that
our techniques may be applied to find plane waves in other lattices, for example, in
Z3, and in other three-dimensional crystallographic lattices. Such a problem certainly
warrants further study.

The stability of the traveling waves needs to be studied. Also, the possibility of
multiple traveling waves, and bifurcation of traveling waves, especially for multiple
well potentials F , is important. A setting in which such problems could be explored
is perhaps provided by some of the general theory of mixed differential equations
developed in [22]. In particular, a Fredholm alternative for mixed equations is proved
there, which would allow the use of the Lyapunov–Schmidt method, and which would
place many such problems within the framework of classical bifurcation theory.

Let us also mention the occurrence of spiral waves [31], which have been observed
numerically; it would be of interest to understand mathematically how such waves
appear. (See also [30] for an analytic treatment of spiral waves, albeit for a different
class of problems.)

Finally, for all of the issues dealt with here, it would be interesting to explore the
possibility of results in the presence of statistical noise.

In the future, we plan to explore the use of homotopy techniques, both analytically
and numerically, to determine the behavior for smooth nonlinearities f . For example,
the question of both local and global continuation of traveling wave solutions, as
parameters in the nonlinearity f are varied, is of significant interest. We mention
results of [7] for a class of retarded (time-delay) differential equations, in this spirit,
and the recent work in [23] for general mixed differential equations such as (1.16).
Such an approach may provide insight into propagation failure for general f , and the
dependence of this phenomenon on the direction parameter θ.

A significant technical difficulty here is the almost total lack (save for [34], [35],
and [22], [23]) of any developed theory for mixed-type functional differential equations,
that is, for equations such as (1.16) involving both forward and backward shifts in
the argument. One expects some of the many techniques and results of retarded
differential equations [18] to carry over, but such a development must proceed with
great care.

Let us note here that the study of propagation failure leads to the singular per-
turbation case c → 0 of equation (1.16); again, one anticipates that the relatively
well-developed theory for retarded differential equations [25] should provide guide-
lines on how to proceed.

Even for the piecewise linear function f of the present paper, some interesting
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490 JOHN CAHN, JOHN MALLET-PARET, AND ERIK VAN VLECK

questions remain. For example, what is the asymptotic order of the difference δ
between the quantities γ(θ) for rational (4.45) and irrational (4.43) values of tan θ?
We have that

(6.1) δ =
1

2

∞∑
k=−∞
k 6=0

β−Nk,Mk,

with tan θ = N/M , as in (4.44), in lowest terms, and we wish to know the asymptotic
behavior of (6.1) as |M | + |N | → ∞. As Fourier coefficients of an analytic function
(4.1), one expects some sort of geometric decay in βm,n, and so in δ, for large |M |+|N |.

Another basic question is to examine the limit α → ∞, which corresponds to
an approximation to the PDE ut = ∆u − f(u). One expects from the order relation
α = h−2, where h equals the step size of a discrete approximation, that the magnitude
of c should increase like h−1, that is, like α−1/2. The rescaled wave speed cα−1/2

should approach a limit as α→∞. This limit should be independent of θ and should
correspond to the wave speed for the PDE.

In addition to traveling waves with spatially uniform asymptotic states (such as
ui → 0 as i → −∞ and ui → 1 as i → ∞), it is reasonable to study problems with
spatially varying states at ±∞. For example, consider the one-dimensional problem
(1.8), where f is a function as in (1.3) or (3.1). With f(0) = 0, one equilibrium state
is ui = 0 for all i, while another is given by

(6.2) ui =

 k+, i even,

k−, i odd,

for appropriate quantities k± ∈ R. In particular, one has that (∆u)i = (−1)i2(k− −
k+), for ui as in (6.2), and equating α(∆u)i to f(ui) yields the required conditions

f(k+) = −f(k−) = 2α(k− − k+).

For the nonlinearity (3.1), this equation is satisfied by

k− =
2α

1 + 4α
, k+ =

1 + 2α

1 + 4α
,

provided that k− < a < k+. Such an equilibrium solution presents itself as a one-
dimensional checkerboard. Upon setting

vi = u2i, wi = u2i+1,

we may rewrite (1.8) as the system

(6.3)
v̇i = α(wi−1 + wi − 2vi)− f(vi),

ẇi = α(vi + vi+1 − 2wi)− f(wi)

and seek traveling wave solutions of (6.3) of the form

vi(t) = ϕ(i− ct), wi(t) = ψ(i− ct)
with boundary conditions

(ϕ(−∞), ψ(−∞)) = (0, 0), (ϕ(∞), ψ(∞)) = (k+, k−).
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TRAVELING WAVES ON A LATTICE 491

Such solutions join the zero equilibrium at −∞ to the spatially varying checkerboard
equilibrium (6.2) at ∞. The functional differential system to be analyzed thus takes
the form

−cϕ′(ξ) = α (ψ(ξ − 1) + ψ(ξ)− 2ϕ(ξ))− f(ϕ(ξ)),

−cψ′(ξ) = α (ϕ(ξ) + ϕ(ξ + 1)− 2ψ(ξ))− f(ψ(ξ)).

Two-dimensional spatially varying equilibria, such as checkerboards, horizontal and
vertical stripes, as well as disordered “chaotic” patterns, are obtained in [10]. One
could envision studying the above problem in this more general context.

Quite generally, our knowledge of traveling wave solutions should provide the
building blocks for understanding the behavior of more general solutions of the lattice
system (1.1). One anticipates that under quite general conditions, the system (1.1)
should admit solutions comprised of regions of states close to equilibria, separated by
moving interfaces. In general, these interfaces would not be planar but would present
themselves as curves in the plane, at least observed on a macroscopic spatial scale of
much greater magnitude than the spacing of the lattice points. These curves would
move at a speed c = c(θ) determined locally by the direction angle θ of the normal
vector to the curve. Indeed, such a purely geometrical model, namely, motion of curves
determined by normal direction, is studied in [5], and in [37]. For such a model, the
limiting shapes (kinetic Wulff shapes) of outward growing interfaces from bounded
initial shapes are independent of initial conditions, and connections have been made
between such asymptotic shapes and the growth and shapes of crystals. Establishing
a rigorous connection between this geometrical model and the lattice system (1.1) is
a challenging problem indeed. If our planar results can be extended locally to such a
curved interface problem, we predict that kinetic Wulff shapes are composed entirely
of rational segments (facets) and that facets on inward growing shapes would shrink
and tend to disappear. Smooth inward growing shapes would behave as if c were
constant (isotropic) at the value we have found for irrational directions.
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