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Traveling Wavefronts in an Antidiffusion Lattice Nagumo Model∗
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Abstract. We consider a system of lattice Nagumo equations with cubic nonlinearity, but with a negative dis-
crete diffusion coefficient. We are interested in the existence, uniqueness, stability, and nonexistence
of the traveling wavefront solutions of this system, and we shall call this problem the antidiffusion
lattice Nagumo problem. By rewriting this system as a spatially periodic system with inhomo-
geneous but positive periodic diffusion coefficients and periodic nonlinearities, we uncover a rich
solution behavior that includes many possible connecting orbits in the antidiffusion case. Second,
we observe the presence of bistable and monostable dynamics. In the bistable region, we study the
phenomenon of propagation of failure while in the monostable region, we compute the minimum
wave speed.
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1. Introduction. In this paper, we consider an antidiffusion model that has been proposed
as a simple model for shape memory alloys in which there are twinning microstructures, which
arise from the phase transition of the material from the martensite phase to the austenite
phase. In studying this problem, lattice differential equations (LDEs) have been proposed
because of the importance of the discreteness of the medium. In this paper, we study a
particular LDE used to model such phase transitions. In particular, we consider traveling
wavefront solutions to an antidiffusion lattice Nagumo equation:

(1.1) u̇n = d(un+1 − 2un + un−1)− fa(un), n ∈ Z,

where d < 0, the nonlinearity is the smooth cubic function fa(u) = u(u−a)(u−1), and a ∈ R.
Although much is known about traveling wave solutions to both spatially discrete Nagumo
and spatially discrete Fisher systems (with positive diffusion), comparatively little is known
about the antidiffusion problem.

Our contribution in this paper is to establish the existence, uniqueness, stability, and
nonexistence of traveling wavefront solutions to (1.1). Our approach is to transform the
antidiffusion lattice Nagumo problem to a system of spatially discrete reaction-diffusion equa-
tions with periodic positive diffusion and periodic nonlinearity terms. We use recent results
on traveling waves for bistable and monostable lattice equations in periodic media. In essence,
we transform the problem to a system in which the connecting orbits are between spatially
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922 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

2-periodic solutions of the original negative diffusion problem and uncover a rich structure
of traveling wavefront solutions. We have discovered that bistable and monostable dynamics
can be observed from the antidiffusion lattice Nagumo problem by varying the values of the
parameters (d, a). In the bistable region, we also study the phenomenon of propagation failure
while in the monostable region, we study the minimum wave speed. Our results provide a
concrete example of traveling wave solutions to a spatially discrete reaction-diffusion system
in periodic media.

Both the spatially discrete Nagumo and spatially discrete Fisher equations are examples of
LDEs which consist of countably many ordinary differential equations (ODEs) defined over the
one-dimensional lattice Z. In contrast with partial differential equations (PDEs), LDEs take
into account the spatially discrete structure of the system (see [8] for a review of some results
in the theory of LDEs). For example, the spatially discrete Nagumo system has been used as
a model for propagation of nerve impulses in myelinated nerve axons [21] while the spatially
discrete Fisher system has been used as a model in the spread of a population in patchy
environments [19]. Many other examples can be found in neurophysiology, fluid dynamics,
and materials science (see [2], [10], [24], [25] and the references therein).

LDEs may also come from a semidiscretization of PDEs by looking at the positive diffusion
d = 1/h2 as a coupling coefficient and h as the mesh size. The LDEs that we consider in this
paper cannot arise from an approximation of PDEs. It comes from a prototypical discrete
model of phase transitions that was considered in [25]. This model consists of a chain of
particles, each interacting with its nearest and next-to-nearest neighbors in which the long-
range interaction between next-to-nearest neighbors is assumed to be harmonic, while the
nearest-neighbor interactions are nonlinear and bistable. In the overdamped limit, after a
suitable rescaling, a one-dimensional, spatially discrete reaction-diffusion equation with a
negative diffusion coefficient and a bistable nonlinearity was obtained. So-called antidiffusion
problems in two space dimensions were previously considered in [4], and the rewriting in terms
of even and odd lattice sites that we will employ here was described in [5].

The existence, uniqueness, and stability of traveling wavefront solutions to the one-
dimensional, spatially discrete Nagumo problem has been solved by Zinner [27], [28] for
positive diffusion coefficients d that are sufficiently large (see also [16], [17], [19]); on the
other hand, Keener [21] showed that only stationary waves exist if d is small. The existence,
uniqueness, and stability of traveling wavefront solutions to the one-dimensional, spatially
discrete Fisher problem has been solved by Zinner and colleagues [17], [19] and by Chen, Fu,
and Guo [6]. Note that, for the Fisher problem, it is essential that there exists a minimum
wave speed c∗ such that for c ≥ c∗, there is a traveling wave solution with wave speed c (see
section 5.1.3). In both nonlinearities, as long as we assume a bounded initial condition, we
have local existence and uniqueness results for (1.1) whether d is positive or negative.

Solutions to LDEs are sequences �u(t) = {un(t)}n∈Z. Seeking traveling wave solutions
requires solving for the wave profile φ : R → R and the wave speed c ∈ R in the following
ansatz:

un(t) = φ(n− ct) for every n ∈ Z.

Traveling wavefront solutions, in particular, are traveling wave solutions that have boundary
conditions

φ(−∞) = φ−, φ(+∞) = φ+,D
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WAVEFRONTS IN ANTIDIFFUSION LATTICE NAGUMO 923

so that the traveling wave joins two equilibria φ− < φ+. Now, the traveling wave ansatz to
the spatially discrete equation (1.1) yields a functional differential equation of mixed type
(MFDE)

−cφ′(ξ) = d(φ(ξ + 1)− 2φ(ξ) + φ(ξ − 1)) − fa(φ(ξ)), where ξ = n− ct,

of which not much is known. Theory for linear MFDEs started to develop in the late 1990s
[22], [23], [24]; a general technique for proving existence of traveling waves for certain spatially
discrete equations was developed in [23]; and a center-manifold result was developed in [20].
The first stumbling block in solving MFDEs is the fact that the associated initial-value problem
is ill-posed [18]. Another quick notable observation is that when c = 0, the MFDE yields a
difference equation with the wave variable ξ ∈ Z.

In this paper, we will explore the traveling-wavefront problem (existence, uniqueness, sta-
bility, and nonexistence) for the antidiffusion lattice Nagumo problem by adapting an approach
presented by Chen, Guo, and Wu [7]. They introduced a general framework for the study of
traveling wavefront solutions in spatially discrete periodic media using comparison principles,
spectrum analysis, and construction of super-/subsolutions. The existence question, in par-
ticular, was solved for both the bistable and monostable nonlinearities. If the nonlinearity is
bistable, then [7] also proved the uniqueness and stability of traveling waves in periodic me-
dia; if the nonlinearity is monostable, then the uniqueness and stability of traveling waves in
periodic media was studied in [15]. In this paper, we will show how to restate the antidiffusion
lattice Nagumo problem as a periodic heterogeneous media system with periodic positive dif-
fusion coefficients and periodic nonlinearities. The technique used is an appropriate choice of
change-of-variables; see section 2. The resulting system has led us to discover the co-existence
of various bistable and monostable dynamical behavior in the antidiffusion lattice Nagumo
traveling wavefront problem. This phenomena cannot be observed in the one-dimensional
positive diffusion lattice Nagumo system.

It is not obvious that the antidiffusion problem (1.1) can be converted into a 2-periodic
system. Section 2 explains the appropriate choice of change-of-variables that is needed for this
conversion. Hence, the traveling wavefront problem for the antidiffusion case turns out to be a
search for a 2-periodic heteroclinic orbit. To introduce the notion of the period of a traveling
wave, we need to look at a slightly different, but equivalent, way of defining a traveling wave
solution. A traveling wave solution to a general spatially discrete equation with finite-range
interaction

u̇n(t) =
∑
k

an,kun+k(t) + fn(un(t)), n ∈ Z,

an,k = 0, |k| > k0, for some integer k0 ≥ 1

is a solution �u(t) = {un(t)}n∈Z such that for some constants c ∈ R and T > 0 with cT ∈ Z

un(T ) = un−cT (0) for all n ∈ Z.

For such a solution, the number c is called the wave speed and the smallest among the numbers
T is called the period. In [7] (see section 3), it was proved that solving for the traveling waves
of a spatially discrete N -periodic media problem requires solving for N wave profiles.

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

924 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

This paper is organized as follows. In section 2, we apply a change-of-variables to (1.1),
analyze the equilibrium states, and rescale the system so that it is in the framework of [7].
We will see in this section that unlike the positive diffusion problem, there may be more than
one possible connecting orbit for the antidiffusion lattice Nagumo problem. In section 3, we
present the recent results obtained by Chen, Guo, and Wu [7] for traveling waves in spatially
discrete periodic media. In section 4, we study the existence, uniqueness, and stability of
the traveling wavefront solutions to the antidiffusion lattice Nagumo problem, present the
different regions in the plane where there are bistable and monostable dynamics, and look
into two special case studies. In section 5, we look at some examples of traveling wavefront
problems. With respect to its bistable region, we present some analysis on the phenomena
of propagation failure. With respect to its monostable region, we present some preliminary
computations for the minimum wave speed of wave solutions that is essential in establishing
the existence of solutions. We also present an example showing that there are values for
parameters d, a where bistable and monostable connections co-exist. In section 6, we present
some conclusions and avenues for future work.

2. Preliminary computations. In this section, we will show how to transform the an-
tidiffusion problem (1.1) into a system of spatially discrete reaction-diffusion equations with
periodic diffusion coefficients and nonlinearities. The first step (see section 2.1) is to relabel
the even and odd nodes of (1.1) to obtain a system of two equations that will describe the be-
havior at the even nodes and the odd nodes, labeling the solution as a two-component vector
(�x, �y) = (xj , yj) for j ∈ Z; that is, each component of this 2-vector solution is a sequence of
functions of t. Then we compute the equilibria of this system (see section 2.2) and observe
that unlike the positive diffusion problem, the resulting system will have more than three
equilibria (see Lemma 2). These equilibria are the candidates for the boundary conditions
(x±, y±) of the traveling wave solution; that is, the traveling wave solution is a heteroclinic
orbit connecting (x−, y−) to (x+, y+), where x± = limj→±∞ xj and y± = limj→±∞ yj.

The second step (see section 2.3) is to rescale the system so that (x−, y−) is mapped to
�0 = (0, 0) and (x+, y+) is mapped to �1 = (1, 1). The result is a system of two equations

{
v̇j = de(wj − 2vj + wj−1)− fe(vj),
ẇj = do(vj+1 − 2wj + vj)− fo(wj),

j ∈ Z,

with solution (�v, �w) = (vj , wj) for j ∈ Z and diffusion coefficient �d = (de, do) and nonlinearity
�f = (fe, fo), where subscripts e, o stand for the even and odd nodes, respectively. The
diffusion coefficients de, do are in terms of d, a, and we are interested in the case where de, do,
this time, are both positive. An alternative to the change-of-variables outlined here is to
apply the transformation t �→ −t to the antidiffusion lattice Nagumo problem (1.1) so that
the transformed problem has a positive discrete diffusion coefficient but the nonlinearity is no
longer of bistable type.

2.1. Even and odd nodes. Let us look at the even and odd lattice nodes of the antidif-
fusion lattice Nagumo problem

(2.1) u̇n(t) = d(un+1 − 2un + un−1)− fa(un), n ∈ Z,
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WAVEFRONTS IN ANTIDIFFUSION LATTICE NAGUMO 925

with d < 0 and cubic nonlinearity fa(u) = u(u − a)(u − 1) with a ∈ R. For completeness,
we assume that a ∈ R and we mention that, as of this writing, we do not have a physical
rationale for considering a ∈ R. The positive diffusion problem often assumes that 0 < a < 1.

Writing the even and odd nodes of (2.1) as �x = {xj}j∈Z and �y = {yj}j∈Z, respectively,
we get

(2.2)

{
ẋj = d(yj − 2xj + yj−1)− fa(xj),
ẏj = d(xj+1 − 2yj + xj)− fa(yj),

j ∈ Z.

This simple change-of-variables allows us to look at a corresponding two-dimensional system;
however, at this point, we cannot perform further analysis because the diffusion-coupling
parameter d is negative. What we have done so far is to relabel �u as

�u(t) = {. . . , u−2(t), u−1(t), u0(t), u1(t), u2(t), u3(t), . . . }
= {. . . , x−1(t), y−1(t), x0(t), y0(t), x1(t), y1(t), . . . }.

At this point, notice that we have only one diffusion parameter d; in section 2.3, after an
appropriate change-of-variables, we will have two diffusion parameters that will be periodic
and that we will require to both be positive.

2.2. Equilibrium analysis. We need to compute the equilibria that will be used as bound-
ary conditions of the traveling wavefront solutions to (2.2); that is, our goal in this subsection
is to compute (x±, y±) defined by

lim
j→−∞

(xj , yj) = (x−, y−), lim
j→+∞

(xj , yj) = (x+, y+).

Note that (x±, y±) are in terms of the parameters d, a. The equilibria of (2.2) satisfy

d(yj − 2xj + yj−1)− fa(xj) = 0 = d(xj+1 − 2yj + xj)− fa(yj), j ∈ Z,

and hence, as j → ±∞, we obtain

y± = x± +
fa(x±)
2d

, fa(x±) + fa(y±) = 0.

In the subsequent discussion, we drop the subscripts ±. Hence, consider the two equations

(2.3) y = x+
fa(x)

2d
, fa(x) + fa(y) = 0,

the solutions of which are the candidates for (x±, y±). From these two equations, define the
ninth-degree polynomial

(2.4) g(x) = fa(x) + fa

(
x+

fa(x)

2d

)
.
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926 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

Figure 1. This shows how the number of distinct real zeroes changes in the (d, a)-plane.

The equilibria of (2.2) are zeroes of the polynomial g. Computing a closed-form expression
of the zeroes of this ninth-degree polynomial in terms of the parameters d and a is not
immediate. By applying some simple root analysis, we can characterize the zeroes of g, and
hence the equilibria of (2.2), completely. These results are contained in Lemma 2.

Lemma 1. Define the curves on the (d, a)-plane:

L0 = {a+ 4d = 0}, L1 = {1− a+ 4d = 0}, La = {a(a− 1) + 4d = 0}.

Then for a �= 0, 1 the following hold:
1. If (d, a) ∈ L0, then 0 is a root of g of multiplicity 3.
2. If (d, a) ∈ L1, then 1 is a root of g of multiplicity 3.
3. If (d, a) ∈ La, then a is a root of g of multiplicity 3.
Proof. The lemma follows from a direct computation of g′(x), g′′(x), g′′′(x) at x = 0, a, 1,

whose values are tabulated below:

x 2d g′(x) 2d2 g′′(x) 4d3 g′′′(x)
0 a(a+ 4d) −(1 + a)(a+ 2d)(a+ 4d) n0(a, d)

1 (1− a)(1− a+ 4d) (2− a)(1− a+ 2d)(1 − a+ 4d) n1(a, d)

a a(a− 1)(a(a − 1) + 4d) (2a− 1)(a(a − 1) + 2d)(a(a − 1) + 4d) na(a, d)

Here n0, n1, na are polynomials in d and a that are never zero whenever (d, a) ∈ L0, L1, La,
respectively.

The next lemma is our main result on the number of distinct real zeroes of the ninth-
degree polynomial g (see Figure 1). This lemma, in particular, claims that there are equilibria
of (2.2) that cross 0 and 1 and in some parameter values, there are equilibria in between any
two of the three zeroes of the cubic nonlinearity fa. The proof uses a simple analysis of the
zeroes of g as (d, a) varies on the left-half plane.
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WAVEFRONTS IN ANTIDIFFUSION LATTICE NAGUMO 927

The three curves L0, L1, La of Lemma 1 divide the left half of the (d, a)-plane into seven
subregions (see Figure 1), namely

I = {1− a+ 4d > 0, a+ 4d > 0},
IIin = {1− a+ 4d < 0, a+ 4d > 0, a(a− 1) + 4d < 0},
IIout = {1− a+ 4d < 0, a+ 4d > 0, a(a− 1) + 4d > 0},
IIIin = {1− a+ 4d < 0, a+ 4d < 0, a(a− 1) + 4d < 0},
IIIout = {1− a+ 4d < 0, a+ 4d < 0, a(a− 1) + 4d > 0},
IVin = {1− a+ 4d > 0, a+ 4d < 0, a(a− 1) + 4d < 0},
IVout = {1− a+ 4d > 0, a+ 4d < 0, a(a− 1) + 4d > 0},

where the subscripts in, out serve to indicate that (d, a) is inside or outside the parabola
La, respectively. The partitioning gives a picture that is symmetric with respect to the line
a = 1/2. The number of zeroes of g will change as the curves L0, La, L1 are crossed. Figure 1
summarizes the results of the following lemma.

Lemma 2. For a �= 0, 1 and d < 0, g has at least five distinct real zeroes and there exist
τ1 > 1, τ2 < 0 such that g(τi) = 0. Specifically, the following hold:

1. if (d, a) ∈ I ∪ IIout ∪ IVout, then g has nine distinct real zeroes;
2. if (d, a) ∈ IIin ∪ IIIout ∪ IVin, then g has seven distinct real zeroes; and
3. if (d, a) ∈ IIIin, then g has five distinct real zeroes.
Proof. From the definition of g (2.4), we can write g(x) = fa(x)H(x), where H is a

sixth-degree polynomial with leading coefficient 1/d3. We note that

(2.5) H(0) =
a+ 4d

2d
, H(1) =

1− a+ 4d

2d
, H(a) =

a(a− 1) + 4d

2d
, H(±∞) < 0.

The main components of the proof of this lemma are shown for region I. To prove the result
for the other regions, one applies similar arguments.

Region I. In this case, we have 0 < a < 1 and a(a − 1) + 4d < 0. We claim that g has
nine distinct real zeroes; that is, H has six distinct real zeroes, and we will show that two of
these are less than 0, two are greater than 1, and the other two are located one each in the
intervals (0, a), (a, 1).

From (2.5), since both H(0)H(a) and H(a)H(1) are negative, the intermediate value
theorem says that there exist 0+ ∈ (0, a), 1− ∈ (a, 1) that are zeroes of H. By construction
of the polynomial g (see the first equation in 2.3), 0+ gives rise to another zero of H, 0− :=

0+ + fa(0+)
2d . Note that 0− �∈ {0, a, 1, 0+, 1−}. Moreover, using the second equation in (2.3),

it follows that 0− either is negative or is in the interval (a, 1) because 0 < a < 1. Since
0+ ∈ (0, a), it follows that 0− < a and hence 0− < 0.

Similarly, 1− defines another zero of H, 1+ := 1− + fa(1−)
2d �∈ {0, a, 1, 0+, 0−, 1+}. Also,

1+ > 1. Now, we have obtained seven zeroes of g, ordered as follows: 0− < 0 < 0+ < a <
1− < 1 < 1+. Note that each of 0±, 1± has multiplicity n = 1; otherwise, if 0+ had multiplicity
n > 1, then n = 2 and 0− would have multiplicity 2, too. Since g′(0) < 0 and g′(a) < 0, an
even multiplicity for 0+ would give rise to another zero for H in (0, a). However, there is no
room for another zero by the fundamental theorem of algebra. A similar argument shows that
1+ has multiplicity 1. The fundamental theorem of algebra also guarantees that there can be
no other zero within the intervals (0−, 0) and (1, 1+).
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928 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

Since 0− has multiplicity 1 and g′(0) < 0 < g(−∞), there exists a zero τ2 < 0 of H,

distinct from the other four zeroes of H. By construction, a sixth zero is τ1 := τ2 +
fa(τ2)
2d �∈

{0, a, 1, 0±, 1±, τ2}. Thus, we have found all nine zeroes of g whenever (d, a) ∈ I, namely,

(2.6) τ2 < 0− < 0 < 0+ < a < 1− < 1 < 1+ < τ1.

The zeroes 0−, 0+ coalesce when the boundary curve L0 of region I is crossed, while the zeroes
1−, 1+ coalesce when the boundary curve L1 is crossed.

The following table is a summary of the subregions and the zeroes of g:

Region Range of a Zeroes of g

I 0 < a < 1 τ2 < 0− < 0 < 0+ < a < 1− < 1 < 1+ < τ1
IIin 1/2 < a < 1 τ2 < 0− < 0 < 0+ < a < 1 < τ1

a > 1 τ2 < 0− < 0 < 0+ < 1 < a < τ1
IIout a > 1 τ2 < 0− < 0 < 0+ < 1 < a− < a < a+ < τ1
IIIin a < 0 τ2 < a < 0 < 1 < τ1

0 < a < 1 τ2 < 0 < a < 1 < τ1
a > 1 τ2 < 0 < 1 < a < τ1

IIIout a > 1 τ2 < 0 < 1 < a− < a < a+ < τ1
a < 0 τ2 < a− < a < a+ < 0 < 1 < τ1

IVin 0 < a < 1 τ2 < 0 < a < 1− < 1 < 1+ < τ1
a < 0 τ2 < a < 0 < 1− < 1 < 1+ < τ1

IVout a < 0 τ2 < a− < a < a+ < 0 < 1− < 1 < 1+ < τ1

Observe that we gain or lose two roots every time we cross one of the three bifurcation
curves L0, L1, La. There is a saddle-node bifurcation on these three curves because zeroes
are either created or annihilated when these curves are crossed. As proved in Lemma 2 and
pictured in Figure 1, depending on a (with d < 0), there are three cases when g has nine
distinct real zeroes. For example, if 0 < a < 1, then g has nine distinct real zeroes whenever
(d, a) ∈ I: τ2 < 0− < 0 < 0+ < a < 1− < 1 < 1+ < τ1. The superscripts ± indicate that
the pairs 0±, a±, 1± are created, respectively, from the saddle-node bifurcation at the curve
L0, La, L1.

Unfortunately, we do not have closed-form expressions for the roots τi, 0
±, 1±, a± in terms

of d and a. Contour plots of τ1, τ2 for (d, a) ⊆ (−1/4, 0) × (0, 1) are in Figures 2 and 3,
respectively.

Finally, for subsequent reference, define the set

Ê =

{
(x, y) ∈ R

2 : y = x+
fa(x)

2d
, fa(x) + fa(y) = 0

}
.

We shall call a point (x, y) ∈ Ê an equilibrium of (2.2). The points (x±, y±) ∈ Ê are the
boundary conditions of the solution (�x, �y). By Lemma 2, the set Ê of equilibria has either
five, seven, or nine points, depending on the parameters (d, a) (see Figure 1), where a �= 0, 1.
In the special case that Ê has nine points, for example when 0 < a < 1, the elements of Ê are

Ê = {(0, 0), (a, a), (1, 1), (τ1 , τ2), (τ2, τ1), (0−, 0+), (0+, 0−), (1−, 1+), (1+, 1−)}.
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WAVEFRONTS IN ANTIDIFFUSION LATTICE NAGUMO 929

Figure 2. This is the contour plot of τ1 over the region (d, a) ⊆ (−1/4, 0) × (0, 1). Observe that as d
increases to 0, τ1 decreases to 1.

Figure 3. This is the contour plot of τ2 over the region (d, a) ⊆ (−1/4, 0) × (0, 1). Observe that as d
increases to 0, τ2 increases to 0.
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2.3. Rescaling the system. We wish to further transform the system (2.2) to a form in
which (x−, y−) ∈ Ê is mapped to (0, 0) and (x+, y+) ∈ Ê is mapped to (1, 1). Since we are
looking for heteroclinic connections, consider two distinct pairs (x−, y−) and (x+, y+), i.e.,
x− �= x+ and y− �= y+, taken from Ê. We employ

(2.7) vj = α−1(xj − x−), wj = β−1(yj − y−)

for the even and odd lattice sites, respectively, where

(2.8) α := x+ − x−, β := y+ − y−.

Then upon substituting into (2.2) we obtain

(2.9)

{
v̇j = de(wj − 2vj + wj−1)− fe(vj),
ẇj = do(vj+1 − 2wj + vj)− fo(wj),

j ∈ Z,

where

(2.10) de =
dβ

α
, do =

dα

β

and the reaction term-nonlinearities are

(2.11)
fe(vj) :=

1
α{fa(αvj + x−) + 2d[(α − β)vj + (x− − y−)]},

fo(wj) :=
1
β{fa(βwj + y−)− 2d[(α − β)wj − (x− − y−)]}.

In the above notation, the subscripts e, o of the diffusion parameter d and the nonlinearity
f are used to denote even and odd nodes; that is, de, do are the diffusion parameters for the
even, odd sites, respectively, while fe, fo are the nonlinearity-reaction terms for the even, odd
sites, respectively. In fact, we can simplify these two nonlinearities to obtain

(2.12) fe(vj) = α2fae(vj), fo(wj) = β2fao(vj),

where

(2.13) ae =
−f ′′a (x−)

2α
− 1, ao =

−f ′′a (y−)
2β

− 1,

and we use the notation fa(u) = u(u− a)(u− 1). This can be seen by applying the equilibria
conditions (2.3) in the following way for the even nonlinearity:

fe(vj) =
1

α
{fa(αvj + x−) + 2d(α − β)vj + 2d(x− − y−)}

=
1

α

{
fa(x−) + f ′a(x−)αvj + f ′′a (x−)

(αvj)
2

2
+ (αvj)

3 + 2d(α− β)vj + 2d(x− − y−)
}

=
1

α

{
f ′a(x−)αvj + f ′′a (x−)

(αvj)
2

2
+ (αvj)

3 + 2d(α− β)vj

}

= α2

(
v3j +

f ′′a (x−)
2α

v2j +
f ′a(x−)α+ 2d(α − β)

α3
vj

)
= α2fae(vj),
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WAVEFRONTS IN ANTIDIFFUSION LATTICE NAGUMO 931

where

ae =
−f ′′a (x−)

2α
− 1 =

f ′a(x−)α+ 2d(α − β)

α3
,

which follows from the following computation:

−f ′′a (x−)
2α

− 1− f ′a(x−)α+ 2d(α− β)

α3

=
1

α3

(
−f ′′a (x−)

α2

2
− α3 − f ′a(x−)α− 2d(α − β)

)

=
1

α3

(
−
(
fa(x−) + f ′a(x−)α+ f ′′a (x−)

α2

2
+ α3

)
+ fa(x−)− 2d(α − β)

)

= − 1

α3
(fa(x− + α) + fa(x−)− 2d(α − β))

= − 1

α3
(fa(x+) + fa(x−)− 2d(x+ − y+) + 2d(x− − y−))

= 0

since 2d(x± − y±) = −fa(x±). The computations are similar for the odd-site nonlinearity
fo(·). We summarize the main result of section 2.

Lemma 3. By looking at the even and odd nodes, the one-dimensional antidiffusion lattice
Nagumo system

u̇n = d(un+1 − 2un + un−1)− fa(un), n ∈ Z,

where d < 0 and fa(u) = u(u− a)(u − 1), a ∈ R, can be converted into a two-periodic lattice
system {

v̇j = de(wj − 2vj + wj−1)− fe(vj),
ẇj = do(vj+1 − 2wj + vj)− fo(wj),

j ∈ Z,

where de, do, fe, fo are given in (2.10), (2.12), (2.13), (2.8) and

(x±, y±) ∈
{
y = x+

fa(x)

2d
, fa(x) + fa(y) = 0

}
.

In this new system, a traveling wavefront, if it exists, connects (v−, w−) = (0, 0) to (v+, w+) =
(1, 1). If αβ < 0, then the diffusion coefficients de, do are positive.

Thus, if we require αβ < 0 in (2.10), we have a system of spatially discrete ODEs with pe-
riod 2, with periodic positive diffusion parameters de, do, and with periodic nonlinearities fe, fo.
We next summarize the existence, uniqueness, and stability results for traveling wavefronts
in spatially discrete periodic media as presented by Chen, Guo, and Wu [7] and subsequently
illustrate the consequences for the antidiffusion lattice Nagumo traveling wavefront problem.

3. Existence, uniqueness, and stability of traveling fronts in discrete periodic media.
The classical results on the traveling wavefront problem to spatially continuous [1], [11], [12] or
spatially discrete reaction-diffusion equations [21], [27], [28] are under the assumption that the
space in which the waves propagate is homogeneous. The simplest nonhomogeneous medium
is a periodic medium. The theory presented by Chen, Guo, and Wu [7] deals with the periodic
media case. Unlike the homogeneous medium, the periodic case requires that one solve for N
wave profiles, where N is the period of the wave.

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

932 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

3.1. Assumptions. Here, we state the notation and assumptions for the spatially discrete
periodic-media system. Section 3.2 defines the problem while section 3.3 contains the main
results [7]. Consider a general system of spatially discrete reaction-diffusion equations for
�U(t) = {un(t)}n∈Z:

(3.1) u̇n(t) =
∑
k

an,kun+k(t) + fn(un(t)), n ∈ Z, t > 0,

where the coefficients an,k are real numbers and have the following assumptions:
A1. Periodic medium. There exists positive integer N such that

an+N,k = an,k and fn+N(·) = fn(·) for all n, k ∈ Z.

A2. Existence of ordered, periodic equilibria. There exist �Φ
±
= {φ±n }n∈Z such that∑

k

an,kφ
±
n+k + fn(φ

±) = 0, φ±n+N = φ±n , φ−n < φ+n , n ∈ Z.

After an appropriate change-of-variables, the equilibria take the form �Φ
−

= �0 and
�Φ

+
= �1.

A3. Ellipticity.

an,k > 0 for all k �= 0 and an,0 = −
∑
k �=0

an,k < 0, n ∈ Z.

A4. Nondecoupledness. For every integer pair i �= j, there exist integers i0, i1, . . . , im such
that i0 = i and im = j with

m−1∏
s=0

ais,is+1−is > 0.

A5. Finite-range interaction. There exists a positive integer k0 such that

an,k = 0 for |k| > k0 and for all n ∈ Z.

3.2. Statement of the problem. The problem is to find traveling wavefront solutions
(c, �U ), where �U(t) = {un(t)}n∈Z with t > 0, to the system of equations (3.1) with the stated

assumptions that connect two steady states �Φ
±
= {φ±n }n∈Z in the following sense:

lim
n→±∞[un(t)− φ±n ] = 0 for all t > 0.

We also want to investigate the uniqueness and stability of such solutions. A traveling wave
solution �w(ξ) = {wn(ξ)}n∈Z with ξ ∈ R is a solution which has the following ansatz:

(3.2) un(t) = wn(ξ), where ξ = n− ct, for all n ∈ Z, t ∈ R.

The variable ξ is called the wave variable and the function �w is called the wave profile. It can
be shown that the wave profile �w satisfies

wn+N (ξ) = wn(ξ) for all n ∈ Z, ξ ∈ R,
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and hence there are N functions to solve for, {w1(ξ), . . . , wN (ξ)}, and we will assume that
these N wave profiles have a common wave speed c. Indeed, for all x ∈ R and all n ∈ Z,

wn+N (ξ) = un+N (t)|ct=n+N−x = un+N

(
1

c
(n+N − x)

)
= un

(
1

c
(n− x)

)
= wn(ξ),

where we have used Theorem 2 (period of the profile).
The next section contains the results of the study of Chen, Guo, and Wu [7]. In particular,

they proved the existence of traveling wave fronts in spatially discrete periodic media; however,
unlike the spatially continuous homogeneous case, finding a closed form for such solutions
is not immediate (see [9] for one technique to construct solutions in the spatially discrete
homogeneous media case).

3.3. Results. In this section, we restate the theorems of Chen, Guo, and Wu [7] on the
existence, uniqueness, asymptotics, and stability of a traveling wave solution in spatially
discrete periodic media. (See Theorems 2, 3, 4, and 6 in [7].) The first theorem is an existence
theorem that asserts that we can find a periodic traveling wavefront solution without requiring
any stability condition on the boundary equilibria �0 and �1. In section 4, this theorem will be
applied to determine the bistable and monostable regions of the antidiffusion lattice Nagumo
system.

The following existence theorem is Theorem 6 in [7].
Theorem 1 (see [7]). Assume that �0,�1 are steady-states and any other N -periodic state

�Φ = {φj} with φj ∈ (0, 1), if it exists, is unstable. Then the problem (3.1) admits a solution
(c, �w) satisfying

�w(−∞) = �0 < �w(ξ) < �1 = �w(+∞) for all ξ ∈ R.

We have stated the above theorem in a slightly different way; in particular, we included
the fact that the other N -periodic state �Φ = {φj} is such that �0 < �Φ < �1, where the ordering
should be interpreted componentwise, that is, for all j, 0 < φj < 1. Of course, this change is
consistent with the proofs and arguments in [7].

The next theorem (Theorems 2, 3, and 4 in [7]) is a result on the uniqueness, asymptotics,
and stability of a traveling wave solution when the two steady-states �0,�1 are both stable.

Theorem 2 (see [7]). Assume that �0 and �1 are stable steady-states. Suppose that (c, �U )
with �U(t) = {Un(t)}n∈Z is a traveling wave with c �= 0 which connects �0 and �1.

1. Exponential tail. There exist positive constants h−, h+ such that

lim
n−ct→−∞

Un(t)

ψ0
ne

(n−ct)Λ0 = h−, lim
n−ct→+∞

1− Un(t)

ψ1
ne

(n−ct)Λ1 = h+,

where ({ψ0
n}n∈Z,Λ0) and ({ψ1

n}n∈Z,Λ1) with Λ1 < 0 < Λ0 are the eigenvector-eigenvalue
pairs of a corresponding eigenvalue problem.

2. Uniqueness. If (c̃, Ũ ) is another traveling wave solution, then c = c̃ and there exists
τ > 0 such that Ũ (t) = �U(t+ τ) for all t ∈ R.

3. Monotonicity in t. For all n ∈ Z the following hold:
(a) if c > 0, then d

dtUn < 0; and

(b) if c < 0, then d
dtUn > 0.
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934 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

4. Period of the profile. The period of �U is N
|c| , that is,

Un

(
t+

N

c

)
= Un−N (t) for all t ∈ R, n ∈ Z.

5. Exponential stability. �U is globally exponentially stable; that is, if the left tail (near
n = −∞) of an initial datum �u(0) is in the basin of attraction of �0 and the right tail
(near n = +∞) is in the basin of attraction of �1, then there are constants K, τ∗ such
that

‖�u(t)− �U(t+ τ∗)‖∞ ≤ Ke−νt, t ≥ 0,

where ν is a constant depending only on {an,k}(n,k)∈Z×Z and {fn}n∈Z.
4. Antidiffusion and traveling waves. In this section, we first show how to view the

antidiffusion lattice Nagumo problem in the framework set forth by Chen, Guo, and Wu [7].
Then we will apply the existence theorem as stated in the previous section in order to find
conditions under which we have bistable or monostable dynamics.

4.1. Periodic media. In section 2.3, we have seen that computing for the traveling wave
solutions (c, �u(t)) of the antidiffusion lattice Nagumo problem

(4.1)

⎧⎨
⎩

u̇n = d(un+1 − 2un + un−1)− fa(un), n ∈ Z,
fa(u) = u(u− a)(u− 1),
d < 0 and a ∈ R

can be converted into a search for 2-periodic solutions (�v(t), �w(t)) of the 2-periodic system

(4.2)

{
v̇j = de(wj − 2vj + wj−1)− fe(vj),
ẇj = do(vj+1 − 2wj + vj)− fo(wj),

j ∈ Z,

where the diffusion parameters are

(4.3) de =
dβ

α
, do =

dα

β

and the reaction term-nonlinearities are

(4.4) fe(v) = α2fae(v), fo(w) = β2fao(w)

with

(4.5) ae =
−f ′′a (x−)

2α
− 1, ao =

−f ′′a (y−)
2β

− 1,

and α = x+−x−, β = y+−y− with equilibria (x±, y±) ∈ Ê. Note that we have already rescaled
the system so that (v−, w−) = (0, 0) and (v+, w+) = (1, 1), as required in assumption A2 (see
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section 3.1). We are now in a position to use the results obtained by [7] as presented in
section 3. From equations (3.1), we set⎧⎨

⎩
an,−1 = de,
an,0 = −2de,
an,1 = de,

n = 2k,

⎧⎨
⎩
an,−1 = do,
an,0 = −2do,
an,1 = do,

n = 2k + 1,

an,k = 0 for |k| > 1 and for all n ∈ Z,

where the diffusion parameters are de, do as in (4.3); the nonlinearities are{
fn(un(t)) = fe(un(t)), n = 2k,
fn(un(t)) = fo(un(t)), n = 2k + 1,

with fe, fo as in (4.4); and ae, ao as in (4.5). Thus, we have now fulfilled assumptions A1 and
A5 (see section 3.1). Assumption A2 is satisfied with φ−n = 0, φ+n = 1 for n ∈ Z—this is the
rationale for the rescaling process that was performed in section 2.3. In order to satisfy the
ellipticity (assumption A3), since we are solving the antidiffusion problem (that is, d < 0), we
should require that αβ < 0, so that de, do are both positive. Finally, assumption A4 is clearly
satisfied.

4.2. Existence of solutions. The existence theorem (Theorem 1) in section 3 does not
require that the boundary conditions �0 and �1 are stable or unstable; however, this theorem
requires that, in case there are other 2-periodic equilibria, such points must be unstable. In
this section, we first study the existence of 2-periodic equilibria, other than �0 and �1, of the
system (4.2) and then perform a linear stability analysis on these points.

4.2.1. Existence of intermediate points. From section 2.3, recall that we have rescaled
the system (2.2) so that (v−, w−) = (0, 0) ≡ �0 and (v+, w+) = (1, 1) ≡ �1 using the change-of-
variables

(4.6) v :=
x− x−
α

, w :=
y − y−
β

,

where (x−, y−) ∈ Ê. The set Ê is the set of equilibria of (2.2). Define the set

E =

{
(v,w) : v =

x− x−
α

,w =
y − y−
β

, (x, y) ∈ Ê

}
.

We shall call a point (v,w) ∈ E an equilibrium of (4.2). We are interested in those points
(v,w) ∈ E where 0 < v < 1, 0 < w < 1. By ellipticity, we have αβ < 0, so that from (4.6),

(v,w) ∈ E : 0 < v < 1, 0 < w < 1

is equivalent to

(4.7) (x, y) ∈ E : x− < x < x+, y+ < y < y−, or x− > x > x+, y+ > y > y−.D
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If there exists a point (x, y) ∈ Ê such that (4.7) is satisfied, then we shall call the point
(x, y) a point intermediate to the boundary conditions (x−, y−) and (x+, y+) in the system
(2.2), or simply, an intermediate point. Correspondingly, the point (v,w) ∈ E will be called a
point intermediate to the boundary conditions �0 and �1 in the system (4.2), or simply, an inter-
mediate point. Because of the change-of-variables (4.6), there is a one-to-one correspondence
between the intermediate points of Ê and E. There may be equilibria (x, y) ∈ Ê, (v,w) ∈ E
that are not intermediate points.

Example 1 (see section 5.1). Suppose (x−, y−) = (0, 0) and (x+, y+) = (τ1, τ2). Then αβ =
τ1τ2 < 0. In region I, the nine zeroes of g are

τ2 < 0− < 0 < 0+ < a < 1− < 1 < 1+ < τ1.

Applying the above criteria, we see that there is exactly one intermediate point (x, y) =
(0+, 0−). In region IIout, the nine zeroes of g are

τ2 < 0− < 0 < 0+ < 1 < a− < a < a+ < τ1,

so that the only intermediate point is also (x, y) = (0+, 0−). In region IVout, where a is
negative, the nine zeroes of g are

τ2 < a− < a < a+ < 0 < 1− < 1 < 1+ < τ1,

so that, in this case, there is no intermediate point. For a > 0, the intermediate point
(x, y) = (0+, 0−) ∈ Ê in (v,w)-coordinates corresponds to (v,w) = (0

+

τ1
, 0

−
τ2
) ∈ E. This

example shows that there is a different behavior for a < 0 and justifies the study of a ∈ R,
even though the picture in Figure 1 shows that there is symmetry about the line a = 1/2.

Example 2 (see section 5.2). Suppose (x−, y−) = (τ1, τ2) and (x+, y+) = (τ2, τ1). Suppose
0 < a < 1. In this case, the nine zeroes of g, if they exist, are

τ2 < 0− < 0 < 0+ < a < 1− < 1 < 1+ < τ1.

Since the x±, y± are the largest and smallest numbers in this list, we see that the other seven
pairs are intermediate points. The pairs (0±, 0∓) exist provided a + 4d > 0 while the pairs
(1±, 1∓) exist provided 1− a+ 4d > 0.

Since the set of equilibria E to the system (4.2) has at most nine points and the boundary
conditions (x−, y−), (x+, y+) ∈ Ê in a traveling wavefront solution should be distinct, the
ellipticity (assumption A3) restricts the number of possible traveling wavefront solutions for
any pair of boundary conditions. As we have seen, assumption A3 is equivalent to αβ < 0.
Hence, for example, the theory does not guarantee that there is a traveling wavefront solution
to (2.2) that connects (x−, y−) = (0, 0) to (x+, y+) = (1, 1), since α = β = 1.

In fact, with a fixed (d, a), for each (x−, y−) ∈ Ê, there are either two, four, six, or eight
possible equilibria (x+, y+) ∈ Ê such that αβ < 0. In each region (d, a) where there are nine
points (x, y) ∈ Ê, there are 42 connections from (x−, y−) to (x+, y+) that satisfy αβ < 0;
that is, there are only 42 pairs (not 9 · 8 = 72) of boundary conditions from a choice of nine
equilibria. In each region region (d, a) where there are seven points (x, y) ∈ Ê, there are 28
connections from (x−, y−) to (x+, y+) that satisfy αβ < 0. In the region (d, a) where there

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WAVEFRONTS IN ANTIDIFFUSION LATTICE NAGUMO 937

are five points (x, y) ∈ Ê, there are 14 connections from (x−, y−) to (x+, y+) that satisfy
αβ < 0. Adding them all up, we will have 252 connections from (x−, y−) to (x+, y+) that
satisfy αβ < 0 for any given d, a. Out of these 252 connections, 116 of them will have an
intermediate point.

Next, by Theorem 1, we need to check that every intermediate point (v,w) is unstable.
This stability analysis is accomplished in the succeeding discussion.

4.2.2. Stability of equilibria. We want to investigate the (linear) stability of an equilib-
rium (v,w) ∈ E, intermediate or not. From (4.6), we see that (v,w) is obtained from (x, y)
by applying a linear change-of-variables. We observe that the linearization A(v,w) of (4.2)
about (v,w) is not symmetric in general because its off-diagonal elements, 2de, 2do, may not
be equal. The linearization L(x, y) of (2.2) about (x, y) is symmetric. Hence, we study the
linear stability of (v,w) by studying the matrix L(x, y), given by

(4.8) L(x, y) =

( −(2d+ f ′a(x)) 2d
2d −(2d+ f ′a(y))

)

with trace and determinant

T (x, y) = −4d− (f ′a(x) + f ′a(y)), D(x, y) = 2d(f ′a(x) + f ′a(y)) + f ′a(x)f
′
a(y).

Since L(x, y) is symmetric, its two eigenvalues are real so that the point (x, y) is unstable if
and only if the larger eigenvalue of L(x, y) is positive. The eigenvalues of L(x, y) are given by
1
2(T ±√

T 2 − 4D), where T,D are the trace and determinant, respectively.
For (x, y) �= (0, 0), (a, a), (1, 1), we use (2.3) to see that D(x, y) ≡ 0. Hence, the eigenvalues

of L(x, y) are either T or 0. The eigenvalue T is positive provided 2d+ f ′a(x) < 0; this comes
from

T = −4d− f ′a(x)− f ′a(y) = −4d− f ′a(x) +
2d f ′a(x)
2d+ f ′a(x)

=
−[(2d + f ′a(x))2 + 4d2]

2d+ f ′a(x)
.

For (x, y) = (0, 0), (a, a), (1, 1), we summarize the trace, determinant, and eigenvalues in
the following table:

Equilibrium(x, y) Trace Determinant Eigenvalues

(0, 0) −2(a+ 2d) a(a+ 4d) −(a+ 4d),−a
(1, 1) −2(1− a+ 2d) (1− a)(1 − a+ 4d) −(1− a+ 4d),−(1 − a)
(a, a) −2(a(a− 1) + 2d) a(a− 1)(a(a − 1) + 4d) −(a(a− 1) + 4d),−a(a − 1)

Lemma 4. Given a fixed d < 0 and a ∈ R, suppose αβ < 0. The following are equivalent:
1. the equilibrium (v,w) ∈ E is a 2-periodic unstable solution of (4.2);
2. the equilibrium (x, y) ∈ Ê is a 2-periodic unstable solution of (2.2);
3. 2d+ f ′a(x) < 0, where x �∈ {0, a, 1};
4. 2d+ f ′a(y) < 0, where y �∈ {0, a, 1};
5. f ′a(x)f ′a(y) < 8d2, where x, y �∈ {0, a, 1}.

In particular, if f ′a(x)f ′a(y) < 0, then (x, y) (and hence (v,w)) is unstable.
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938 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

Figure 4. This shows the graphs of fa and g in the Cartesian plane when a = 1/2, d = −1/16. In this

case, the spinodal interval is ( 1
2
−

√
3

6
, 1
2
+

√
3

6
) so that f ′

a(0
−)f ′

a(0
+) < 0 and f ′

a(1
−)f ′

a(1
+) < 0.

Testing analytically that the inequalities in this lemma are true is not immediate because
we do not have closed-form expressions for x and y as zeroes of the ninth-degree polynomial g.
However, we can formulate some simple observations that will allow us to check f ′a(x)f ′a(y) < 0
for some pairs (x, y) (see Figure 4). Define the spinodal interval of fa:

(4.9) S = (s−, s+), where s± =
1

3

(
a+ 1±

√
a2 − a+ 1

)
.

Note that for any a ∈ R, a2− a+1 > 0. The endpoints of the spinodal interval are the points
where the derivative of fa changes signs.

Lemma 5. If x ∈ S and y �∈ S or y ∈ S and x �∈ S, then f ′a(x)f ′a(y) < 0 so that (x, y) is
unstable.

Example 3. See Figure 4, where the given (d, a)-values are in region I. The components
of the equilibria

(0, 0), (τ1, τ2), (τ2, τ1), (1, 1)

are all outside S while the components of the point (a, a) are inside S. Hence, these five points
are stable. The other four equilibria, (0±, 0∓) and (1±, 1∓), are unstable. From Example 1
and by the previous lemma, we see that (0+, 0−) is the only intermediate unstable equilibrium
between the two stable equilibria (x−, y−) = (0, 0) and (x+, y+) = (τ1, τ2). Similarly, (1+, 1−)
is the only intermediate unstable equilibrium between the two stable equilibria (x−, y−) =
(1, 1) and (x+, y+) = (τ1, τ2).

Note that 2d + f ′a(x) = 3x2 − 2(a + 1)x + a + 2d and for d < 0, we have Q(a, d) :=
a2 − a+ 1− 6d > 0. Hence if

a+ 1−√Q(a, d)

3
< x <

a+ 1 +
√
Q(a, d)

3
,
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WAVEFRONTS IN ANTIDIFFUSION LATTICE NAGUMO 939

then 2d+ f ′a(x) < 0 so that (x, y) is unstable. Otherwise, if

x <
a+ 1−√Q(a, d)

3
o x >

a+ 1 +
√
Q(a, d)

3
,

then 2d+ f ′a(x) > 0 so that (x, y) is stable.
Finally, our discussion of stability of equilibria agrees with the stability criteria in [7] (see

Theorem 1, page 197), where they have proven that the characteristic equation has at most
two real roots.

4.2.3. Bistable and monostable dynamics. In this final subsection, we define what it
means for the system (4.2) to exhibit bistable and monostable dynamics and then derive
conditions under which (4.2) has such dynamics.

Bistable dynamics corresponds to �0 and �1 being stable 2-periodic equilibrium solutions to
(4.2) and an unstable 2-periodic equilibrium solution �a = (v,w) with 0 < v < 1 and 0 < w < 1
and no other stable 2-periodic equilibrium solutions (v,w) with values in (0, 1) × (0, 1).

Monostable dynamics corresponds to one of �0 or �1 being a stable 2-periodic equilibrium
solution and the other an unstable 2-periodic equilibrium solution and no other stable 2-
periodic equilibrium solutions with values in (0, 1) × (0, 1).

Theorem 3. Given a fixed d < 0 and a ∈ R, let (x±, y±) ∈ Ê. Suppose (x, y) ∈ Ê is an
intermediate point between (x−, y−) and (x+, y+):

1. If f ′a(x±)f ′a(y±) ≥ 8d2 > f ′a(x)f ′a(y), then both (x−, y−) and (x+, y+) are stable and
(x, y) is unstable. If there are no other stable 2-periodic equilibria solutions, then the
antidiffusion lattice Nagumo system exhibits bistable dynamics.

2. If f ′a(x−)f ′a(y−) ≥ 8d2 > f ′a(x+)f ′a(y+), then (x−, y−) is stable while (x+, y+) is unsta-
ble; or if f ′a(x+)f ′a(y+) ≥ 8d2 > f ′a(x−)f ′a(y−), then (x+, y+) is stable while (x−, y−) is
unstable. If there are no other stable 2-periodic solutions, then the antidiffusion lattice
Nagumo system exhibits monostable dynamics.

5. Examples.

5.1. Case study: (0, 0) to (τ1, τ2) connection.

5.1.1. Existence. In section 2, we have seen that for any value of the parameter (d, a) for
d < 0, there always exist numbers outside the interval (0, 1) that give rise to equilibria to the
system (2.2); that is, there exist τ1 > 1 and τ2 < 0 with g(τi) = 0 such that (τ1, τ2) or (τ2, τ1) is
an equilibrium of (2.2). We want to know whether there exists a traveling wavefront solution
to (2.2) that connects (x−, y−) = (0, 0) and (x+, y+) = (τ1, τ2). (In the positive diffusion
problem, the traveling wavefront solution that is often studied is a solution that connects 0
to 1.)

In this case, α = τ1 > 1, β = τ2 < 0. We set vj =
xj

τ1
, wj =

yj
τ2
. In system (4.2), the

diffusion-coupling parameters are de =
dτ2
τ1
, do = dτ1

τ2
, and the reaction-nonlinearity terms are

fe(v) = τ21 fae(v), fo(w) = τ22 fao(w) with detuning parameters ae = a+1
τ1

− 1, ao = a+1
τ2

− 1,
respectively. If a > 0, then the three detuning parameters are related by ao < 0 < a < ae.
Figure 5 shows a contour plot of ae for −0.25 < d < 0 and 0 < a < 1 where we observe that
when a+ 4d > 0, the detuning parameter ae ∈ (0, 1).
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940 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

Figure 5. This is the contour plot of ae over the region (d, a) ⊆ (−1/4, 0)× (0, 1). Note that as d increases
to 0, ae approaches a ∈ (0, 1).

Since αβ < 0, the diffusion-coupling parameters de, do are both positive (ellipticity condi-
tion). In (v,w)-coordinates, the set of equilibria of (4.2) are

E = {(v,w) : v = x/τ1, w = y/τ2, where (x, y) ∈ Ê}.

For parameter values (d, a), where E has nine points, the elements of E are
Case 1 (a < 0).

E = {(0, 0), (a/τ1 , a/τ2), (1/τ1, 1/τ2), (1, 1), (τ2/τ1, τ1/τ2), (a−/τ1, a+/τ2),
(a+/τ1, a

−/τ2), (1−/τ1, 1+/τ2), (1+/τ1, 1−/τ2)}.

Case 2 (0 < a < 1).

E = {(0, 0), (a/τ1 , a/τ2), (1/τ1, 1/τ2), (1, 1), (τ2/τ1, τ1/τ2), (0−/τ1, 0+/τ2),
(0+/τ1, 0

−/τ2), (1−/τ1, 1+/τ2), (1+/τ1, 1−/τ2)}.

Case 3 (a > 1).

E = {(0, 0), (a/τ1 , a/τ2), (1/τ1, 1/τ2), (1, 1), (τ2/τ1, τ1/τ2), (0−/τ1, 0+/τ2),
(0+/τ1, 0

−/τ2), (a−/τ1, a+/τ2), (a+/τ1, a−/τ2)}.

Elements of E that are in the box (0, 1) × (0, 1) are called intermediate points of (4.2).
For a < 0, we do not have intermediate points. For a > 0, the only intermediate point is
(0+/τ1, 0

−/τ2), which exists only when a+ 4d > 0.
Next, let us investigate the stability of our equilibria. In (v,w)-coordinates, the boundary

conditions are �0 ≡ ( 0
τ1
, 0
τ2
),�1 ≡ ( τ1τ1 ,

τ2
τ2
) while the intermediate point is �a ≡ (0

+

τ1
, 0

−
τ2
). From

the previous section, the stability of (v,w) = �0,�1,�a can be inferred from the stability of
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(x, y) = (0, 0), (τ1, τ2), (0
+, 0−), respectively. In particular, using the results from the previous

section, we have that (τ1, τ2) is stable if 2d+f
′
a(τ1) > 0, which is satisfied when 1−a+2d > 0.

Also, (0, 0) is stable (hence, �0 is stable) whenever a+ 4d > 0. Finally, (0+, 0−) is unstable if
2d+ f ′a(0+) < 0 and exists only when a+ 4d > 0.

Lemma 6.
1. If a + 4d > 0, 1 − a + 2d > 0, and 2d + f ′a(0+) < 0, then the antidiffusion lattice

Nagumo system exhibits bistable dynamics.
2. If a + 4d < 0 < 1 − a + 2d, then the antidiffusion lattice Nagumo system exhibits

monostable dynamics.
Finally, we apply the theorems of Chen, Guo, and Wu [7] as restated in section 3. In

particular, the existence theorem holds for all (d, a).
Lemma 7. There exists a monotone traveling wavefront 2-periodic solution to the system

(2.2) that connects (0, 0) to (τ1, τ2). If the conditions for bistable dynamics in Lemma 6
hold, then this traveling wavefront solution is unique, 2-periodic, monotonic, and globally
exponentially stable.

5.1.2. Propagation failure. In this section, we look at a phenomenon called propagation
failure, a distinctive characteristic of LDEs. The first part of this section collects some results
on propagation failure in the positive diffusion problem. The basic idea, as presented by
Keener [21], is to consider a mapping ΦK on the plane and to find points on the unit interval
that will define some bounded areas in the unit square which will be mapped by ΦK into
themselves (see discussion in [21]). The existence of such points on the unit interval will
guarantee the existence of propagation failure in the system.

Our goal is to investigate and derive conditions under which the traveling wavefronts
from (0, 0) to (τ1, τ2) to the antidiffusion lattice Nagumo system with bistable dynamics fail
to propagate. To this aim, we will, initially, look at the limiting equations of (4.2) to find
an approximation Φ̂ to a map Φ that is analogous to Keener’s mapping ΦK . We use an
approximation Φ̂ because the mapping Φ is of degree 9 and is complicated to analyze directly.
This section ends with a result that contains sufficient conditions such that traveling waves
connecting (0, 0) to (τ1, τ2) fail to propagate.

Positive diffusion. In the reaction-diffusion PDE case, for example,

ut = duxx − fa(u), x, t ∈ R, d > 0,

the wave speed c of the traveling wave solution, if it exists, is a continuous and strictly
monotonic function of a (that is, no propagation failure). In the reaction-diffusion PDE case
with spatially periodic coefficients, for example,

∂tu = d∂x(b(x)∂xu) + fa(u), x, t ∈ R, d > 0,

with b(x) = b(x + 2π), stationary solutions c = 0 solve a time-periodic ODE. Heteroclinic
orbits are now typically transverse, so that we expect pinned fronts for an interval of values
of a.

In the LDE case,

(5.1) u̇n(t) = d(un+1 − 2un + un−1)− fa(un), d > 0,
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942 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

Figure 6. The shaded area shows the region of propagation failure for the positive diffusion problem in the
(d, a)-parameter plane.

where fa(u) = u(u− a)(u− 1) with 0 < a < 1, the wave speed of the traveling wave solution
may be zero for an open set of a. In particular, for sufficiently small d > 0, there are numbers
a− �= a+ in the interval (0, 1) such that c = c(a) satisfies

c

⎧⎨
⎩
< 0, 0 < a < a−,
= 0, a− ≤ a ≤ a+,
> 0, a+ < a < 1.

When the numbers a− �= a+ exist, we say that pinning of the wave or propagation failure
occurs; the wave is pinned and cannot propagate when a is in the nontrivial interval [a−, a+].
This interval is usually called the pinning interval, and the length of the interval gives a
measure of the pinning of the waves.

A numerical approximation of the region of propagation failure for the positive diffusion
problem is shown in Figure 6. This was obtained (as was Figure 7 in a similar way) by starting
from a Heaviside initial condition, approximating the solution of the differential equations
using the MATLAB code ODE45 with tolerances of 10−10 to a final time of T = 100. If

(5.2) u−1(100) = w−1(100) > 0.95 or u0(100) = v0(100) < 0.05,

the parameter value in the (d, a)-plane was deemed to not have propagation failure; otherwise
it was labeled as having propagation failure.

To obtain a qualitative picture of the region of propagation failure, we analyze the range
of existence of monotonic steady-state solutions, as argued by Keener in [21]. He proved the
existence of a pinning interval by applying a result due to Moser. He showed that the mapping
φfa,d defined by

(5.3) φfa,d(u, v) =

(
fa(u)

d
+ 2u− v, u

)
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Figure 7. The shaded area shows the region of propagation failure for the antidiffusion lattice Nagumo
problem in a bistable region B.

possesses symbolic dynamics (on two symbols). This mapping is obtained by setting u̇n(t) = 0
in (5.1) and writing the resulting difference equation

d(un+1 − 2un + un−1)− fa(un) = 0, d > 0,

as a map on the plane by taking

un+1 =
fa(un)

d
+ 2un − vn, vn+1 = un.

For the cubic-nonlinearity fa(u) = u(u − a)(u − 1), where 0 < a < 1/2, Keener derived a
pinning interval

(5.4)
√
4d < a < 1−

√
4d, 0 ≤ d ≤ 1/16.

Negative diffusion. We want to know if the propagation failure phenomenon exists in
the antidiffusion lattice Nagumo traveling wavefront problem in a bistable region B for the
connection (0, 0) to (τ1, τ2). From Lemma 6, B is a subset of {a + 4d > 0, 1 − a + 2d >
0, 2d + f ′a(0+) < 0}, where (0+, 0−) is the only intermediate point (for a > 0). In this part,
we will assume that 0 < a < 1 (similar arguments apply for the other case, a > 1). Thus,
consider the bistable region

B = {(d, a) : a+ 4d > 0, 1− a+ 2d > 0, 2d + f ′a(0
+) < 0, 0 < a < 1};

that is, if (d, a) ∈ B, then both (v,w) = (0, 0) and (v,w) = (1, 1) are stable equilibria to (4.2)

and the only other intermediate point is (v,w) = (0
+

τ1
, 0

−
τ2
), which is unstable.

Consider u̇n = Fn(un−1, un, un+1), where

(5.5) Fn(un−1, un, un+1) = dn(un+1 − 2un + un−1)− fn(un), n ∈ Z,
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944 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

where (dn, fn) = (de, fe) for n an even number and (dn, fn) = (do, fo) for n an odd number.
Setting u̇n = 0 and then solving for un+1, we have

un+1 =
fn(un)

dn
+ 2un − vn, vn = un−1.

Define the following maps:

(5.6) φe(u, v) =

(
fe(u)

de
+ 2u− v, u

)
, φo(u, v) =

(
fo(u)

do
+ 2u− v, u

)
,

(5.7) Φ = φo ◦ φe.
The mapping Φ is of degree 9, and our goal is to study the mapping Φ, which we can view as
iterating the mapping (5.3) twice. The explicit expression for Φ is

Φ(u, v) =

(
fo(

fe(u)
de

+ 2u− v)

do
+

2fe(u)

de
+ 3u− v,

fe(u)

de
+ 2u− v

)
.

We want to derive sufficient conditions for d and a in region B that give rise to propagation
failure. In B, the detuning parameter ae for the even nodes satisfies 0 < ae < 1, and so we
can view φe as the mapping φfe,de in (5.3). However, the detuning parameter ao for the odd
nodes satisfies ao < −1, and so we cannot apply an analysis similar to that in the even nodes.
Instead, we will use an approximation of φo. To obtain such an approximation, let us study
how the system (4.2) behaves as d→ 0−.

Lemma 8. Consider the connection (0, 0) to (τ1, τ2) for a fixed (d, a) in a bistable region
B. The equations (4.2) have limits

(5.8) v̇j = −fa(vj), ẇj =
a

2
(vj+1 − 2wj + vj)

as d→ 0−.
Proof. To see this, start from (4.2):{

v̇j = de(wj − 2vj + wj−1)− fe(vj),
ẇj = do(vj+1 − 2wj + vj)− fo(wj),

j ∈ Z.

Since τ1 → 1+ and τ2 → 0− as d → 0−, we clearly have that de → 0+ and fe(u) → fa(u)
(because ae → a) as d→ 0−. Furthermore,

fo(u) = τ22u(u− 1)(u− ao) = τ2u(u− 1)(τ2u− (a+ 1− τ2))

so that fo(u) → 0 as d→ 0−.
Next, we wish to show that do → a/2 as d→ 0−. To see this we will consider, for a fixed,

τ1 ≡ τ1(d) and τ2 ≡ τ2(d). We obtain

lim
d→0−

do = lim
d→0−

d
τ1(d)

τ2(d)
= lim

d→0−
dτ ′1(d) + τ1(d)

τ ′2(d)D
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WAVEFRONTS IN ANTIDIFFUSION LATTICE NAGUMO 945

after applying L’Hôpital’s rule. To evaluate τ ′1(d) and τ ′2(d) we differentiate the equations

fa(τ1(d)) + fa(τ2(d)) = 0, 2d(τ1(d)− τ2(d)) = fa(τ2(d))

with respect to d to obtain the linear system(
f ′a(τ1) f ′a(τ2)
−2d 2d+ f ′a(τ2)

)(
τ ′1
τ ′2

)
=

(
0

2(τ1 − τ2)

)
.

In the limit as d→ 0− we have(
1− a a
0 a

)
,

(
τ ′1(0−)
τ ′2(0−)

)
=

(
0
2

)
,

which has solution τ ′1(0−) = −2/(1 − a) and τ ′2(0−) = 2/a. Thus,

lim
d→0−

do = lim
d→0−

dτ ′1(d) + τ1(d)

τ ′2(d)
=

1

2/a
= a/2.

Setting v̇j = ẇj = 0, the limiting equations (5.8) yield vj = 0, a, 1 (a ∈ (0, 1)) and
wj =

1
2 (vj + vj+1). This implies that if, for example,

(5.9)

�v = {. . . , 0, . . . , 0, 0, a, . . . , a, a, 1, 1 . . . }, then �w =

{
. . . , 0, . . . , 0,

a

2
, a, . . . , a,

a+ 1

2
, 1, . . .

}

or if
�v = {. . . , 0, . . . , 0, 0, 1, 1 . . . }, then �w = {. . . , 0, . . . , 0, 1/2, 1, . . . }.

These pairs (�v, �w) form monotone standing wave solutions (c = 0) to the limiting equations
that connect (v−, w−) = (0, 0) to (v+, w+) = (1, 1). Other monotone solutions can be obtained
by varying the location and the number of a’s in the middle of �v.

Approximating the mapping Φ. Applying the analysis in Lemma 7 (in particular, the
fact that fo → 0 as d→ 0−), we will initially approximate φo in (5.6) by the linear map

(5.10) φL(u, v) = (2u− v, u).

Hence, consider the map Φ̂ defined by

(5.11) Φ̂(u, v) = φL ◦ φe(u, v) =
(

2

de
fe(u) + 3u− 2v,

1

de
fe(u) + 2u− v

)
.

Note that the inverses of φe, φL, respectively, are

φ−1
e (u, v) =

(
v,

1

de
fe(u) + 2v − u

)
, φ−1

L (u, v) = (v, 2v − u)

so that

Φ̂−1(u, v) = φ−1
e ◦ φ−1

L (u, v) =

(
2v − u,

1

de
fe(2v − u) + 3v − 2u

)
.

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

946 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

The main idea of the proof of the next lemma lies on the fact that the mapping Φ̂ is
a homeomorphism on the unit square [0, 1] × [0, 1] into the plane R

2. This next lemma is
analogous to Keener’s Corollary 2.2 on page 560 of [21]. Our result is the following lemma.

Lemma 9. Suppose there are numbers ûj ∈ (0, 1) and û∗j ∈ (0, 1) for j ∈ {0, 1, 2, . . . , 5}
such that the following hold:

1. H−1(û0) = H−2(û1) = H−3(û2) = H0(û3) = H−1(û4) = H−2(û5) = 0, where

(5.12) H−k(u) =
2

de
fe(u) + 3u− k for k ∈ {0, 1, 2, 3};

2.

û∗j =

⎧⎪⎪⎨
⎪⎪⎩

1

de
fe(ûj) + 2ûj , j = 0, 3, 4,

1

de
fe(ûj) + 2ûj − 1, j = 1, 2, 5.

3.
2

de
f ′e(u) + 3 > 0 for

{
0 ≤ u ≤ ûj, j = 0, 1, 2,
ûj ≤ u ≤ 1, j = 3, 4, 5.

Then Φ̂ has
1. a countable infinity of periodic orbits of arbitrarily high period,
2. an uncountable infinity of nonperiodic orbit, and
3. a dense orbit.
Proof. To prove Lemma 9, we need to show that Φ̂ is a Smale-horseshoe type of mapping

and as such, it will be topologically conjugate with the shift mapping σ on the space Σ of
bi-infinite sequences on two symbols [26]. Geometrically, the mapping Φ̂ contracts the vertical
direction, expands the horizontal direction, and folds the unit square around, laying it back
on itself while fixing the points (0, 0) and (1, 1), in such a way that we can find disjoint regions
that are mapped over themselves. A Smale-horseshoe mapping need not have the shape of
a horseshoe (an inverted U); in fact, for our problem, the mapping Φ̂ yields a G-shaped
horseshoe, as sketched in Figure 8.

In Figures 8 and 9, we use the following notation to identify points:

(5.13)
Uj = (ûj , 0), j = 0, 3, 4; Uj = (ûj , 1), j = 1, 2, 5;
U∗
j = (0, û∗j ), j = 1, 3, 5; U∗

j = (1, û∗j ), j = 0, 2, 4.

To show that Φ̂ is a Smale-horseshoe type of mapping, we will apply the so-called Conley–
Moser conditions [26] (see Theorem 25.1.5). For our problem, these conditions translate to
finding 12 points Uj , U

∗
j for j = 0, 1, 2, 3, 4, 5 such that the following hold:

1. Φ̂(Uj) = U∗
j for j = 0, 1, 2, 3, 4, 5.

2. The points O,U0, U2, U1 define a vertical strip V0. The points U3, U4, P, U5 define a
vertical strip V1. The two strips V0, V1 are disjoint.

3. The points O,U∗
0 , U

∗
2 , U

∗
1 define the horizontal strip H0 while the points U∗

3 , U
∗
4 , P, U

∗
5

define the horizontal strip H1. The two strips H0,H1 are disjoint.
4. Φ̂(Vi) = Hi for i = 0, 1.
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WAVEFRONTS IN ANTIDIFFUSION LATTICE NAGUMO 947

Figure 8. The diagram shows a sketch of the image of the unit square under the mapping Φ̂.

Figure 9. The diagram shows a sketch of the image of the unit square under the inverse mapping Φ̂−1.

5. The horizontal boundary curves of Vi map to the horizontal boundary curves of Hi

and the vertical boundary curves of Vi map to the vertical boundary curves of Hi.
A horizontal strip is the set lying between two nonintersecting horizontal curves; a vertical

strip is the set lying between two nonintersecting vertical curves. A horizontal curve v = v(u)
is the graph of a function 0 ≤ v(u) ≤ 1 where u ∈ [0, 1]; a vertical curve u = u(v) is the graph
of a function 0 ≤ v(u) ≤ 1 where u ∈ [0, 1]. Figure 10 illustrates the points Uj , U

∗
j and the

strips Vi,Hi in one unit square. Note that the boundary curves need not be straight lines.
The following table summarizes the mapping of the points and the conditions that the

points ûj, û
∗
j must satisfy:

Φ̂(U0) = U∗
0

2
de
fe(û0) + 3û0 = 1 û∗0 =

1
de
fe(û0) + 2û0

Φ̂(U1) = U∗
1

2
de
fe(û1) + 3û1 − 2 = 0 û∗1 =

1
de
fe(û1) + 2û1 − 1

Φ̂(U2) = U∗
2

2
de
fe(û2) + 3û2 − 2 = 1 û∗2 =

1
de
fe(û2) + 2û2 − 1

Φ̂(U3) = U∗
3

2
de
fe(û3) + 3û3 = 0 û∗3 =

1
de
fe(û3) + 2û3

Φ̂(U4) = U∗
4

2
de
fe(û4) + 3û4 = 1 û∗4 =

1
de
fe(û4) + 2û4

Φ̂(U5) = U∗
5

2
de
fe(û5) + 3û5 − 2 = 0 û∗5 =

1
de
fe(û5) + 2û5 − 1
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948 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

Figure 10. The diagram shows a sketch of the 12 points that we are looking for and the vertical and
horizontal strips.

Thus, if we define

(5.14) H−k(u) =
2

de
fe(u) + 3u− k for k ∈ {0, 1, 2, 3},

then the second column of the table gives the following conditions on the points ûj :

(5.15) H−1(û0) = H−2(û1) = H−3(û2) = H0(û3) = H−1(û4) = H−2(û5) = 0;

while the third column of the table gives the following conditions on the points u∗j :

û∗j =

⎧⎪⎪⎨
⎪⎪⎩

1

de
fe(ûj) + 2ûj , j = 0, 3, 4,

1

de
fe(ûj) + 2ûj − 1, j = 1, 2, 5.

For the two vertical strips Vi to be disjoint, we require that û2 < û3; for the two horizontal
strips Hi to be disjoint, we require that û∗3 < û∗2. Observe that there is a slight abuse of
notation: H0 may refer to the polynomial Hk for k = 0 or may refer to the horizontal strip
H0; the context should indicate which notion we are looking at. Finally, to prove that the
boundary curves of the strips behave in a required manner, one applies arguments similar to
Keener’s proof [21].

There is a linear relationship between ûj and û∗j for each j as follows:

(5.16) û∗j =
1

2
ûj , j ∈ {1, 3, 5}, û∗j =

1

2
(ûj + 1), j ∈ {0, 2, 4}.

Remark 1. The first two requirements on ûj, û
∗
j of Lemma 9 guarantee the existence of

horizontal strips Hi and vertical strips Vi with Φ̂(Vi) = Hi for i = 0, 1 that satisfy the
Conley–Moser conditions (in a weaker form). The third condition of Lemma 9 guarantees
that the the boundary curves of these strips are monotone increasing.
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WAVEFRONTS IN ANTIDIFFUSION LATTICE NAGUMO 949

The next result contains sufficient conditions on the parameters (d, a) in a bistable region
B that will imply the conditions of Lemma 9, and hence Φ̂ will be topologically conjugate to
the shift mapping on two symbols {0, 1}. Lemma 9 guarantees that for any sequence {sj}j∈N
with sj ∈ {0, 1}, there is a sequence {(vj , wj)}j∈N which is an equilibrium solution of

(5.17)

{
v̇j = de(wj − 2vj + wj−1)− fe(vj),
ẇj = do(vj+1 − 2wj + vj),

j ∈ Z,

with {
(vj , wj) ∈ [0, û2]× [0, û∗2], sj = 0,
(vj , wj) ∈ [û3, 1]× [û∗3, 1], sj = 1.

Equivalently, the next lemma will imply that the system (5.17) will have traveling wave
solutions with zero speed, the propagation failure phenomenon.

Lemma 10. Consider the connection (0, 0) to (τ1, τ2) for a fixed (d, a) in a bistable region
B. Suppose

1

τ1

(
τ21 +

√
6dτ2τ1 − τ1

)
≤ a ≤ 1

τ1

(
2τ21 −

√
6dτ2τ1 − τ1

)
.

Then Φ̂ possesses the shift on sequences on two symbols as a subsystem.
Proof. The previous lemma claims that the existence of {ûj}, {û∗j} for j = 0, 1, . . . , 5 in the

unit interval guarantees that there is propagation failure. Let us find a relationship between
de and ae that implies the hypotheses of this lemma. Observe that the equations satisfied by
ûj in (5.15) are translates of each other. Conditions for the existence of roots of H0 and H−3

can be computed because u is a factor of H0 while u − 1 is a factor of H−3, and hence the
two equations H0(u) = 0 = H−3(u) are quadratic. Now, even without explicitly computing
the other four roots ûk for k = 0, 1, 4, 5, which are roots of a cubic equation with positive
discriminant, we can still ensure that these exist because these four roots are bounded by
0, û2, û3, 1. In particular, the smallest root of H0, which is 0, bounds the roots of the H−k’s
on the left while the largest root of H−3, which is 1, bounds the roots of H−k’s on the right.
This is based on the observation that the H−k’s for k = 1, 2, 3, 4, 5 are just vertical translations
of H0. Thus, the existence of three distinct real roots of H0 and H−3 will imply the existence
of the roots of H−1 and H−2.

For example, if a = 3/4 and d = −1/8, then (τ1, ae) ≈ (1.31383, 0.331979). The four
curves H−k(u) for k ∈ {0, 1, 2, 3} are illustrated in Figure 11.

To guarantee the existence of the roots of H0 and H−3, since they are quadratic expres-
sions, the discriminant of the quadratic equation H0 = 0 = H−3 must be nonnegative, that
is,

(ae + 1)2 − 4ae − 6de
τ21

≥ 0, a2e −
6de
τ21

≥ 0

for H0,H−3, respectively. These inequalities are equivalent to

(5.18) de ≤ 1

6
τ21 a

2
e, de ≤ 1

6
τ21 (ae − 1)2,

respectively. In other words, the hypotheses of Lemma 9 will hold whenever

de = min

{
1

6
τ21a

2
e,

1

6
τ21 (ae − 1)2

}
=

{
1
6τ

2
1 a

2
e, 0 < ae < 1/2,

1
6τ

2
1 (ae − 1)2, 1/2 < ae < 1.
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950 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

Figure 11. Set (d, a) = (−1/8, 3/4). The translates H−k(u) are sketched here, where the horizontal axis is u.

Note that we do not allow ae = 1/2 because in this case, û2 = û3, and so we would not have
disjoint vertical strips V0, V1. Moreover, inequalities in (5.18) imply that

(5.19)

√
6de
τ1

≤ ae ≤ 1−
√
6de
τ1

,

which can also be stated in terms of d and a:

(5.20)
1

τ1

(
τ21 +

√
6dτ2τ1 − τ1

)
≤ a ≤ 1

τ1

(
2τ21 −

√
6dτ2τ1 − τ1

)
.

Compare the pinning interval in the positive diffusion case (5.4) with the above inequalities
(5.19), (5.20). Observe that in (5.20), we have that 0 < a < 1 as d→ 0−. These conditions on
d and a can be further weakened by considering monotone functions, similar to what Keener
did in the positive diffusion case [21].

Out of the two nonzero roots of H0, we take the larger root as û3:

(5.21) û3 = (1/2)

(
(ae + 1) +

√
(ae − 1)2 − 6de

τ21

)
;

while we take the smallest root of H−3 as û2:

(5.22) û2 = (1/2)

(
ae −

√
a2e −

6de
τ21

)
.

We can, in fact, determine the precise ordering of all six numbers ûj, j ∈ {0, 1, . . . , 5}.
By monotonicity of the boundary curves of the horizontal and vertical strips, these numbers
ûj in the unit interval must lie outside the spinodal interval S = (s−, s+) of the polynomial
H−k. The roots û0 < û1 < û2 are the minimum roots of H−1,H−2,H−3, respectively, while
the roots û3 < û4 < û5 are the maximum roots of H0,H−1,H−2; that is, we have the ordering

0 < û0 < û1 < û2 < s− < s+ < û3 < û4 < û5 < 1.

However, there is no such ordering for û∗j because of the folding mechanism in Φ̂, (5.16):

0 < û∗1 < û∗3 < min{û∗0, û∗5} < max{û∗0, û∗5} < û∗2 < û∗4 < 1.
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The mapping Φ. Gaining insight from the approximation mapping Φ̂, we now look at the
full mapping Φ = φo ◦φe. Note that Φ = Φ̂+E, where E is the mapping on the plane defined
by

E(u, v) =

(
1

do
fo

(
1

de
fe(u) + 2u− v

)
, 0

)
.

Certainly, other perturbations Φ̂ may be used to approximate Φ. We have chosen to approx-
imate φo by the linear mapping φL because, as seen in the previous discussion, it gave rise to
a simpler Φ̂. In particular, the definition of Φ̂ involves the even components de, fe, ae while
the definition of E involves the odd components do, fo, ao. Separating the even from the odd
contributions is helpful because the even detuning parameter ae is in the unit interval (0, 1)
while the odd detuning parameter ao is negative.

A result similar to Lemma 9 is the following lemma.
Lemma 11. Suppose there are numbers uj ∈ (0, 1), u∗j ∈ (0, 1) for j ∈ {0, 1, 2, . . . , 5} such

that
1.

uj =

⎧⎪⎪⎨
⎪⎪⎩

1

do
fo(u

∗
j) + 2u∗j , j = 1, 3, 5,

1

de
fo(u

∗
j ) + 2u∗j − 1, j = 0, 2, 4.

2.

u∗j =

⎧⎪⎪⎨
⎪⎪⎩

1

de
fe(uj) + 2uj , j = 0, 3, 4,

1

de
fe(uj) + 2uj − 1, j = 1, 2, 5.

3.
2

de
f ′e(u) + 3 > 0 for

{
0 ≤ u ≤ uj, j = 0, 1, 2,
uj ≤ u ≤ 1, j = 3, 4, 5.

Then Φ has
1. a countable infinity of periodic orbits of arbitrarily high period,
2. an uncountable infinity of nonperiodic orbit, and
3. a dense orbit.
Proof. The proof uses arguments similar to that of Lemma 9; that is, we need to find 12

points that satisfy the Conley–Moser conditions in this setup. The following table summarizes
the mapping of the points and the conditions that the points uj , u

∗
j must satisfy:

Φ(U0) = U∗
0

2
de
fe(u0) + 3u0 +

1
do
fo(

1
de
fe(u0) + 2u0) = 1 u∗0 =

1
de
fe(u0) + 2u0

Φ(U1) = U∗
1

2
de
fe(u1) + 3u1 − 2 + 1

do
fo(

1
de
fe(u1) + 2u1 − 1) = 0 u∗1 =

1
de
fe(u1) + 2u1 − 1

Φ(U2) = U∗
2

2
de
fe(u2) + 3u2 − 2 + 1

do
fo(

1
de
fe(u2) + 2u2 − 1) = 1 u∗2 =

1
de
fe(u2) + 2u2 − 1

Φ(U3) = U∗
3

2
de
fe(u3) + 3u3 +

1
do
fo(

1
de
fe(u3) + 2u3) = 0 u∗3 =

1
de
fe(u3) + 2u3

Φ(U4) = U∗
4

2
de
fe(u4) + 3u4 +

1
do
fo(

1
de
fe(u4) + 2u4) = 1 u∗4 =

1
de
fe(u4) + 2u4

Φ(U5) = U∗
5

2
de
fe(u5) + 3u5 − 2 + 1

do
fo(

1
de
fe(u5) + 2u5 − 1) = 0 u∗5 =

1
de
fe(u5) + 2u5 − 1
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In this table, we use a notation (see (5.13)) similar to the approximating case, where the hats
in uj , u

∗
j have been dropped. Each of the equations in the second column in this table can

be written in the form uj = F (u∗j ), where u
∗
j is defined in the third column. For example,

since u∗0 = 1
de
fe(u0) + 2u0, the second column for u0 gives 2u∗0 − u0 + 1

do
fo(u

∗
0) = 1, or

u0 =
1
do
fo(u

∗
0) + 2u∗0 − 1.

Next, we want to find sufficient conditions that will guarantee the existence of the 12
points uj, u

∗
j . To this end, let us rewrite the equations for uj , u

∗
j in the following way. Define

(5.23) εj =
fo(u

∗
j )

do
, j ∈ {0, 1, 2, 3, 4, 5},

where

(5.24) u∗j =

⎧⎪⎪⎨
⎪⎪⎩

1

de
fe(uj) + 2uj , j = 0, 3, 4,

1

de
fe(uj) + 2uj − 1, j = 1, 2, 5.

Since ao < 0, we see that each perturbation εj is negative. For each j, observe that Φ(Uj)−
Φ̂(Uj) = E(Uj) = (εj, 0).

Define the following family of functions (see (5.12)):

(5.25) H−l(u) =
2

de
fe(u) + 3u− l, l ∈ R.

Then the equations in the second column can be written as

H−(1−ε0)(u0) = H−(2−ε1)(u1) = H−(3−ε2)(u2) = Hε3(u3) = H−(1−ε4)(u4) = H−(2−ε5)(u5) = 0.

Thus, if we assume that −1 < εj < 0 for each j, then we have the following ordering of the
family of functions H−l, where l ∈ R:
(5.26)
H0 > Hε3 > H−1 > H−(1+m0,4) > H−(1+M0,4) > H−(2+m1,5) > H−(2+M1,5) > H−3 > H−(3−ε2),

where

m0,4 = min{−ε0,−ε4}, M0,4 = max{−ε0,−ε4},
m1,5 = min{−ε1,−ε5}, M1,5 = max{−ε1,−ε5}.

Because of this ordering of the translates, the numbers uj exist if each of the top and bottom
translates, H0 and H−(3−ε2), has three distinct real zeroes. The maximum real zero of H0 is
the number u3 while the minimum real zero of H−(3−ε2) is u2. Sufficient conditions for the
existence of three distinct real roots of H0 and H−(3−ε2) are H0(S+) < 0 < H−(3−ε2)(S−),
which we can also write as

H0(S+) < 0 < H0(S−)− 3 + ε2,D
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where (S−, S+) is the spinodal interval of H−l, that is,

(5.27) S± =
ae + 1±

√
a2e − ae + 1− 9de

2τ21

3
.

Finally, a sufficient condition for εj > −1 is that fo(s+) > −do, where s+ is the right
endpoint of the spinodal interval of fo, that is, min0≤u≤1 fo(u) = fo(s+):

(5.28) s+ =
ao + 1 +

√
a2o − ao + 1

3
;

in particular, ε2 >
fo(s+)

do
. Choose δ ∈ (−1, 0) such that ε2 > δ > fo(s+)

do
. Hence, if H0(S−) −

3 + δ > 0, then H0(S−)− 3 + ε2 > 0.
The next lemma collects all the requirements that a, d must satisfy in order to ensure that

uj, u
∗
j exist; this is a result similar to Lemma 10. The first requirement is needed to guarantee

that the translates are ordered as in (5.26) while the last two requirements guarantee that the
top and bottom translates H0 and H−(3−ε2) have three distinct real zeroes. Finally, because
the translates H−k for k = 0, 1, 2, 3 are squeezed in between H0 and H−(3−ε2), the proof of
Lemma 10 will follow from the proof of the following lemma.

Lemma 12. Consider the connection (0, 0) to (τ1, τ2) for a fixed (d, a) in a bistable region
B. Assume that

1. fo(s+) + do > 0,
2. a2e − ae + 1− 9de

2τ21
> 0, and

3. H0(S+) < 0 < H0(S−)− 3 + δ,
where S+, S−, s− are defined by (5.27), (5.28), and δ ∈ (−1, 0) satisfies δdo − fo(s+) > 0.
Then Φ possesses the shift on sequences on two symbols as a subsystem.

It is not easy to untangle the three conditions in Lemma 12 to get a pinning interval of
the form similar to Lemma 10. To see that the above three conditions are viable assumptions,
we apply a continuity argument on the parameters. Indeed, as d → 0−, we have that fo →
0, do → a/2 so that the first requirement, asymptotically, is a > 0; as d → 0−, we have that
ae → a, de → 0 so that the second requirement is 1 > 0; finally, as d → 0−, we have that
S± → T±, where (T−, T+) is the spinodal interval (4.9) of fa so that the third inequality is
fa(T+) < 0 < fa(T−) (recall that 0 < a < 1).

5.1.3. Minimum wave speed. The Fisher equation [13] is an example of a monostable
scalar reaction-diffusion equation:

∂u

∂t
= duxx + u(1− u), d > 0.

The monostable scalar spatially discrete reaction-diffusion LDE is

u̇n(t) = d(un−1 − 2un + un+1)− un(un − 1), d > 0, n ∈ Z.

Let f(u) = u(u − 1), the Fisher nonlinearity. In both the PDE and the LDE, we have
that f(0) = f(1) = 0 for 0 < u < 1 and f ′(1) < 0 < f ′(0); that is, the equilibrium point 0 is
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unstable while 1 is stable. The existence of a monotone traveling wavefront solution connecting
0 to 1 depends on the wave speed c—there is a number c∗ > 0 such that a monotone traveling
wavefront solution u(x, t) = U(x − ct) (where x ∈ R for the PDE case while x ∈ Z for the
LDE case) exists if and only if c ≥ c∗. In other words, c∗ is the smallest value of c for which
there exists a monotone traveling wavefront and it is obtained by studying the linear stability
of the equilibria of the system that is obtained by applying the traveling wave ansatz.

For the PDE case, a necessary condition for a monotone traveling wavefront solution to
exist is

(5.29) c ≥ 2
√
f ′(0)

while a sufficient condition for a monotone traveling wave front to exist is

c ≥ 2
√
β, β = sup

{
f(u)

u
: 0 < u < 1

}
,

that is, 2
√
f ′(0) ≤ c∗ ≤ 2

√
β. These are well-known results; for example, see [11]. For the

Fisher nonlinearity, we have that c∗ = 2 because f ′(0) = 1 = β. The speed c∗ is sometimes
referred to as the linear minimum wave speed. In general, however, β �= f ′(0) and for some
choices of f , c∗ > 2 (see [3]).

For the LDE case, the first results were obtained by Harris, Hudson, and Zinner [17] for
the scalar case and by Hudson and Zinner [19] for the periodic case. In the scalar LDE case
[17], if f , like the Fisher nonlinearity, satisfies the extra assumption f ′(0)x ≥ f(x) for x > 0,

then there is a traveling wavefront solution if and only if d ≤ supλ>0
λc−f ′(0)

4 sinh2(λ/2)
, equivalently,

(5.30) c ≥ inf
λ>0

4d sinh2(λ/2) + f ′(0)
λ

.

In the periodic LDE case, Hudson and Zinner [19] obtained a sufficient condition for the
existence of traveling wavefronts. A more recent study was conducted by Guo and Hamel
[14], where they were able to obtain sufficient and necessary conditions for the existence of
traveling wavefronts; however, their results are not directly applicable to the antidiffusion
lattice Nagumo problem because [14] studied a slightly different system of periodic LDEs,
where a periodic LDE that is in divergence form:

u̇n(t) = dn+1un+1(t) + dnun−1(t)− (dn+1 + dn)un(t) + f(un), t ∈ Z.

They obtained that a sufficient and necessary condition for the existence of traveling wave-
fronts is that c ≥ c∗, where c∗ = minλ>0

M(λ)
λ , where M(λ) is the largest real eigenvalue of a

certain matrix.
Let us now proceed to study the minimum wave speed for the antidiffusion lattice Nagumo

problem in a region M where monostable dynamics occurs for the connection from (0, 0) to
(τ1, τ2). Note that by our previous computations, M is a subset of

{(d, a) : a+ 4d < 0, 0 < a < 1}.
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Negative diffusion. Consider the matrix A(λ) defined for λ > 0 by

A(λ) =

(
−(2de + f ′e(0)) 2de coshλ

2do cosh λ −(2do + f ′o(0))

)
.

Note that A(λ = 0) gives the linearization matrix at the point (0, 0). Let M(λ) denote the

largest positive eigenvalue of A(λ). The eigenvalues of A(λ) are given by
T±

√
T 2−4D(λ)

2 , where
T is the trace given by T = −2(de + do)− (f ′e(0) + f ′o(0)) and D(λ) is the determinant given
by D(λ) = (2de + f ′e(0))(2do + f ′o(0)) − 4d2 cosh2 λ. The discriminant is always nonnegative:

T 2 − 4D(λ) = ((2de + f ′e(0)) − (2do + f ′o(0)))
2 + 16d2 cosh2 λ = 16d2 cosh2 λ ≥ 0

by using (2.11), and hence the eigenvalues of A(λ) are both real.
The trace of A(λ) is equal to

T = −(2de + f ′e(0) + 2do + f ′o(0))

= −2de − (a− 2(de − d))− 2do − (a− 2(do − d))
= −2(a+ 2d).

Denote the larger eigenvalue of A(λ) by M(λ). Then, noting that the minimum of coshλ is
1, we have

M(λ) =
(
T +

√
T 2 − 4D(λ)

)
/2 = −(a+ 2d) − 2d cosh λ ≥ −(a+ 4d) > 0.

In particular, M(0) = −(a+ 4d) > 0. Since M ′(λ) = −2d sinhλ, we have M ′(0) = 0. Hence,
the minimum of M(λ)/λ over all λ > 0 is achieved and is positive. We define c∗:

c∗ = min
λ>0

M(λ)

λ
.

This value c∗ is the so-called minimum wave speed for the traveling wavefront solution that
connects (0, 0) to (τ1, τ2). Then, using an expansion of coshλ, we have

M(λ)

λ
=

−a− 2d(1 + coshλ)

λ

=
−a
λ

− 2d( 2λ + λ
2! +

λ3

4! +
λ5

6! + · · · )

>
−a− 4d

λ
− dλ

=
−a− 4d− dλ2

λ
:= G(λ)

for λ > 0. We see that G′(λ) = 0 < G′′(λ) when λ =
√

a+4d
d ; that is, G is minimized at this

λ. Thus, we have computed a (positive) lower bound for c∗:

c∗ ≥ G

(√
a+ 4d

d

)
= 2
√
d(a+ 4d).
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956 MAILA BRUCAL-HALLARE AND ERIK VAN VLECK

Figure 12. This is a contour plot of c∗ for −1/4 < d < 0 and 0 < a < 1.

Compare this lower bound for c∗ with the expression for the monostable scalar PDE case
(5.29). In Figure 12 we show the computed values of the minimum wave speed c∗ for the
antidiffusion lattice Nagumo problem for a+ 4d < 0 and 0 < a < 1.

Finally, using a hyperbolic identity, we can further rewrite our result (compare with 5.30)
in the following way:

c∗ = min
λ>0

M(λ)

λ
= min

λ>0

−a− 2d(1 + coshλ)

λ
= min

λ>0

−f ′a(0) − 4d cosh2(λ/2)

λ
.

5.2. Case study: (τ2, τ1) to (τ1, τ2) connection. In this case, we want to know whether
there exists a traveling wavefront solution to (2.2) that connects (x−, y−) = (τ2, τ1) and
(x+, y+) = (τ1, τ2). Here, α = −β = τ1 − τ2 > 0, and the diffusion-coupling parameters are
de = −d = do. This case study is interesting because the boundary conditions are either
both stable or both unstable (by Lemma 4), and hence monostable dynamics cannot occur.
Furthermore, unlike the first case study, the intermediate point is not unique. In fact, in the
regions where there are nine equilibria, there are seven intermediate points; where there are
seven equilibria, there are five intermediate points; and where there are five equilibria, there
are three intermediate points.

For example, consider the region

R = {(d, a) : a+ 4d < 0, 1− a+ 4d < 0, a(a − 1) + 4d < 0}.
This is the region in Figure 1 where there are only five distinct real zeroes to the ninth-degree
polynomial g. The set R is quadrant IIIin in the proof of Lemma 2. In R, for any value

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WAVEFRONTS IN ANTIDIFFUSION LATTICE NAGUMO 957

of a, the points (0±, 0∓), (1±, 1∓), (a±, a∓) do not exist and the points (0, 0), (a, a), (1, 1) are
unstable.

Thus, all three intermediate points between (τ2, τ1) and (τ1, τ2) are unstable. If f ′a(τ1) +
2d > 0 in R, then the boundary conditions are stable so that the antidiffusion lattice Nagumo
system has bistable dynamics. Since τ1 > 1, we have that 2d + f ′a(τ1) > 0 if 1− a+ 2d > 0.
Therefore, the set of parameter values in the set

B = {a+ 4d < 0, 1 − a+ 2d > 0 > 1− a+ 4d, a(a − 1) + 4d < 0}

will give rise to bistable dynamics to the antidiffusion lattice Nagumo system.
For completeness (see section 5.3), let us look at the case where E has nine equilibria and

determine which of the intermediate points from (τ2, τ1) to (τ1, τ2) will give rise to bistable
dynamics, if any. Consider the set of parameter values in the region

T = {(d, a) : a+ 4d > 0, 1− a+ 4d > 0};

this is quadrant I in the proof of Lemma 2, where the equilibria (0±, 0∓) and (1±, 1∓) exist.
Since 1−a+4d > 0 implies that 1−a+2d > 0, we have 2d+f ′a(τ1) > 0; that is, the boundary
conditions (τ1, τ2) and (τ2, τ1) are both stable. Bistable dynamics will not occur in this case
because there are more than one stable intermediate points, namely (0, 0) and (1, 1). In fact,
if 2d + f ′a(0+) < 0 and 2d + f ′a(1+) < 0, we see that in the chain from (x−, y−) to (x+, y+),
there are four stable equilibria, denoted in bold:

(τ2, τ1) → (0−, 0+) → (0, 0) → (0+, 0−) → (a, a) → (1−, 1+) → (1, 1) → (1+, 1−) → (τ1, τ2).

5.3. Co-existence. In this final section of examples, we show that there are regions in the
parameter space where bistable and monostable dynamics in the antidiffusion lattice Nagumo
system co-exist. Define the parameter region

T = {(d, a) : a+ 4d > 0, 1− a+ 4d > 0};

this is quadrant I in the proof of Lemma 2, where 0 < a < 1. To show that bistable and
monostable dynamics can both occur in T , we look at the stability of each of the nine equilibria.

Since 1 − a + 2d > 0 in T , the equilibria (τ1, τ2) and (τ2, τ1) are stable. Also, for (d, a)
in T , both (0, 0) and (1, 1) are stable because a + 4d > 0 and 1 − a + 4d > 0, respectively;
however, (a, a) is unstable because a(a − 1) + 4d < 0. The equilibria (0±, 0∓) are unstable if
2d+ f ′a(0+) < 0 and the equilibria (1±, 1∓) are unstable if 2d+ f ′a(1+) < 0.

By ellipticity, we must require that αβ < 0. Hence, for example, even if (0, 0) and (1, 1)
are both stable, the theory cannot be applied with these as boundary conditions because
α = β = 1. The following table summarizes the connections that exist between any two
equilibria in Ê that satisfy αβ < 0 and whether there is bistable or monostable dynamics. In
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the table, γ ∈ {0, 1} and γ± ∈ {0±, 1±}.
(x−, y−) (x+, y+) Intermediate points Monostable or bistable

(τ2, τ1) (0−, 0+) none monostable dynamics
(0, 0) (0−, 0+) bistable dynamics if 2d+ f ′a(0+) < 0
(a, a) none monostable dynamics
(1−, 1+) none monostable dynamics
(1, 1) (1−, 1+) bistable dynamics if 2d+ f ′a(1+) < 0
(τ1, τ2) other 7 equilibria see section 5.2

(γ∓, γ±) (τ2, τ1) none monostable dynamics
(γ, γ) none monostable dynamics

(γ, γ) (τ2, τ1) (γ−, γ+) bistable dynamics if 2d+ f ′a(γ+) < 0
(τ1, τ2) (γ+, γ−) bistable dynamics if 2d+ f ′a(γ+) < 0
(γ−, γ+) none monostable dynamics
(γ+, γ−) none monostable dynamics

(a, a) (τ2, τ1) none monostable dynamics
(τ1, τ2) none monostable dynamics

(τ1, τ2) (τ2, τ1) other 7 equilibria see section 5.2
(0, 0) (0+, 0−) bistable dynamics if 2d+ f ′a(0+) < 0
(0+, 0−) none monostable dynamics
(a, a) none monostable dynamics
(1, 1) (1+, 1−) bistable dynamics if 2d+ f ′a(1+) < 0
(1+, 1−) none monostable dynamics

To determine whether there is monostable or bistable dynamics from (x−, y−) to (x+, y+), we
determine the stability of (x±, y±) and the intermediate point, if such intermediate points exist.
From the table, we observe, for example, assuming 2d+ f ′a(0+) < 0, that there is monostable
dynamics from (τ2, τ1) to (0−, 0+) and from (0−, 0+) to (0, 0) while there is bistable dynamics
from (τ2, τ1) to (0, 0); that is, like the positive diffusion problem, bistable dynamics may be
viewed as a concatenation of two monostable dynamics that share an equilibrium.

6. Conclusions. In this paper, we considered a specific lattice model of phase transitions
where the diffusion term has a negative coefficient and the reaction term is the smooth cubic
nonlinearity. We have discovered a rich dynamical phenomenon that includes both bistable
and monostable behavior. We applied recent results to establish the existence, uniqueness,
and stability of traveling wavefront solutions in discrete periodic media and found a plethora of
connecting orbits. Avenues for future work include more complicated models of this type (we
are considering here an overdamped limit) and analogous problems in higher space dimensions.

Acknowledgments. We are grateful to Anna Vainchtein and the referees for helpful re-
marks and suggestions that improved the paper.
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