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CONSISTENT ESTIMATION OF THE BASIC NEIGHBORHOOD
OF MARKOV RANDOM FIELDS

BY IMRE CSISZÁR1 AND ZSOLT TALATA2

Hungarian Academy of Sciences

For Markov random fields on Z
d with finite state space, we address the

statistical estimation of the basic neighborhood, the smallest region that de-
termines the conditional distribution at a site on the condition that the values
at all other sites are given. A modification of the Bayesian Information Crite-
rion, replacing likelihood by pseudo-likelihood, is proved to provide strongly
consistent estimation from observing a realization of the field on increasing
finite regions: the estimated basic neighborhood equals the true one eventu-
ally almost surely, not assuming any prior bound on the size of the latter.
Stationarity of the Markov field is not required, and phase transition does not
affect the results.

1. Introduction. In this paper Markov random fields on the lattice Z
d with

finite state space are considered, adopting the usual assumption that the finite-
dimensional distributions are strictly positive. Equivalently, these are Gibbs fields
with finite range interaction; see [13]. They are essential in statistical physics, for
modeling interactive particle systems [10], and also in several other fields [3], for
example, in image processing [2].

One statistical problem for Markov random fields is parameter estimation when
the interaction structure is known. By this we mean knowledge of the basic neigh-
borhood, the minimal lattice region that determines the conditional distribution at
a site on the condition that the values at all other sites are given; formal defini-
tions are in Section 2. The conditional probabilities involved, assumed translation
invariant, are parameters of the model. Note that they need not uniquely determine
the joint distribution on Z

d , a phenomenon known as phase transition. Another
statistical problem is model selection, that is, the statistical estimation of the inter-
action structure (the basic neighborhood). This paper is primarily devoted to the
latter.

Parameter estimation for Markov random fields with a known interaction struc-
ture was considered by, among others, Pickard [19], Gidas [14, 15], Geman and
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Graffigne [12] and Comets [6]. Typically, parameter estimation does not directly
address the conditional probabilities mentioned above, but rather the potential.
This admits parsimonious representation of the conditional probabilities that are
not free parameters, but have to satisfy algebraic conditions that need not concern
us here. For our purposes, however, potentials will not be needed.

We are not aware of papers addressing model selection in the context of Markov
random fields. In other contexts, penalized likelihood methods are popular; see
[1, 21]. The Bayesian Information Criterion (BIC) of Schwarz [21] has been
proven to lead to consistent estimation of the “order of the model” in various cases,
such as i.i.d. processes with distributions from exponential families [17], autore-
gressive processes [16] and Markov chains [11]. These proofs include the assump-
tion that the number of candidate model classes is finite; for Markov chains this
means that there is a known upper bound on the order of the process. The con-
sistency of the BIC estimator of the order of a Markov chain without such prior
bound was proved by Csiszár and Shields [8]; further related results appear in [7].
A related recent result, for processes with variable memory length [5, 22], is the
consistency of the BIC estimator of the context tree, without any prior bound on
memory depth [9].

For Markov random fields, penalized likelihood estimators like BIC run into
the problem that the likelihood function cannot be calculated explicitly. In addi-
tion, no simple formula is available for the “number of free parameters” typically
used in the penalty term. To overcome these problems, we will replace likelihood
by pseudo-likelihood, first introduced by Besag [4], and modify also the penalty
term; this will lead us to an analogue of BIC called the Pseudo-Bayesian Informa-
tion Criterion or PIC. Our main result is that if one minimizes this criterion for
a family of hypothetical basic neighborhoods that grows with the sample size at
a specified rate, the resulting PIC estimate of the basic neighborhood equals the
true one eventually almost surely. In particular, the consistency theorem does not
require a prior upper bound on the size of the basic neighborhood. It should be
emphasized that the underlying Markov field need not be stationary (translation
invariant), and phase transition causes no difficulty.

An auxiliary result perhaps of independent interest is a typicality proposition
on the uniform closeness of empirical conditional probabilities to the true ones,
for conditioning regions whose size may grow with the sample size. Though this
result is weaker than analogous ones for Markov chains in [7], it will be sufficient
for our purposes.

The structure of the paper is the following. In Section 2 we introduce the basic
notation and definitions, and formulate the main result. Its proof is provided by the
propositions in Sections 4 and 5. Section 3 contains the statement and proof of the
typicality proposition. Section 4 excludes overestimation, that is, the possibility
that the estimated basic neighborhood properly contains the true one, using the
typicality proposition. Section 5 excludes underestimation, that is, the possibility
that the estimated basic neighborhood does not contain the true one, via an entropy
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argument and a modification of the typicality result. Section 6 is a discussion of
the results. The Appendix contains some technical lemmas.

2. Notation and statement of the main results. We consider the d-dimensio-
nal lattice Z

d . The points i ∈ Z
d are called sites, and ‖i‖ denotes the maximum

norm of i, that is, the maximum of the absolute values of the coordinates of i. The
cardinality of a finite set � is denoted by |�|. The notation ⊆ and ⊂ of inclusion
and strict inclusion are distinguished in this paper.

A random field is a family of random variables indexed by the sites of the lat-
tice, {X(i) : i ∈ Z

d}, where each X(i) is a random variable with values in a finite
set A. For � ⊆ Z

d , a region of the lattice, we write X(�) = {X(i) : i ∈ �}. For the
realizations of X(�) we use the notation a(�) = {a(i) ∈ A : i ∈ �}. When � is
finite, the |�|-tuples a(�) ∈ A� will be referred to as blocks.

The joint distribution of the random variables X(i) is denoted by Q. We assume
that its finite-dimensional marginals are strictly positive, that is,

Q(a(�)) = Prob{X(�) = a(�)} > 0 for � ⊂ Z
d finite, a(�) ∈ A�.

The last standard assumption admits unambiguous definition of the conditional
probabilities

Q
(
a(�)|a(�)

) = Prob{X(�) = a(�)|X(�) = a(�)}
for all disjoint finite regions � and �.

By a neighborhood � (of the origin 0) we mean a finite, central-symmetric set
of sites with 0 /∈ �. Its radius is r(�) = maxi∈� ‖i‖. For any � ⊆ Z

d , its translate
when 0 is translated to i is denoted by �i . The translate �i of a neighborhood �

(of the origin) will be called the �-neighborhood of the site i; see Figure 1.

FIG. 1. The �-neighborhood of the site i, and the sample region �n.
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A Markov random field is a random field as above such that there exists a neigh-
borhood �, called a Markov neighborhood, satisfying for every i ∈ Z

d

Q
(
a(i)|a(�i)

) = Q
(
a(i)|a(�i)

)
if � ⊃ �,0 /∈ �,(2.1)

where the last conditional probability is translation invariant.
This concept is equivalent to that of a Gibbs field with a finite range interaction;

see [13]. Motivated by this fact, the matrix

Q� = {
Q�

(
a|a(�)

)
:a ∈ A,a(�) ∈ A�}

specifying the (positive, translation-invariant) conditional probabilities in (2.1)
will be called one-point specification. All distributions on AZ

d
that satisfy (2.1)

with a given conditional probability matrix Q� are called Gibbs distributions with
one-point specification Q� . The distribution Q of the given Markov random field
is one of these; Q is not necessarily translation invariant.

The following lemma summarizes some well-known facts; their formal deriva-
tion from results in [13] is indicated in the Appendix.

LEMMA 2.1. For a Markov random field on the lattice as above, there exists
a neighborhood �0 such that the Markov neighborhoods are exactly those that
contain �0. Moreover, the global Markov property

Q
(
a(�)|a(Zd \ �)

) = Q

(
a(�)

∣∣∣a( ⋃
i∈�

�i
0 \ �

))

holds for each finite region � ⊂ Z
d . These conditional probabilities are translation

invariant and uniquely determined by the one-point specification Q�0 .

The smallest Markov neighborhood �0 of Lemma 2.1 will be called the basic
neighborhood. The minimal element of the corresponding one-point specification
matrix Q�0 is denoted by qmin:

qmin = min
a∈A,a(�0)∈A�0

Q�0

(
a|a(�0)

)
> 0.

In this paper we are concerned with the statistical estimation of the basic neigh-
borhood �0 from observation of a realization of the Markov random field on an in-
creasing sequence of finite regions �n ⊂ Z

d , n ∈ N; thus the nth sample is x(�n).
We will draw the statistical inference about a possible basic neighborhood �

based on the blocks a(�) ∈ A� appearing in the sample x(�n). For technical
reasons, we will consider only such blocks whose center is in a subregion �̄n

of �n, consisting of those sites i ∈ �n for which the ball with center i and radius
log1/(2d) |�n| also belongs to �n:

�̄n = {
i ∈ �n :

{
j ∈ Z

d :‖i − j‖ ≤ log1/(2d) |�n|} ⊆ �n

};
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see Figure 1. Our only assumptions about the sample regions �n will be that

�1 ⊂ �2 ⊂ · · · ; |�n|/|�̄n| → 1.

For each block a(�) ∈ A� , let Nn(a(�)) denote the number of occurrences of
the block a(�) in the sample x(�n) with the center in �̄n,

Nn(a(�)) = |{i ∈ �̄n :�i ⊆ �n,x(�i) = a(�)}|.
The blocks corresponding to �-neighborhoods completed with their centers will
be denoted briefly by a(�,0). Similarly as above, for each a(�,0) ∈ A�∪{0} we
write

Nn

(
a(�,0)

) = ∣∣{i ∈ �̄n :�i ⊆ �n,x(�i ∪ {i}) = a(�,0)
}∣∣.

The notation a(�,0) ∈ x(�n) will mean that Nn(a(�,0)) ≥ 1.
The restriction �i ⊆ �n in the above definitions is automatically satisfied if

r(�) ≤ log1/(2d) |�n|. Hence the same number of blocks is taken into account for
all neighborhoods, except for very large ones:∑

a(�)∈A�

Nn(a(�)) = |�̄n| if r(�) ≤ log1/(2d) |�n|.

For Markov random fields the likelihood function cannot be explicitly deter-
mined. We shall use instead the pseudo-likelihood defined below.

Given the sample x(�n), the pseudo-likelihood function associated with a
neighborhood � is the following function of a matrix Q′

� regarded as the one-
point specification of a hypothetical Markov random field for which � is a Markov
neighborhood:

PL�

(
x(�n),Q

′
�

) = ∏
i∈�̄n

Q′
�

(
x(i)|x(�i)

)
(2.2)

= ∏
a(�,0)∈x(�n)

Q′
�

(
a(0)|a(�)

)Nn(a(�,0))
.

We note that not all matrices Q′
� satisfying∑

a∈A

Q′
�

(
a(0)|a(�)

) = 1, a(�) ∈ A�

are possible one-point specifications; the elements of a one-point specification ma-
trix have to satisfy several algebraic relations not shown here. Still, we define the
pseudo-likelihood also for Q′

� not satisfying those relations, even admitting some
elements of Q′

� to be 0.
The maximum of this pseudo-likelihood is attained for Q′

�(a(0)|a(�)) =
Nn(a(�,0))
Nn(a(�))

. Thus, given the sample x(�n), the logarithm of the maximum pseudo-
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likelihood for the neighborhood � is

log MPL�(x(�n)) = ∑
a(�,0)∈x(�n)

Nn

(
a(�,0)

)
log

Nn(a(�,0))

Nn(a(�))
.(2.3)

Now we are able to formalize a criterion in analogy to the Bayesian Information
Criterion that can be calculated from the sample.

DEFINITION 2.1. Given a sample x(�n), the Pseudo-Bayesian Information
Criterion, in short PIC, for the neighborhood � is

PIC�(x(�n)) = − log MPL�(x(�n)) + |A||�| log |�n|.

REMARK. In our penalty term, the number |A||�| of possible blocks
a(�) ∈ A� replaces “half the number of free parameters” appearing in BIC, for
which number no simple formula is available. Note that our results remain valid,
with the same proofs, if the above penalty term is multiplied by any c > 0.

The PIC estimator of the basic neighborhood �0 is defined as that hypotheti-
cal � for which the value of the criterion is minimal. An important feature of our
estimator is that the family of hypothetical �’s is allowed to extend as n → ∞,
and thus no a priori upper bound for the size of the unknown �0 is needed. Our
main result says the PIC estimator is strongly consistent if the hypothetical �’s are
those with r(�) ≤ rn, where rn grows sufficiently slowly.

We mean by strong consistency that the estimated basic neighborhood equals �0
eventually almost surely as n → ∞. Here and in the sequel, “eventually almost
surely” means that with probability 1 there exists a threshold n0 [depending on the
infinite realization x(Zd)] such that the claim holds for all n ≥ n0.

THEOREM 2.1. The PIC estimator

�̂PIC(x(�n)) = arg min
� : r(�)≤rn

PIC�(x(�n)),

with

rn = o
(
log1/(2d) |�n|),

satisfies

�̂PIC(x(�n)) = �0

eventually almost surely as n → ∞.

PROOF. Theorem 2.1 follows from Propositions 4.1 and 5.1 below. �
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REMARK. Actually, the assertion will be proved for rn equal to a constant
times log1/(2d) |�̄n|. However, as this constant depends on the unknown distribu-
tion Q, the consistency can be guaranteed only when

rn = o
(
log1/(2d) |�̄n|) = o

(
log1/(2d) |�n|).

It remains open whether consistency holds when the hypothetical neighborhoods
are allowed to grow faster, or even without any condition on the hypothetical neigh-
borhoods.

As a consequence of the above, we are able to construct a strongly consistent
estimator of the one-point specification Q�0 .

COROLLARY 2.1. The empirical estimator of the one-point specification,

Q̂�̂

(
a(0)|a(�̂)

) = Nn(a(�̂,0))

Nn(a(�̂))
, a(0) ∈ A,a(�̂) ∈ A�̂,

converges to the true Q�0 almost surely as n → ∞, where �̂ is the PIC estima-
tor �̂PIC.

PROOF. Immediate from Theorem 2.1 and Proposition 3.1 below. �

3. The typicality result.

PROPOSITION 3.1. Simultaneously for all Markov neighborhoods with
r(�) ≤ α1/(2d) log1/(2d) |�̄n| and blocks a(�,0) ∈ A�∪{0},∣∣∣∣Nn(a(�,0))

Nn(a(�))
− Q

(
a(0)|a(�)

)∣∣∣∣ <

√
κ logNn(a(�))

Nn(a(�))

eventually almost surely as n → ∞, if

0 < α ≤ 1, κ > 23deα log(|A|2 + 1).

To prove this proposition we will use an idea similar to the “coding technique”
of Besag [3]; namely, we partition �̄n into subsets �̄k

n such that the random vari-
ables at the sites i ∈ �̄k

n are conditionally independent given the values of those at
the other sites. First we introduce some further notation. Let

Rn = ⌊
α1/(2d)�log |�̄n|1/(2d)⌋.(3.4)

We partition the region �̄n by intersecting it with sublattices of Z
d such that the

distance between sites in a sublattice is 4Rn +1. The intersections of �̄n with these
sublattices will be called sieves. Indexed by the offset k relative to the origin 0, the
sieves are

�̄k
n = {i ∈ �̄n : i = k + (4Rn + 1)v, v ∈ Z

d}, ‖k‖ ≤ 2Rn;
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FIG. 2. The sieve �̄k
n.

see Figure 2. For a neighborhood �, let Nk
n(a(�)) denote the number of occur-

rences of the block a(�) ∈ A� in the sample x(�n) with center in �̄k
n,

Nk
n(a(�)) = |{i ∈ �̄k

n :�i ⊆ �n,x(�i) = a(�)}|.
Similarly, let

Nk
n

(
a(�,0)

) = ∣∣{i ∈ �̄k
n :�i ⊆ �n,x(�i ∪ {i}) = a(�,0)

}∣∣.
Clearly,

Nn(a(�)) = ∑
k:‖k‖≤2Rn

Nk
n(a(�)) and Nn

(
a(�,0)

) = ∑
k:‖k‖≤2Rn

Nk
n

(
a(�,0)

)
.

The notation a(�) ∈ x(�k
n) will mean that Nk

n(a(�)) ≥ 1.
Denote by �n(�) the set of sites outside the neighborhood � whose norm is at

most 2Rn,

�n(�) = {i ∈ Z
d :‖i‖ ≤ 2Rn, i /∈ �};

see Figure 2. �i
n(�) denotes the translate of �n(�) when 0 is translated to i.

For a finite region � ⊂ Z
d , conditional probabilities on the condition X(�) =

x(�) ∈ A� will be denoted briefly by Prob{· | x(�)}.
In the following lemma the neighborhoods � need not be Markov neighbor-

hoods.

LEMMA 3.1. Simultaneously for all sieves k, neighborhoods � with
r(�) ≤ Rn and blocks a(�) ∈ A� ,

(1 + ε) logNk
n(a(�)) ≥ log |�̄n|,

eventually almost surely as n → ∞, where ε > 0 is an arbitrary constant.
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PROOF. As a consequence of Lemma 2.1, for any fixed sieve k and neighbor-
hood � with r(�) ≤ Rn, the random variables X(�i), i ∈ �̄k

n, are conditionally
independent given the values of the random variables in the rest of the sites of the
sample region �n. By Lemma A.5 in the Appendix,

Q
(
a(�)|a(�n(�))

) ≥ q
|�|
min, a(�n(�)) ∈ A�n(�),

hence we can use the large deviation theorem of Lemma A.3 in the Appendix with
p∗ = q

|�|
min to obtain

Prob

{
Nk

n(a(�))

|�̄k
n|

<
1

2
q

|�|
min

∣∣∣∣∣x
(
�n

∖ ⋃
i∈�̄k

n

�i

)}
≤ exp

[
−|�̄k

n|
q

|�|
min

16

]
.

Hence also for the unconditional probabilities,

Prob
{
Nk

n(a(�))

|�̄k
n|

<
1

2
q

|�|
min

}
≤ exp

[
−|�̄k

n|
q

|�|
min

16

]
.

Note that for n ≥ n0 (not depending on k) we have

|�̄k
n| ≥

1

2

|�̄n|
(4Rn + 1)d

>
|�̄n|

(5Rn)d
.

Using this and the consequence |�| ≤ (2Rn + 1)d < (3Rn)
d of r(�) ≤ Rn, the last

probability bound implies for n ≥ n0

Prob
{
Nk

n(a(�))

|�̄n| <
q

(3Rn)d

min

2(5Rn)d

}
≤ exp

[
−|�̄n| q

(3Rn)d

min

16(5Rn)d

]
.

Using the union bound and Lemma A.6 in the Appendix, it follows that

Prob
{
Nk

n(a(�))

|�̄n| <
q

(3Rn)d

min

2(5Rn)d
,

for some k,�, a(�) with ‖k‖ ≤ 2Rn, r(�) ≤ Rn,a(�) ∈ A�

}

≤ exp
[
−|�̄n| q

(3Rn)d

min

16(5Rn)d

]
· (4Rn + 1)d · (|A|2 + 1)(2Rn+1)d/2.

Recalling (3.4), this is summable in n, and thus the Borel–Cantelli lemma gives

Nk
n(a(�)) ≥ |�̄n| q

3dα1/2(1+log |�̄n|)1/2

min

2 · 5dα1/2(1 + log |�̄n|)1/2
,

eventually almost surely as n → ∞, simultaneously for all sieves k, neighborhoods
� with r(�) ≤ Rn and blocks a(�) ∈ A� . This proves the lemma. �
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LEMMA 3.2. Simultaneously for all sieves k, Markov neighborhoods � with
r(�) ≤ Rn and blocks a(�,0) ∈ A�∪{0},∣∣∣∣Nk

n(a(�,0))

Nk
n(a(�))

− Q
(
a(0)|a(�)

)∣∣∣∣ <

√√√√δ log1/2 Nk
n(a(�))

Nk
n(a(�))

,

eventually almost surely as n → ∞, if

δ > 2deα1/2 log(|A|2 + 1).

PROOF. Given a sieve k, a Markov neighborhood � and a block a(�,0), the
difference Nk

n(a(�,0)) − Nk
n(a(�))Q(a(0)|a(�)) equals

Yn = ∑
i∈�̄k

n : x(�i)=a(�)

[
I
(
X(i) = a(0)

) − Q
(
a(0)|a(�)

)]
,

where I(·) denotes the indicator function; hence the claimed inequality is equiva-
lent to

−
√

Nk
n(a(�))δ log1/2 Nk

n(a(�)) < Yn <

√
Nk

n(a(�))δ log1/2 Nk
n(a(�)).

We will prove that the last inequalities hold eventually almost surely as n → ∞,
simultaneously for all sieves k, Markov neighborhoods � with r(�) ≤ Rn and
blocks a(�,0) ∈ A�∪{0}. We concentrate on the second inequality; the proof for
the first one is similar.

Denote

Gj

(
k, a(�,0)

) =
{

max
n∈Nj (k,a(�))

Yn ≥
√

ej δj1/2
}
,

where

Nj

(
k, a(�)

) = {n : ej < Nk
n(a(�)) ≤ ej+1, (1 + ε) logNk

n(a(�)) ≥ log |�̄n|};
if n ∈ Nj (k, a(�)), then by (3.4)

Rn = ⌊
α1/(2d)�log |�̄n|1/(2d)⌋ ≤ α1/(2d)(1+(1+ε)(j +1)

)1/(2d) def= R(j).(3.5)

The claimed inequality Yn <

√
Nk

n(a(�))δ log1/2 Nk
n(a(�)) holds for each n

with ej < Nk
n(a(�)) ≤ ej+1 if

max
n : ej<Nk

n (a(�))≤ej+1
Yn <

√
ej δj1/2.

By Lemma 3.1, the condition (1 + ε) logNk
n(a(�)) ≥ log |�̄n| in the definition of

Nj (k, a(�)) is satisfied eventually almost surely, simultaneously for all sieves k,
neighborhoods � with r(�) ≤ Rn and blocks a(�) ∈ A� . Hence it suffices to prove
that the following holds with probability 1: the union of the events Gj(k, a(�,0))
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for all k with ‖k‖ ≤ 2R(j), all � ⊇ �0 with r(�) ≤ R(j) and all a(�,0) ∈ A�∪{0},
obtains only for finitely many j .

As n ∈ Nj (k, a(�)) implies j < log |�̄n| ≤ (1 + ε)(j + 1),

Gj

(
k, a(�,0)

) ⊆
�(1+ε)(j+1)�⋃

l=j

{
max

n∈Nj,l (k,a(�))
Yn ≥

√
ej δj1/2

}
,(3.6)

where

Nj,l

(
k, a(�)

) = {n : ej < Nk
n(a(�)) ≤ ej+1, l < log |�̄n| ≤ l + 1}.

The random variables X(i), i ∈ �̄k
n, are conditionally independent given the val-

ues of the random variables in their �-neighborhoods. Moreover, those X(i)’s for
which the same block a(�) appears in their �-neighborhood are also conditionally
i.i.d. Hence Yn is the sum of Nk

n(a(�)) conditionally i.i.d. random variables with
mean 0 and variance

1
4 ≥ D2 = Q

(
a(0)|a(�)

)[
1 − Q

(
a(0)|a(�)

)] ≥ 1
2qmin.

As Rn is constant for n with l < log |�̄n| ≤ l + 1, the corresponding Yn’s are actu-
ally partial sums of a sequence of Nk

n∗(a(�)) ≤ ej+1 such conditionally i.i.d. ran-
dom variables, where n∗ is the largest element of Nj,l(k, a(�)). Therefore, using

Lemma A.4 in the Appendix with µ = µj = (1 − η)

√
e−1δj1/2, where η > 0 is an

arbitrary constant, we have

Prob

{
max

n∈Nj,l (k,a(�))
Yn ≥

√
ej δj1/2

∣∣∣x( ⋃
i∈�̄k

n : x(�i)=a(�)

�i

)}

≤ Prob

{
max

n∈Nj,l (k,a(�))
Yn ≥ D

√
ej+1

(
(1 − η)

√
e−1δj1/2 + 2

)
∣∣∣x( ⋃

i∈�̄k
n : x(�i)=a(�)

�i

)}

≤ 8

3
exp

[
− µ2

j

2(1 + µj/(2D
√

ej+1 ))2

]
.

On account of limj→∞ µj/(2D
√

ej+1 ) = 0, the last bound can be continued for
j > j0, as

≤ 8

3
exp

[
− (1 − η)2

2e(1 + η)
δj1/2

]
.
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This bound also holds for the unconditional probabilities, hence we obtain
from (3.6),

Prob
{
Gj

(
k, a(�,0)

)} ≤ (εj + 2) · 8

3
exp

[
− (1 − η)2

2e(1 + η)
δj1/2

]

≤ exp
[
− (1 − η)3

2e(1 + η)
δj1/2

]
.

To bound the number of all admissible k, �, a(�,0) [recall the conditions ‖k‖ ≤
2R(j), r(�) ≤ R(j), with R(j) defined in (3.5)], note that the number of possible
k’s is bounded by(

4R(j) + 1
)d ≤ (4 + ρ)dα1/2(1 + ε)1/2(j + 1)1/2,

and, by Lemma A.6 in the Appendix, the number of possible blocks a(�,0) with
r(�) ≤ R(j) is bounded by

(|A|2 + 1)(2R(j)+1)d/2 < (|A|2 + 1)(1+ρ)d2d−1α1/2(1+ε)1/2(j+1)1/2
.

Combining the above bounds, we get for the probability of the union of the
events Gj(k, a(�,0)) for all admissible k, �, a(�,0) the bound

exp
[
− (1 − η)3

2e(1 + η)
δj1/2

+ [log(|A|2 + 1)](1 + ρ)d2d−1α1/2(1 + ε)1/2(j + 1)1/2 + O(log j1/2)

]
.

This is summable in j if we choose η, ε, ρ sufficiently small, and δ/(2e) >

2d−1α1/2 log(|A|2 + 1), that is, if δ > 2deα1/2 log(|A|2 + 1). �

PROOF OF PROPOSITION 3.1. Using Lemma 3.2,∣∣∣∣Nn(a(�,0))

Nn(a(�))
− Q

(
a(0)|a(�)

)∣∣∣∣
≤ ∑

k : ‖k‖≤2Rn

∣∣∣∣Nk
n(a(�,0))

Nk
n(a(�))

− Q
(
a(0)|a(�)

)∣∣∣∣ · Nk
n(a(�))

Nn(a(�))

<
∑

k : ‖k‖≤2Rn

√√√√δ log1/2 Nk
n(a(�))

Nk
n(a(�))

· Nk
n(a(�))

Nn(a(�))

eventually almost surely as n → ∞. By Jensen’s inequality and Nk
n(a(�)) ≤

Nn(a(�)), this can be continued as

≤
√

δ(4Rn + 1)d log1/2 Nn(a(�))

Nn(a(�))
.
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By (3.4) and Lemma 3.1, we have for any ε, ρ > 0 and n sufficiently large,

(4Rn + 1)d ≤ (
4α1/(2d)(1 + log |�̄n|)1/(2d) + 1

)d
≤ (4 + ρ)dα1/2(1 + ε)1/2 log1/2 Nn(a(�)),

eventually almost surely as n → ∞. This completes the proof. �

4. The overestimation.

PROPOSITION 4.1. Eventually almost surely as n → ∞,

�̂PIC(x(�n)) /∈ {� :� ⊃ �0},
whenever rn in Theorem 2.1 is equal to Rn in (3.4) with

α <
qmin

23de

|A| − 1

|A|2 log(|A|2 + 1)
.

PROOF. We have to prove that simultaneously for all neighborhoods � ⊃ �0
with r(�) ≤ Rn,

PIC�(x(�n)) − PIC�0(x(�n)) > 0,(4.7)

eventually almost surely as n → ∞.
The left-hand side

− log MPL�(x(�n)) + |A||�| log |�n| + log MPL�0(x(�n)) − |A||�0| log |�n|
is bounded below by

− log MPL�(x(�n)) + log PL�0

(
x(�n),Q�0

) +
(

1 − 1

|A|
)
|A||�| log |�n|.

Hence, it suffices to show that simultaneously for all neighborhoods � ⊃ �0 with
r(�) ≤ Rn,

log MPL�(x(�n)) − log PL�0

(
x(�n),Q�0

)
<

|A| − 1

|A| |A||�| log |�n|,(4.8)

eventually almost surely as n → ∞.
Now, for � ⊃ �0 we have PL�0(x(�n),Q�0) = PL�(x(�n),Q�), by the def-

inition (2.2) of pseudo-likelihood, since �0 is a Markov neighborhood. Thus the
left-hand side of (4.8) equals

log MPL�(x(�n)) − log PL�

(
x(�n),Q�

)
= ∑

a(�,0)∈x(�n)

Nn

(
a(�,0)

)
log

Nn(a(�,0))/Nn(a(�))

Q(a(0)|a(�))

= ∑
a(�)∈x(�n)

Nn(a(�))

× ∑
a(0) : a(�,0)∈x(�n)

Nn(a(�,0))

Nn(a(�))
log

Nn(a(�,0))/Nn(a(�))

Q(a(0)|a(�))
.
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To bound the last expression, we use Proposition 3.1 and Lemma A.7 in the Appen-
dix, the latter applied with P(a(0)) = Nn(a(�,0))

Nn(a(�))
, Q(a(0)) = Q(a(0)|a(�)). Thus

we obtain the upper bound∑
a(�)∈x(�n)

Nn(a(�))
1

qmin

∑
a(0) : a(�,0)∈x(�n)

[
Nn(a(�,0))

Nn(a(�))
− Q

(
a(0)|a(�)

)]2

<
∑

a(�)∈x(�n)

Nn(a(�))
1

qmin
|A|κ logNn(a(�))

Nn(a(�))
≤ κ|A|

qmin
|A||�| log |�̄n|,

eventually almost surely as n → ∞, simultaneously for all neighborhoods � ⊃ �0
with r(�) ≤ Rn.

Hence, since |�n|/|�̄n| → 1, the assertion (4.8) holds whenever

κ|A|
qmin

<
|A| − 1

|A| ,

which is equivalent to the bound on α in Proposition 4.1. �

5. The underestimation.

PROPOSITION 5.1. Eventually almost surely as n → ∞,

�̂PIC(x(�n)) ∈ {� :� ⊇ �0},
if rn in Theorem 2.1 is chosen as in Proposition 4.1.

Proposition 5.1 will be proved using the lemmas below. Let us denote

�0 =
( ⋃

i∈�0

�i
0

)∖
(�0 ∪ {0}).

LEMMA 5.1. The assertion of Proposition 3.1 holds also with � replaced by
� ∪ �0, where � is any (not necessarily Markov) neighborhood.

PROOF. As Proposition 3.1 was a consequence of Lemma 3.2, we have to
check that the proof of that lemma works when the Markov neighborhood � is re-
placed by �∪�0, where � is any neighborhood. To this end, it suffices to show that
conditional on the values of all random variables in the (� ∪ �0)-neighborhoods
of the sites i ∈ �̄k

n, those X(i), i ∈ �̄k
n, are conditionally i.i.d. for which the same

block a(� ∪ �0) appears in the (� ∪ �0)-neighborhood of i. This follows from
Lemma A.1 in the Appendix, with � = �0 ∪ {0} and � = �0. �

LEMMA 5.2. Simultaneously for all neighborhoods � �⊇ �0 with r(�) ≤ Rn,

PIC�∪�0(x(�n)) > PIC(�∩�0)∪�0(x(�n)),

eventually almost surely as n → ∞.
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PROOF. The claimed inequality is analogous to (4.7) in the proof of Proposi-
tion 4.1, the role of � ⊃ �0 there played by � ∪ �0 ⊃ (� ∩ �0) ∪ �0. Its proof
is the same as that of (4.7), using Lemma 5.1 instead of Proposition 3.1. Indeed,
the basic neighborhood property of �0 was used in that proof only to show that
PL�0(x(�n),Q�0) = PL�(x(�n),Q�). The analogue of this identity, namely

PL(�∩�0)∪�0

(
x(�n),Q(�∩�0)∪�0

) = PL�∪�0

(
x(�n),Q�∪�0

)
,

follows from Lemma A.1 in the Appendix with � = �0 ∪ {0} and � = �0. �

For the next lemma, we introduce some further notation.
The set of all probability distributions on AZ

d
, equipped with the weak topology,

is a compact Polish space; let d denote a metric that metrizes it. Let QG denote the
(compact) set of Gibbs distributions with the one-point specification Q�0 .

For a sample x(�n), define the empirical distribution on AZ
d

by

Rx,n = 1

|�̄n|
∑
i∈�̄n

δxi
n
,

where xn ∈ AZ
d

is the extension of the sample x(�n) to the whole lattice with
xn(j) equal to a constant a ∈ A for j ∈ Z

d\�n, and xi
n denotes the translate of xn

when 0 is translated to i and δx is the Dirac mass at x ∈ AZ
d
.

LEMMA 5.3. With probability 1, d(Rx,n,Q
G) → 0.

PROOF. Fix a realization x(Zd) for which Proposition 3.1 holds.
It suffices to show that for any subsequence nk such that Rx,nk

converges, its
limit Rx,0 belongs to QG.

Let �′ be any neighborhood. For n sufficiently large, the (�′ ∪ {0})-marginal
of Rx,n is equal to {

Nn(a(�′,0))

|�̄n| , a(�′,0) ∈ A�′∪{0}
}
,

hence Rx,nk
→ Rx,0 implies

Nnk
(a(�′,0))

|�̄nk
| −→ Rx,0

(
a(�′,0)

)
(5.9)

for all a(�′,0) ∈ A�′∪{0}. This and summation for a(0) ∈ A imply

Nnk
(a(�′,0))

Nnk
(a(�′))

−→ Rx,0
(
a(0)|a(�′)

)
.

As Proposition 3.1 holds for the realization x(Zd), it follows that if �′ is a Markov
neighborhood, then

Rx,0
(
a(0)|a(�′)

) = Q
(
a(0)|a(�′)

) = Q�0

(
a(0)|a(�0)

)
.
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For any finite region � ⊃ �0 with 0 /∈ �, the last equation for a neighborhood
�′ ⊃ � implies that

Rx,0
(
a(0)|a(�)

) = Q�0

(
a(0)|a(�0)

)
if � ⊃ �0,0 /∈ �.

To prove Rx,0 ∈ QG it remains to show that, in addition, Rx,0(a(i)|a(�i)) =
Q�0(a(i)|a(�i

0)). Actually, we show that Rx,0 is translation invariant. Indeed,
given a finite region � ⊂ Z

d and its translate �i , take a neighborhood �′ with
� ∪ �i ⊆ �′ ∪ {0}, and consider the sum of the counts Nn(a(�′,0)) for all blocks
a(�′,0) = {a(j) : j ∈ �′ ∪ {0}} with {a(j) : j ∈ �} equal to a fixed |�|-tuple
and the similar sum with {a(j) : j ∈ �i} equal to the same |�|-tuple. If ‖i‖ <

log1/(2d) |�̄n|, the difference of these sums is at most |�n|− |�̄n|, hence the trans-
lation invariance of Rx,0 follows by (5.9). �

LEMMA 5.4. Uniformly for all neighborhoods � not containing �0,

− log MPL(�∩�0)∪�0(x(�n)) > − log MPL�0(x(�n)) + c|�̄n|,
eventually almost surely as n → ∞, where c > 0 is a constant.

PROOF. Given a realization x ∈ AZ
d

with the property in Lemma 5.3, there
exists a sequence Qx,n in QG with

d(Rx,n,Qx,n) → 0,

and consequently

Nn(a(�))

|�̄n| − Qx,n(a(�)) → 0(5.10)

for each finite region � ⊂ Z
d and a(�) ∈ A�.

Next, let � be a neighborhood with � �⊇ �0. By (2.3),

− 1

|�̄n| log MPL(�∩�0)∪�0(x(�n))

= − 1

|�̄n|
∑

a((�∩�0)∪�0,0)∈x(�n)

Nn

(
a
(
(� ∩ �0) ∪ �0,0

))
× log

Nn(a((� ∩ �0) ∪ �0,0))

Nn(a((� ∩ �0) ∪ �0))
.

Applying (5.10) to � = (� ∩ �0) ∪ �0 ∪ {0}, it follows that the last expression is
arbitrarily close to

− ∑
a((�∩�0)∪�0∪{0})

Qx,n

(
a
(
(� ∩ �0) ∪ �0,0

))
logQx,n

(
a(0)|a(

(� ∩ �0) ∪ �0
))

= HQx,n

(
X(0)|X(

(� ∩ �0) ∪ �0
))



MARKOV FIELD NEIGHBORHOOD ESTIMATION 139

if n is sufficiently large, where HQx,n(·|·) denotes conditional entropy, when the
underlying distribution is Qx,n. Similarly, −(1/|�̄n|) log MPL�0(x(�n)) is arbi-
trarily close to HQx,n(X(0)|X(�0)), which equals HQx,n(X(0)|X(�0 ∪ �0)) since
�0 is a Markov neighborhood.

It is known that HQ′(X(0)|X((� ∩ �0) ∪ �0)) ≥ HQ′(X(0)|X(�0 ∪ �0)) for
any distribution Q′. The proof of the lemma will be complete if we show that, in
addition, there exists a constant ξ > 0 (depending on � ∩ �0) such that for every
Gibbs distribution QG ∈ QG

HQG

(
X(0)|X(

(� ∩ �0) ∪ �0
)) − HQG

(
X(0)|X(�0 ∪ �0)

)
> ξ.

The indirect assumption that the left-hand side goes to 0 for some sequence of
Gibbs distributions in QG implies, using the compactness of QG, that

HQG
0

(
X(0)|X(

(� ∩ �0) ∪ �0
)) = HQG

0

(
X(0)|X(�0 ∪ �0)

)
,

for the limit QG
0 ∈ QG of a convergent subsequence. This equality implies

QG
0

(
a(0)|a(

(� ∩ �0) ∪ �0
)) = QG

0
(
a(0)|a(�0 ∪ �0)

)
for all a(0) ∈ A,a(�0 ∪�0) ∈ A�0∪�0 . By Lemma A.1 in the Appendix, these con-
ditional probabilities are uniquely determined by the one-point specification Q�0 ,
and the last equality implies

Q
(
a(i)|a(

(� ∩ �0)
i ∪ �i

0
)) = Q

(
a(i)|a(�i

0 ∪ �i
0)

) = Q�0

(
a(i)|a(�i

0)
)
.

According to Lemma A.2 in the Appendix, this would imply (� ∩ �0) ∪ �0 is a
Markov neighborhood also, which is a contradiction, as (� ∩ �0) ∪ �0 �⊇ �0.

This completes the proof of the lemma because there is only a finite number of
possible intersections � ∩ �0. �

PROOF OF PROPOSITION 5.1. We have to show that

PIC�(x(�n)) > PIC�0(x(�n)),(5.11)

eventually almost surely as n → ∞, for all neighborhoods � with r(�) ≤ Rn that
do not contain �0.

Note that �1 ⊇ �2 implies MPL�1(x(�n)) ≥ MPL�2(x(�n)), since
MPL�(x(�n)) is the maximizer in Q′

� of PL�(x(�n),Q
′
�); see (2.2). Hence

− log MPL�(x(�n)) ≥ − log MPL�∪�0(x(�n))

for any neighborhood �.
Thus

PIC�(x(�n)) = − log MPL�(x(�n)) + |A||�| log |�n|
≥ PIC�∪�0(x(�n)) − (|A||�∪�0| − |A||�|) log |�n|.
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Using Lemma 5.2 and the obvious bound |� ∪ �0| ≤ |�| + |�0|, it follows that,
eventually almost surely as n → ∞ for all � �⊇ �0 with r(�) ≤ Rn,

PIC�(x(�n)) > PIC(�∩�0)∪�0(x(�n)) − |A||�|(|A||�0| − 1
)

log |�n|.
Here, by Lemma 5.4,

PIC(�∩�0)∪�0(x(�n))

> − log MPL(�∩�0)∪�0(x(�n)) > − log MPL�0(x(�n)) + c|�̄n|,
eventually almost surely as n → ∞ for all � as above. This completes the
proof, since the conditions r(�) ≤ Rn and |�n|/|�̄n| → 1 imply |A||�| log |�n| =
o(|�̄n|). �

6. Discussion. A modification of the Bayesian Information Criterion (BIC)
called PIC has been introduced for estimating the basic neighborhood of a Markov
random field on Z

d , with finite alphabet A. In this criterion, the maximum
pseudo-likelihood is used instead of the maximum likelihood, with penalty term
|A||�| log |�n| for a candidate neighborhood �, where �n is the sample region.
The minimizer of PIC over candidate neighborhoods, with radius allowed to grow
as o(log1/(2d) |�n|), has been proved to equal the basic neighborhood eventually
almost surely, not requiring any prior bound on the size of the latter. This result
is unaffected by phase transition and even by nonstationarity of the joint distribu-
tion. The same result holds if the penalty term is multiplied by any c > 0; the no
underestimation part (Proposition 5.1) holds also if log |�n| in the penalty term is
replaced by any function of the sample size |�n| that goes to infinity as o(|�n|).

PIC estimation of the basic neighborhood of a Markov random field is to a
certain extent similar to BIC estimation of the order of a Markov chain, and of
the context tree of a tree source, also called a variable-length Markov chain. For
context tree estimation via another method see [5, 22], and via BIC, see [9]. There
are, however, also substantial differences. The martingale techniques in [7, 8] do
not appear to carry over to Markov random fields, and the lack of an analogue of
the Krichevsky–Trofimov distribution used in these references is another obstacle.
We also note that the “large” boundaries of multidimensional sample regions cause
side effects not present in the one-dimensional case; to overcome those, we have
defined the pseudo-likelihood function based on a window �̄n slightly smaller than
the whole sample region �n.

For Markov order and context tree estimation via BIC, consistency has been
proved by Csiszár and Shields [8] admitting, for sample size n, all k ≤ n as can-
didate orders (see also [7]), respectively by Csiszár and Talata [9] admitting trees
of depth o(logn) as candidate context trees. In our main result Theorem 2.1, the
PIC estimator of the basic neighborhood is defined admitting candidate neigh-
borhoods of radius o(log1/(2d) |�n|), thus of size o(log1/2 |�n|). The mentioned
one-dimensional results suggest that this bound on the radius might be relaxed to
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o(log1/d |�n|), or perhaps dropped completely. This question remains open, even
for the case d = 1. A positive answer apparently depends on the possibility of
strengthening our typicality result Proposition 3.1 to similar strength as the condi-
tional typicality results for Markov chains in [7].

More important than a possible mathematical sharpening of Theorem 2.1, as
above, would be to find an algorithm to determine the PIC estimator without ac-
tually computing and comparing the PIC values of all candidate neighborhoods.
The analogous problem for BIC context tree estimation has been solved: Csiszár
and Talata [9] showed that this BIC estimator can be computed in linear time via
an analogue of the “context tree maximizing algorithm” of Willems, Shtarkov and
Tjalkens [23, 24]. Unfortunately, a similar algorithm for the present problem ap-
pears elusive, and it remains open whether our estimator can be computed in a
“clever” way.

Finally, we emphasize that the goal of this paper was to provide a consistent
estimator of the basic neighborhood of a Markov random field. Of course, consis-
tency is only one of the desirable properties of an estimator. To assess the practical
performance of this estimator requires further research, such as studying finite
sample size properties, robustness against noisy observations and computability
with acceptable complexity.

Note added in proof. Just before completing the galley proofs, we learned
that model selection for Markov random fields had been addressed before, by Ji
and Seymour [18]. They used a criterion almost identical to PIC here and, in a
somewhat different setting, proved weak consistency under the assumption that
the number of candidate model classes is finite.

APPENDIX

First we indicate how the well-known facts stated in Lemma 2.1 can be formally
derived from results in [13], using the concepts defined there.

PROOF OF LEMMA 2.1. By Theorem 1.33 the positive one-point specification
uniquely determines the specification, which is positive and local on account of the
locality of the one-point specification. By Theorem 2.30 this positive local spec-
ification determines a unique “gas” potential (if an element of A is distinguished
as the zero element). Due to Corollary 2.32, this is a nearest-neighbor potential for
a graph with vertex set Z

d defined there, and �i
0 is the same as B(i)\{i} in that

corollary. �

The following lemma is a consequence of the global Markov property.

LEMMA A.1. Let � ⊂ Z
d be a finite region with 0 ∈ �, and � =

(
⋃

j∈� �
j
0 ) \ �. Then for any neighborhood �, the conditional probabilities
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Q(a(i)|a(�i ∪ �i)) and Q(a(i)|a((�i ∩ �i) ∪ �i)) are equal and translation
invariant.

PROOF. Since � and � are disjoint, we have

Q
(
a(i)|a(�i ∪ �i)

) = Q
(
a(i)|a(

(� ∩ �)i ∪ (
� ∪ (�\�)

)i))
= Q(a({i} ∪ (� ∩ �)i)|a((� ∪ (�\�))i))

Q(a((� ∩ �)i)|a((� ∪ (�\�))i))
,

and similarly

Q
(
a(i)|a(

(�i ∩ �i) ∪ �i)) = Q(a({i} ∪ (� ∩ �)i)|a(�i))

Q(a((� ∩ �)i)|a(�i))
.

By the global Markov property (see Lemma 2.1), both the numerators and denom-
inators of these two quotients are equal and translation invariant. �

The lemma below follows from the definition of Markov neighborhood.

LEMMA A.2. For a Markov random field with basic neighborhood �0, if a
neighborhood � satisfies

Q
(
a(i)|a(�i)

) = Q�0

(
a(i)|a(�i

0)
)

for all i ∈ Z
d , then � is a Markov neighborhood.

PROOF. We have to show that for any � ⊃ �

Q
(
a(i)|a(�i)

) = Q
(
a(i)|a(�i)

)
.(A.1)

Since �0 is a Markov neighborhood, the condition of the lemma implies

Q
(
a(i)|a(�i)

) = Q
(
a(i)|a(�i

0)
) = Q

(
a(i)|a(

(�0 ∪ �)i
))

.

Hence (A.1) follows, because � ⊆ � ⊆ �0 ∪ �. �

Next we state two simple probability bounds.

LEMMA A.3. Let Z1, Z2, . . . be {0,1}-valued random variables such that

Prob{Zj = 1|Z1, . . .Zj−1} ≥ p∗ > 0, j ≥ 1,

with probability 1. Then for any 0 < ν < 1

Prob

{
1

m

m∑
j=1

Zj < νp∗
}

≤ e−m(p∗/4)(1−ν)2
.
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PROOF. This is a direct consequence of Lemmas 2 and 3 in the Appendix
of [7]. �

LEMMA A.4. Let Z1, Z2, . . . , Zn be i.i.d. random variables with expectation 0
and variance D2. Then the partial sums

Sk = Z1 + Z2 + · · · + Zk

satisfy

Prob
{

max
1≤k≤n

Sk ≥ D
√

n(µ + 2)

}
≤ 4

3Prob
{
Sn ≥ D

√
nµ

};
moreover if the random variables are bounded, |Zi | ≤ K , then

Prob
{
Sn ≥ D

√
nµ

} ≤ 2 exp
[
− µ2

2(1 + µK(2D
√

n ))2

]
,

where µ < D
√

n/K .

PROOF. See, for example, Lemma VI.9.1 and Theorem VI.4.1 in [20]. �

The following three lemmas are of a technical nature.

LEMMA A.5. For disjoint finite regions � ⊂ Z
d and � ⊂ Z

d , we have

Q
(
a(�)|a(�)

) ≥ q
|�|
min.

PROOF. By induction on |�|.
For � = {i}, � = �i

0 \ �, we have

Q
(
a(i)|a(�)

) = ∑
a(�)∈A�

Q
(
a(i)|a(� ∪ �)

)
Q

(
a(�)|a(�)

)
= ∑

a(�)∈A�

Q
(
a(i)|a(�i

0)
)
Q

(
a(�)|a(�)

) ≥ qmin.

Supposing Q(a(�)|a(�)) ≥ q
|�|
min holds for some �, we have for {i} ∪ �, with

� = �i
0 \ (� ∪ �),

Q
(
a({i} ∪ �)|a(�)

) = ∑
a(�)∈A�

Q
(
a({i} ∪ � ∪ �)|a(�)

)
= ∑

a(�)∈A�

Q
(
a(i)|a(� ∪ � ∪ �)

)
Q

(
a(� ∪ �)|a(�)

)
.

Since Q(a(i)|a(� ∪ � ∪ �)) = Q(a(i)|a(�i
0)) ≥ qmin, we can continue as

≥ qminQ
(
a(�)|a(�)

) ≥ q
|�|+1
min . �



144 I. CSISZÁR AND ZS. TALATA

LEMMA A.6. The number of all possible blocks appearing in a site and its
neighborhood with radius not exceeding R can be upper bounded as∣∣{a(�,0) ∈ A�∪{0} : r(�) ≤ R

}∣∣ ≤ (|A|2 + 1)(2R+1)d/2.

PROOF. The number of the neighborhoods with cardinality m ≥ 1 and radius
r(�) ≤ R is ((

(2R + 1)d − 1
)
/2

m

)
,

because the neighborhoods are symmetric. Hence, the number in the proposition
is

|A| + |A| ·
((2R+1)d−1)/2∑

m=1

((
(2R + 1)d − 1

)
/2

m

)
|A|2m

= |A|
((2R+1)d−1)/2∑

m=0

((
(2R + 1)d − 1

)
/2

m

)
(|A|2)m1((2R+1)d−1)/2−m.

Now, using the binomial theorem, the assertion follows. �

LEMMA A.7. Let P and Q be probability distributions on A such that

max
a∈A

|P(a) − Q(a)| ≤ mina∈A Q(a)

2
.

Then ∑
a∈A

P (a) log
P(a)

Q(a)
≤ 1

mina∈A Q(a)

∑
a∈A

(
P(a) − Q(a)

)2
.

PROOF. This follows from Lemma 4 in the Appendix of [7]. �
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