View metadata, citation and similar papers at core.ac.uk brought to you b

provided by KU ScholarWorks

On the dynamics of the four-dimensional rigid body in a
quadratic potential field
Angel Zhivkov®

Differential Equations, Department of Mathematics and Informatics, Sofia University,
5 J. Bourchier, 1126 Sofia, Bulgaria

Milena Stanislavova®
Department of Mathematics, University of Architecture and Civil Engineering,
1 Hr. Smirnenski Blv., 1421 Sofia, Bulgaria

(Received 30 January 1995; accepted for publication 19 April 1995)

We study the nondegenerated solutions of the rotation of a four-dimensional rigid
body in a quadratic potential field. This problem has 6 degrees of freedom. We
obtain 143 topologically different solutions and explicit formulas in Prym
theta-functions. © 1995 American Institute of Physics.

. INTRODUCTION

In the last two decades several algebro-geometric constructions in connection with methods in
explicitly solving nonlinear equations of mathematical physics were developed.'™* In particular
the role of Riemann surfaces, Abelian varieties, and theta-functions was found to be decisive in
finding quasiperiodic solutions of the celebrated Korteweg—de Vries equation u,=uu,+u,,, for
which explicit formulas for u(x,?) in terms of Riemann theta-functions were found. After the
Korteweg—de Vries equation this method, known now as the finite-gap integration, was success-
fully applied to other equations, e.g., the sine-Gordon equation,’ nonlinear Schrédinger equation,
etc. Decisive in the method of the finite-gap integration is that all these equations admit a com-
mutator representation

where L=L(x,t,\) and M=M(x,z,A) are polynomials in the parameter A (called the spectral
parameter) with coefficients (nXn)-matrices depending on x and z.

In the case when L and M are operators independent of x, the above system becomes a system
of ordinary differential equations

dM—L M
dt _[’ ]

Then (L,M) is called the “Lax pair.”
Even the case of a first degree polynomial L, i.e., the case of a linear (nXn)-matrix operator

L\ )=AJ=1C+V—1U, (1)

where C=diag(c,,...,c,), ¢; # c;, U=(Uij)ﬁj=1 is the (nXn)-matrix, U;;=const, i=1,...,n
(U is called matrix potential) lead to interesting physical problems. These operators were studied
in details by Dubrovin in Ref. 6.

The equation
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:det(w-1—-M(¢,A))=0

defines an affine algebraic curve which does not depend on . The compactification I'" of T is
called a spectrum of the operator L, I'' has singularities at the points ,,0,,...,00, , defined by the
condition A(%;)=%, i=1,...,n. Any two points o; and o, eI’ are different because of the require-
ment ¢; # c; if i # j in Eq. (1), see Ref. 6. After a desingularization, I'’ becomes a compact
Riemann surface I'.

We notice that the solutions obtained by finite-gap integration are complex ones. On the other
hand the potentials U(¢) which appear in the natural physical problems have real symmetries and
to determine them directly is not an easy problem. Instead one can make use of the geometric
origin of the solutions, or more precisely to use that the Riemann surfaces corresponding to real
solutions have real symmetries. The simplest symmetry is the self-adjointness of L, i.e., U*
=U, * is the hermitean conjugation.” The case n=2 (containing nonlinear Schrodinger, sine-
Gordon equation, etc.) is studied in Ref. 8. The common self-adjoint potentials are studied in Ref.
6; it turns out that the corresponding Riemann surface I is real, i.e., there exists an antiholomor-
phic involution 7;: ['—T, see Sec. L

Another case of interest is the case of the real potential U, ie., U;(t)eR if 1R, i,j
=1,...,n, a case studied in Ref. 6. Now on the corresponding Riemann surface I there exists an
annholomorphlc involution 7,: I'—T" with different properties from that of 7, see Sec. L.

Natural problems lead also to potentials which are both self-adjoint and real, see Ref. 9. For
example this situation appears in the problem of rigid body rotating about a fixed point, or in the
problem of the geodesic flow on so(p).

The aim of this article is to study the solutions of one concrete Hamiltonian system: rotation
of a four-dimensional rigid body around a fixed point in a quadratic potential field. In Ref. 10
Bogoyavlenskij proved that (in the n-dimensional case) this problem admits Lax-representation, is
completely integrable, and has 6 degrees of freedom (in the n-dimensional case it has n(n—1)/2
degrees of freedom). The solutions of that problem are self-adjoint and real. The conditions of
realness of the case n=3 were studied in Ref. 11. We will prove that, in the case n =4, there are
143 topologically different solutions.

We. need to explain to the reader the term “topologically different solutions.” In accordance
with the classical Liouville—~Arnold’s theorem'? the compact invariant varieties of the completely
integrable system for almost all values of the first integrals are homeomorphic with several
n-dimensional tori. The solutions of the Hamiltonian system are straight linear over these tori. For
a description of the topological nature of the Hamiltonian system we need to determine the
topological type of the compact invariant varieties, after which we explain how the invariant
compact varieties pass over from one to another, when the initial conditions are changed. Thus, we
obtain the phase picture without some bifurcation’s set.

We briefly describe the main results contained in the article. In the Sec. I we give the
equations, representing the above problem and the corresponding Riemann surface I" together with
the conditions of realness and self-adjointness. Because of the symmetries there exist antiholo-
morphic involutions 7;: T'—I" and 7,: T'—T, 72 =identity over I which have fixed properties. To
solve the problem it is necessary to make a topological classification of the four-tuples (I',7,7,\)
of the Riemann surfaces I' with two anti-involutions and 4-sheeted meromorphic function A:
I'—CP.! In Sec. Il we find that there exist 36 topologically different four-tuples (I',7;,7,,A) and
we compute the number of the invariant tori on each component. The general number of the
invariant tori is 143. This is the content of Theorem 1. In Sec. III we construct an appropriate basis
in the one-dimensional homologies H,(I'), in which the Riemann theta-function reduces to the
Prym theta-function. Using this special basis we compute explicitly the tori, forming the Prym
variety (on which the motion is straight linear), receive the explicit formulas for the angular
velocities, and reduce the formulas in the Prym theta-functions over the Riemann surfaces of
genus 6 and 3. We find the real symmetries of the values, participating in the formulas. We do
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this in one of the 36 cases only, but the formulas and the symmetries are analogous in the other
cases. Theorem 2 in Sec. III contains this result.

Il. THE SPECTRUM OF THE PROBLEM

Consider the problem of rotation of a four-dimensional rigid body around a fixed point in a
quadratic potential field. The system, describing this motion is

M=[M, W]-[U, 1],
U=[U, W], @)

where M= (th);-‘,j:l, W= (W,-,j)?,j:l are skew-symmetric, /=diag(l,,l,,13.14), I}, k=1,....4
are real, positive, and different constants, M, j=I W j ,i,j,k,1 are different indexes from 1 to 4,
U=U'=(U, )} =1

In Ref. 10 it has been proved that the problem of a n-dimensional rigid body, rotating around
a fixed point in a quadratic potential field is completely integrable. In order to integrate Eq. (2) we
use Lax-representation with spectral parameter A

d e
C_i; L_[L7 Q]7

where L=N\2 diag(l,131,,1 131, ,1,1,1,,1,1,15)+ XM+ U, Q=W— \I. The matrices M, W, and U
are real.
The equation

I:det(L(z,A\)—y-1)=0, yeC

defines an affine algebraic curve which does not depend on ¢. After compactification and desin-
gularization, I" becomes a compact Riemann surface, called the spectrum of the problem. I is a
4-sheeted covering of the complex line X. The genus of I' is equal to 9. Obviously there is a
holomorphic involution o(y,A)=(y,—\) acting on I'. The “o-points” (points x €I, satisfying
ox=x) are 8—these are A~ '(0) and \"!(s). So, by the Riemann—Hurvitz theorem, the genus of
I''=T'/o is equal to 3.

Because of the real symmetries of the matrices M, U, and W the operator L(\) is self-
adjointed, i.e., L¥(A\)=L(—N\) (here * is the hermitean conjugation). Hence there exists an anti-
holomorphic involution 7,: I'—T, #A=identity, 7,(y,\)=(3%—\) such that®

(1) The set 't = {x e I':7;x = x} separates I into two components I'* and ['"; 7,00, =0,
k=1,..4.

(2) The function A does not have branch points over iRP' = {\{—l1z|z € RU®} and
AIGRPY = T,

The operator L (\) is also “real,” ie, LA) = L(N. Then there exists a second antiholo-
morphic involution 7,: I'-T, 7,(y,A)=(3\) such that®

(1) 7, commutes with 7, (7-1,=7," 7).
(2) Ty, =00,, i=1,..,4.

According to the classical Liouville’s theore:m,12 for almost all values of the first integrals, the
corresponding invariant compact varieties of a completely integrable system are homeomorphic
with several n-dimensional tori, on which the motion is straight linear. For the computation of the
tori where the flow of the system is linear we need to describe the structure of the surface I" with
the above-mentioned symmetries. We do this in the next section.
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ill. TOPOLOGY OF THE SOLUTIONS

Our aim is to make a topological classification of the four-tuples (I',7y,7;,\), where I is a
Riemann surface of genus g =9;
7: I'-T is an anti-involution separating I', i.e.,, T = T*uTrur-;
I" ={x e Tirx = x}; ql*=I"; T = gT'* = T, T"NI™=Q, 7¥x = -\ "
=\"!(iRP"); '
7,: I'—1 is an anti-involution, commuting with 7, 7,7,=7,7,=0 and satisfying the conditions:
5 = Aand A" H{(OU®)YCT™2;
A: T—=CP! is a 4-sheeted meromorphic function.

The four-tuples (I',7,m,\) and (I'',7{,73,A") are called algebraically equivalent if there
exists a biholomorphic map f: I'—T" such that the following diagrams are commutative:

" . r " .r

A
f f f f f cp?
7 5 X
I I I’ I I

Let H, be the space of the above-mentioned classes of equivalence of four-tuples (I',7;,7;,X).
Consider the space H, of pairs (I',A), forgetting temporarily the anti-involutions 7;,7,. [ is a
compact Riemann surface of genus 9, \ is a 4-sheeted meromorphic function without any branch
points at o, so that A has 24 branch points over T', giving an account of multiplicities.

According to the classical Clebsch theorem'? the pair (T',\) can be expressed as a multivalued
meromorphic function. Take 4 copies S,...,S, of CP! and let \; = As,: §;— CP! are biholo-

morphic maps, i=1,...,4. Take 12 disjoint paths ¥; ,...,y;, over CP' and give every v, two indexes
@, B, 1<a;<B;=<4. Cut S, and Sy along \;'(¥) and N3'(7,); glue the left beach of
x;i‘(yi) with the right beach of A ;il(y,.) and the right beach of A ;il('yi) with the left beach of
)\;il('y,-). So we constructed the pair (I',\).

The choice of the paths 7;,...,7,, is inessential. If we replace y; with 3 and UCCP! is the

t-path

x-path

p-path
l R-path

FIG. 1. Four types of paths.
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area between y; and % we must change the indexes a; and B;, if ¥,CU. If ay=a; then o
becomes ;. If a,=B; then a; becomes «;. If B,=B; then B, becomes «; .

Now, let us define a topology in the space H, of pairs (I',\). Two pairs (I',A) and (I’ \\') are
called algebraically equivalent if there exists a biholomorphic map f: I'—I’ such that
N (f(x))=\(x) for all xeI. Then we consider that (’,\)=(T",\") in H,.

Continuous deformation or s1mp1y deformation of (I',\) in H, we define as a continuous
deformation of the paths y; over CP' (including deformations of the ends of 7:), without changing
the indexes a;, ;. This defines topology in H.

The space H,4 of four-tuples inherits the topology from H,. Every component K of H, has a
representative (I'’, 7{,7;,A") e K which can be expressed as in the Clebsch theorem but sym-
metrically about R and iR paths ;. More precisely, (I'’, 7], 75 ,A’) has four types of paths:
R-paths: Pairs of paths (y;,%,)CR, symmetrical about iR.
p-paths: Pairs of paths (v;,%); v; ,yj cross R and are symmetrical about iR.
t-paths: Pairs of paths (y,, yk) Vi Y, cross iR and are symmetrical about R.
x-paths: Four paths (y;,%,y,,%), »NR=, y,NiR=, symmetrical about R and iR.
Moreover the symmetrical paths have the same indexes (@;8;), see Fig. 1. The R-, p-, t-, and
Xx-paths with indexes (@) we note by (aB)z, (aB),, (aB),, and (@B), correspondingly.

aff aff
’ \
4 \
o 2| [
T - N
% pra—
Y o
\k‘l ll4
N /
By ay ay B

FIG. 2. Operation O, (ay,af—aB,B7).
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af ____4____
off J&ﬂ
-r—-———

i
1
! af

—.)
D — aﬂ —— — et ——
| |
1 ! of af
i | o8 | B A

FIG. 3. Operation O,(af).

Recall that the our aim is to put every four-tuple (I',7;,7,,A) e H, in “standard type,” i.e., on every
component VCH, we choose an element v € V and then deform V to v. For this purpose we
consider the following 6 operations, which are deformations on Hy.

Operation 1. Replacement of a path & having indexes (a/3) with a path £ with the same ends
and the same indexes (efB); change the indexes a with 8 and the indexes B8 with « in the area G
between £ and £'. All that is done symmetrically about R and iR and has 5 versions—for p-, -,
and y-paths, for x- and r-paths, and for p- and x-paths. We note this operation by O,
(ay,af—aB,By). See Fig. 2.

Operation 2. Replacement of two neighboring -paths, having the same indexes (aB) with two
Xx-paths, having indexes (@), too. We note this operation with O, (aB), see Fig. 3.

Operation 3. Replacement of the ¢-path, having indexes (ay) with t-path, having indexes (35)
provided that there are two R-paths with indexes (af8) and (¥5). We note this operation with O,
(ay—B9), see Fig. 4.

Operation 4. Permutation of the numbers of sheets of the covering—{1,2,3,4}—{i|,i5,i3,i4}-
We note this operation with Oy (i},i5,i3,i4)-

Operation 5. Replacement of the y-path, having indexes (a7y) with the y-path having indexes
(B6), provided there are two R-paths, having indexes (af) and (yd). We note this operation with
O5(ay—B6), see Fig. 5. '

Operation 6. Replacement of two p-paths &£, having indexes (af) with two t-paths ,Z’,
having the same ends and the same indexes (@), but in the area G, between £,&',£,{’ changing the
indexes a with S and changing the indexes 8 with a. We note this operation by Oy, see Fig. 6.

Lemma 1: Given a set of t-paths, it can be changed and ordered in the following form:
(al,Bl),(arle),...,(alﬁkl); (azyl),(azyz),...,(a2'yk2),..., where a; # a;, B; # B;, ¥i ¥ V;
fori # j.

Proof: We use only O ,(ay,ef—aB,By) and O,(ap) if necessary.

Lemma 2: If there are at least two R-paths with indexes (12) and (34) then there exists such
deformation in H, which transforms R-paths so that there is one R-path, having indexes (34) and
the others R-paths have indexes (12). '

Proof: Let us transform three R-paths with indexes (12), (12), and (34) to three R-paths with
indexes (12), (34), and (34). Moreover the other paths will not change their indexes. As the
Riemann surface is connected there exists a ¢-path or a R-path, having indexes (12), (14), (23), or
(24). We consider only the case when there is z-path with indexes (13). We use only
O (ay,af—af,By) and Oy if necessary and the stages of the deformation are:

J. Math. #hys., Vol. 36, No. 10, Ccicber 1635
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ay
EY) aB af 8 02
oy
ay ay
18 af I I af vé 01
B
76 aof By By of 76
P N g E—
of ¥ By By 76 af 01 >
B8s 1 Bs
af} 46 l ¥6 af 02
R /a l I K~ -2, ?
N -~ -
Bé
~é aff of 6
S

FIG. 4. Operation O (ay—B9).

(12)R 9(12)R ’(34)R ’(13)t_'(23)R ’(23)R ’(13)1) ’(34)R'~>(23)R ’(23)R ’(34)R 9(14)R_)
(23)r,(14).(24),,(34) g~ (14),(24),,,(34) £ ,(34)g— (14)£ ,(34)g,(34) ,(23) g—
(23)£,(13),,(34)2,(34) g~ (12)£,(34)£ . (34)£.(13),.

We call the sheets  and B of the covering “connected with t-paths” if there exists a sequence
of ¢-paths with indexes (aa;),(at;@,),...,(a; B). This relation separates the sheets 1, 2, 3, 4 from the
disjoint z-components. If there is not a ¢-path with an index a we assume that the sheet a is a
single ¢-component.

Using operation 6 we transform the p-paths into ¢-paths. Applying Lemma 1 and operation 4
we can make the indexes of ¢-paths of the first -component to be (12),(13),...,(1 k), of the second
t-component (iy,i;+1),(i,,i;+2),...,(i,k,), etc. Thus we obtain a minimal number of t-paths,
for which there are not two ¢-paths, having the same indexes and moreover sequence of indexes of

J. Math. Phys., Vol. 36, No. 10, October 1995



A. Zhivkov and M. Stanislavova: On the dynamics of the four-dimensional rigid body 5767

oy | o J oy
af

oy B B oy
of

FIG. 5. Operation O5(ay— B9).

t-paths is minimal in the lexicographical ordering. If the R-paths also are minimal in number, there
are not two R-paths with indexes (aB), (ay), B+ y and applying Lemma 2 we receive the
minimal in the lexicographical ordering sequence of indexes of R-paths. Using operation 1 we
receive the minimal in the lexicographical ordering sequence of indexes of y-paths.

o -
af 6 02 8 , l 76 01
T
ay
af By ad k2
LS — ;l / ?
§ v 76
af a B 01
Bs Bs Bs
aff l 78 02 aff 76
|| s

FIG. 6. Operation Og.
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TABLE I. Possibilities for the ¢-paths.

number of connected components —
| number of ¢-paths

Number 1 2 3 4
0 \ \ \ &
1 \ \ (12) \
2 \ (12),(34) or (12),(13) \ \
3 (12),(13),(14) \ \ \

We define standard type of an element of H, as such representative of the same component of
H,, for which: (a) there exist only #-, R-, and y-paths, {b) the number of R-paths is minimal, {c)
the number of ¢-paths is minimal, (d) the sequence of indexes of paths (¢|R|x) is minimal in the
lexicographical ordering.

According to Lemma 1, all possibilities for the z-paths are as in Table I. All possibilities for
the x-paths, according to the number and indexes of ¢-paths, are given in Tables II-V together
with the operations, by which one couple of indexes replace the other when it is possible and when
we like it. The empty squares in the tables are the possible combinations.

For the z-paths there exist the following five cases.

Case I. There is not a t-path.

Then all possible couples of indexes of y-paths are (12), (13), (14), (23), (24), and (34). Combi-
nations of two ¢-paths are given in Table IL. If there are three x-paths, there are not R- and ¢-paths,
because of the number of branch points. Hence y-paths have indexes (12), (13), and (14) in order
to have the connected Riemann surface.

Case II. There is one ¢-path (with indexes (12)).

Applying operation 1 we replace with y-paths, having indexes (23) or (24) with y-paths, having
indexes (13) or (14), respectively. The possibilities are given in Table III by the empty squares.

Case III. There are two f-paths with indexes (12) and (13) correspondingly.

Applying operation 1 we replace (23), (24), and (34) indexes of y-paths, with (13), (14), and (14),
respectively. See in Table IV the possibilities for combinations of two y-paths.

Case IV. There are two t-paths with indexes (12) and (34) correspondingly.
Applying operation 1 we replace (23), (24), and (14) indexes of y-paths with (23), (24), and (34),
respectively. See table V.

Case V. There are three r-paths with indexes (12), (13), and (14).
By operation 1 we replace every y-path with a y-path, having indexes (12).

The above five cases are all combinations of z-paths. In Table VI are given all possible
combinations of indexes of R-paths and ¢-paths together with the operations, which replace in-
dexes when it is possible and when we like it. All combinations of R-, -, and x-paths are given in
Tables VII-XI. If there is not such element of H, (because there are not enough branch points or
if the obtained Riemann surface is unconnected) the corresponding square is crossed out. The

TABLE II. Possibilities for the z-paths.

Indexes (12) (13) (14) (23) (24) (34)
(12) 0,(12,23—12,13) 0,(12,24—12,14)
(13) \ 0,(13,23—12,13) 0,(13,34—13,14)
(14) \ \ 0,(14,24—12,14) 0,(14,34—13,14)
(23) \ \ \ 01(23,24—23,24)
(24) \ \ \ \ 0,(24,34—23,24)
G4 v v \

J. Math. Phys., Vol. 36, No. 10, October 1995
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TABLE HI. Possibilities for the y-paths.

Indexes (12) (13) (14) (34)
(12)
(13) \
(14) \ \ 0,(13,34—13,14)
(34) \ \ \ 0,(14,34—13,14)

operations, by which elements of one and the same component of H, are changed with the element
of this component which is in standard type, are given in the tables too. Therefore the empty
squares in Tables VII-XI correspond to different components of H,. The different components of
H, are noted by A,B1,B2,...,Q1,Q2.

We call the connected components of I’ = {x e I':7;x = x} 7-ovals. Each oval is a cycle
over I'. According to Ref. 14, the set I'""UT" "2 consists of the following admissable elements:

(1) m-ovals k and 7k, where kN 7, k=(, see Fig. 7.

(2) Sequence of ovals ky,....,ky,, s=1, k;;,CI'™, ky; (CI'™, i=1,...,s and the sections
kiNky,koNks,....ky;—1MNky;,ky;N Kk, consist of one point. Such components of I'"'UT'"2 are
called gariands. See Fig. 8.

Define the signature deg N\, for the r,-oval k as the power of the covering Nk—RPL If k is
the T,-oval we define deg \,, as the power of the covering A:k—iRP!, Moreover when the anti-
involution 7 separates I',I'* induces an orientation over I'". Thus we define the sign of the number
deg A, when the anti-involution separates T".!> According to Ref. 15, the admissable four-tuples
(T, 71,m,A) have the following topological invariants:

(1) c—the number of garlands and deg A, for every oval k of anti-involution 7, included in this
garland (the signatures of A over ovals of 7, are always equal to 1);

(2) L,—the half of the 7-ovals, out of garlands (without “o-points™);

(3) e,—the type of 7,:;,=1 if I'"2 does not separate I and €,=2 otherwise. Moreover, if ;=2 and
if the unequality

> x/k,-'<k > | ME|=2

k;— 1y —oval ;—Tp—oval

is fulfilled, there exists an additional invariant X2;14
(4) x, is the genus of the surface

F*NA"YzeCllm z)0}, x,+L,<3.

In our case, x,=0 or x,=2, because Y, is even.
The above four invariants completely determine the different components of the space H,.
Thus we obtain the following

TABLE IV. Possibilities for the y-paths.

Indexes (12) (13) (14)

(12)
(13) A\
(14) \ \

J. Math. Phys., Vol. 36, No. 10, Cctober 1935
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TABLE V. Possibilities for the y-paths.

Indexes (12) (13) 34)
(12)
(13) \
(34) \ \

Theorem 1. There exist 36 topologically different four-tuples (I',7(,73,\), which can be the
spectra for the problem (2), i.e., the space H, consists of 36 components. Representatives of these
four-tuples are pictured in Fig. 9 where the Ty-ovals of degree O over RP' are drawn bold. The
number of the invariant tori in every case is 2"i. This number n; and the values of the invariants
are given in Table XIl. The general number of the invariant tori is 143.

Proof: 1t is seen from Tables I-XI that every component of H, can be transformed to one of
these 36 representatives. Since they have different values of at least one invariant, they are
different. The number of the invariant tori is computed by the following

Theorem. (Reference 16) The set T={z:1;2p= ~29, 929=29 + 1A —A(modA)}CJ(T') consists of
2! elements, where m=c +L,, c is the number of garlands, 2L, is the number of ovals of T, out
of garlands, A is the Riemann theta-divisor, A is the lattice of the periods. All 2"~ components
have dimension (over R)¥(g+ n— 1) where 27 is the number of o-points on T.

TABLE VI. Combinations of R- and ¢-paths.

indexes of z-paths —
} indexes of R-paths

Indexes %] (12) (12),(13) (12).(34) (12),(13),(14)
%] \ \
(12)
04(1324)+ 0,(1324)+
(13) 0,(23,12—12,13)
04(1432) 0,4(1243) 0,4(1243) 04(2341)+
(14) 0,(24,12—12,14)+
0,(23,12—12,13)
04(3214) 04(2134) 04(3124)+ 04(2134) 04(4123)+
(23) 0,(13,23—12,13) 0,(14,24—12,14)+
0,(14,34—13,14)
04(4231) 04(2143) 04(3124)+ 0,4(2143) 04(4123)+
24) 0,(13,23—12,13) 0,(14,24—12,14)+
0,(14,34—13,14)
04(3412) 04(2314)+ 04(3412) 04(3412)+
(34) 01(23,12—12,13) . ' 0,(34,13—13,14)
(12),34)
04(1324) 04(2314)+
(13),(24) 0,(23,12—12,13)
04(3412) 04(2134) 0,(3124)+ 04(2134) 04(2341)+
(14),(23) 0,(13,23—12,13) 01(24,12-12,14)+

0,(23,1213,12)
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TABLE VII. Combinations of R- and y-paths, when there are not z-paths.

indexes of R-paths —
| indexes of y-paths

Indexes %] (12) (12),(34)
1} \ \ \
(12) \ \ \
(13) \ \ C1
(14) \ \ 04(1243)
23) \ \ 042134)
24) \ \ 04(2143)
(34) \ \ \
(12),(12) \ \ \
(13),(13) \ \ Cc2
(14),(14) \ \ 04(1243)
23),(23) \ \ 0,4{1243)
(24),(24) \ \ 04(2143)
(34),(34) \ \ \
(12),(13) \ \ c3
(12),(14) \ \ 04(1243)
(12),(34) A\ \ A\
(13),(14) \ B1 0,(3412)+
0,(13,23—12,13)
(13),(24) \ B2 05(24—13)
(14),(23) A\ 04(2134) 0,(2134)
(14),(23) \ 04(2134) 04(2134)
(12),(13),(14) A W\ W

IV. EXPLICIT SOLUTIONS IN PRYM THETA-FUNCTIONS

In Ref. 6 formulas for the components W,; of the angular velocity have been found. Let a
canonical basis (a,b)=(ay,...,dq,b;,...,bg) in the one-dimensional homologies H (') be fixed.
Let A:T'—J(I') be the Abel’s map onto the Jacobian J(I') of I with an initial point xoeT’;
Aj=A(o;—®), where A: I'—C? is the continued Abel’s map after paths v;,...,y; from x4 to

TABLE VIII. Combinations of R- and x-paths, when there is one z-path with indexes (12).

indexes of R-paths —

| indexes of x-paths ’ (1,2),(34) (1,3),(24)
Indexes 12) (13) (34) +(12) +(13)
%] \ \ \ \ H1
(12) \ \ \ \ H2
(13) \ \ F1 G H3
(14) \ El 04(1234) 04(1234) 05(14—23)+
0,(23—13)
(34) \ E2 \ \ 05(34—12)+
(12),(12) \ \ \ * *
(13),(13) \ 0,(13-23)+ * *
0,(23,13—13,12)
(14),(14) \ \ 04(1243) * *
(34),(34) \ E3 \ * *
(12),(13) \ \ F2 * *
(12),(14) \ E4 \ * *
(12).(34) \ E5 \ * *
(13),(14) D Eé6 F3 * *
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TABLE IX. Combinations of R- and y-paths, when there are two ¢-paths with indexes (12),(13).

indexes of R-paths —
| indexes of y-paths

Indexes %] (12),(12) (14),(14) (12),(34)

(%) \ \ K1 L1

(12) \ \ K2 L2
0,(12,135512,23)+

(13) \ \ 04(1324) 0,(13,23512,23)+
0,(12,23—12,13)+

(14) * J K3 05(14—23)+

0,(23,13—12,13)

(12),(12) \ * * *

(13),(13) \ * * *

(14),(14) 0,(12,23—12,14)+ * * *

0,(14,1212,24)
{12),(13) \\ * * *
(12),(14) I * * *

(13),(14) 0,(12,23—12,13) * * *

*y,...,%4 have been fixed. Let €); be the meromorphic differential with a pole in o, , the principal
part of which is V= Id\ and with zero a-periods; U'eC? is the vector of b-periods of (};. Let
(=, ) =E(®;,%)[d\(;)d\(*;)] ""* where E(x,y),x,y T is the prime-form of the Rie-
mann surface I’ with a local coordinate A™' around o, .!” Let B be the Riemann matrix of I and
©[Z](z|B) be the Riemann theta-function with characteristics a,3,0[]1(z|B)=®(z|B). Then'®

®(20+IU)€(wj ,OOS) ’

4
M' x .
Wi()=;~1,) #—J exp( tz,l Iifxlﬂi+(<p§zo),Ajs)

where 79=A(d—®;—---—o,—A), A is the Riemann theta-divisor,
U=1LU"+LU*+1, U3+ 1,U* and the integrals are considered as a principal value if necessary.
The basis (a,b)=(ay,...,aq.,b,,...,b9) in H(I) is called the o-basis if

TABLE X. Combinations of R- and x-paths, when there are two r-paths with indexes (12),(34).

indexes of R-paths —
| indexes of y-paths

Indexes %] (12),(12) (13),(13) (12),(34) (13),(24)
@ \ \ o1 \ 05(34—12)
(12) \ \ 02 \ 04(34—12)
(13) * N 03 03(34—12) 05(34—12)
(34) \ \ 04(3412) * 05(34—12)
(12),(12) \ * * * *
(13).(13) 0,(13,12—12,23)+ * * * *
0,(13,23—12,13)

(34),(34) \ * * * *
(12),(13) M * * * *
(12),(34) \ * * * *
(13),(34) 0,(14,34-13,34)+ * * * *

0,(13,3413,14)
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TABLE XI. Combinations of R- and y-paths, when there are three z-paths with indexes (12),(13),(14).

indexes of R-paths —
| indexes of x-paths

Indexes (12) (13) (12),(12),(34) (13),(13),(24)
%] Pl Q1 04(14—23) 04(14-23)

(12) P2 Q2 * *

o(a))=—ay,0(a)=—ag,0(a3)=—ay,0(as)=—ay,0(as)= —as,0(as) = —as,
o(a;)=—a,,0(ag)=—a,y,0(ag)=—az,0(b;)=—by,0(b;)=—bg,
0(b3)=—bg,0(by)=—a4,0(bs)=—bs,0(b)=—bs,
(b7 = —by,0(bg) = —by,0(bg)= —bs.

In a o-basis the theta-function @(z,,...,z9|B) of genus 9 can be reduced to theta-functions of
genus 6 and 3. According to'”

O =(z1,...,29|B) =0 (2, + 27,2+ 23,23+ 29,:24,25,2612I1) O (2, — 27,22~ 25,23~ 29| 2{)

1 1 1
- — — 0 0 O
+0/2 2 2 (z1+ 27,29+ 28,23+ 29,24,25,26]211)
L0 0 0 0 0 O
1 1 1
XO|2 2 2|(zy—z7,20— 28,23 29|2),
[0 0 ©

where B is the Riemann matrix of T,H=(H,~j),-6,j=1 is the Prym matrix, §=(§,-j)ij=1 is the Rie-
mann matrix of I';=I/o (g(T";)=3). B, I, and { are related by

I+ p+dn Ii3+di o n o =&y Mpdin Miz—i3a
14 15 16
2 2 2 2 2 2
My +& p+dn Hp+in T I I =& Mpdn Mpa—dn
5 5 > 14 15 16 5 5 5
s +23 I+l H+iss n I o M —83 Mgz, Il
5 7 7 14 15 16 5 ) 5
I Iy I,; 20, 200 20, My I, 11EW
B=| Il I1s, g3 2004 20055 2TLe  IIys Iys I35
I, Mg, g3 2[Tg, 2ILgs 2Mgs s Iy 1109
=&y =4 Hi—4s n n h Oy +&n pt+dn Hiptds
14 15 16
2 2 2 2 2 2
My~ Tp—8n =0 I n n My +& Mptén Mptis
14 15 16
2 2 2 2 2 2
Oy =& =& Maz—Eas n n n I +8 Myt Hastdss
= 2 2 2 14 15 16 2 2 2
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TABLE XI. Theorem 1.

A. Zhivkov and M. Stanislavova: On the dynamics of the four-dimensional rigid body

Case Indexes of the paths (¢|R|x) Garlands L, € Tort
1 2 3 4 5 6
A 21)12,13,14) Gi(1,1);G,(1,1) 0 2 8

G3(1,1);G4(1,1)
B1 (212,12]13,14) G,(1,0,1,0) 1 2 8
G(1,1);G5(1,1)
B2 (D112,12]13,24) G,(1,0,1,0) 1 2 8
G,(1,1);G5(1,— 1)
Cl1 (2112,12,12,34|13) G,(1,0,1,0) 2 2 8
G,(1,0,1,0)
c2 (D]12,34]13,13) G(1,0,1,0) 0 2 2
G,(1,0,1,0)
C3 (2112,34]12,13) G(1,0,1,0) 0 1 2
G,(1,0,1,0)
D (12}12]13,14) G(1,0,1,0) 0 1 4
G(1,1);G3(1,1)
E1 (12]13,13,13]14) G(1,1,1,0,1,0) 2 2 8
G,(1,1)
E2 (1213,13,13}34) G4(1,1,1,0,1,0) 2 2 8
G,(1,-1)
E3 (12]13{34,34) G,(1,1,1,0,1,0) 0 2 2
Gy(1,—-1) X2=2
E4 (12]1312,14) G(1,1,1,0,1,0) 0 2 2
Gy(1,1)
ES (12113]12,34) G,(1,1,1,0,1,0) 0 2 2
Gy(1,—1) Xo=
E6 (12]13}13,14) G((1,1,1,0,1,0) 0 1 2
Gy(1,1)
F1 (12]34,34,34[13) G(1,1,1,1) 2 2 8
G,(1,0,1,0)
F2 (12J34]13,13) G(1,1,1,1) ] 2 2
G,(1,0,1,0)
F3 (12134]13,14) G(1,1,1,1) 0 1 2
G,(1,0,1,0)
G (12)12,12,3413) G,(1,0,1,0) 1 1 4
G,(1,0,1,0)

H1 (12]13,13,13,13,24|@) G4(1,0,1,0,1,0,1,0) 3 2 8

H2 (12]13,13,24/12) G4(1,0,1,0,1,0,1,0) t 2 2

H3 (12]13,13,24{13) G,(1,0,1,0,1,0,1,0) I 1 2
I (12,13|)12,14) G(1,1,1,1,1,1) 0 2 2

GZ(LI)
J (12,13]12,12|14) G,(1,1,1,0,1,0) 1 1 4
G2(111)

K1 (12,13|14,14,14,14|) G(1,1,1,1,1,0,1,0) 3 2 8

K2 (12,13]14,14]12) G,(1,1,1,1,1,0,1,0) 1 2 2

K3 (12,13|14,14|14) G(1,1,1,1,1,0,1,0) 1 1 2

L1 (12,13]12,12,12,34|2) G(1,0,1,0,1,0,1,0) 2 1 4
L2 (12,13[12,34{12) G,(1,0,1,0,1,0,1,0) 0 1 1
M (12,34|212,13) G,(1,1,1,1) 0 2 2

G,(1,1,1,1)
N (12,34(12,1213) G(1,1,1,1) 1 1 4
G,(1,1,1,1)

01 (12,34]13,13,13,13|2) G(1,1,1,0,—1,1,0) 3 2 8

02 (12,3413,13}12) G,(1,1,1,0,1,-1,1,0) 1 2 2

03 (12,34]13,13]13) G,(1,1,1,0,1,-1,1,0) 1 1 2
P1 (12,13,1412,12,12|) G(1,1,1,1,1,0,1,0) 2 1 4
P2 (12,13,14]12/12) G(1,1,1,1,1,0,1,0) 0 1 1

Q1 (12,13,14]13,13,13|@) G,(1,1,1,0,1,1,1,0) 2 1 4

Q2 (12,13,14{13]12) G,(1,1,1,0,1,1,1,0) 0 1 1
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a o5 I

b e
%

FIG. 7. m-oval.

The basis (a,b)=(ay,...,aq,b|,...,bg} in H|(I') is called 7;-basis if
7'1(01)=a7’7'1(02)=‘18,7'1(a3)=09,71(a4)=a4a71(45):a5,7'1(616):‘15,
mi(ar}=a;,m(ag)=as,mi(ag)=as,11(b1)=—by,7(by)=—bg,71(b3)=—bg,
T1(ba)=—a4,m(bs)= —bs,71(be) = —bg,T1(b7)= — by, 7(bg)= — by, T1(bg) = —b3.
In this basis the real part TCPrym,I" of the Prym variety pick up the form®
T={z0e C’:1120=—20,020=—2z0+ ocA—A(modA)},
where A = {27/~ 1N + MB|N,M e C% is the lattice of the periods.
Reducing the Riemann theta-function to Prym theta-function we get

Theorem 2. The components W ;; of the angular velocity of the rotation of a rigid body around
a fixed point in a quadratic potential field are equal to

(**)st(t)=(1]_ls)/1]s exp Ooz ’ooj
i [ i iii
1 v{+— v%+— v?+— v'; v? v? . on —~ = =i a
PIENC 2 2 2 4 s el@HURINBl2 2 2|29
1 2 3 U2 U2 Uy
Uy Uy Uy 0 0 0
X
i 0 iii
SL0|2 2 2 GE+UR2Im®| 2 2 2(0)20
0 00 0 0O 0 00
In this formula w;; depends on zoeT (see Table XIII), K;; depends on the Prym matrix

=11, 1), j=1 (see Table XIV), £ is the projection of zoe T on the Prym variety (see Table XV);

FIG. 8. Garland.
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FIG. 9. The different components of the space H,.
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FIG. 9 (Continued.)
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FIG. 9 (Continued.)

—N)
w
(%

v v{ v Uy v‘l‘ v v?
o] ol 02 0l vd ol oS
is a semiperiod (see Table XVI);
U is the projection of the vector U=1 U1+12U2+I3U3+I4U4 on the Prym vanety, is an

integral on I'/o

f 0)1“0)7,‘[ wz”‘wg,J W3~ Wy
oo 0 o

5 5 5

i-|
=(A(®j=00,)—Aq(0;—0,),A,(®;—00,)—Ag(®;—©,),A3(%;—®)—Ag(®;—®,)).

The Prym-matrix IT, A=A js and U have real symmetries—see Tables XVII-XIX. All tables are
for the component A of the space H,.

Remark: In the other 35 components of the space H, the formula is analogous, but we do not
compute the values of the quantities and their symmetries, because of the many computations,

which are similar to the above.
Proof: To prove the theorem it is convenient to work with characteristics

=2my=1¢+Be.

=

@
Ulp
Let Te ACH,. The basis (a,b) in Fig. 10 is a o-basis. In this basis cA=A'" and

Z=<P1 Q2 @3 Q4 Ps P @1tn; @ytny,  @3tng
Ol W W Ys WUs s Yytmy Yntmy gptmg)

where ny,n,,n3,m;,my,myel.

TABLE XIII. ﬁ;, on the component A of the space H,.

exp wi(g;+ o+t I+%)
exp mi(@+ g3+ i +3)
exp mi(@st+ist3)

exp wi(g + iy —ip+ 2)
exp mi(@ @+ — s+ 3)
exp mi(@y+ iy — s+ 3)

nn

L A
Il

UJNN:#WN

vt ot w

o

i
o
oW = =
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TABLE XIV. £ s on the component A of the space H,.

j=2.5=1 I,

j=3,s=1 ' _512_53

j=4,s=1 ~ 2,

j=2,5=3 B I1244_1-[55‘

j=2,5=4 21

j=3, s=4 ~ Tys 2 M,
2

The basis (a',b')=(a1,az,ag,,al—a7,a2—a8,a3—a9,al—a4,a2—a5,a3 —a6,b1+b4
+bq,byt+bstbg,bytbgtbg,—by,—bg,—bg,—by,—bs,—bg) is a T-basis. In this basis the
vector 2= — gzp(mod A) has the form

2ottt 2@testny o —eTn —eTmy T T s

% U 2 oTmy —my Yy s
where B' is the Riemann matrix in the basis (a’,b’). (See Ref. 18 for the formula, changing
characteristics when the basis is changed). If z=[{lz, 2z’ = [i,] g+ where

TABLE XV. £ on the component A of the space H,.

T o @& e e e o
W 2 2 2 2 204
T [ 1 1 1
z I R B R Bl ik ~<Pri]
2¢0 24 24 2y 2¢n 24 |,
T [ 1 _
(] (7} P3 —P1—3 (2] (]
200 20 2 20 2 204),
T @ e ¢ e~ —e5 ¢
1240 2¢n 243 24 2 2y |y
Ts e —%—%}
2 2 24 1 24 24 Iy
Ts [ _ 1 _
@ (%) (%] P11 —pr—3 P3
12 24 24n 24 2 245 15
T, [ _ L L
o B e O e~ —¢—3
2 2w, 24 24 24 245 Iy
Ts o e e e e —qo;—%]
280 240 24n 24 2t 2¢ |,
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TABLE XVI. The semiperiod on the component A of the space H,.

000 3 0 0
j=2,5=1 1 1 1
0 0 0 ~3 -3 -3
o000 1 o
j=3,s5=1 .
0 00 0 -3 -3
000 o0 o0 I
j=4,s=1
0000 0 -1
211
0o o0 i -%o0
j=2,5=3
0 00 -3 0 of
000 3 0 -3
j=2,s=4 .
0 0 0 -3 -3 0}
1 1
00 0 0 3 -3
j=3,s=4 0000 - 0

[+
<= — o —

&
’
I
.
/
L Ly

|
I
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I
I
|
|
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|
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o
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FIG. 10. o-basis on the component ACH,.
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¢'=pe—qy a'\ (p 4q\[a\[p q
e R A AN R

By the condition 7,z§ = —zg we find that m,=my=m;=0; ,=2¢, Us=24s, Yy=211,
¢4= —wl—nI/Z, (//5=—(,/f2—n2/2, l//6= _1/13_713/2. Therefore

Z=<P1 © @3 —@—ni/2 —@y—ny /2 —@3—n3/2 @itnp @ytn, @3tng
Ol Y s 24 2¢, 2¢ ¥y i, 2

and the variety T={zy:7;2p=—2zy, 0z¢=—2z¢(mod A)}CJ(') consists of 8 components
Ty,...,Tg, where

Ti={z2o=2mN—1(1, 2, 3,201,241, 205,4, ,th2 . 3)
(@1, 02,93, — €1, — ©2,~ ©3,91,92,93)B},

T2={Zo=2’”'\/_1(‘/’1"#2"1’3,21//1a2¢’2,21/'3,¢1,l/’2,¢3)
+(<P1,¢2,€03,_¢1_%,_<P2_%,_¢3_%,<P1,€02,§03)B},

Ty={zo=2m— 1041, 42, 93,201,242, 203,001, 5, ¥3)

(@102, 93, ~ P1— 3, P2, — @3, 01,92, 903)B},

Ta={zo=27V—1(¢1, 02, 03,201,242, 23,401 , by, 03)

(@1, 02903, @1~ 5~ P2~ 3,— €3,P1,¢2,93) B},

Ts={zo=27N=1(, 2, ¥3,21,282.283, 1,42, 3)
Q1,902,903 — €1~ 51— P2, — 93— 3, 91.92,903) B},

Te={zo=27N—1(h1, 2, 93,281,202, 23,41,¥2,3)
+(@1,902,03,~ Q1. — P23, — €3,¥1,92,93)B},

Ty={zo=2mN—1(y, b2, 03,201,242, 283,841, 42,83)
+(¢1’¢2’¢’3’_<P1’_<P2_%v_q):&_%’(Pl’¢2v¢3)B}’

Ts={zo=27N—1(41, 00,003,201, 2405, 2003, 4y , by, t03)

+(‘P17‘»02’4’3’_(P1’—(P2’——(p3—%’¢17‘P2!‘P3)B}'

Every component is a six-dimensional real torus, the coordinates of whigh are the real num-
bers [ ,@2,@3,¢1 ,1/12,(,03 € S1 = R/z. Thus we obtain
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20=((z0)1+ (20)7.(20)2+(20)5.(20)3+ (20)9.(20)4,(20)5.(20)6)
see Table XV. Let

4
L= "2 1.0, js=1,..4,
1

A= (A () +A7(),A,(®,) + Ag(,),A5(;) + Ag(®)),A4(®,),A5(% ), Ag(})),
A =A;—A,, js=1,..4,
A= (A1(2)) = A7(2,),A5(0;) — Ag(2,),A3(®;) — Ag(*0))),

A

Aj=A;—A;, js=1,..4
Using the formula

(*)@[g](z|3)=exp{ —;— (Ba,a)+{z+2mJ—1B,a){-O(z+2mwV—1B+Ba)

we determine that the denominator of (**) is

i

~

i

22 200 0 i
> el2 2 2 (Z+102I1)-0| 2 2 2{(0]20)
=0 1o 0000 0 00 0
and that
| PP iq
~ 000}, A
O(Aj+zo+1U)=2, 0|2 2 2 (Aj+2+100211)-0( 2 2 2|(4;,]29).
=0 1o o o0 0 0 o0 00 0

Letj=2? S=1’ (FyTl,Tz,)\)EACH4. Then

Jooo Lt o o0
A=
000 -3 -} -4

6
1 R A
In=3 Zl LU=5 Uy, U=(0\,....Us).

Using the formula (¥) we obtain
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000 L& 0 0

A . . , tU
®(A21+£+IUI2H)'CXP(IIZI)=®(2+IU+ 0 4

ZH) rexp
211 :

1 1 _1
0 0 -3 —3 —3

L1400 0], |
(C] A, +2+10]211)- exp(¢]

00000 O (An | ) P( 21)

Lty 000 L
=0 +A,+z2+tU|210

0 0 0 0 00O

21

R Oy + T+ 0y M+ 5+, (Ay) +(A2)2+(A21)s

- exp(tl,;)exp 7 + > + >

tU,+10,+10;  3,+7,+124
2 T

O v

on)

=

000 000 -1 -4 —

[ Y
[ RSN

] +34+1U
211

0 0 O 000 £ 0 O
+
211

tU, O+ M+, M+ 3+, 10, +:0,+1U0,
Xexp——z-—exp 4 + ) + )

M+ T+ 1154 23+ 25423
2 + 2

I+ T+ Tlys+ 0y I+ 03+ 11 4+ 113+ 114 +115y
4 2

1
=0 [?+22+ tU]21T)exp
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tU 10,410,410, 3,+5,4+5,+7,

2 2
. mV—1 +H11+H22+H33+H12+H13+H23+51+22+fs+ﬂ
2 4 2 2 2
tU+10,+:0; T +T,,+115,
+ +
2 2
000 L+ 0 O ) M, 2, =V=1
=0 +Z+tU|211 | -exp| — 4 ,
000 -4 -4 -1 4 2 2
. IL44
Kzl——'4—,

fay=explmV—1(@;+ @+ @3+ is+3)].

We compute that

pa=py-exp(my—1.3¢,)

and

-

24
exp(@(20),A21)=exp| TV— 1(@1+ @2+ @32 ¢) + 5|

The received expressions, substituted in (**) get us W5, for the component A of the space H,. In
the others cases for j,s=1,...,4 the computations are analogous.

The real symmetries of the Prym matrix follow from:

(1) The condition of realness B’ = PBP, where
0 0 I 1 0 0
p=l0 1 0]; 1={0 1 O
I 0 O 0 0 1

(2) The relations between B, I1, and (.
(3) The formula B'=M'BM ! (Ref. 18) for the basis change.

Let the paths y,,7y3,y, joint Py=00, with 0,0, 00, respectively. As we see in Fig. 15

TABLE XVII. The symmetries of U* on the component A of the space H,.

Reals Ui, U5, U5,.U5,U8,U3
2Re U= US+ U3
Other 2Re Us=U5+ Uj
symmetries 2Re Ug=Ui+Uj
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TABLE XVIII. The symmetries of A js on the component A of the space H,.

j=2s=1 Re Ay= (%—‘%3%)
i=hs=1  Re  Ay= (52- b, —)
j=2,5=3 Re 4*23 (§112§21 {12~ 57_2,4'132523)
=2, s=4 Re 2‘24 (511 §31 $12— 6'32,5132533)
io3,5m4 Re A= (5212531 {n— 532,5232(33)

Using o*w=—w and o*Q,=Q,, 77 Q

oYy,— Y,=—bstastastag,
v3—vs=—bstas+tas,
Y4~ V4= —bgtas.

——(—),s, s=1,...,

S=(U+ U35, U5+ U ,Us+Us Uy U5, Ug)

as well in Tables XVIII and XIX.

5787

4 we obtain the symmetries of the

as well in Table XVII, and of the 4,
In the other cases for j,s=

proven.

1,...,4 the computations are completely analogous. The theorem is

TABLE XIX. The symmetries of the Prym matrix IT on the component A of the space Hj,.

Reals

Pure imaginaries

I,; i=

ij

12,3, j=1,..6
IL;; i,j=4,56

Hll
ReTly=——" Relly=~

I,

Re I1,=Re [I5,=— >

Other 3
Re H43=Re H61=_ —2—

symmetries I,,
Re I3=Re lg=——~

1—122
7 Relle==

I

HM—Im I, JIss=1Im I15; T =1Im Ilg;

Is= Im(l'I42 +15,)

=73 p Im(T1,;+1g,)
=3 Im(IL;; +11,)
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