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A TRANSMISSION PROBLEM IN THE SCATTERING OF
ELECTROMAGNETIC WAVES BY A PENETRABLE OBJECT*

RODOLFO H. TORRESt

Abstract. Layer-potential techniques are used to study a transmission problem arising in the
scattering of electromagnetic waves by a penetrable object. The method proposed does not involve
the use of the calculus of pseudodifferential operators and hence it can be applied in domains with
very little regularity. The solutions are represented as a combination of a curl and a double curl of a
single layer-potential operator. The work relies on the important harmonic-analysis tools developed
in recent years to study boundary-value problems in domains with minimal regularity assumptions.
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1. Introduction. A classical problem arising in electromagnetism is that of de-
termining the field scattered by a penetrable object from the knowledge of the tan-
gential component on the surface of the object of an incoming field. See, e.g., [12]
and [15]. The mathematical formulation of this problem leads to a transmission prob-
lem for the Maxwell equations on a bounded domain (see 2 below for the precise
statement). The problem has been studied using several approaches based on layer-
potentials techniques. In particular, we want to mention works by Wilde [20] and
Costabel and Stephan [5]. Reference to related works can be found therein.

For time-harmonic electromagnetic waves, the solution of Maxwell equations are
divergence-free solutions of the vector Helmholtz equation. In [20], very general trans-
mission problems for the vector Helmholtz equation are considered. The solutions of
the problems are obtained as a combination of several single- and double-layer poten-
tials after solving, in appropriate HSlder spaces, a 4 4 system of of integral equations
of the second kind on the boundary of the domain. This classical method requires the
domain to be at least of class C2 and, as a consequence, the solutions have continuous
partial derivatives up to the boundary of the domain. On the other hand, in [5], the
so-called direct method is used. This is a general method applicable to strongly el-
liptic boundary-value problems and relies on the coercivity on certain Sobolev spaces
(the energy spaces) of a bilinear form related to the boundary data. In [5], the electro-
magnetic problem is transformed into a particular transmission problem for the vector
Helmholtz equation which is solved, again, by inverting a matrix of operators on the
boundary of the domain. In this work, the calculus of pseudodifferential operators is
used and hence the domain is assumed to be C. In addition, the boundary values
of the solutions are prescribed in the distributional sense and not pointwise. The
purpose of this paper is to develop an alternative approach to study the electromag-
netic transmission problem in domains which are less regular than the one considered
in the works just mentioned, allowing less regular boundary data, but still obtaining
solutions whose boundary values are prescribed pointwise (nontangentially).

As is well known, the study of boundary-value problems using layer-potential
techniques in domains which are C or Lipschitz is very delicate. One of the main
reasons for this is that some of the resulting integral operators on the boundary of the
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A TRANSMISSION PROBLEM IN ELECTROMAGNETISM 1407

domain have to be interpreted as principal-value singular integrals. In particular, to
consider Lp data and solutions with boundary values obtained pointwise, deep results
from harmonic analysis are necessary. Dirichlet and conormal derivative problems for
several equations and system of equations in nonsmooth domains have already been
studied using harmonic-analysis techniques. A few examples are [9], [11], [17], [18],
[7]. Using similar techniques, transmission problems have been considered in [8] and
[16]. This last paper deals with the case of the scalar Helmholtz equation in Lipschitz
domains. See also [19] and [6], where an approach to transmission problems related
to [5] is used.

The study of the potential operators associated with Maxwell equations in C
and Lipschitz domains has been recently carried out in [13] and [14]. In particular,
the so-called Maxwell, electric, and magnetic boundary-value problems for a perfect
conducting object were solved with optimal estimates in the case of C domains. This
work depends heavily on the results in [2] and [3] about the Cauchy integral operator
on Lipschitz curves as well as the developments in [9]. For the previously known
results about these problems in the case of smoother domains, we refer to [4].

In this paper, we will combine the results of [13] with some of the ideas in [16]
to study the electromagnetic transmission problem in domains which are only C or
Lipschitz. Unlike the approaches in [20] and [5], we propose as a solution for the
electromagnetic transmission problem a combination of the curl and the curlcurl of
the single-layer potential. After taking traces, this ansatz leads to a 2 x 2 system
of integral operators on the boundary of the domain. The trace operator associated
with the double curl of the single-layer potential is hypersingular (even on smooth
domains). Nevertheless, in the case of the electromagnetic transmission problem, this
operator appears in a regularized way. This allows us to consider it on an appropriate

r.’Di consisting of tangential vector fields with surfacespace of functions: the space T
2,Divdivergence in L It was shown in [14] that LT is the right space of boundary data

to work with in domains with little regularity: As in [16], the solution of the-system
of integrals operators on the boundary relies on the knowledge of the spectrum of a
singular integral operator. In our present situation, the singular-integral operator is
the one obtained as the tangential component of the trace of the curl of the single-
layer potential.

The paper is organized as follows. In 2, we recall some basic facts about non-
smooth domains and state the transmission problem with boundary data in LDiv.
In 3, we show for appropriate values of the electromagnetic characteristics of the
object and surrounding media the uniqueness of solution to the problem in the case of
Lipschitz domains. In 4, we collect several results from [13] about the layer-potential
operators associated with Maxwell equations and include some new results regarding
the double curl of the single-layer potential. In 5, we show some existence results.

2. The electromagnetic transmission problem. The notation that we use
is standard for the subject. In particular, we will follow very closely that of [131 which
is our main reference. For the purposes of this paper, a Lipschitz, respectively, C1,
domain will always be an open, simply connected domain D of R3, whose boundary,
OD, is given locally by the graph of a Lipschitz, respectively, C, function. Let N be
the exterior unit normal to OD and let dcr denote surface measure on the boundary.
The spaces L2(OD) of functions or vector fields and the space L.(OD) of tangential
vector fields are defined with respect to dcr. The space L, (OD) is, as usual, the space
of L functions with tangential derivatives also in L. A vector field A E LT(OD) is
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1408 RODOLFO H. TORRES

said to have a surface divergence if there exists a function b E L2(OD) such that

fo (VT,A}da=-ffo Cbda
D D

for all functions which are Lipschitz in a neighborhood of OD. Here VT denotes
the tangential gradient and (., .} denotes the inner product in R3. The function b is
denoted by Div A and the space of all such vector fields (see, e.g., [14]) is denoted by
L2,DiV(0D) The space is equipped with the normT

IIAIILTDiV2, (OD) IIA[[L2(OD) + DiV A[[L2(OD).

At every point Q in the boundary of the domain, we consider an open, right-
circular, doubly truncated cone F(Q), with vertex at Q and two convex components,
F(Q) in D and F(Q) in R3\, so that the resulting family of cones is a regular
family in the sense of [17]. For a function u defined in D, the nontangential maximal
function of u is defined by

XEF(P)

The boundary values of functions defined inside D are assumed to be taken in non-

tangential fashion and almost everywhere with respect to &r. That is, UlOD is to be
interpreted as

u(P)= lim u(X),
X P

XEp(P)

whenever such a limit exists for almost every point in OD. Similar definitions apply
for derivatives of a function and for each component of a vector-valued function. For
example, if x denotes the exterior product in Ra and A is a vector field defined inside
D, then N x curl AIoD is given by

N x curlA(P)= lim
X P

xr(P)

N(P) x curiA(X).

For functions defined in the exterior of D, the nontangential maximal function and
the boundary values are defined in the same way but using Fe(P).

We can now state the electromagnetic transmission problem that we want to
study. We follow the classical description in [15]. Let D represent an object made of
an homogeneous material, and assume that the object is immersed in an homogeneous
medium represented by the exterior of D. In all space, we consider a time-harmonic
electromagnetic wave with frequency w, described by the electric and magnetic vector
fields E and H. These fields satisfy the Maxwell equations

curl E i#iH

and

curl H -iweiE in D,

curl E ico#H,
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A TRANSMISSION PROBLEM IN ELECTROMAGNETISM 1409

curlH -icveE in R3\.
The electromagnetic parameters of the object and the surrounding medium in the
above equations are, respectively,

io’i iSi

where 0i and e0e are the dielectric constants, #oi and poe are the permeability, ai
and ere are the electric conductivity, and 5i and gre are the magnetic conductivity of
each medium. The usual restrictions on the values of these parameters are

(1) 0 _< argcz < ,
(2) 0i,0e >0 and #oi, Poe >0,

(3) o’i, ae >_ O and &i,&e_>0

(see [15]). We will assume i # e and # # #e. The wave numbers in the interior and
exterior of the obstacle are defined by

k2-w2ei#i and k2=w2ee#e,

where we assume

(4) 0 _< arg ki, arg ke < r.

In the exterior of D, the vector fields are decomposed as the sum of a known
incoming field and an unknown scattered field,

E-- Ein+Esc,

H Sin -- Hsc.

Both the incoming and scattered fields satisfy Maxwell’s equations in the exterior of
D. We also assume that the scattered fields satisfy the radiation conditions

X
(5) cz#e- x Hsc + keEsc o(]X1-1) and Esc O(IX[ -1)

as IXI --, oc. The tangential components of the total vector fields must extend
continuously across the boundary, so on OD we must have

N x E- N x Esc N x Ein,

N H- N Hsc N Hin,

where the values of N E and N H are taken from inside D. It follows that,
in order to obtain the total electric and magnetic fields from the knowledge of the
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1410 RODOLFO H. TORRES

incoming fields, we can consider a transmission boundary-value problem with the
tangential components of the incoming fields as datum. Because of the results in [13]
and [14] we will assume that these tangential components are in r.2’Div(69D) and
we will require the solutions to have nontangential maximal functions bounded on

L2(OD). In fact, it was shown in [14] that if E and H solve Maxwell equations in
a C or Lipschitz domain and E has pointwise (nontangentially) boundary values in
L2(OD) with bounded nontangential maximal function, then the companion field H
also have pointwise boundary values if and only if the tangential component of E is

2’DiV(0D). Since the roles of E and H can be interchanged, we have to requirein LT
the same kind of boundary data for the tangential component of H. Thus we are
lead to consider the following problem. Given two tangential vector fields A and B
in *’Tr2’Div (OD), find two vector fields in D, Ei and Hi, and two vector fields in Ra\,
E, and H,, satisfying the radiation condition (5) and such that

(T)

curl Ei iw#iHi in D,
curlHi -iweiEi in D,

curlE iw#H in R3\,
curlH -icoeE in R3\,

N x E N x Ei A
N x H-N x Hi- B

3. Uniqueness of solution. The uniqueness of solution of problem (T) is given
in [12] and [15] for smooth domains and functions continuous up to the boundary. We

L2’Divwill consider here the case of Lipschitz domains, ’boundary data in T. (OD), and
boundary values obtained nontangentially. We will always assume that the electro-
magnetic parameters satisfy the constrains in (1)-(4). Additional limitations in their
values will be imposed, if necessary, in the statments of the results to be proved.

Usually, the proof of uniqueness results for boundary-value problems involves
integral-representation formulas and some application of the divergence theorem. The
standard technique to adapt these formulas to the case of nonsmooth domains is an
approximation procedure. The main tool is the following lemma from [17].

LEMMA 3.1. Let D be a bounded Lipschitz domain. Then it is possible to construct
a sequence of C domains j C D (or ftj D D) satisfying the following properties:

(i) There is a sequence of Lipschitz diffeornorphisms Aj OD -- Orgy. such that
the Lipschitz constants of Aj and its inverse are uniformly bounded in j. Furthermore,
Aj(Q) e Fi(Q) (or Fe(Q)) for all j and all Q e OD and supQoD IQ Aj(Q)I < C/j;

(ii) There are positive functions fly OD -- t+ bounded away from zero and
infinity uniformly in j such that for any measurable set F C OD, fp pjdcr fAj(P) dory
and such that pj -- 1 a.e. and in every Lp (OD), 1 < p <

(iii) The sequence of normal vectors to fry, Nj(Aj(.)) converges a.e. and in every
LP(OD), 1 <_ p < , to N.

Let k be a complex number with Im k >_ 0 and consider the fundamental solution
of the Helmholtz operator A + k9 in R3,

(x)
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A TRANSMISSION PROBLEM IN ELECTROMAGNETISM 1411

We will need to use the following formulae regarding solutions of the vector Helmholtz
equation.

LEMMA 3.2. Let D be a Lipschitz domain and let E be a smooth vector field in
D or R3\-. Assume that E, curl E, and div E have nontangentially boundary values
on cOD from the inside or the outside accordingly to where E is defined. Assume also
that

(6)

The following formulas hold:
(i) The tangential vector field N x E has a surface divergence in L(OD) and

(7) Div (N x E) {N, curl E}.

(ii) If E is a solution of the vector Helmholtz equation AE + kE 0 in D, then
for all X E D,

E(X) [ curlx((I)(X Q)N(Q) x E(Q))da
doD

+ [ Vx(X Q)iN(Q), E(Q))d
dOD

f ’(X Q)(N(Q) x curl E(Q) div E(Q)N(Q))dcr
doD

and

L (N(Q) -(Q), curiE(Q)} + div E(Q) (N(Q),-(Q)} dcr
D

Jo Icurl E(X)I2 + Idiv E(X)I kIE(X)I dX.

(iii) If E is a solution of the vector Helmholtz equation AE + k2E 0 in R3\-
that satisfies at infinity the radiation condition

X X
.(8) curl E x - + divE- ikE o(]X] -),

then for all X R3\-,

and

,(x)

E o(Ixl-),

curlx{q)(X Q)N(Q) x E(Q)}&r
D

Lz) Vx(X Q)(N(Q), E(Q))d

-Jr- LD ((X Q)(N(Q) x curl E(Q) div E(Q)N(Q))&r

/r
|-1 IkI2IE(X)I + Icurl E(X) x N(X) + div E(X)N(X)I2 ds
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1412 RODOLFO H. TORRES

2Im(k) IcurlE(X)l + Idiv E(X)I + 1121(X)l

2Im (k rOD ((N(Q),E(Q)x curl(Q)} + dive(Q)(N(Q),E(Q)})da),
where dsr is ,the surface measure on the ball of radius r, Br(O), and where Dr

\ -5 (o).
Proof. The above formulas are well known for smooth domains. The validity of

them in the case of Lipschitz domains was justified in [14] using Lemma 3.1 and a
limiting argument. We shall not repeat the details here (cf. the proof of Theorem 3.4
below).

A simple consequence of the above lemma is the following result.
LEMMA a.a. et D be a Lipschitz domain. Let E be. a solution of the vector

Helmholtz equation in R3\- satisfying (6), the radiation condition (8), and the
inequality

Im (k rOD (<N(Q),E(Q) x curl(Q)} + dive(Q){N(Q),E(Q)})da) >_ O.

If Im k > O, then E O in Ra \-.
Proof. If Im k > 0, then from the last part of Lemma 3.2,

IE(X)IU dX --+ O,

which implies that E 0. rl

We can now prove a uniqueness results for solutions of the transmission problem
(T). Recall that solutions of the Maxwell equations

curl E iw#H,

curl H -iweE

are divergence-free solutions of the vector Helmholtz equation with wave number
ku wue#. Notice also the equivalence between the radiation conditions (5) and (8).

THEOREM 3.4. Let D be a Lipschitz domain. Assume that Im ki > 0 and Im kc >
0, and let Ei, Hi, Ec, andH be solutions of (T) with boundary data A B O. Then
Ei Hi =O in D and E He =O in R3\-.

Proof. We will use a limiting argument to adapt the proof in [15, p. 282], for
the case of smooth domains to the present situation. Let tj be a family of domains
approximating D from inside as in Lemma 3.1. Since solutions of Maxwell equations
are analytic inside D we can apply the divergence theorem on each domain ftj. We
obtain

(icoe IE i--aTmlH Iu)dX div (-i Hi)dX

D
ow

nl
oa

de
d 

09
/2

5/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1413A TRANSMISSION PROBLEM IN ELECTROMAGNETISM

and using the change of coordinates Aj,

a
(iweilEi]2 -i-fiTpilHil2)dX

f (Nj(Aj(Q)),-(Aj(Q)) H(Aj(Q))) pjdo-.
D

The integrals on the left of the above equality are uniformly bounded by

C JfoD
Since we are assuming that IIE I]L(OD) + [[H IIL:(OD) < , we can use the properties
of the approximating domains together with the dominated-convergence theorem to
get

A similar argument in the exterior of D shows that

(ielEl ilHl)dX

Adding the formulas for th iterior d eterior, sig he rsissio ooditios
with A B 0 and the radiation condition at infinity, we get

[_ -  lH l )dX + [_

Now, by the constraints on the electromagnetic parameters,

Re (ie) 0 and Re (ip) O,

where e denotes either ei or e and p denotes either #i or #. In addition,

It follows that we must have

(9) Re (,f(iiE2-iiH,2)dX-0,
kD /
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1414 RODOLFO H. TORRES

and

(11) --+lim Re (k___)#e ]=,,. IEe[2ds-O"

Moreover, since we are assuming Im ki > 0, one of the parameters a, ei, and #i is not
a real number. Then either Re (iwei) < 0 or Re (-i-) < 0. From (9), one of the
fields vanishes in D and so both Ei and Hi must be identically zero in D. Finally,
from the transmission conditions, the tangential components of E and He on the
boundary have to be zero and, since Im
must be identically zero in the exterior of D.

Remark. The conditions Imk > 0 and Imke > 0 in the above theorem are
removed in [15] for the case of smooth domains by a more elaborated argument.
Nevertheless, we will still need those conditions to prove existence of solutions.

We conclude this section with another uniqueness result. As we will see in the
proof of existence of solutions, the transmission problem in the next theorem can be
used, in a general sense, as adjoint problem for problem (T) (cf. [6]).

THEOREM 3.5. Let D be a Lipschitz domain in R3. Assume that Im k > 0 and
Im ke > O. Assume also that either

(12) Im (ki2 #-2) -<0’
#i

(13) Im (ki #---f-)#i >0
or

(14) ee#i icr’e
0e -t- with > O,eOe >0 and r

(15) with #)e > 0 and o:’ > 0

Then the homogeneous transmission problem for the vector Helmholtz equation,

(T’)

AEi + k2Ei 0 in D,
divEi 0 in D,
EIIL=(OD) / II(curiEi)*llL=(OD) < ,
AEe + kEe 0 in
div Ee 0 in R3\,
EglIL=(OD) / I(curlE)*llL=(0D) <

N x Ee- N x Ei -0

"iN x curlEe- N x curlE{ -0
on OD,
on OD,

where Ee satisfies the radiation condition (8) with k k, has the unique solution

E O in D and Ee O in R3\-.

D
ow

nl
oa

de
d 

09
/2

5/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



A TRANSMISSION PROBLEM IN ELECTROMAGNETISM 1415

Proof. Assume that conditions (12) and (13) are satisfied. Let Ei and Ee be
solutions of problem (T). Using the transmission conditions and the divergence
theorem (whose used can be justified again via Lemma 3.1 and the boundedness of
nontangential maximal functions), we get

J/0 J/o / (k/2#e) curli/ d(
D
(N,E x curlE} do

D
N, Ei x

Now using the constraints on the electromagnetic parameters, we see that

Im (ki Jf0D (N, Ee x curle} dcr) _>

Since div Ee 0, Lemma 3.3 implies that Ee 0. Again using the transmission
conditions and the representation formula in Lemma 3.2 for the interior of D, we also
obtain that Ei 0.

Assume now that conditions (14) and (15) are satisfied. Let Ei and Ee again be
solutions of the problem (T’). Then it follows that Ei, Hi 1/iw#curl Ei and Ee,
He 1/iw#ecurlEe are solutions of the homogeneous version of problem (T) with,_ _e#i/#e andelectromagnetic parameters e ee and #i #e in the interior and %
#’e #eei/ee in the exterior. By Theorem 3.4, Ei and Ee must be zero. D

Remark. The conditions on the electromagnetic parameters in the above theorem
look very technical because we have stated the result in great generality. If some of the
parameters are real valued, these conditions become much simpler. See Theorem 5.2
below.

4. Boundary integral operators. We recall some properties about -the layer-
potential operators associated with the Helmholtz and Maxwell equations. The results
are well known for smooth domains; see, e.g., [4]. For nonsmooth domains, we refer
for proofs and details to [1] and [16] for the case of the scalar Helmholtz equation and
to [14] for the vector-valued case.

Let D be a Lipschitz domain and let f be a function in L2(OD). The single and
double acoustic layer potentials are given by

and

Sf(X) 9[’0D ((X Q)f(Q)do-(Q), x e R3,

Df(X) J2D ONe(X Q)f(Q)da(Q), x E R3 \ OD.

Both Sf and f solve the Helmholtz equation in R3 \ OD and, as a consequence of
the results in [3], they satisfy

(Sf)* IIL2(OD + (VSf)* IIL2(OD + CDf) IILp(OD) <-- Cllfllc.(OD)
The trace values of Sf are given by

lim Sf(X) lim ,f(X) Sf(P), P e OD,
X P X P

xr(P) xr(P)
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1416 RODOLFO H. TORRES

where

1 fo eiklQ-PI
Sf(P) 4 D IQ PI f(Q) da(Q)’

The function T)f has a jump discontinuity given by

lim f(X)= (laI+K f(P),
X P
xr(P)

POD.

P OD,

(1lim Df(X) --I + K f(P), P OD.
X P

Xere(P)

where

Kf(P)
1 fo (N(Q),Q- PleclQ-PI(1 iklQ Pl)f(Q)do(Q)

n [Q- P[a

The normal derivative of the single-layer potential satisfies

lim

XF(P)
-2 + f(P)

and

lim

Xre(P)

(N(P),VSf(X)) (112 + K*) f(P),

where K* is the transpose operator of K. On the other hand, the tangential compo-
nent of VSf does not jump.

For the rest of the section, we will assume that the imaginary part of the wave
number k is positive. This condition guarantees the invertibility results in the next
lemma (see [1], [16]).

LEMMA 4.1. Let D be a Lipschitz domain in Ra. Then the following hold:
(i) S: L2(OD) ---+ L2(OD) is ,compact.
(ii) S: L(OD) ---+ L’I(OD) is invertible.
(iii) :klI + K" L(OD) ----+ L(OD) are invertible.
(iv)- + } I + K L2’1 (OD) ---+ L2,1 (OD) are invertible.
(v) /f OD is actually of class C, then the operator K is compact in L2(OD). [1

The action of the single and double layer-potential operators on vector fields is
defined componentwise. In addition, the traces of the divergence and curl of the
single-layer potential of a vector field A define bounded operators in L2(OD), and
their values are given by

lim

xCr(P)

1
(N, A} (P) + p.v.fo divp ((I)(P Q)A(Q))da(Q),divSA(X) - D

lira
xer(P)

1
(N, A} (P) + p.v.fo divp ((I)(P Q)A(Q))&r(Q),div 8A(X)

D
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A TRANSMISSION PROBLEM IN ELECTROMAGNETISM 1417

and

lim

XF()

1
(N x A)(P) + p.v.L curlp ((I)(P Q)A(Q))da(Q),curl SA(X) -- D

lim

xer(P)

curl$A(X) -(N A)(P) + p.v. curlg ((I)(P Q)A(Q))da(Q).
D

We also have

II(divA)*llL.(OD) + II(curlA)*I]L(OD)

The function curl SA satisfies the vector Helmholtz equation outside OD as well as
the radiation condition (8) at infinity. In addition, the tangential component of the
trace of the curl of the single-layer potential is given almost everywhere in OD by

lim

XEF(P)
(1N(P) curlSA(X) -I + M A(P)

and

lim

xer(P)

N(P) curl SA(X) --I + M A(P),

where MA is the tangential vector field defined by

MA(P) p.v. LD N(P) curlp ((I)(P Q)A(Q))da(Q).

We recall from [13] the following result.
LEMMA 4.2. Let D be a Lipschitz domain in R3. Then the operator M maps

L(OD) into itself and r.2’Div
T (OD) into itself. Moreover, if D is actually C then M

is compact on both spaces.
In order to study the double curl of the single-layer potential, we need another

important result obtained in [14].
LEMMA 4.3. Let D be Lipschitz domain. A vector field A in L(OD) has a

surface divergence in L2(OD) if and only if II(V(div,.gA))*IIL2(OD) < +c. In such a

case, div 8A $(Div A).
As a consequence of this last result, we can now prove the following.

r.2,DiV(OD)"LEMMA 4 4 Let D be a Lipschitz domain. Let A be a vector field in
Then ]](curl curl,SA)*]]L2(OD) < +OO and

lim N(P) curlcurlSA(X) (N (k2SA + VS(DivA)))(P)x---P

nontangentially, both from the inside and outside of D. Moreover, if we define on OD
the operator

LA(P) (N (k2$A + VS(Div A)))(P),
r.2’Div (OD) into itself.then L maps T
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1418 RODOLFO H. TORRES

T’2’Div (OD). Using the identityProof. Let A be a vector field in

curl curl -A + Vdiv

and Lemma 4.3, we see that

curl curl SA k2$A + V$(Div A),
which implies the boundedness of the nontangential maximal function and the claimed
boundary values (notice that $ and the tangential component of V$ do not have

r.2’DiV(OD) into L’(OD).jumps) Clearly, the resulting boundary operator L maps
If we now apply (7) to the vector field

E(X) curl curl SA(X),
we obtain that

Div (LA) Div (N x E) (N, curl curl curl Sd} (N, kcurl Sd},
and, therefore,

IILAII @DiV (OD) I]LAIIL?r(OD) +
< IIg (k$d + V$(Div A))IIL?r(OD + II{N, k2curlSd}lln2(oD)
< C(]]SAIIL2(OD) + IIV$(Div d)]ln.(OD) +
< C(.lldllnr(OD + IIDiv

which concludes the proof. F!
We need to consider the potential-theoretic versions of some of the layer-potential

operators already described. Let So, M0, and L0 be defined using the fundamental
solution of the Laplace operator A in R3,

1
0(x)

The boundedness properties of the operators So, Mo, and Lo are the same as those
of S, M, and L. Moreover, we have the following.

LEMMA 4.5. Let D be a Lipschitz domain in Ra. Then,
(i) M- Mo" L(OD) L(OD) is compact.
(ii) M Mo L(OD) .2,DiV(0D) is bounded.’T
(iii) L- Lo L(OD) L(OD) is compact.
(iv) L Lo L(OD) r.Z’Div(0D) is bounded."T

Proof. A straightforward computation shows that the differences of partial deriva-
tives

Oil(P-Q)-Oio(P-Q)

and

o o e(P Q) o O eo(P
have locally integrable singularities on OD. From this easily follows that M- M0 and
n- L0 are compact operators in L(OD) (cf. [16]). To show that these operators map

r.2,Divn(cgD) into "-’T (OD), we notice that

Div (M Mo)A Div (N curl ($ ,_,Co)A)
(N, curl curl ($ So)A}

-(N,kcurlSA + V div(($ So)A)},
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A TRANSMISSION PROBLEM IN ELECTROMAGNETISM 1419

which defines an operator with a kernel with a locally integrable singularity and
bounded in L2(OD). Similarly,

Div (L Lo)A Div (N x curl curl ($ S0)A)
(N, curl curl curl ($ S0
(N, kcurl SA},

again producing a bounded operator in L(OD).
We conclude this section with a simple result about the spectrum of M0 in C

domains.
LEMMA 4.6. Let D be a C domain in R3. Then, for any complex number

outside the interval [-5, ], the operator AI + Mo is invertible in L(OD) and in

2,DiV(OD)T

Proof. Since by the results in [14] the operator M0 still is L-compact in C
domains, it is enough to prove that AI + M0 is injective. This is done in [4, pp. 155-
157] in the case of C2 domains. Given the boundedness and invertibility properties of
the layer-potential operators discussed in this section, the same proof extends without
modification to the case of C domains. Finally, observe that since M0 is also compact

r’2’Div (OD) is the same. [:]in "rrU’Div (OD), its spectrum in L(OD) and in
Remark. In the case of Lipschitz domains, the operators M and M0 may not be

compact in L(OD). The invertibility of AI +M or AI + M0 can no longer be handled
via Fredholm theory. The usual substitute technique to prove invertibility results in
this kind of situation involves the use of Rellich-type identities (see, e.g., [17] and [7]).
Such techniques were used in [8] and [10] to study the spectrum in L(OD) of the
double-layer potential for the Laplacian AI + K0. The spectral properties of K0 in
L2,1(OD) were studied in [16]. The spectral properties of M0 in L(OD) in the case
of Lipschitz domains remain unknown, but from the results in [13], it follows that if

r.2’Div (0D).AI + M0 is in vertible in L(OD) for some A then it is also invertible in -T
This missing information about the spectrum of M0 in Lc(OD is the only additional
result that would be necessary to extend Theorem 5.1 in the next section to the case
of Lipschitz domains.

5. Existence of solutions. We now present the existence of solutions to prob-
lem (T) using a particular boundary integral representation.

THEOREM 5.1. Let D be a C domain in Ra. Assume that the electromagnetic
parameters satisfy the conditions in Theorem 3.5. Assume also that + and

ll, --Ii Ce --i

are not real numbers in the interval [-1, 1]. Then the transmission problem (T) has
r.2,Div (0D)"a unique solution for any A and B in T

Proof. In view of Theorem 3.4, we only need to show existence of solution. Let
L2’Div((D) and consider the ansatzU and V be vector fields in T

E(X) #curlSU(X) + curl curlSV(X) in R3\,

Ei(X) #icurl $iU(X) + curl curl,Sir(x)

1
He(X) curlEe(X),

in D,

Hi(X)
1

curlEi(X),
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1420 RODOLFO H. TORRES

where e and 3i denote the single layer-potential operators defined using the wave
numbers ke and ki. By the results of the previous section, for any U and V in

(0D) these vector fields solve the Maxwell equations and satisfy the radiationT
condition at infinity. Then, to solve problem (T), it is enough to show that given A

r2’Div (0D) we can find U and V such that the above electric fields satisfyand B in "T
on OD

N Ee N Ei A,

1
N

I
Nx curl Ee x curl E B.

That is, we need to solve the system

(i )--I+M U + M) U- LiV A,

Leu+k2e _1 + Me)V-LiU--k2#i (I+ Mi) V B.

We rewrite this as

_m+,i + #eMe2

Le Li

r.2’Div (0D)Notice that the above system, originally defined in the the product space T
L2’DiV(OD) makes sense in the space Lr(OD x Lr(c)D Now, we observe that if
M0 is the potential-theoretic version of M, the above matrix of operators can be
decompose as the sum of two matrices, W + W., where

and

I + ( m)Mo
Wl

2

0

w ( 9(M Mo)+ (Mo M,)
Le Li

0 )

Since we are assuming that

Le L
(Me Mo) + (Mo M)

are not in the interval [-I, I], Lemma 4.6 implies that the matrix Wl is an invertible

operator in both L(OD) L(OD) and r2’DiV(0D) r.2’DiV(0D) On the other handT T
by Lemma 4.5, the matrix W2 is compact in L(OD) x L(OD) and maps this space
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A TRANSMISSION PROBLEM IN ELECTROMAGNETISM 1421

into LT2’Div (OD) x --TI-2’Div (OD). From this follows that the matrix Wl + W2 has index
zero in L(OD) x L(OD). It also follows that if U and V are solutions of the system

r.2,DiV (DD)of boundary integral equations in Lr(OD x L.(OD), then U and V are in
r.2’Div (OD). In particular the null space of the matrixif and only if A and B are in T

W1 + W2 is the same in both spaces. If we can show that this matrix of operators
is one-to-one in L.(OD) x LT(OD), we will have by the previous observation that it

/.2,Div (OD) x 2,Div(0D). This willis invertible in L(OD) x L(OD) and also in --T LT
conclude the proof of the theorem.

Assume that U and V are solutions of the system with A B 0. Since U and
Y.2’Div((0D) Ei, Hi and Ee He are solutions of the homogeneous versionV must be in T

of problem (T), and by Theorem 3.4, they must be identically zero. In particular, on

the boundary of the domain,

N x Ei.= N x Ee N x curlEi N x curlEe -0.

Now consider the new vector fields

E’e(X -curl ${U(X) 1curl curl in R3\,

1
E(X) curlSeU(X) + --curl curlSeV(X) in D.

Going to the boundary, we obtain the trace values,

(1 ) 1
N x E’e- -I-Mi U---LiV,

NxE- I+Me U+--LeV,

N xcurlEe__Liu_k (1__ ). +M ,
N x curl E LeU + k2 (l#e 2

+Me V.

It follows that on OD,

N x Ee- N x E _IN x Ei ---1N x Ee 0,

and also

#e 1 1

k#iN x curl Ee- N x curt E N x curl Ei-N x curlE 0.

Therefore, E and E are solutions of problem (T’) and, by Theorem 3.5, they must
be identically zero too. In particular,

N x E- N x E: N x curlE g x curlE: 0
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1422 RODOLFO H. TORRES

using the trace results of the previous section. Finally,

U N x Ei + #iN x Ee 0,

and

-V N x Ee #N x E 0. []

In physical applications, the parameters #i and # are usually assumed to be real
numbers. In such a case, the conditions on the electromagnetic parameters take the
following simpler form.

THEOREM 5.2. Let D be a C domain in Ra. Let Im ki > 0 and Im k > 0, and
assume that #, #, and a are positive numbers. Then the transmission problem (T)

r,2,Div (i)D).has a unique solution for any A and B in T
Proof. First, observe that if #i and # are positive numbers, then

and if c is a positive number, then the conditions Im ki > 0 and Im ke > 0 imply that

Also, conditions (13) and (1.4) are trivially satisfied. It follows that to use Theorem 3.5,
we need only to check that either

(16) Im (ki) _< 0

or

(17) Ira( ei ) (> 0 and Re
(e

By writing

ei leil exp ( arctan weoi(7--i)
02(0e

we see that (16) is equivalent to

(18) ai < ae
20i 0e

On the other hand, for positive w, the real part of e/e is always positive, and a

computation shows that (17) becomes equivalent to

(19) cri > cr
(0i (0e

Obviously, either (18)or (19)is satisfied, which concludes the proof. [1

Finally, the proof of Theorem 5.1 shows that for a Lipschitz domain D the fol-
lowing result holds.

THEOREM 5.3. Let D be a Lipschitz domain in Ra. Assume that the electromag-
netic parameters satisfy the conditions in Theorem 3.5. Assume also that + and

#e --#
c+ are not in the spectrum of 2M0 as an operator in L(OD). Then the transmis-
e --i

r.2’Div (oqD). []sion problem (T) has a unique solution for any A and B in
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