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Computation of Mixed Type Functional Differential Boundary Value Problems∗

Kate A. Abell†, Christopher E. Elmer‡, A. R. Humphries§, and Erik S. Van Vleck¶

Abstract. We study boundary value differential-difference equations where the difference terms may contain
both advances and delays. Special attention is paid to connecting orbits, in particular to the model-
ing of the tails after truncation to a finite interval, and we reformulate these problems as functional
differential equations over a bounded domain. Connecting orbits are computed for several such prob-
lems including discrete Nagumo equations, an Ising model, and Frenkel–Kontorova type equations.
We describe the collocation boundary value problem code used to compute these solutions, and the
numerical analysis issues which arise, including linear algebra, boundary functions and conditions,
and convergence theory for the collocation approximation on finite intervals.
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1. Introduction. Nonlinear spatially discrete diffusion equations occur as models in many
areas of science and engineering. When the underlying mathematical models contain differ-
ence terms or delays as well as derivative terms, the resulting differential-difference equations
present challenging analytical and computational problems. We demonstrate how functional
differential boundary value problems with advances and delays arise from such models and
describe a general approach for the numerical computation of solutions. Solutions are approx-
imated for several such problems, and the numerical issues arising in their computation are
discussed.

Biology, materials science, and solid state physics are three fields in which accurate first
principle mathematical models possess difference (both delayed and advanced) terms. In biol-
ogy (in particular, in physiology) there is the bidomain model for cardiac tissue (defibrillation),
ionic conductance in motor nerves of vertebrates (saltatory conduction), tissue filtration, gas
exchange in lungs, and calcium dynamics. Materials science applications include interface
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756 K. ABELL, C. ELMER, A. HUMPHRIES, AND E. VAN VLECK

motion in crystalline materials (crystal growth) and grain boundary movement in thin films
where spatially discrete diffusion operators allow description of the material being modeled
in terms of its underlying crystalline lattice. In solid state physics, applications include dis-
location in a crystal, adsorbate layers on a crystal surface, ionic conductors, glassy materials,
charge density wave transport, chains of coupled Josephson junctions, and sliding friction. In
all of these fields the physical system, and the corresponding differential model with delay
terms, exhibit propagation failure (crystallographic pinning, a mobility threshold) and direc-
tional dependence (lattice anisotropy) in a “natural” way. These phenomena do not occur
“naturally” in the models without difference terms commonly used for the above applications
and are often added to such local models in an ad hoc manner. The reason discrete phenom-
ena are modeled with continuous models is the lack of analytical techniques and numerical
solvers for differential equations with both forward and backward delays.

We consider differential-difference boundary value problems. While the applications above
are both time (continuous) and space (discrete) dependent, traveling wave solutions are a
fundamental class of solutions. Traveling wave solutions for these models satisfy ODEs with
advance and delay terms. Thus we consider systems of d mixed type delay equations (see
[34, 35, 29]) of the form{

τID(mI)uI = FI(x,u,y[u], ū, ȳ[ū]), I = 1, . . . , d, x ∈ (T−, T+),

0 = GJ(ζJ ,y[u]), J = 1, . . . ,m∗,
(1.1)

where for I = 1, . . . , d, x ∈ (T−, T+),

∗ τI(x) : R → R
+ ∪ {0}, uI(x) : R → R,

∗ mI ∈ Z
+ is the order of the Ith delay equation,

∗ m∗ is the sum of the orders of the delay equations, m∗ := m1 + m2 + · · · + md,
∗ Dlu(x) stands for l-fold differentiation of u with respect to x,
∗ u(x) = [u1(x), u2(x), . . . , ud(x)]T ,
∗ y[u(x)] = [u1(x),Du1(x), . . . ,D(m1−1)u1(x), . . . , ud(x),Dud(x), . . . ,D(md−1)ud(x)],
∗ ū(x) = [ū1(x), ū2(x), . . . , ūd(x)]T ,
∗ ūI(x) = [uI(x + s1(x)), . . . , uI(x + sn(x))]T , where {sj(x)}nj=1 is a finite collection of

delays, possibly dependent on x,
∗ ȳ[ū(x)] = [ū1(x),Dū1(x), . . . ,D(m1)ū1(x), . . . , ūd(x), . . . ,D(md)ūd(x)], and
∗ the boundary points satisfy T− � ζ1 � · · · � ζm∗ � T+.

There is not a well-established general existence and uniqueness theory of traveling waves
for the class of problems we are interested in. Initial work was done by Rustichini in
[34] and [35]. Mallet-Paret [29] has set forth a linear Fredholm theory which, together with
essentially the implicit function theory, establishes an existence theory [30] for a class of
differential-delay equations with delays of mixed type (both forward and backward delays).

Previous work finding explicit analytically obtained traveling wave solutions include [12],
where traveling wave solutions of a two-dimensional spatially discrete reaction-diffusion system
with an idealized, piecewise linear, nonlinear term were studied using Fourier series techniques
to determine an integral form of the plane wave solutions. This integral solution was used to
relate the wavespeed c to a detuning parameter which allowed the dependence of the behavior
on the detuning parameter and the orientation of the wave to be studied. These ideas were
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COMPUTATION OF MIXED TYPE FUNCTIONAL BVPS 757

extended to a general discrete-continuous reaction-diffusion wave equation in [18] and to a
problem with variable but spatially periodic diffusion in [19].

In [18, 20] numerical techniques were introduced to find traveling wave solutions for

αu̇(η, t) + βü(η, t) = γΔu(η, t) + LDu(η, t) − f(u(η, t)),(1.2)

where u : R
N × R → R, α, β, γ � 0, f is a bistable nonlinearity, Δ represents the continuous

Laplacian operator, and LD is a discrete Laplacian operator of the form

LDu(η, t) =

N∑
k=1

εk[u(η + ek, t) + u(η − ek, t) − 2u(η, t)],

where εk � 0 and ek is the unit vector whose kth element equals 1. Traveling wave solutions
of (1.2) of the form

u(η, t) = ϕ(η · σ − ct), ϕ : R → R,(1.3)

were considered, where η · σ is the Euclidean dot product of the position vector η and the
unit vector σ normal to the wavefront which indicates the direction of the traveling wave with
respect to the lattice, and c ∈ R is the unknown wavespeed.

Substituting the traveling wave ansatz (1.3) into (1.2) results in

−cαϕ′(ξ) − (γ − c2β)ϕ′′(ξ) = LTϕ(ξ) − f(ϕ(ξ)), ξ ∈ R,(1.4)

where ξ = η · σ − ct ∈ R, and

LTϕ(ξ) =

N∑
k=1

εk[ϕ(ξ + ek · σ) − 2ϕ(ξ) + ϕ(ξ − ek · σ)].(1.5)

Note that (1.4) is a delay differential equation (DDE) of mixed type posed on an infinite
interval, with both delayed and advanced terms contained in (1.5) as a result of applying the
traveling wave ansatz to the discrete Laplacian operator.

In [18] equations (1.4) and (1.5) are solved on a truncated interval ξ ∈ [−T, T ], using
asymptotic boundary conditions (see [28]). An ordinary differential boundary value problem
solver was used, together with path following techniques to find solutions in different regions
of the parameter space. The main difficulty with this approach is the delayed and advanced
terms in (1.5). The simple approach, of treating these terms as source terms in a fixed point
iteration was adopted in [18], resulting in an iterative scheme. The methods used in [18]
become increasingly inefficient as (γ − c2β) → 0 and are nonconvergent for (γ − c2β) = 0 in
(1.4). Thus they could not be used for computing traveling wave solutions of the Nagumo
equation obtained by setting β = γ = 0 in (1.4). In [20] the introduction of a Newton-like
iterative scheme allows general bistable nonlinearities f to be considered. The convergence
results in [20], based upon the Fredholm theory of Mallet-Paret [29, 30], provide a theoretical
foundation for the Newton-like method considered in this paper.

The approximation of periodic solutions and connecting orbits of DDEs has been con-
sidered in [22, 21, 36], where the problems are formulated as boundary value problems and
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758 K. ABELL, C. ELMER, A. HUMPHRIES, AND E. VAN VLECK

approximated with collocation methods. In addition, the stability of a class of collocation
methods is analyzed in [21], convergence is shown to correspond to known convergence results
for initial value delay equations in [22], and a technique for approximating connecting orbits
for DDEs with stable or unstable manifolds of infinite dimension is developed in [36].

The outline of this paper is as follows. In section 2 we describe how traveling wave
problems in lattice differential equations result in functional differential equations of the form
(1.1). Although there is now extensive theory for traveling wave solutions of parabolic type
PDEs, relatively little is known about traveling wave solutions of spatially discrete analogues,
because of the difficulty of solving (1.1). In section 3 we will present numerically computed
solutions to problems of the form (1.1) arising from several traveling wave problems. These
include in section 3.1 a spatially discrete Nagumo equation with piecewise linear nonlinearity,
and in section 3.2 the spatially discrete Nagumo problem ((1.2) with β = γ = 0, α = 1, and
cubic nonlinearity). In section 3.3 we present a discrete Nagumo equation with a cubic-like
nonlinearity for which we have exact traveling wave solutions, and we use this to illustrate and
numerically verify the performance of our code. The numerical results show proportionality
of the error with the requested tolerance. In sections 3.4 and 3.5 an Ising model, where FI

is a fully nonlinear function of u and its delays, and Frenkel–Kontorova (FK) type equations
with periodic boundary conditions are considered. In section 4 we describe the main features
and implementation of our general-purpose code, COLMTFDE (COLlocation for Mixed Type
Functional Differential Equations), a collocation-based boundary value problem solver for
the solution of linear and nonlinear differential-difference equations with both advances and
delays that was used to perform the computations in section 3. This code is a member of the
COLSYS family [2, 6, 13, 42] but is differentiated from other members of the family by its
ability to handle delays and several other features that we describe. Details of the collocation
formulation are given in section 4.1, and convergence theory for the collocation error on finite
intervals, due to Bader, is summarized in section 4.2. We do not provide convergence results,
theoretically or numerically, for the full discretization, the approximations due to collocation
and the truncation to a finite interval.

2. Traveling wave solutions.

2.1. Connecting orbits. We will numerically solve parameterized boundary value prob-
lems of the forms

ϕ̇(ξ) = g(ξ, ϕ(ξ), ϕ(ξ + s1), . . . , ϕ(ξ + sn), λ), lim
ξ→−∞

ϕ(ξ) = ϕl, lim
ξ→∞

ϕ(ξ) = ϕr(2.1)

and

ϕ̈(ξ) = g(ξ, ϕ(ξ), ϕ̇(ξ), ϕ(ξ + s1), . . . , ϕ(ξ + sn), λ), lim
ξ→−∞

ϕ(ξ) = ϕl, lim
ξ→∞

ϕ(ξ) = ϕr,
(2.2)

where ϕ(ξ) : R → R and λ ∈ R
p, whose solution (ϕ0, λ0) is an orbit connecting ϕl and ϕr.

Recall that applying the traveling wave ansatz (1.3) to (1.2) results in (1.4), where LT is
defined by (1.5), although we often take the simpler form

LTϕ(ξ) = L1ϕ(ξ) = (ϕ(ξ + 1) − 2ϕ(ξ) + ϕ(ξ − 1)).(2.3)
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COMPUTATION OF MIXED TYPE FUNCTIONAL BVPS 759

With the unknown wavespeed c taking the role of λ, (1.4) is of the form (2.1) or (2.2), where to
satisfy the boundary conditions we require f(ϕl) = f(ϕr) = 0. We will see such f in section 3.

2.2. Fredholm theory, existence, and stability. Consider the variation of the connecting
orbit problem (2.1) with respect to ϕ and λ,

ψ̇(ξ) = gϕ(ξ, ϕ0(ξ), λ0)ψ(ξ) + gλ(ξ, ϕ0(ξ), λ0)μ, ψ(±∞) = 0,(2.4)

where ϕ0(ξ) = (ϕ0(ξ), ϕ0(ξ+s1), . . . , ϕ0(ξ+sn)) and observe that (ψ = bϕ̇0, μ = λ̇0 = 0) is an
isolated solution for some b ∈ R. Note that (2.4) is a condition for a nondegenerate connecting
orbit between fixed points [11], i.e., a well-defined traveling wave problem. Numerically we
deal with this translational invariance by imposing a phase condition, Φ, which maps the
Banach space of continuous solutions to (2.1) into R and satisfies

Φ(ϕ0, λ0) = 0, Φϕ(ϕ0, λ0)ϕ̇0 + Φλ(ϕ0, λ0)λ̇0 = Φϕ(ϕ0, λ0)ϕ̇0 �= 0.(2.5)

The “well posedness” of the mixed type delay equation (2.1) with (2.5) has been established by
Mallet-Paret [29, 30] in analogy with the Fredholm theory of Palmer [33] (see also Beyn [11])
for differential equations. This requires consideration of asymptotic hyperbolicity, establishing
the correct relationship between the number parameters in the system and the dimension of
stable and unstable subspaces of the asymptotic operators to obtain a Fredholm index of zero
and hence an isomorphic map, and essentially involves establishing an exponential dichotomy.

In [29] Mallet-Paret develops a Fredholm theory for mixed type delay equations like those
considered here. Subsequently, in [30] he employs this Fredholm theory to prove existence,
uniqueness (up to translation), and other properties of monotone traveling wave solutions of
spatially discrete Nagumo equations. We now summarize important points of this Fredholm
theory. Consider the linear operator ΛL : W 1,p → Lp given by

(ΛLx)(ξ) = x′(ξ) −
n∑

j=0

Aj(ξ)x(ξ + sj), ξ ∈ J,(2.6)

where J is typically the infinite interval, and the Aj are d× d measurable, locally integrable,
complex matrices. The shifts sj may be positive or negative and it is assumed that s0 = 0
and that the shifts are distinct.

Theorem A of [29] is a Fredholm alternative theorem for linear mixed type delay equations
that states that ΛL is Fredholm if ΛL is asymptotically hyperbolic; i.e., the limiting operators
(as ξ → ±∞) are constant and the corresponding characteristic equations have no solutions
of the form iη for η ∈ R. Because the dimensions of the unstable manifolds of the limiting
operators may be infinite, the Fredholm index is calculated (see Theorem C of [29]) using a
homotopy between the limiting operators.

We mention here that a stability theory is developed in [14] in the spirit of that of Fife and
McLeod [24] for the Nagumo PDE that shows that traveling wave solutions of the spatially
discrete Nagumo equation are asymptotically stable with asymptotic phase. Exponential
dichotomies have been established for linear nonautonomous mixed type functional differential
equations [25, 31] and together with the Fredholm theory of Mallet-Paret [29, 30] results in
the spirit of Sandstede [37] (see also [38]) appear possible.
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760 K. ABELL, C. ELMER, A. HUMPHRIES, AND E. VAN VLECK

2.3. Boundary functions and boundary conditions. To find traveling wave solutions of
lattice differential equations numerically, we truncate the infinite interval (−∞,∞) to a finite
interval (T−, T+) and solve the differential equation numerically on this interval.

If the functional differential equation (1.1) has delays which satisfy s ∈ [smin, smax] where
smax � 0 so there are no advanced terms, then boundary functions uI(x) can be defined on
the interval [T− + smin, T−], so that FI can be evaluated at all points x ∈ (T−, T+). When
such functions are defined delay differential equations may be solved as initial value problems.
However, the connecting orbit problem with delays only can also be considered as a boundary
value problem [36]. In this case either the stable or the unstable manifold is finite dimensional,
and, as is shown in [36], given enough free parameters one of two choices will result in a finite
number of conditions: (i) expansion in terms of eigenfunctions, or (ii) the use of a special
bilinear form to define a complementary projection.

However we consider problems with 0 ∈ (smin, smax) and so require boundary functions
to be defined on both of the intervals [T− + smin, T−] and [T+, T+ + smax] in order to be able
to compute the collocation solution. In this case the stable and unstable manifolds of the
equilibrium solutions are generally both infinite dimensional. Moreover, the solutions on the
interval [T−, T+] and on the boundary intervals are interdependent, so not only do we require
boundary functions consistent with the boundary conditions at ±∞, but we must find these
functions while simultaneously solving on [T−, T+].

We work with implicitly defined boundary functions which we define using ideas similar
to those for asymptotic boundary conditions for differential equations on infinite intervals (see
[15, 28]). For x < T− we define the boundary function

uI(x) = H−(uI(xs),DuI(xs), . . . ,D(m−1)uI(xs)), x < T−, xs ∈ [T−, T+].(2.7)

Here xs is usually taken to be T−. Thus the value of the boundary function uI(x) is defined
in terms of the unknowns uI(T−) and its derivatives. Similarly we define a separate boundary
function H+(x) for x > T+.

We usually find such a representation for the solution outside the interval using a technique
similar to eigenvector boundary conditions. For example, consider the differential-difference
equation

−cϕ̇(ξ) = L1ϕ(ξ) − f(ϕ(ξ))(2.8)

with L1 given by (2.3). Truncating to a finite interval, the form but not the magnitude of the
solution outside the computational domain can be found by linearization. Imposing continuity
conditions between the numerically computed and linearized parts of the solution then allows
us to simultaneously solve the boundary value problem and determine the magnitude of the
boundary function to ensure that desired continuity properties hold at the boundary.

Consider the linearization of (2.8) about the equilibrium points ϕl and ϕr,

−cv̇(ξ) = αL1v(ξ) − βv(ξ),(2.9)

where β = f ′(ϕl) or β = f ′(ϕr). The characteristic equation for (2.9) is obtained by substi-
tuting v(ξ) = exp(λξ) into (2.9),

h(λ) = cλ + α(exp(λ) − 2 + exp(−λ)) − β = 2α cosh(λ) + cλ− (2α + β) = 0,(2.10)
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COMPUTATION OF MIXED TYPE FUNCTIONAL BVPS 761

which for α > 0 and β > 0 has two real solutions, one positive and one negative. Denote by
λ+

0 and λ−
0 the positive and negative real roots, respectively, of (2.10) for β = f ′(ϕl) and by

λ+
1 and λ−

1 the positive and negative roots for β = f ′(ϕr).

Now consider truncating (2.8) with ċ = 0 and a phase condition to a finite time interval
[T−, T+] and then consider the following truncated problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−cϕ̇π(ξ) = αL1ϕπ(ξ) − f(ϕπ(ξ)), T− < ξ < T+,

ϕπ(ξ) = 1 + (ϕπ(T+) − 1)eλ
−
1 (ξ−T+), ξ ∈ [T+,∞),

ϕπ(ξ) = ϕπ(T−)eλ
+
0 (ξ−T−), ξ ∈ (−∞, T−],

−ϕ̇π(T+) + λ−
1 ϕπ(T+) = λ−

1 ,

−ϕ̇π(T−) + λ+
0 ϕπ(T−) = 0.

(2.11)

The second and third equations in (2.11) give us a representation for ϕπ outside of [T−, T+] in
terms of ϕπ at the boundary and the eigenvalues and are determined by imposing continuity
in ϕπ at the boundary. Also, the fourth and fifth equations, which are the boundary conditions,
come from requiring continuity in the derivative, since differentiating the second equation gives

ϕ′
π(ξ) = λ−

1 (ϕπ(T+) − 1)eλ
−
1 (ξ−T+),

and hence

ϕ′
π(T+) = λ−

1 (ϕπ(T+) − 1),

which gives the fourth equation in (2.11). The fifth equation is derived similarly.

The left and right boundary functions defined in (2.11) for ξ � T− and ξ � T+ are
thus each composed of a single monotonic eigenfunction, whereas (2.10) is transcendental and
has infinitely many complex conjugate solutions. However in each of the Nagumo and Ising
problems considered in sections 3.1–3.4 the real roots of (2.10) and its analogues are not only
dominant, but simple, and there is a gap in the real part compared with any other solution
to the characteristic equation. Thus any expansion in terms of eigenfunctions has a leading
order term corresponding to the appropriate real solution of the characteristic equation. For
problems where the dominant roots of the characteristic equation are complex conjugate or
where there is no spectral gap, a different form of boundary function would be required.

In our computations the values λ+
0 and λ−

1 are found numerically. In order to bracket a
root of h(λ) in (2.10) notice that h(0) < 0 since β > 0. Consider (2.10) with cosh(λ) replaced
with λ2 and call this quadratic that has one negative and one positive root ĥ(λ). Then for
ĥ(λ∗) = 0 we have (since α > 0) that h(λ∗) > 0. Thus, we bracket a solution of h(λ) = 0
and employ the code zero of [39] that uses a combined bisection/secant method strategy
to numerically solve the nonlinear equation for the desired λ. We also note here that when
linearizing with respect to the wavespeed c we employ the identity ∂λ

∂c = −∂h
∂c /

∂h
∂λ .

2.4. Phase condition and wavespeed. DDE boundary value problems defined on an
infinite interval, or with periodic boundary conditions, exhibit translational invariance. To
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762 K. ABELL, C. ELMER, A. HUMPHRIES, AND E. VAN VLECK

determine a unique translate of the wave form a phase condition is required. Let ϕ0 be a
reference wave form; we consider the classical phase condition

ϕ(0) = ϕ0(0),(2.12)

which assumes that both ϕ̇(0) and ϕ̇0(0) are nonzero. In our computations we need to solve
for both the waveform ϕ and the wavespeed c. We do this by approximating (2.11) together
with the classical phase condition (2.12) and the equation ċ(ξ) = 0.

3. Solutions. We demonstrate numerically computed solutions to a number of instances
of (1.1). We begin in section 3.1 with a piecewise linear control problem for which exact
solutions are known. In section 3.2 we compute solutions of a nonlinear discrete Nagumo
equation, which had previously only been solved under the addition of artificial diffusion. In
section 3.3 we present a cubic-like nonlinearity for which we have exact traveling solutions
to a discrete Nagumo equation. We use this example to illustrate and numerically verify the
performance of our code. In section 3.4 we compute solutions of an Ising model where the FI

is a fully nonlinear function of u at its delays. In section 3.5 we solve an FK type equation
with periodic boundary conditions.

3.1. Piecewise linear spatially discrete reaction-diffusion equation. We consider the
traveling wave equations that result from applying the traveling wave ansatz (1.3) to the
spatially discrete evolution equation (1.2) with α = 1, β = 0, and with f given by the
piecewise linear nonlinearity (“McKean’s caricature of the cubic” [32])

f(ϕ) ≡ f(ϕ, a) =

⎧⎪⎨
⎪⎩

ϕ, ϕ < a,

[ϕ− 1, ϕ], ϕ = a,

ϕ− 1, ϕ > a,

a ∈ (0, 1).(3.1)

The resulting equations for this spatially discrete Nagumo equation are{
−cϕ̇(ξ) = αL1ϕ(ξ) + γϕ̈(ξ) − f(ϕ(ξ)),

ϕ(−∞) = 0, ϕ(0) = a, ϕ(+∞) = 1,
(3.2)

where L1ϕ is defined by (2.3). If ϕ is monotone, then we may set ϕ(0) = a, which implies
ϕ(ξ) < a for ξ < 0 and ϕ(ξ) > a for ξ > 0. Thus, for the Heaviside function defined by

h(x) =

{
1, x > 0,

0, x < 0,

we have h(ϕ(ξ) − a) = h(ξ) for ξ �= 0, and so f(ϕ(ξ)) = ϕ(ξ) − h(ξ). This incorporates
the phase condition into our problem, and hence we may solve (3.2) with (3.1) as a linear
inhomogeneous equation where c is a given parameter and the corresponding value of a is
determined by ϕ(0). We are particularly interested in the case where γ = 0, so that we are
solving the purely spatially discrete equation, with no artificial diffusion terms. Hence, (3.2)
is reduced to {

−cϕ̇(ξ) = αL1ϕ(ξ) − ϕ(ξ) + h(ξ),

ϕ(−∞) = 0, ϕ(0) = a, ϕ(+∞) = 1.
(3.3)D
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COMPUTATION OF MIXED TYPE FUNCTIONAL BVPS 763

Since the nonlinearity f is piecewise linear, the exact traveling wave solution to (3.3) can
be derived using Fourier transforms (see [12] and [18]). We use our code to compute numerical
solutions to this problem. Figure 1(i) shows a plot of a(c) against c, obtained numerically for
the spatially discrete problem (3.3).

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3
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0.5
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0.8

0.9

1
Linear problem: recovered a values for γ = 0, various c

c

a

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Linear problem: wave profiles for γ = 0, various wavespeeds

ξ

φ

c = 1:

c = 0.5:

c = 0.25:

c = 0.01:

.........

−−−−

−.−.−.

_____

Figure 1. (i) An a(c) plot for the spatially discrete linear reaction-diffusion equation (3.3), where the
solution is computed numerically for a specified c, and a is recovered using ϕ(0) = a. (ii) Wave profiles for the
spatially discrete linear reaction-diffusion equation (3.3) for various wavespeeds c.

Figure 1(ii) shows numerically obtained solution profiles of the spatially discrete problem
(3.3) for various wavespeeds c. We present solution curves only for a � 0.5 because of the
symmetry which these solutions possess with the solutions for a � 0.5. Note the “kink” which
forms in the solution curves at ϕ(0). The existence of this is discussed in [18] and is due to
the fact that taking γ = 0 in (3.2) implies for c �= 0 that

lim
ξ→0+

ϕ′(ξ) �= lim
ξ→0−

ϕ′(ξ).

Note also from Figure 1(ii) that c is a monotonic increasing function of ϕ(0) = a.

The graphs in Figure 1 agree well with the equivalent graphs presented in [18] for the
exact form of the solution [18, Figure 2.6, Curve 1] and using the iterative numerical method
outlined in the introduction [18, Figures 3.2 and 3.3, Curve 1].

3.2. Spatially discrete Nagumo equation. We now consider the traveling wave equations
corresponding to a spatially discrete Nagumo equation{

−cϕ̇(ξ) = L1ϕ(ξ) − f(ϕ(ξ)),

ϕ(−∞) = 0, ϕ(+∞) = 1,
(3.4)

where L1ϕ is defined by (2.3) and the cubic nonlinearity f is defined by

f(ϕ) ≡ f(ϕ, a) = d1ϕ(ϕ− 1)(ϕ− a), a ∈ (0, 1).(3.5)
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This problem has been studied by Bell and Cosner [9], Keener [26, 27], Zinner [43, 44], and
others. We also mention here the general existence and uniqueness theory based upon a
Fredholm alternative theorem of Mallet-Paret [29, 30] and the stability theory of Chow, Mallet-
Paret, and Shen [14].

We solve (3.4) with the classical phase condition ϕ(0) = a. Since the wavespeed c is
unknown, we solve (3.4) simultaneously with the equation ċ = 0, to obtain both solutions ϕ
and c. We are therefore actually solving⎧⎪⎨

⎪⎩
−cϕ̇(ξ) = L1ϕ(ξ) − d1ϕ(ξ)(ϕ(ξ) − 1)(ϕ(ξ) − a),

ċ = 0,

ϕ(−∞) = 0, ϕ(0) = a, ϕ(+∞) = 1.

(3.6)

Figure 2 shows plots of the detuning parameter a(c) against the wavespeed c for (3.6) with
various cubic coefficients d1. Propagation failure is the term we use when there is a nontrivial
interval (one of nonzero length) of parameter a values for which c = 0. Propagation failure is
resolved numerically if d1 is large enough (see [23] for details on the subtleties of the existence
of the interval of propagation failure), and the length of this interval increases as d1 increases.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

c

a(
c)

Nonlinear equation: a(c) plots for various cubic coefficients

d
2
 = 1

d
2
 = 6

d
2
 = 8

d
2
 = 12

_____

_____

−−−−

−.−.

Figure 2. Plots of a(c) against the wavespeed c for the spatially discrete nonlinear reaction-diffusion
equation (3.4), showing the dependence of the size of the interval of propagation failure on the cubic coefficient d1

using difference operator L1 for which α = 1.

In [20], numerical computations were carried out with an artificial diffusion term γϕ̈
imposed on the problem to allow it to be solved using an iterative approach. It was shown
that for small γ, for example, γ = 10−4, there existed an interval of a for which |c| < 10−3, and
it was suggested that propagation failure would also be seen for the purely spatially discrete
problem, i.e., when γ = 0. We confirm this suggestion in Figure 2.

Figure 3 illustrates the solutions for a outside the interval of propagation failure when
d1 = 10. In this case we are able to compute solutions for |a− 0.5| � 0.045. As for the linear
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Nonlinear problem: wavespeeds for γ = 0, d

2
 = 10, various a

a = 0.95: *

a = 0.85: o

a = 0.65: x

a = 0.56: +

a = 0.545: *

a = 0.05: *

a = 0.15: o

a = 0.35: x

a = 0.44: +

a = 0.455: *

−6 −4 −2 0 2 4 6
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Non−linear problem: wave profiles for γ = 0, d
1
 = 10, various a

ξ

φ a = 0.95:

a = 0.85:

a = 0.65:

a = 0.56:

a = 0.545:

........

−.−.−.−.

−.−.−.−.

−−−−−

_____

Figure 3. (i) a(c) against c for the spatially discrete Nagumo equation (3.6) and cubic coefficient d1 = 10
for various values of a. (ii) The corresponding wave profiles ϕ(ξ).

problem, as |a−0.5| increases toward 0.5 the magnitude of the wavespeed |c| becomes large and
the solution has a hyperbolic tangent shape. For values of |a− 0.5| close to 0.045, or in other
words, close to the interval of propagation failure, the solutions exhibit step-like behavior and
|c| is small. Away from the wave front, the tails of these solutions decay exponentially.

Solving (3.4) for values of the detuning parameter a which lie inside the interval of prop-
agation failure (i.e., c = 0) is a very difficult problem. We follow the approach of [20], and
introduce an artificial diffusion term, γϕ̈, giving

⎧⎪⎨
⎪⎩

0 = L1ϕ(ξ) + γϕ̈(ξ) − f(ϕ(ξ)),

ċ = 0,

ϕ(−∞) = 0, ϕ(0) = a, ϕ(+∞) = 1.

(3.7)

In [20] this was solved numerically using an iterative scheme based on COLMOD with the
delay terms treated as source terms, for values of γ of the order γ = 10−4, but these schemes
failed to converge for smaller values of γ. We are now able to solve (3.7) with γ of the order
γ = 10−6. An example is given in Figure 4 (observe the a = 0.5 and the a = 0.54 curves),
where d1 = 10 and various values of the detuning parameter a are considered. While the
actual solutions ϕ for these values of a (0.5 and 0.54) are discrete maps, our approximate
solutions obtained are continuous.

3.3. Spatially discrete Nagumo equation with exact solution. We show by example
the numerical accuracy of COLMTFDE with respect to the collocation, and with respect
to the truncation of the infinite interval. We proceed by assuming a solution form for the
discrete Nagumo equation of section 3.2 and constructing the bistable nonlinearity which
gives the chosen solution. Using this example, with various choices of interval length and
various numbers of collocation points per mesh interval, we compute numerical solutions and
compare the results with the exact solution.
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Non−linear wave speed plot: cubic coeff = 10, γ = 1.d−6
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Non−linear problem: wave profiles, d
1
 = 10, γ = 1.d−6

ξ

φ a = 0.95:

a = 0.85:
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a = 0.55:

a = 0.54:
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.......
−.−.
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−.−.
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_____

Figure 4. Spatially discrete reaction-diffusion equation (3.7) with cubic nonlinearity (3.5), where γ = 10−6

and cubic coefficient d1 = 10, showing the dependence of the wavespeed and the solution profile on the detuning
parameter a.

3.3.1. Constructing the equation. We assume that the solution to{
−cϕ̇(ξ) = αL1ϕ(ξ) − f(ϕ(ξ)),

ϕ(−∞) = 0, ϕ(+∞) = 1,
is of the form ϕ(ξ) =

1

2

[
1 + tanh

1

2
(bξ + g(ξ))

]
(3.8)

(see [17]), where bξ+g(ξ) is a monotone increasing function. This requires that the nonlinearity
be

f(ϕ(ξ)) = αL1ϕ(ξ) + c[b + g′(ξ)]ϕ(ξ)(1 − ϕ(ξ)) with c = α
[2a− ϕ(ξ0 + 1) − ϕ(ξ0 − 1)]

[b + g′(ξ0)]a(1 − a)
,

where ξ0 is the value of ξ such that ϕ(ξ0) = a, enforcing the condition that 0 ≡ f(a). The
only independent parameters are α and a.

In this example we let b = [1 + 3(2a− 1)]/
√

2α and

g(ξ) = μ

[
(ξ − q1)(q3 − ξ)(q2 − ξ)

(ξ − q1)(q3 − ξ) + d1
+ w

]
.

The parameters d1, w, and μ allow us to adjust the effect and strength of g so that we
may produce propagation failure and other effects which are typically present in mixed type
functional differential equations. We have chosen

d1 = e100(a−s1)(a−s2)−1
a(1−a) ,

w = sgn(ξ) 7
10

(
2a−1
2s1−1

)2
,

and μ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b

(
2(a− 1) + s1

s1

)4

, 1 − s1 � a � 1 − s1/2,

b

(
2a− s1

s1

)4

, s1/2 � a � s1,

0, otherwise,
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where s1 = 1
2e

−1/(4
√

2α), s2 = 1 − s1. The roots q1, q2, and q3 are

q1 = n + p,

q2 = n + 1/2 + p,

q3 = n + 1 + p,

n � ξ < n + 1, n ∈ Z, and p =

{
p1, ξ � 0,

−p1, ξ > 0,

where p1 is the left most real root of y3 − (3/2 + w)y2 + (1/2 + w)y + wd1 and is chosen so
that g(ξ) is C1.

Suppose a /∈ [s1/2, 1 − s1/2]; then g(ξ) = g′(ξ) = 0,

f(ϕ) =

(
αγ(2ϕ− 1)

γ[1 − ϕ]ϕ + 1
− cb

)
ϕ(ϕ− 1), and c =

α(2a− 1)

b

[
γ

γ[1 − a]a + 1

]
,

with γ = eb − 2 + e−b = 2(cosh(b) − 1). Setting α = 1 and a = 4/5 we get

ϕ(ξ) =
1

2

[
1 + tanh

(
7

5
√

2
ξ

)]
, c =

3
√

2

14

25γ

4γ + 25
, γ = 2

[
cosh

(
14

5
√

2

)
− 1

]

as the exact solution to

−cϕ′(ξ) = ϕ(ξ + 1) − 2ϕ(ξ) + ϕ(ξ − 1) −
(

γ(2ϕ− 1)

γ[1 − ϕ]ϕ + 1
− 3

5

25γ

4γ + 25

)
ϕ(ϕ− 1).

This solution is illustrated in Figure 5(c) and f is illustrated in Figure 6. In Table 1 we sum-
marize the results of numerical experiments obtained by varying k, the number of collocation
points per subinterval, T = T+,−T− that defines the finite interval, and TOL the tolerance on
the three components ϕ, ϕ′, and c. We employ the classical phase condition ϕ(0) = 1/2 and
report on N , the number of mesh points that were employed, hmax and hmin, the maximum
and minimum subinterval lengths, respectively, and three measures of the error E0, E1, and
Errc. Error E0 is the maximum error between the computed and exact solution obtained
by computing at all the mesh points; similarly E1 is the error in the first derivative, and
Errc is the error in the wavespeed c. The numerical results in Table 1 are not sufficient to
establish convergence in the collocation error or in the convergence as a function of the length
of the finite interval T . The results show good proportionality to the tolerance, with the error
dominated by error in the first derivative.

3.4. Ising model. Next we consider traveling wave solutions of an Ising model with con-
volution operator. Our original equations are of the form (see [16] for the Glauber type Ising
model and [20] for the nonsymmetric logarithmic nonlinearity; see also [8])

v̇i + vi = tanh

(
β

2d1d2
(J ∗ v)i −

1

4d2
(b− vi) −

1

2
ln

(
1 − b

1 + b

))
, i ∈ Z,(3.9)

where β > 0, d1 > 0, 0 < d2 < 1−b2

4 , −1 < b < +1, (J ∗ v)i =
∑∞

j=1 αj(vi+j + vi−j), and∑∞
j=1 αj = 1. Applying the traveling wave ansatz ϕ(i− ct) = vi(t) to (3.9) we obtain

−cϕ′(ξ) + ϕ(ξ) = tanh

(
β

2d1d2
(J̃ ∗ ϕ)(ξ) − 1

4d2
(b− ϕ(ξ)) − 1

2
ln

(
1 − b

1 + b

))
, ξ ∈ R,(3.10)

where (J̃ ∗ ϕ)(ξ) =
∑∞

j=1 αj(ϕ(ξ + j) + ϕ(ξ − j)).
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Figure 5. The a(c) curve, (a), and two example wave forms, (b), where a = .58102, and (c),
where a = .8. The value of α = 1 and the intervals of a where g are nonzero are approximately
[0.20949172139469, 0.41898344278938] ∪ [0.58101655721062, 0.79050827860531].

0 0.8 1
−0.2

0

0.6

ξ

ϕ

Figure 6. The function f(ϕ) for α = 1 and a = .8.

After normalizing, grouping, and renaming some parameters we consider the equation

−cϕ′(ξ) + ϕ(ξ) = tanh((J̃ ∗ ϕ)(ξ) + α0ϕ(ξ) + β), ξ ∈ R,(3.11)

where α0 > 0 and β ∈ R. We wish to find connecting orbits between two homogeneous
equilibria. A homogeneous equilibrium, z, satisfies

1

2
ln

(
1 + z

1 − z

)
= (2 + α0)z + β.(3.12)
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Table 1

k T TOL N hmax hmin E0 E1 Errc
3 10 1E-4 35 1.24 0.26 1.4E-7 3.9E-5 1.7E-7

6 10 1E-4 11 2.77 1.59 2.4E-5 1.8E-3 1.8E-4

3 10 1E-6 77 1.27 0.07 2.9E-9 3.8E-7 4.2E-11

6 10 1E-6 19 2.00 0.64 1.5E-8 9.9E-6 3.0E-8

3 40 1E-4 57 3.65 0.43 1.1E-6 6.3E-4 1.3E-6

6 40 1E-4 29 3.63 2.22 1.8E-5 5.7E-3 2.3E-4

3 40 1E-6 97 5.89 0.09 2.6E-9 6.4E-7 3.0E-10

6 40 1E-6 61 2.41 0.71 2.3E-8 1.6E-5 5.2E-8

Thus, a necessary condition for the existence of one positive and one negative homogeneous
equilibrium solution is that |β| < (2 + α0). We can guarantee the existence of such equilibria
by taking α0 sufficiently large. For β > 0, the existence of one negative homogeneous equilibria
typically implies the existence of two negative homogeneous equilibria, and similarly for β < 0.

Next consider the linearization about an arbitrary homogeneous equilibrium solution, z.
We focus on the case where α1 = 1 and αj = 0 for j = 2, 3, . . . . The characteristic function is
given by

h(λ) = cλ− 1 + α0γ + 2γ cosh(λ),(3.13)

where γ = sech2((2 + α0)z + β), so 0 � γ � 1. So, to have one positive and one negative real
eigenvalue we must have 2 + α0 < 1/γ. Thus, a necessary condition for a connecting orbit
between one positive, z+, and one negative, z−, homogeneous equilibria is

|β| < 2 + α0 < 1/γ,(3.14)

where γ = max{γ−, γ+} and γ• = sech2((2 + α0)z• + β) for • = + or −.

The Fredholm theory of Mallet-Paret [29, 30] is applicable to (3.11) and shows the existence
of monotone solutions and a monotone (β, c) curve for c �= 0. The condition (ii) on page 56
of [30] requires that αj � 0 for all j, while our condition (3.14) implies condition (v) on page 56
of [30]. In Figure 7 we show the results of some of our numerical experiments. Figure 7 is a
plot of the function in (3.12) and a plot of a (β, c) curve, the analogue for this problem of an
(a, c) curve.

3.5. Frenkel–Kontorova type equations. Consider the FK type equation [40, 41]

ẍj + γẋj = xj−1 − 2xj + xj+1 − d sinxj + F , j = 1, . . . , N,(3.15)

xj+N = xj + 2πM.(3.16)

Here the xj ’s denote the positions of particles in a chain, N is the number of particles, F is
an applied force, and M is an arbitrary integer. This equation was first proposed to describe
the motion of dislocations in crystals but is now used to model a number of processes. The
equation admits traveling wave solutions, which are referred to as uniform sliding states in
the physics literature.
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Figure 7. (i) Plots of 0.5 ln((1 + z)/(1 − z)) − 2 − α0 = 0 for different values of α0. The roots of (3.12)
may thus be determined by intersection with a horizontal line corresponding to values of β. (ii) A (β, c) curve
for the Ising model with α0 = 0.1.

Using the traveling wave ansatz xj(t) = ϕ(σj − ct), where σ = 2πM
N , (3.15) and (3.16)

become

c2ϕ̈(ξ) − γcϕ̇(ξ) = Lσϕ(ξ) − d1 sin(ϕ(ξ)) + F ,(3.17)

ϕ(ξ + 2π) = ϕ(ξ) + 2πM,(3.18)

where

Lσϕ(ξ) = ϕ(ξ − σ) − 2ϕ(ξ) + ϕ(ξ + σ) and ξ = σj − ct.

The particular choice of σ is made in order to achieve a simple relationship between the
velocity c of the traveling wave and the average particle velocity. The boundary conditions
(3.16) imply

xj

(
t− 2πM

c

)
= ϕ

(
σj − c

[
t− 2πM

c

])
= ϕ(σj + 2πM − ct)

= ϕ(σj − ct) + 2πM = xj(t) + 2πM.

Thus the average particle velocity is −c, the negative of the traveling wave velocity.
Because of the discrete translational symmetry in (3.17) it is sufficient to solve (3.17)

subject to ϕ(ξ + 2π) = ϕ(ξ) + 2π to obtain solutions to (3.17), (3.18). We choose to solve
(3.17) on the interval [−π, π] subject to the conditions

ϕ(π) = ϕ(−π) + 2π and ϕ(0) = 0,(3.19)

where ϕ(0) = 0 is a phase condition and specifies a unique phase when ϕ is monotonic. In the
case of nonmonotonic ϕ (as will arise in this example), this condition no longer guarantees a
unique solution to the equations, but in general solutions will be locally unique, a sufficient
condition for the numerical convergence.
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COMPUTATION OF MIXED TYPE FUNCTIONAL BVPS 771

An alternative formulation of this problem is⎧⎪⎨
⎪⎩

c2ψ̈(ξ) − γc[1 + ψ̇(ξ)] = Lσψ(ξ) − d1 sin(ξ + ψ(ξ)) + F ,

ψ(π) = ψ(−π),

ψ(0) = 0

(3.20)

with

ϕ(ξ) = ξ + ψ(ξ).(3.21)

The function ψ, referred to as the dynamic hull function, is periodic.
We numerically solve both formulations, where we choose F and solve the auxiliary equa-

tion ċ = 0 to find c, as in previous examples. One can also fix c and solve an auxiliary equation
Ḟ = 0 to find F , which is often easier.

In the linear case where d1 = 0 it is simple to verify that ϕ(ξ) = ξ and ψ(ξ) = 0 solve
(3.17), (3.19), and (3.20), respectively, with F = −γc.

Following [40] in Figure 8 we present computations for γ = 0.5, M = 89, N = 233,
and d1 = 1, 2, and 3. There is good agreement between the velocity-force characteristics in
Figure 8(i) and those in Figure 2 of [40], which were computed by a different method. The
cusps seen in Figure 8(i) are caused by resonances.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

F

c

Wave−speed against Forcing for γ=0.5

d=0
d=1
d=2
d=3

−3 −2 −1 0 1 2 3

−5

−4

−3

−2

−1

0

1

2

3

φ(
ξ)

ξ

Travelling Wave Solutions for γ=0.5

c=−8
c=−4
c=−3
c=−2.5
c=−2
c=−1.9
c=−1.875

Figure 8. Solutions of (3.17), (3.19) with γ = 0.5, M = 89, N = 233. (i) Traveling wave velocity c against
applied force F for d1 = 1, 2, and 3. (ii) Traveling wave profiles for d = 2.

For −c large, above the first resonance, all the graphs are close to the line F = −γc which
corresponds to the linear case d1 = 0. As in the previous examples, propagation failure is
numerically resolvable depending on the parameter d1, with an interval of propagation failure
becoming obvious for d1 large (d1 � 2).

In Figure 8(ii) we show the evolution of the traveling wave profile as −c is decreased
toward the first resonant velocity. For large velocities, motion is essentially linear, but as the
traveling wave velocity is decreased it becomes less so, and it becomes nonmonotonic at the
first turning point of the graph at −c ≈ 2.5.
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772 K. ABELL, C. ELMER, A. HUMPHRIES, AND E. VAN VLECK

For d1 = 2 and F ∈ [1.5, 2] it is clear from Figure 8(i) that there exist traveling waves
with three different wavespeeds. We find numerically that only the wave of largest speed is
monotonic. In Figure 9(i) we show the three traveling waves for F = 1.75.
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Travelling Wave Solutions for γ=0.5

c=−0.7
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c=−0.3

Figure 9. Solutions of (3.17), (3.19) with γ = 0.5, M = 89, N = 233, and d1 = 2. (i) Three traveling
waves for F = 1.75. (ii) Traveling waves for c = −0.7, c = −0.5, c = −0.3.

As the wavespeed decreases the form of the traveling wave solution becomes progressively
more complicated as demonstrated in Figure 9(ii).
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Wave profile for γ=1/20
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c=0.5: ............
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Figure 10. Solutions of (3.17), (3.19) with γ = 1/20, M = 1, N = 200, and d1 = 2. (i) Applied force F
against traveling wave velocity c. (ii) Traveling wave profiles.

Consider briefly the case M = 1, N = 200, d1 = 2, and γ = 1/20. For this case the first
resonant velocity is very small at approximately π/100. Figure 10(i) shows the F against c
profile to the first resonant velocity. Figure 10(ii) shows corresponding traveling wave profiles.
For M/N � 1 we obtain step-like traveling wave solutions, much like the behavior seen in the
other examples (with the exception that the F (c) curve again fails to be monotonic).
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COMPUTATION OF MIXED TYPE FUNCTIONAL BVPS 773

4. Numerical analysis. In this section we describe the implementation of our methods
in the software package COLMTFDE (COLlocation for Mixed Type Functional Differential
Equations) we are developing, which was used to produce the results presented above, and the
numerical analysis issues which arise. COLMTFDE is a collocation boundary value problem
solver and is a member of the COLSYS family [2, 6, 13, 42]. Thus we pay particular attention
to the differences between our code and other members of the COLSYS family. The main
difference is the ability to handle delayed (and advanced) terms directly. The size of the
delays {sσ(x)}nσ=1 and even their number n may be dependent on x. FI in (1.1) can be a fully
nonlinear function of uI(x + sσ) and its derivatives up to and including the mth derivative
(which we made use of in section 3.4). Also of significance is COLMTFDE’s ability to handle
implicitly defined boundary functions, as described in section 2.3, as well as explicitly defined
boundary functions. COLMTFDE also allows nonseparated boundary conditions of the form

m∗∑
J=1

BJy(ζ(J)) = βJ ,(4.1)

whereas most of the COLSYS family of boundary value problem solvers require that the
boundary conditions for the problem are separated.

The introduction of the scalar factors τI(x) multiplying the highest order term on the
left-hand side of (1.1) also constitutes a significant generalization from other members of the
COLSYS family, further extending the range of problems which may be solved. This is partic-
ularly important in problems such as the spatially discrete Nagumo equation where a traveling
wave with speed c satisfies (3.4). Two boundary conditions are needed to compute a numerical
solution due to the presence of the second-order difference term (ϕ(ξ+1)−2ϕ(ξ)+ϕ(ξ−1)) on
the right-hand side of (3.4). However, since there is only a first-order derivative term present,
a boundary value problem solver will only expect and indeed allow one boundary value, which
will result in a singular linear system. This difficulty is resolved by introducing a second-order
derivative term τϕ̈(ξ) as in (3.4) and then solving the problem with τ = 0, as in Figure 3.

Other members of the COLSYS family use local parameter condensation to eliminate
variables which are internal to subintervals of the mesh, thus simplifying the linear system
and reducing storage requirements. They also take advantage of the almost-block-diagonal
nature of the resulting linear matrix to solve this system extremely efficiently.

However, parameter condensation is not practical for a functional differential equation
solver, as the forward and backward delay terms typically fall between collocation points
in different mesh intervals, and hence the so-called local variables are no longer truly local.
Also, these delay terms will not usually fall on the sub- or superdiagonals of the matrix, and
their relative locations will therefore not only depend on the size of the mesh but will require
updating with each mesh refinement. The resulting linear matrix will therefore not in general
be almost-block-diagonal.

COLMTFDE therefore cannot make use of parameter condensation or block-diagonal
structure. This has significant computational costs, as construction and storage of the full
linear matrix, which has size (N(m∗+kd)+m∗)2, requires considerably more memory than the
condensed matrix, of size N(2m∗2 + 3m∗kd + kd2), stored by COLMOD. In addition, since
the matrix is no longer sparse almost-block-diagonal we cannot take advantage of efficient
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774 K. ABELL, C. ELMER, A. HUMPHRIES, AND E. VAN VLECK

solvers for such systems, and use a full forward-backward substitution method. The loss of
sparseness cannot be avoided in general, as problems such as the Ising problem of section 3.5
will always result in dense matrices.

4.1. Collocation formulation. We consider a k-stage collocation scheme for (1.1). Let

π : T− = x0 < x1 < · · · < xN−1 < xN = T+,

hi := xi+1 − xi, and h := maxi=0,...,N{hi}. Let {ρi}ki=1 denote k Gaussian collocation points
ordered so that

0 � ρ1 < · · · < ρk � 1.

We seek a collocation solution

uπ(x) = (uπ1 , u
π
2 , . . . , u

π
d )T ,

such that for each I = 1, . . . , d, the Ith component uπI (x) is a piecewise polynomial function
such that uπi ∈ Pk+mI ,π ∩ CmI−1(T−, T+), where Pk+mI ,π is the space of functions which
reduce to polynomials of order k + mI on each of the subintervals [xi, xi+1] of π, for some
k � maxI=1,dmI . The differential equation is satisfied at the kN collocation points

xij = xi + hiρj , j = 1, . . . , k, i = 1, . . . , N.

Note that since Pk+mI ,π∩CmI−1(T−, T+) is of dimension kN+mI and there are kN collocation
conditions associated with the Ith equation, there must be mI side conditions resulting from
this equation and thus m∗ side conditions in total. This exactly matches the number of
boundary conditions in (1.1), which uπ is thus required to satisfy.

We employ the now standard monomial Runge–Kutta basis representation. Consider a
fixed mesh element x ∈ [xi, xi+1]. Then, writing u for an arbitrary component uI and m for
mI , I ∈ 1, . . . , d, each polynomial uπ(x) can be expressed in terms of its Taylor series about xi
as

uπ(x) =

k+m∑
j=1

(x− xi)
j−1

(j − 1)!
Dj−1uπ(xi) =

m∑
j=1

(x− xi)
j−1

(j − 1)!
yij + hmi

k∑
j=1

ψmj

(
x− xi
hi

)
zij ,(4.2)

where

Dl−1ψmj(0) = 0, 1 � l � m, 1 � j � k,

Dmψmj(ρl) = δjl, 1 � l � k.

Hence, corresponding to (4.2),

yij = Dj−1uπ(xi), 1 � j � m, and zij = Dmuπ(xij), 1 � j � k,

and so the collocation solution, uπ, can now be written in terms of

yi := (yi1, . . . , yim)T , zi := (zi1, . . . , zik)
T ,(4.3)

and approximating the solution of (1.1) is reduced to finding these vectors. However even in
the linear case the details of the construction of this system are somewhat complicated, and
we describe them below.
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COMPUTATION OF MIXED TYPE FUNCTIONAL BVPS 775

4.1.1. Linear systems. The functions FI and GJ in (1.1) are usually nonlinear. When
they are linear, the system can be written in the form

γID(mI)uI(x) =

d∑
t=1

[
mt∑
l=1

cItl(x)D(l−1)ut(x) +

mt+1∑
l=1

αI
tl(x)D(l−1)ūt(x)

]
+ qI(x)

with I = 1, . . . , d, x ∈ (T−, T+),

αI
tl(x) := (αI

tl(x + s1(x)), . . . , αI
tl(x + sn(x)))T ,

and boundary conditions as in (1.1).

The process described above leads to a linear system of equations for uπ and its first
(m− 1) derivatives. We now outline the construction of this system, first for d = 1, and then
in the more complicated higher-dimensional case.

4.1.2. One-dimensional system. Write the one-dimensional linear delay system as

τDmu(x) =

m∑
l=1

cl(x)D(l−1)u(x) +

n∑
σ=1

[
m+1∑
l=1

αl(x + sσ)D(l−1)u(x + sσ)

]
+ q(x),(4.4)

and suppose that for some delay sσ, where σ ∈ {1, . . . , n}, and some collocation point xir,
i ∈ {1, . . . , N}, r ∈ {1, . . . , k}, we have xω � xir + sσ < xω+1; i.e., we identify the mesh
interval [xω, xω+1] in which the delayed collocation point lies. For convenience, we denote
xirσ := xir + sσ; then, from (4.2), we have the following representation for the function uπ and
its derivatives at the point xirσ:

D(l−1)uπ(xirσ) =

m∑
j=l

(xirσ − xω)j−l

(j − l)!
yωj + hm−l+1

ω

k∑
j=1

D(l−1)ψmj

(
xirσ − xω

hω

)
zωj ,

Dmu(xirσ) = hω

k∑
j=1

Dmψmj

(
xirσ − xω

hω

)
zωj .

Since uπ must satisfy (4.4) at each collocation point xij , applying the collocation equations
yields the k equations for yi and zi,

−
(
Vi +

n∑
σ=1

Pσ
i

)
yi +

(
Wi −

n∑
σ=1

Qσ
i

)
zi = qi, 1 � i � N,

where Vi and Pi are k ×m matrices with entries

V i
rj =

j∑
l=1

cl(xir)(hiρr)
j−l

(j − l)!
, P i

rj =

j∑
l=1

αl(x
i
rσ)(xirσ − xω)j−l

(j − l)!
, 1 � r � k, 1 � j � m,

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



776 K. ABELL, C. ELMER, A. HUMPHRIES, AND E. VAN VLECK

and Wi and Qi are k × k matrices with entries

W i
rj = τδrj −

m∑
l=1

cl(xir)h
m+1−l
i D(l−1)ψmj(ρr),

Qi
rj =

m+1∑
l=1

αl(x
i
rσ)hm+1−l

i D(l−1)ψmj

(
xirσ − xω

hω

)
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

1 � r, j � k.

We let qi := (q(xi1), . . . , q(xik))
T and recall that yi and zi were defined in (4.3).

From the m global continuity requirements, we obtain the additional relations

Ciyi + Dizi = yi+1, 1 � i � N,

where C is an m×m matrix with entries

Ci
rj =

hj−r
i

(j − r)!
, j � r,

and D is of order m× k with entries

Di
rj = hm+1−r

i D(r−1)ψmj(1), 1 � r � m, 1 � j � k.

We therefore have a linear system for uπ and its first m− 1 derivatives.

4.1.3. Higher-dimensional system. For systems of equations, the situation is more com-
plicated, and the notation becomes rather convoluted. However, it is worth giving in detail,
as the construction of the linear matrix for a mixed system is not immediately obvious.

Applying the collocation equations for a system with d > 1 yields kd equations for
yi and zi,

−
(
V̄i +

n∑
σ=1

P̄σ
i

)
yi +

(
W̄i −

n∑
σ=1

Q̄σ
i

)
zi = qi, 1 � i � N,

where V̄i is a kd×m∗ matrix, whose entries are themselves matrices, so

V̄ i
RJ = [V i], 1 � R � k, 1 � J � d,

where V i is a d×mJ matrix with entries

V i
Ij =

j∑
l=1

cIJl(xiR)(hiρR)j−l

(j − l)!
, 1 � I � d, 1 � j � mJ .

In a similar fashion, W̄i is a kd× kd matrix, with entries again consisting of submatrices,

W̄ i
RT = [W i], 1 � R, T � k,

W i
Ij = τIδRT δIj −

mj∑
l=1

cIjl(xiR)h
mj+1−l
i D(l−1)ψmjT (ρR), 1 � I, j � d.D
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COMPUTATION OF MIXED TYPE FUNCTIONAL BVPS 777

Also, P̄σ
i is a kd×m∗ matrix with d×mJ matrix subentries

P̄ iσ
RJ = [P iσ],

1 � R � k,

1 � J � d,
where P iσ

Ij =

j∑
l=1

αI
Jl(x

i
Rσ − xω)j−l

(j − 1)!
,

1 � I � d,

1 � j � mJ ,

and Q̄σ
i is a kd× kd matrix with entries again consisting of submatrices

Q̄iσ
RT = [Qiσ], 1 � R, T � k,

Qiσ
Ij =

mj+1∑
l=1

αI
jl(x

i
rσ)h

mj+1−l
i D(l−1)ψmjT

(
xiRσ − xω

hω

)
, 1 � I, j � d.

From the m∗ boundary conditions, we obtain m∗ additional relations,

C̄iyi + D̄izi = yi+1, 1 � i � N,

where C̄ is an m∗ ×m∗ matrix with matrix entries

C̄i
IS = δIS [Ci], 1 � I, S � d, where Ci

rj =
hj−r
i

(j − r)!
, 1 � r � mI , 1 � j � mS .

We have that D̄ is of order m∗ × kd with entries

D̄i
IJ = δIS [Di],

1 � I � d,

1 � J � k,
with Di

rs = hmI+1−r
i D(r−1)ψmIJ(1),

1 � r � mI ,

1 � s � d.

The resulting linear systems are of the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−V1 −W1 0 · · · −P 1
1 −Q1

1 · · · · · · · · ·
−C1 −D1 I

· ·
· ·

−P 1
i −Q1

i · · · −Vi −Wi 0 · · · −Pn
i −Qn

i

−Ci −Di I
· ·

· ·
· · · −P 1

N −Q1
N · · · −Pn

N −Qn
N · · · −VN −WN 0

−CN −DN I
B1 · · · Bm∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

z1

·
·
yi
zi
·
·
yN
zN

yN+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
0
·
·
qi
0
·
·
qN
0
β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.1.4. Nonlinear systems. For general nonlinear problems of the form (1.1) our code
uses the method of quasilinearization, which is common to all members of the COLSYS
family of codes. The changes made to allow for delay terms to be treated directly are to the
construction and storage of the linear system. The method of solving the nonlinear problem
(1.1) is therefore almost identical to that used for COLMOD [1]. The differences involve the
order in which quantities are obtained or constructed due to the backward and forward delay
terms.
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4.2. Convergence. Assuming sufficient smoothness of the problem coefficients and of the
exact solution (except at a finite number of points which form part of the mesh π), much of
the standard stability and approximation theory for ODE boundary value problem collocation
solutions presented in [3] holds in the presence of delays, with some important changes.

A basic convergence result for the solution of DDEs of this type by collocation is given
in [5], and we reproduce it here. Following [5], in order to keep the notation as simple as
possible, the result is given in the case of the first-order equation

τu′(x) = F (x, u(x), ū), x ∈ (T−, T+),(4.5)

with ūI = (u(x + s1(x)), . . . , u(x + sn(x)))T , and where {sσ(x)}nσ=1 is a finite collection of
delays, possibly dependent on x. Generalization to systems of higher order such as (1.1) is
straightforward.

The mesh π is defined on the interval [T−, T+], such that

π : T− = x0 < x1 < · · · < xN−1 < xN = T+

with hi := xi+1 − xi and h := maxi hi. Then, denoting

min
x∈[T−,T+]

s1(x) = T̄−, max
x∈[T−,T+]

sn(x) = T̄+,

a solution u∗ of (4.5) is in general only a piecewise smooth function for x ∈ [T̄−, T̄+], and in
fact the solution may be discontinuous at x = T− or x = T+.

To establish convergence assume the right-hand side F of the DDE (4.5) is sufficiently
smooth. Then, since the delayed terms {sσ(x)}nσ=1 depend only on x, the locations at which
the solution and its derivatives up to order p have potentially nonsmooth behavior can be
precomputed. Including all these points in the partition π yields

u∗ ∈ Cp
π[a, b] ∩ C[a, b].

Note that if more smoothness, or in other words a larger p, is required, then the partition
π = π(p) becomes more dense in general. The appropriate choice of p for practical computation
depends on the boundary value problem and the required accuracy of the numerical solution.

The following convergence results for (4.5) are due to Bader [4, 5].
Theorem 4.1. Let u∗ ∈ Cp+1[a, b] for p � 1 be a solution of the problem (4.5) and suppose

the following:
(i) F is sufficiently smooth.
(ii) The linearized problem associated with u∗ is uniquely solvable and has a Green’s func-

tion H(x, xi).
Then there exist δ, ε so that the following hold:

(a) There is no other solution ũ for |D(u∗ − ũ)| < ε.
(b) For h � δ there is a unique collocation solution uπ ∈ Pk+1,π ∩C[a, b] in this neighbor-

hood of u∗.
(c) Newton’s method applied to the collocation equations converges quadratically in a neigh-

borhood of uπ for h � δ.
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(d) The following error estimates hold for r = 0, 1:

|Dr(u− uπ)| � κhmin(p,k).

(e) Furthermore, for the collocation solution of the linearized problem ulinπ the following
estimates hold:

|Dr(u− ulinπ )| � κhmin(p,k) and |Dr(u− uπ)| = Dr(u− ulinπ ) + O(h2 min(p,k)).

Proof. See [5, Theorem 2.1, p. 231] and [4].
For ODEs this is usually the departure point in deriving an even higher order of conver-

gence at mesh points, i.e., superconvergence for special sets of collocation points. A crucial
basis for all these results is that the Green’s matrix H(x, xi) has essentially the same smooth-
ness as the solution itself when x �= xi. This property does not hold for DDEs; see [4] for a
simple example. As a consequence, superconvergence can not be shown in general. However,
under severe restriction of the class of problems considered and for a special construction of
the partition π, superconvergence can be shown to hold. In fact, for superconvergence to occur
for DDEs of the form (4.5) the mesh needs to be chosen such that mesh points are mapped
into mesh points, and collocation points into collocation points, by the delays. This implies
that we can only expect to obtain superconvergence when the sσ’s are rationally related.

This has been further analyzed by Bellen [10] for the special case of initial value problems.
However, even if superconvergence is lost, the improvement of order of convergence over
approximation techniques is still substantial, since approximation theory uses systems of ODEs
to approximate the solution of DDEs, and hence attempts to approximate solutions which are
only usually piecewise smooth through globally smooth functions (see, for example, [7]).

In contrast with the case of differential equations the error is not necessarily localized
when approximating these mixed type delay equations. This impacts the error estimation
and hence the mesh selection, and a future improvement will be to address this issue. The
error estimation and mesh selection employed are adopted from COLMOD and are described
in [42]. Error estimation is based upon the maximum moduli of the left-sided and right-sided
approximations to the appropriate derivatives on each subinterval. Mesh selection is based
upon so-called semiequidistribution in which the error over each subinterval is approximately
equidistributed.
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