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The paper addresses the conditional non-linear stability of the steady state solutions
of the one-dimensional Klein-Gordon equation for large time. We explicitly construct
the center-stable manifold for the steady state solutions using the modulation method
of Soffer and Weinstein and Strichartz type estimates. The main difficulty in the one-
dimensional case is that the required decay of the Klein-Gordon semigroup does not
follow from Strichartz estimates alone. We resolve this issue by proving an additional
weighted decay estimate and further refinement of the function spaces, which allows
us to close the argument in spaces with very little time decay. C© 2011 American
Institute of Physics. [doi:10.1063/1.3660780]

I. INTRODUCTION

In this paper, we are interested in the asymptotic stability of steady state solutions of Klein-
Gordon type equations:

utt − �u + u − N (u) = 0, (t, x) ∈ R+ × Rd, (1)

where N (u) is the nonlinear term. With some assumptions on the nonlinear term, it has been proved
by the authors of Ref. 14 that these solutions are in fact linearly and nonlinearly unstable. Our interest
is the conditional stability of such steady state solutions. This kind of stability has been extensively
studied recently. For example for the equation utt − �u = |u|5, in Ref. 14, the existence of steady
state solutions, the linear and the nonlinear instability of such solutions have been proved. However,
it has been also proved in Ref. 16 that for the special perturbation to the steady state solution of utt

− �u = |u|5, the solution exists globally and remains near the steady state. Thus, a center-stable
manifold for the steady state in the sense of Bates and Jones1 is described. In 1989, Bates and Jones1, 2

proved that for a large class of semilinear equations, including the Klein-Gordon equation, the space
of solutions decomposes into an unstable and center-stable manifold. Similar result was proved in
Ref. 10 for the semilinear Schrödinger equation in any dimension. Both are abstract results and do
not deal with the global in time behavior of the solutions, e.g., existence and asymptotic behavior.
The first asymptotic stability result was obtained by Soffer and Weinstein,22, 23 (see also Ref. 24),
followed by works of Pillet and Wayne,20 Buslaev, Perelman, Sulem,5–7 Rodnianski-Schlag-Soffer21

etc. In this context, we would like to mention some recent work of Schlag,25 Krieger and Schlag15

and Beceanu3, 4 on the existence of center-stable manifold for the pulse solutions of the focusing
cubic nonlinear Schrödinger equation in dimension three. It identifies a center-stable manifold in
the critical for the equation space H1/2 and shows that solutions starting on the manifold exist
globally in time and remain on the manifold for all time answering an open question in Ref. 10.
Recently the authors of Ref. 26 proved a conditional stability of the steady state solutions of (1)
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with N (u) = |u|p−1u for the dimension d = 2, 3 and 4 where p ≥ 1 + 4/d. In terms of center-stable
manifold for the solution, their result shows the global in time behavior of the solutions and a precise
description of the manifold which includes its co-dimension and decay rates. In these problems,
since Strichartz estimates are key, the lower the dimension, the harder it is to close the argument.
The main difficulty in the one-dimensional case is that the required decay of the Klein-Gordon
semigroup does not follow from Strichartz estimates alone. One needs to further refine the function
spaces and use additional decay estimates to resolve this issue. The techniques we use are similar to
the ones used in Refs. 15, 18, and 26.

In this paper, we consider steady state solutions for the equation,

utt − uxx + u − |u|p−1u = 0 (t, x) ∈ R+ × R1, (2)

for p ≥ 5 and explicitly construct the center-stable manifold for such solutions.
We will introduce some notations that we will use throughout this paper. We denote

‖ f ‖Lr
t Ls

x (R;〈x〉pdx) =
(∫

R

(∫
R
〈x〉p| f (t, x)|sdx

)r/s

dt

)1/r

‖ f ‖Ls
x (R;〈x〉pdx)Lr

t
=

(∫
R
〈x〉p

(∫
R

| f (t, x)|r dt

)s/r

dx

)1/s

and 〈x〉 = √
1 + x2.

The existence and uniqueness of steady state solutions of (1) are shown in Ref. 17 for p < d+2
d−2

when d ≥ 3 and for any p when d = 1, 2. These solutions are positive, radial and exponentially
decaying. Next lemma in Ref. 8 shows the explicit form of such solutions for (2).

Lemma 1.1: For all p ∈ (1, ∞) the steady state solution φ(x) of (2) has the explicit form

φ(x) = cp cosh−β

(
x

β

)
, cp =

(
p + 1

2

) 1
p−1

, β := 2

p − 1
(3)

φ(x) satisfies (2) and is the unique H 1(R)-solution up to translation.

The linearization of (2) around the steady state solution φ is given by the operator H := −∂2
x

+ 1 − pφ p−1. The spectral stability of the steady state solutions is determined by the spectrum of
the operator H. Next lemma gives the spectrum and the corresponding eigenfunctions.

Lemma 1.2: (See Theorem 3.1 in Ref. 9) For the equation (2), assume 3 ≤ p < ∞. Then there
exists σ = σ (p) > 0, such that the spectrum of H is given by

σ (H) = {−σ 2} ∪ {0} ∪ [1,∞) (4)

with Hψ = −σ 2ψ . The eigenfunctions {ψ} and {φ′} (corresponding to the eigenvalue at − σ 2 and
0 respectively) are decaying at infinity and mutually orthogonal.

In particular, in the one-dimensional case the so called “gap lemma” for the spectrum is satisfied
if p ≥ 3, namely there are no eigenvalues in (0, 1].

Another issue that will be important in our argument is the absence of resonances. More
precisely, we say that a resonance occurs at k, if there is a bounded solution φ to the equation
H[φ] = kφ. We use an equivalent condition, namely a resonance occurs at k, if the Wronskian W(k)
of the Jost solutions vanishes at k, see Sec. III C below. This phenomenon presents a well-known
complication in establishing dispersive estimates. However, resonances for operators like H do not
occur anywhere, except possibly at the edge of the continuous spectrum, that is at 1. In the explicit
one-dimensional case under consideration, we rule this out. In fact, we have the following result
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Lemma 1.3: For p > 1, the operator Hp has resonance, exactly at p j = 1 + 2
j−1 , j = 2, 3, . . ..

In particular, for p > 3, Hp is resonance free.

We prove Lemma 1.3 in the Appendix, but it follows easily from the theory developed in
Ref. 28. The resonances at pj can also be explained easily from the complete eigenvalue picture
provided in Ref. 9. Namely, for each pj and p close to pj, we have eigenvalues λ(p), so that
limp→p j λ(p) = 1. Thus, as p → pj, regular eigenvalues collide with the continuous spectrum
creating resonances at the bifurcation points pj.

Next, we will describe an explicit construction of the center-stable manifold 	, which is our
main result. This conditional stability theorem states that if the initial data u0 satisfies u0 − φ ∈ 	,
then the solution will approach in an exponential way or slower the steady state φ. In this theorem,
we will assume the initial data to be even. This will destroy the eigenvalue at 0. Since the evolution
preserves even solutions and the zero eigenvalue has only odd eigenfunctions, the whole evolution
proceeds perpendicularly to that marginally stable direction. Thus we will be looking for a solution
u in the form (5). More precisely, we will write differential equations for the unknown functions
a(t) and z(t), which we will solve using fixed points for certain maps. We will show that these maps
do indeed have fixed points, in view of the linear estimates that they satisfy. These will be in turn
a consequence of the spectral assumptions and the decay of the bound state. Our main theorem is
given next.

Theorem 1.4: For (2) with 5 ≤ p < ∞, and Hψ = −σ 2ψ where σ = σ (p), there exists 0 < ε

= ε(p) < <1 and 0 < δ = δ(p) < <1, and a function

h : BH 1 (δε) × BL2 (δε) ∩ {( f, g) : 〈σ f + g, ψ〉 = 0} → R1

so that whenever the real-valued initial data is even and

u(0) = φ + f1 + h( f1, f2)ψ
ut (0) = f2

〈σ f1 + f2, ψ〉 = 0; ‖( f1, f2)‖H 1×L2 < δε,

then

u(t, x) = φ(x) + a(t)ψ + z(t, x) (5)

z = Pa.c.(H)z.

‖z‖L5
t L10

x ∩L∞
t H 1

x ∩L∞
x (R;〈x〉−3/2dx)L2

t
≤ ε

‖a‖L3
t [0,∞)∩L∞

t [0,∞) ≤ ε.

A few comments are in order. Our result constructs the co-dimension one center-stable manifold
of initial data, for which the solutions of (1) close to the steady states stay close to the said steady
states (and in fact converge at certain rate to zero). The results are important in several different
regards - first, they show that the center-stable manifold is indeed a co-dimension one object,
which is not a priori clear. Secondly, the actual construction, while of course implicit, relies on
am implicit constraint (53), which we exhibit below and which is of independent interest. Thirdly,
the paper develops new spectral and functional analytic tools for proving dispersive estimates for
the perturbed Klein-Gordon evolution, which might prove useful in other related situations. Note
that the explicit form of the decaying perturbative term will not be of particular importance for the
argument below and in fact can be generalized to nonlinearities of the form N(|u|2)u, with appropriate
conditions on N.
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II. MAIN LINEAR ESTIMATES

The proof of the conditional stability theorem is based on a spectral decomposition or modulation
argument and a contraction mapping argument in the appropriate spaces. The key is to define the
spaces and the norm in such a way that one is not only able to close the argument, but also infer
the decay rates. In this section, we will explain how to prove Lemma 2.1 and Lemma 2.2 which
are the main tools needed to show the conditional stability result. The lemmas in this section will
also help to understand the reason why we are choosing these particular spaces.

Let Pa.c. be a spectral projection associated to the continuous spectrum of H = −∂2
x + 1

− pφ p−1. It should be noted that for the results of this section, the particular form of the potential
pφp − 1 is unimportant and in fact they hold for any Schrödinger operator in the formL = −∂xx + V ,
where V has sufficient polynomial decay at infinity and no eigenvalues or resonances at zero. For
our particular case, V = − pφp − 1, these are satisfied by (3) and Lemma 1.2, Lemma 1.3.

Lemma 2.1: There exists a positive constant C such that for any g(t, x) ∈ S(R2)
and t ∈ R, ∥∥∥∥∥

∫ t

0

e−i(t−s)
√
H

√
H

Pa.c.g(s, ·)ds

∥∥∥∥∥
L5

t L10
x ∩L∞

t H 1
x

≤ C‖g‖L2
t L2

x (R,〈x〉5dx) (6)

Lemma 2.2: There exists a positive constant C such that for any g(t, x) ∈ S(R2) and t ∈ R,∥∥∥∥〈x〉−3/2
∫ t

0
e−i(t−s)

√
HPa.c.g(s, ·)ds

∥∥∥∥
L∞

x L2
t

≤ C‖〈x〉3/2g‖L1
x L2

t
(7)

Remark 1: In order to prove Lemma 2.1 and Lemma 2.2, we will prove Lemma 2.3 and Lemma
2.4 first.

Lemma 2.3: There exists a positive constant C such that for any f ∈ S(R)

‖〈x〉−3/2e−i t
√
HPa.c. f ‖L∞

x L2
t
≤ C‖ f ‖L2 (8)

where Pa.c.(H) is the spectral projection associated to the continuous spectrum of H = −∂2
x + 1

− pφ p−1.

Lemma 2.4: There exists a positive constant C such that for any g(t, x) ∈ S(R2)∥∥∥∥
∫

R
eis

√
HPa.c.g(s, ·)ds

∥∥∥∥
L2

x

≤ C‖〈x〉3/2g‖L1
x L2

t
(9)

In order to explain the difficulties involved and why we need to resort to the weighted estimates
above, let us consider a very simple and naive model, which is nevertheless instructive. Consider a
Schrödinger equation, which is not unlike our Klein-Gordon model

wt + i∂xxw = w2η + w p, (t, x) ∈ R1+1.

with small data, where η is a rapidly decaying function and p ≥ 5. It is not hard to check that the
equation wt + i∂xxw = wp, one may apply the standard Strichartz estimates for eit∂xx and be done
with it very quickly. The addition of the highly-localized in x (but not rapidly decaying in time)
term w2η presents a new challenge in one spatial dimension in particular. Note that for example in
dimensions d ≥ 3, this term can be handled by Strichartz estimates as well. This necessitates the
introduction of the weighted estimates in Lemmas 2.1–2.4, which in essence permits exchanging
this extra spatial decay for some extra time decay, just enough to close the fixed point arguments.

Before we embark on the proofs of these lemmas which are, as we saw, necessary ingredients
in the proof of our main result, let us comment on the strategy and previous results in this direction.
The Strichartz and decay estimates for Schrödinger operators with potentials have been subject of
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intense investigations in the last twenty years, for example.5, 7, 11, 18, 29, 30 In these works, the authors
prove decay/Strichartz estimates for the Schrödinger evolution eit( −� + V), in different dimensions
and under different assumptions on the potential V - like decay, absence of resonances/eigenvalues
at zero energy. It has to be mentioned that the requirement for absence of zero eigenvalue and/or
potential has been mostly removed in the one dimensional case (maybe at the expense of slightly
worst decay requirements on V).

As we mentioned above, in the concrete applications to asymptotic stability of one dimensional
waves, the low powers become hard to handle and therefore, one needs the weighted estimates,
similar to Lemma 2.3.

Although, we do not use any of these results in our work, we use heavily the approach of these
earlier papers. We follow mostly the scheme of Mizumachi,18 for the Schrödinger equation, which
we consider a pioneering work in the area.

As is well-understood by now, one needs to split the estimates into high and low frequency
regimes. In the high frequency regimes, one basically uses integration by parts (although this is
accomplished by a non-trivial Born series expansion of the resolvents, together with a precise
knowledge of the free resolvents). In low frequency, we have to heavily utilize known properties of
the Jost solutions, which generate the perturbed resolvents directly. In all of this, we use what has
become a standard way of approaching these weighted dispersive estimates. On the other hand, our
arguments are being applied to study the Klein-Gordon’s equation and as such, they are new and
have subtleties, which are not present in the work of Mizumachi.

III. PROOF OF MAIN TECHNICAL LEMMAS

A. Proof of Lemma 2.3 and Lemma 2.4

Define ϕ(x) to be a smooth function satisfying 0 ≤ ϕ(x) ≤ 1 for x ∈ R and

ϕ(x) =
{

1 if x ≥ 2
0 if x ≤ 1

(10)

and let ϕM(x) be an even function satisfying ϕM(x) = ϕ(x − M) for x ≥ 0 and let ϕ̃M (x) = 1 − ϕM (x).
Then define L := H − 1 = −∂2

x − pφ p−1

Pa.c.e
−i t

√
H f = Pa.c.e

−i t
√

L+1 f = e−i t
√

L+1ϕM (
√

L + 1) f + Pa.c.e
−i t

√
L+1ϕ̃M (

√
L + 1) f (11)

Let R(λ) = (λ − L)− 1, from Spectral Decomposition Theorem and Complex Analysis since

f (L) = 1

2π i

∫
℘

f (λ)(λ − L)−1dλ (12)

where ℘ is the curve containing the absolute continuous spectrum of L, we have

ϕM (
√

L + 1)e−i t
√

L+1 f = 1

2π i

∫ ∞

0
e−i t

√
λ+1ϕM (

√
λ + 1)(R(λ − i0) − R(λ + i0)) f dλ (13)

and

Pa.c.e
−i t

√
L+1ϕ̃M (

√
L + 1) f = 1

2π i

∫ ∞

0
e−i t

√
λ+1ϕ̃M (

√
λ + 1)Pa.c.(R(λ − i0) − R(λ + i0)) f dλ

(14)
By change of variables μ := √

λ + 1, (13) becomes

= 1

π i

∫ ∞

−∞
χ[1,∞]e

−i tμϕM (μ)(R(μ2 − 1 − i0) − R(μ2 − 1 + i0))μ f dμ (15)
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Applying integration by parts for j times, we get

ϕM (
√

L + 1)e−i t
√

L+1 f

= (i t)− j

π i

∫ ∞

−∞
e−i tμ∂ j

μ{χ[1,∞]ϕM (μ)(R(μ2 − 1 − i0) − R(μ2 − 1 + i0))μ} f dμ (16)

in S ′
x (R) for any t �= 0 and f ∈ Sx (R2). Since

‖∂ j
λ Pa.c. R(λ ± i0)‖B(L2,( j+1)/(2+0),L2,−( j+1)/(2−0)) � 〈λ〉−( j+1)/2 (17)

the integral is absolutely convergent in L2,−( j+1)/2
x for j ≥ 2.

Suppose g(t, x) = g1(t)g2(x) where g1 ∈ C∞
0 (R − {0}), g2 ∈ S(R). Define

〈u1, u2〉x :=
∫ ∞

−∞
u1(x)u2(x)dx (18)

〈v1, v2〉t,x :=
∫ ∞

−∞

∫ ∞

−∞
v1(t, x)v2(t, x)dxdt (19)

Thus

〈ϕM (
√

L + 1)e−i t
√

L+1 f, g〉t,x =
∞∫

−∞

∞∫
−∞

ϕM (
√

L + 1)e−i t
√

L+1 f g1(t)g2(x)dxdt (20)

Using (16), we get

〈ϕM (
√

L + 1)e−i t
√

L+1 f, g〉t,x

= 1

π i

∞∫
−∞

dt(i t)− j g1(t)

∞∫
−∞

dμe−i tμ∂ j
μ〈χ[1,∞](R(μ2 − 1 − i0) − R(μ2 − 1 + i0))ϕM (μ)μ f, g2〉x

By Fubini’s Theorem

= 1

π i

∞∫
−∞

dμ∂ j
μ〈χ[1,∞](R(μ2 − 1 − i0) − R(μ2 − 1 + i0))ϕM (μ)μ f, g2〉x

∞∫
−∞

dt(i t)− j e−i tμg1(t)

Doing integration by parts for j times

=
√

2√
π i

∫ ∞

−∞
dμ(Ft g1)(μ)〈χ[1,∞](R(μ2 − 1 − i0) − R(μ2 − 1 + i0))ϕM (μ)μ f, g〉x

From Fubini’s Theorem

=
√

2√
π i

∫ ∞

−∞
dx

∫ ∞

−∞
dμ〈χ[1,∞](R(μ2 − 1 − i0) − R(μ2 − 1 + i0))ϕM (μ)μ f Ft g(μ, x))

Using Plancherel’s Theorem and Cauchy Schwartz Inequality

|〈ϕM (
√

L + 1)e−i t
√

L+1 f, g〉t,x |

�
√

2√
π i

‖ϕM (μ)μ(R(μ2 − 1 − i0) − R(μ2 − 1 + i0)) f ‖L∞
x L2

μ
‖g(μ, x))‖L1

x L2
μ

Similarly

|〈Pa.c.e
−i t

√
L+1ϕ̃M (

√
L + 1) f, g〉t,x |

�
√

2√
π i

‖〈x〉−3/2ϕ̃M (μ)Pa.c.(R(μ2 − 1 − i0) − R(μ2 − 1 + i0))μ f ‖L∞
x L2

μ
‖〈x〉3/2g(μ, x))‖L1

x L2
μ
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If we combine these two and assuming the next two inequalities (21) and (22) hold

‖ϕM (μ)(R(μ2 − 1 − i0) − R(μ2 − 1 + i0))μ f ‖L∞
x L2

μ
� C‖ f ‖L2 (21)

‖〈x〉−3/2ϕ̃M (μ)Pa.c.(R(μ2 − 1 − i0) − R(μ2 − 1 + i0))μ f ‖L∞
x L2

μ
� C‖ f ‖L2 (22)

we get

|〈x〉−3/2〈e−i t
√

L+1 Pa.c. f, g〉t,x | � C‖ f ‖L2‖g‖L1
x L2

μ
(23)

Since C∞
0 (Rt − {0}) ⊗ S(Rx ) is dense in L1

x L2
t and by duality principle

‖〈x〉−3/2e−i t
√

L+1 Pa.c. f ‖L∞
x L2

μ
� C‖ f ‖L2 (24)

Now we will prove (21) then (22) in order to complete the proof of the lemma. We will use Green’s
functions to show (21), Scattering Theory and Jost functions to prove (22).

B. Proof of (21): High energy estimate

Let R0(λ) = (λ + ∂2
x )−1 and G1(x, k) = eik|x |

2ik , and λ = k2 with k ≥ 0 and V := − pφp − 1. Then
R0(λ ± i0)δ = G1(x, ∓k). If M is sufficiently large, we have

R(λ ± i0) =
∞∑
j=0

R0(λ ± i0)(V R0(λ ± i0)) j u (25)

for λ ∈ R with |λ| > M and u ∈ S(R) since

‖〈x〉−1 R0(λ ± i0)〈x〉−1‖B(L2(R)) � 〈λ〉−1/2 (26)

The sum is absolutely convergent because

R(λ ± i0)u =R0(λ ± i0)u + R0(λ ± i0)V R0(λ ± i0)u + ...

=〈x〉〈x〉−1 R0(λ ± i0)〈x〉−1〈x〉u
+ 〈x〉〈x〉−1 R0(λ ± i0)〈x〉−1〈x〉V 〈x〉〈x〉−1 R0(λ ± i0)〈x〉−1〈x〉u + ...

Since V is exponentially decreasing and u ∈ S(R), the absolute sum in L2 is bounded by

C
j=∞∑
j=1

〈λ〉− j/2. Since |λ| > M and M is large enough, the geometric series converges. Now if we

assign λ = μ2 − 1, then we can write

‖ϕM (μ)R(μ2 − 1 ± i0)μu‖L∞
x L2

μ
� ‖ϕM (μ)R0(μ2 − 1 ± i0)μu‖L∞

x L2
μ

+
∞∑

n=1

‖ϕM (μ)F1,n(x,∓k)‖L∞
x L2

μ
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where

F1,n(x,∓k) := R0(μ2 − 1 ± i0)(V R0(μ2 − 1 ± i0))nμu(x) (27)

‖ϕM (μ)R0(μ2 − 1 ± i0)μu‖2
L∞

x L2
μ

= sup
x

∫
R

|ϕM (μ)R0(μ2 − 1 ± i0)μu|2dμ

= sup
x

∫
R

k√
k2 + 1

|ϕM (
√

k2 + 1)R0(k2 ± i0)
√

k2 + 1u|2dk

= sup
x

∫
R

k
√

k2 + 1|ϕM (
√

k2 + 1)(G1(·,∓k) ∗ u)(x)|2dk

� sup
x

∫
R

(∣∣∣∣
∫ ∞

x
u(y)e±ikydy

∣∣∣∣
2

+
∣∣∣∣
∫ x

−∞
u(y)e∓ikydy

∣∣∣∣
2
)

dk

� ‖u‖2
L2

x

Similarly one can write

F1,n(x,±k) =
∫

Rn+1
G1(x − x1,±k)

n∏
j=1

(V (x j )G1(x j − x j+1,±k))
√

k2 + 1u(xn+1)dx1...dxn+1

(28)
Since ∫

R
G1(xn − xn+1)u(xn+1)dxn+1 = G1(xn) ∗ u(xn) (29)

by Minkowski’s Inequality, we get

‖ϕM (μ)F1,n(x,±k)‖L2
μ

=
(∫

R
|ϕM (μ)F1,n(x,±k)|2dμ

)1/2

�
∫

Rn

n∏
j=1

V (x j )dx1...dxn

×
(∫

R
k(k2 + 1)|ϕM (

√
k2 + 1)G1(x − x1)...G1(x − xn)|2|(G1 ∗ u)(xn)|2dk

)1/2

� ‖V ‖n
L1 sup

xn

(∫
R

k−2nk(k2 + 1)|ϕM (
√

k2 + 1)(G1 ∗ u)(xn)|2dk

)1/2

� ‖V ‖n
L1 M (−2n+1)/2‖u‖L2 for n ≥ 1

Since V ∈ L1(R), u ∈ S(R) and M is sufficiently large, we have

‖ϕM (μ)R(μ2 − 1 ∓ i0)μu‖L∞
x L2

μ
� ‖u‖L2 +

∞∑
n=1

‖V ‖n
L1 M−n+1/2‖u‖L2

� ‖u‖L2

C. Proof of (22): Low energy estimate

This section is based on Jost functions and Scattering Theory. Let f1(x, k) and f2(x, k) be the
solutions to Lu = k2u satisfying

lim
x→∞ |e−ikx f1(x, k) − 1| = 0, lim

x→−∞ |eikx f2(x, k) − 1| = 0 (30)

Define

m1(x, k) := e−ikx f1(x, k), m2(x, k) := eikx f2(x, k)
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Then

m1(x, k) = 1 +
∫ ∞

x

e2ik(y−x)

2ik
V (y)m1(y, k)dy

m2(x, k) = 1 +
∫ x

−∞

e2ik(x−y)

2ik
V (y)m2(y, k)dy

13 tells that for x ∈ R and k ∈ C with nonnegative imaginary part,

|m1(x, k) − 1| � 〈k〉−1(1 + max(−x, 0))
∫ ∞

x
〈y〉|V (y)|dy (31)

|m2(x, k) − 1| � 〈k〉−1(1 + max(x, 0))
∫ x

−∞
〈y〉|V (y)|dy (32)

For every δ > 0, there exists Cδ > 0 such that for every x ∈ R and k ∈ C with nonnegative imaginary
part and |k| ≥ δ

|m1(x, k) − 1| � Cδ

∫ ∞

x
|V (y)|dy (33)

|m2(x, k) − 1| � Cδ

∫ x

−∞
|V (y)|dy (34)

The resolvent operator R(λ ± i0) with λ = k2 has the kernel

K±(x, y, k) =
⎧⎨
⎩

− f1(x,±k) f2(y,±k)
W (±k) if x > y

− f2(x,±k) f1(y,±k)
W (±k) if x < y

(35)

where W (k) = f ′
1(x, k) f2(x, k) − f1(x, k) f ′

2(x, k) where the Wronskian W(k) is independent of x.

R(λ ± i0)u = − f1(x,±k)

W (±k)
(I1 + I2 + I3) − f2(x,±k)

W (±k)
(I I1 + I I2)

where I1(k) =
∫ 0

−∞
e−ikyu(y)dy, I2(k) =

∫ 0

∞
e−iky(m2(y, k)−1)u(y)dy, I3(k) =

∫ x

0
f2(y, k)u(y)dy

and I I1(k) =
∫ ∞

x
eikyu(y)dy, I I2(k) =

∫ ∞

x
eiky(m2(y, k) − 1)u(y)dy.

Bound for I1: Assuming x > 0, (31) and (32) imply that

sup
x>0

(| f1(x, k)| + 〈x〉−1| f2(x, k)|) < ∞ (36)

Then

|I1| =
∣∣∣∣
∫ x

0
f2(y, k)u(y)dy

∣∣∣∣ �
∫ x

0
〈y〉|u(y)|dy �

(∫ x

0
〈y〉2dy

)1/2 (∫ x

0
|u(y)|2dy

)1/2

� 〈x〉3/2‖u‖L2

By using (31) and (32), Cauchy-Schwartz Inequality and the properties of Fourier Transform,
one can also bound I2, I3, II1 and II2 by C‖u‖L2 . Then since W(k) �= 0 for every k ∈ R and ϕ̃M (k) is
compactly supported, it follows that

‖ϕ̃M (μ)Pa.c. R(μ2 − 1 ± i0)μ f ‖L∞
x L2

μ

= sup
x

(∫
R

|k|(k2 + 1) | ϕ̃M (k)
∫
R

K±(x, y, k)u(y)dy |2 dk

)1/2

� 〈x〉3/2‖u‖L2
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This finishes the proof of Lemma 2.3.
In fact, the proof of Lemma 2.4 relies on a simple duality argument, based on Lemma 2.3.

Define T f := 〈x〉−3/2e−i t
√
HPa.c. f . From Lemma 2.3, we have ‖T f ‖L∞

x L2
t
≤ C‖ f ‖L2 . Then using

Fubini’s Theorem and Duality Principle we get

|
∫
R

∫
R
〈x〉−3/2e−i t

√
HPa.c. f hdxdt | = |〈 f,

∫
R

dteit
√
HPa.c.〈x〉−3/2h〉x | ≤ C‖ f ‖L2‖h‖L1

x L2
t

(37)

If we define g := 〈x〉− 3/2h, then (9) follows by duality principle.

D. Proof of Lemma 2.1 and Lemma 2.2

First, we need the following

Definition 3.1: We say that a pair (q, r) is KG admissible (sharp KG admissible respectively),
if q, r ≥ 2: 2/q + d/r ≤ d/2 (q, r ≥ 2: 2/q + d/r = d/2 respectively) and (q, r, d) �= (2, ∞, 2).

Lemma 3.2: (Lemma 2.1 in Ref. 19 with σ = d, λ = (d + 2)/2). Let (q, r), (q1, r1) be both KG
admissible pairs and s ≥ 0. Then, for H0 = −� + 1,

‖eit
√
H0 f ‖Lq

t W r,s
x

≤ C‖ f ‖
H s+ d+2

2 ( 1
2 − 1

r )∥∥∥∥
∫ t

0

sin((t − s)
√
H0)√

H0
G(s, ·)ds

∥∥∥∥
Lq

t W r,s
x

≤ C‖G‖
L

q′
1

t W
r ′
1 ,s−1+ d+2

2 ( 1
r ′
1

− 1
r )

By using wave operators, as in Ref. 26, one can show the same inequalities for H = −∂2
x + 1

− pφ p−1.

Proof of Lemma 2.1: From Strichartz estimates for the Klein Gordon equation, we have

‖e−i t
√
HPa.c. f ‖L5

t L10
x ∩L∞

t H 1
x

≤ C‖ f ‖H 1 (38)

Similarly, we get ∥∥∥∥∥e−i t
√
H

√
H

Pa.c. f

∥∥∥∥∥
L5

t L10
x ∩L∞

t H 1
x

≤ C‖ f ‖L2 (39)

and from Lemma 2.4, we know that∥∥∥∥
∫
R

eis
√
HPa.c.g(s, ·)ds

∥∥∥∥
L2

x

≤ C‖〈x〉3/2g‖L1
x L2

t
(40)

Let

T g(t) =
∫
R

e−i(t−s)
√
H

√
H

Pa.c.g(s)ds (41)

Choose

f :=
∫
R

eis
√
HPa.cg(s)ds ∈ L2(R) (42)

Then using (39) and (40) and Cauchy-Schwartz inequality, we get

‖T g‖L5
t L10

x ∩L∞
t H 1

x
=

∥∥∥∥∥
∫
R

e−i(t−s)
√
H

√
H

Pa.c.g(s, ·)ds

∥∥∥∥∥
L5

t L10
x ∩L∞

t H 1
x

� C‖ f ‖L2 � C‖〈x〉3/2g‖L1
x L2

t
� ‖〈x〉5/2g‖L2

x L2
t
‖〈x〉−1‖L2

x

� C‖g‖L2
t L2

x (R;〈x〉5dx)
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Using the result in Ref. 12, it follows that∥∥∥∥
∫

s<t
e−i(t−s)

√
HPa.c.g(s)ds

∥∥∥∥
L5

t L10
x ∩L∞

t H 1
x

� ‖g‖L2
t L2

x (R;〈x〉5dx) (43)

Thus we complete the proof of Lemma 2.1. �
Proof of Lemma 2.2: In order to show Lemma 2.2, we shall need two modifications of results

appearing in Ref. 18. These will be needed to control various terms, arising in the analysis of the
estimate (7).

The first result is stated in Ref. 18 for self-adjoint operators H = −∂2
x + V , but in fact, it is

applicable for any self-adjoint operator acting on L2.

Proposition 3.3: (Lemma 11, Ref. 18) Let H be a self-adjoint operator and
g(t, x) = g1(t)g2(x). Define the function

U (t, x) = i√
2π

∫ ∞

−∞
e−i tλǧ1(λ){R(λ − i0) + R(λ + i0)}[Pa.c.(H )g2]dλ,

where ǧ1 is the inverse Fourier transform of g1. Then

U (t, x) = 2
∫ t

0
e−i(t−s)H Pa.c.(H )g(s, ·)ds +

∫ 0

−∞
e−i(t−s)H Pa.c.(H )g(s, ·)ds

−
∫ ∞

0
e−i(t−s)H Pa.c.(H )g(s, ·)ds

One can obtain similar results for expressions in the form
∫ t

0 e−i(t−s)
√
HPa.c.(H)g(s, ·)ds with g(t, x)

= g1(t)g2(x). Namely, based on the argument in Proposition 3.3, we have

i

2
√

2π

∫ ∞

1
e−i t

√
λǧ1(λ){R(λ − i0) + R(λ + i0)}[Pa.c.(H)g2]dλ =

∫ t

0
e−i(t−s)

√
HPa.c.(H)g(s, ·)ds −

∫ ∞

0
e−i(t−s)

√
HPa.c.(H)g(s, ·)ds +

∫ 0

−∞
e−i(t−s)

√
HPa.c.(H)g(s, ·)ds

Solving for the Duhamel’s operator, associated with our evolution, we get the following formula∫ t

0
e−i(t−s)

√
HPa.c.(H)g(s, ·)ds =

= i

2
√

2π

∫ ∞

1
e−i t

√
λǧ1(λ){R(λ − i0) + R(λ + i0)}[Pa.c.(H)g2]dλ +

+1

2

∫ ∞

0
e−i(t−s)

√
HPa.c.(H)g(s, ·)ds − 1

2

∫ 0

−∞
e−i(t−s)

√
HPa.c.(H)g(s, ·)ds

Combining Lemma 8 and Lemma 10 from Ref. 18 yields the following. Note that there is a missing
Pa.c.(H) from the statement of both lemmas in Ref. 18.

Proposition 3.4: Let H = −∂2
x + V (x), where V(x) is a real valued potential, which decays

sufficiently fast. Then

sup
λ

‖ < x >−1 RH (λ ± i0)Pa.c.(H )u‖L∞
x

≤ C

< λ >1/2
‖ < x > u‖L1

x
. (44)

Note: The constant <λ > − 1/2 in (44) is not stated in Lemma 8,18 (which is the high-frequency
version regime, i.e., λ > >1), but it is very explicit in the estimates there.

We are now ready to proceed with the proof of Lemma 2.2. First, it is standard that in order to
establish (7), it suffices to consider functions g(t, x) = g1(t)g2(x). Therefore, in view of our formula
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for
∫ t

0 e−i(t−s)
√
HPa.c.(H )g(s, ·)ds, it remains to establish

‖〈x〉−1
∫ ∞

1
e−i t

√
λǧ1(λ)R(λ ± i0)[Pa.c.(H)g2]dλ‖L∞

x L2
t
≤ C‖g1‖L2

t
‖〈x〉g2‖L1

x
(45)

‖〈x〉−3/2
∫ ∞

0
e−i(t−s)

√
HPa.c.(H)g(s, ·)ds‖L∞

x L2
t
≤ C‖〈x〉3/2g‖L1

x L2
t

(46)

‖〈x〉−3/2
∫ 0

−∞
e−i(t−s)

√
HPa.c.(H)g(s, ·)ds‖L∞

x L2
t
≤ C‖〈x〉3/2g‖L1

x L2
t

(47)

The proofs of (46) and (47) are similar, so we concentrate on (46). We have from (8) and (9)

‖〈x〉−3/2
∫ ∞

0
e−i(t−s)

√
HPa.c.(H)g(s, ·)ds‖L∞

x L2
t
=

= ‖〈x〉−3/2e−i t
√
HPa.c.(H)

∫ ∞

0
eis

√
HPa.c.(H )g(s, ·)ds‖L∞

x L2
t
≤

≤ C‖
∫ ∞

0
eis

√
HPa.c.(H)g(s, ·)ds‖L2

x
≤ C‖〈x〉3/2g‖L1

x L2
t
.

Regarding (45), we have by Plancherel’s theorem in the time variable and Cauchy-Schwartz inequal-
ity that

‖〈x〉−1
∫ ∞

1
e−i t

√
λǧ1(λ)R(λ ± i0)[Pa.c.(H)g2]dλ‖L∞

x L2
t
≤

≤ 2 sup
x

|〈x〉−1‖
∫ ∞

1
e−i tμμǧ1(μ2)R(μ2 ± i0)[Pa.c.(H)g2]dμ‖L2

t
≤

≤ C(
∫ ∞

−∞
|μ||ǧ1(μ2)|2dμ)1/2 sup

μ

|μ|1/2 sup
x

|〈x〉−1 R(μ2 ± i0)(Pa.c.(H)g2)(x)|

From (44), we have ‖〈x〉−1 R(μ2 ± i0)Pa.c.(H)〈x〉−1‖L1
x →L∞

x
≤ C < μ >−1, whence

sup
x

|〈x〉−1 R(μ2 ± i0)(Pa.c.(H)g2)(x)| ≤ C〈μ〉−1‖ < x > g2‖L1
x
.

Overall, observing that (
∫ ∞
−∞ |μ||ǧ1(μ2)|2dμ)1/2 ≤ ‖ǧ1‖L2 = ‖g1‖L2

t
and |μ|1/2〈μ〉− 1 < 1, we con-

clude

‖〈x〉−1
∫ ∞

1
e−i t

√
λǧ1(λ)R(λ ± i0)[Pa.c.(H)g2]dλ‖L∞

x L2
t
≤ C‖g1‖L2

t
‖〈x〉g2‖L1

x
,

which is (45). �
IV. PROOF OF THE THEOREM 1.4

In this section, we will prove the conditional stability result by applying the fixed point theorem.
We will set the contraction map and the function spaces. In order to prove the contraction mapping
theorem, for the decay estimates, we will apply Lemma 2.1 and Lemma 2.2 and for the Strichartz
estimates, we will use Lemma 3.2.

A. Analysis of a(t) and z(t) equations

Taking the ansatz (5) into (2), we get

zt t + Hz + ψ(a′′(t) − σ 2a(t)) − F(t, x) = 0 (48)
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where

F(t, x) = |φ + a(t)ψ + z|p−1(φ + a(t)ψ + z) − φ p − pφ p−1(a(t)ψ + z(t)) (49)

Taking the spectral projections, we derive the equations

a′′(t) − σ 2a(t) − 〈F(t, ·), ψ〉 = 0 (50)

zt t + Hz − Pa.c.[F] = 0 (51)

The explicit solution of (50) is in the form

a(t) = cosh(σ t)a(0) + 1

σ
sinh(σ t)a′(0) + 1

σ

∫ t

0
sinh(σ (t − s))〈F(s, ·), ψ〉ds (52)

Note that, if we separate the exponentially growing terms from the exponentially decaying ones, we
come up with

a(t) = eσ t

2

[
a(0) + 1

σ
a′(0) + 1

σ

∫ t

0
e−σ s〈F(s, ·), ψ〉ds

]
+ exponentially decaying term.

In order to have a vanishing solution, we must have a(t) → 0, and so, at the very least, we must
ensure (by taking appropriate initial data)

a(0) + 1

σ
a′(0) + 1

σ

∫ ∞

0
e−σ s〈F(s, ·), ψ〉ds = 0. (53)

The non-explicit non-linear equation (53) defines the center stable manifold as we shall show below
and in that sense, it is useful in its own right. It also shows (modulo the successful completion of
our argument) that it is co-dimension one. This, although being heuristically expected (due to the
presence of a single unstable direction of the linearized operator), is not at all an obvious statement.

According to our definitions a(0) = 〈(f1 + hψ), ψ〉 = h + 〈f1, ψ〉. Similarly, a′(0) = 〈f2, ψ〉.
Taking into account 〈 f1 + 1

σ
f2, ψ〉 = 0, we have no choice, but to set (as in Ref. 26)

h( f1, f2) = − 1

σ

∫ ∞

0
e−σ s〈F(m(s)), ψ〉ds (54)

Thus, (52) becomes equivalent to

a(t) = e−tσ

2
[a(0) − 1

σ
a′(0)] − 1

2σ

∫ t

0
e−σ (t−s)〈F(s, ·), ψ〉ds − 1

2σ

∫ ∞

t
eσ (t−s)〈F(s, ·), ψ〉ds

(55)
Taking into account Pa.c.(H)ψ = 0, the explicit solution of (51) is in the form

z(t) = cos(t
√
H)Pa.c. f1 + sin(t

√
H)√

H
Pa.c. f2 +

∫ t

0

sin((t − s)
√
H)√

H
Pa.c.[F(s, ·)]ds (56)

B. Setting the contraction map and the function spaces

Let � be a contraction map defined as �: X → X such that �(m) = m̃ where m := (h, a(t), z(t))
defined as (54)–(56) and m̃ = (h̃, ˜a(t), ˜z(t))

h̃ := − 1

σ

∫ ∞

0
e−σ s〈F(m(s)), ψ〉ds,

ã(t) := e−tσ

2
[a(0) − 1

σ
a′(0)] − 1

2σ

∫ t

0
e−σ (t−s)〈F(s, ·), ψ〉ds − 1

2σ

∫ ∞

t
eσ (t−s)〈F(s, ·), ψ〉ds,

z̃(t) := cos(t
√
H)Pa.c. f1 + sin(t

√
H)√

H
Pa.c. f2 +

∫ t

0

sin((t − s)
√
H)√

H
Pa.c.[F(s, ·)]ds.
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Let the norm on X be defined as ‖m‖X := max (M0(m), M1(m), M2(m)) such that

M0(m) := |h|

M1(m) := ‖a‖L3
t ([0,∞))∩L∞

t ([0,∞))

M2(m) = ‖z‖L5
t L10

x ∩L∞
t H 1

x ∩L∞
x (R;〈x〉−3/2dx)L2

t

Our goal is to show that � is a contraction map defined on the Banach Space X, whose fixed point
will be the desired solution.

C. Estimating M0(m̃)

M0(m̃) = |h̃| ≤ 1

σ

∫ ∞

0
e−σ s |〈F(m(s)), ψ〉|ds (57)

From Proposition 3 in Ref. 26, we have

|F(t, x)| ≤ C p(φ p−2(|a(t)|2ψ2 + |z(t)|2) + |a(t)|pψ p + |z(t)|p) (58)

Then it follows

|〈F(m(s)), ψ〉| ≤ C(|a(s)|2 + ‖z(s, ·)‖2
L2

x
+ |a(t)|p + ‖z(s, ·)‖p

L2
x
) (59)

where C depends on various Lw norms of the decaying functions φ, ψ . It follows that

M0(m̃) ≤ C

σ

∫ ∞

0
e−σ s(|a(s)|2 + ‖z(s, ·)‖2

L2
x
+ |a(t)|p + ‖z(s, ·)‖p

L2
x
)ds

≤ C

σ 2
(‖a‖2

L∞ + ‖z‖2
L∞

t L2
x
+ ‖a‖p

L∞ + ‖z‖p
L∞

t L2
x
)

≤ C

σ 2
(M1(m)2 + M2(m)2 + M1(m)p + M2(m)p) ≤ 2C

σ 2
(ε2 + ε p) ≤ min(1, σ )

ε

10

provided C(ε + ε p−1) ≤ 1
20σ 2 min(1, σ ).

Note that we used Sobolev embedding and Gagliardo-Nirenberg’s inequality to estimate ‖z‖L∞
t L2

x

which states that for any KG admissible pair (q, r), one has the following estimate:

‖z‖Lq
t W r,1−(d/2−2/q−d/r )−1/q−2/(dq)

x
≤ M2(m) (60)

D. Estimating M1(m̃)

In order to estimate M1, we will use the fact that if h = h̃ and 〈σ f1 + f2, ψ〉 = 0, then
2〈 f1, ψ〉 + h̃ = a(0) − a′(0)

σ
. M1(m̃) has two components. First, we estimate

sup
t

|ã(t)| ≤ 1

2
(2|〈 f1, ψ〉| + |h̃|) + 1

2σ
sup

t

∫ t

0
e−σ (t−s)|〈F(m(s)), ψ〉|ds

+ 1

2σ
sup

t

∫ ∞

t
eσ (t−s)|〈F(m(s)), ψ〉|ds

From (59) and the estimates for M0(m̃), it follows

sup
t

|ã(t)| ≤ δε + ε

10
+ 1

σ 2
sup

s
|〈F(m(s)), ψ〉|

≤ δε + ε

10
+ C

σ 2
(M1(m)2 + M2(m)2 + M1(m)p + M2(m)p) ≤ ε

provided δ < 1/2 and 2C(ε + εp − 1) ≤ σ 2/4.
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For the second component, we use Hausdorff-Young’s inequality

‖ã‖L3
t
≤ (‖ f1‖L2 + |h̃|)

(∫ ∞

0
e−3σ t dt

)1/3

+ 1

2σ
‖e−σ |·|‖L1‖〈F(m(s)), ψ‖L3

s

≤ (δε + ε

10
min(1, σ ))

1

min(1, σ )
+ 1

2σ 2

(∫ ∞

0
|〈F(m(s)), ψ〉|3ds

)1/3

From Proposition 3 in Ref. 26, we estimate

|〈F(m(s)), ψ〉| ≤ C(|a(s)|2 + ‖z(s, ·)‖2
Lr

x
+ |a(t)|p + ‖z(s, ·)‖p

Lr
x
) (61)

It follows that(∫ ∞

0
|〈F(m(s)), ψ〉|3ds

)1/3

≤ C(‖a‖2
L6

t
+ ‖a‖p

L3p
t

+ ‖z‖2
L6

t L6
x
+ ‖z‖p

L3p
t L6

x

) (62)

Since p ≥ 5, we estimate ‖a‖L6 , and ‖a‖L3p . By Gagliardo-Nirenberg’s inequality (or log-convexity
of Lp norms), for w ≥ 3,

‖a‖Lw(0,∞) ≤ M1(m). (63)

This follows from

‖a‖Lw(0,∞) ≤ ‖a‖3/w

L3(0,∞)‖a‖1−3/w

L∞(0,∞) ≤ M1(m). (64)

Thus we have

‖a‖L6
t
, ‖a‖L3p

t
≤ M1(m) ≤ ε (65)

and because (6, 6), (3p, 6) are KG admissible, it follows that

‖z‖L6
t L6

x
, ‖z‖L3p

t L6
x
≤ M2(m) ≤ ε (66)

Thus we have

‖ã‖L3
t
≤ 1

min(1, σ )
(δε + min(1, σ )

ε

10
) + Cσ (2ε2 + 2ε p) (67)

and it suffices to require that δ < min (1, σ )/2 and 2Cσ (ε + εp − 1) ≤ ε/4 in order to conclude that

M1(m̃) = max(‖ã‖L∞
t
, ‖ã‖L3

t
) ≤ ε (68)

E. Estimating M2(m̃)

M2 has two components. Firstly, we will estimate

‖z̃‖L5
t L10

x ∩L∞
t H 1

x
� C‖ cos(t

√
H)Pa.c. f1‖L5

t L10
x ∩L∞

t H 1
x
+

∥∥∥∥∥ sin(t
√
H)√

H
Pa.c. f2

∥∥∥∥∥
L5

t L10
x ∩L∞

t H 1
x

+
∥∥∥∥∥
∫ t

0

sin((t − s)
√
H)√

H
Pa.c. F(m(s))

∥∥∥∥∥
L5

t L10
x ∩L∞

t H 1
x

Using Strichartz Estimates and Sobolev Embedding,

‖ cos(t
√
H)Pa.c. f1‖L5

t L10
x ∩L∞

t H 1
x

≤ C‖ f1‖H 1 (69)

Similarly we get ∥∥∥∥∥ sin(t
√
H)√

H
Pa.c. f2

∥∥∥∥∥
L5

t L10
x ∩L∞

t H 1
x

≤ C‖ f2‖L2 (70)
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Using (58), we get∥∥∥∥∥
∫ t

0

sin((t − s)
√
H)√

H
Pa.c. F(m(s))

∥∥∥∥∥
L5

t L10
x ∩L∞

t H 1
x

�
∥∥∥∥∥
∫ t

0

sin((t − s)
√
H)√

H
Pa.c.φ

p−2(|a(s)|2ψ2 + |z(s, ·)|2) + |a(s)|pψ p + |z(s, ·)|p

∥∥∥∥∥
L5

t L10
x ∩L∞

t H 1
x

� ‖a‖2
L4

t
+ ‖a‖2

L p
t
+ ‖z‖2

L∞
x (〈x〉−3/2)L2

t
+ ‖z‖p

L p
t L2p

x

We use Lemma 2.1 and Cauchy-Schwartz Inequality to get ‖a‖L4
t

and ‖z‖L∞
x (〈x〉−3/2)L2

t
. We have∥∥∥∥∥

∫ t

0

sin((t − s)
√
H)√

H
Pa.c.φ

p−2|a(s)|2ψ2

∥∥∥∥∥
L5

t L10
x ∩L∞

t H 1
x

� ‖φ p−2|a(t)|2ψ2‖L2
t L2

x (R;〈x〉5)

� ‖a‖2
L4

t

Similarly we have∥∥∥∥∥
∫ t

0

sin((t − s)
√
H)√

H
Pa.c.φ

p−2|z(s, ·)|2
∥∥∥∥∥

L5
t L10

x ∩L∞
t H 1

x

� ‖φ p−2|z(t, x)|2‖L2
t L2

x (R;〈x〉5)

� ‖z‖2
L∞

x (〈x〉−3/2)L2
t

We apply Lemma 3.2 in order to get ‖a‖2
L p

t
and ‖z‖p

L p
t L2p

x
. We take q ′

1 = 1 and r ′
1 = 2.∥∥∥∥∥

∫ t

0

sin((t − s)
√
H)√

H
Pa.c.|a(s)|pψ p + |z(s, ·)|pds

∥∥∥∥∥
L5

t L10
x ∩L∞

t H 1
x

� ‖a‖2
L p

t
+ ‖z‖p

L p
t L2p

x

Thus we have

‖z̃‖L5
t L10

x ∩L∞
t H 1

x
≤ C(‖( f1, f2)‖H 1(R)×L2(R) + ‖a‖2

L4
t
+ ‖a‖2

L p
t
+ ‖z‖2

L∞
x (R;〈x〉−3/2dx)L2

t
+ ‖z‖p

L p
t L2p

x
)

Since p ≥ 5, we have

‖a‖L4
t
, ‖a‖L p

t
≤ M1(m) ≤ ε (71)

From Strichartz Estimates, p ≥ 5 implies that
2

p
+ 1

2p
≤ 1

2
, thus we get

‖z‖L p
t L2p

x
≤ M2(m) (72)

Also it is clear that ‖z‖L∞
x (R;〈x〉−3/2dx)L2

t
≤ M2(m) ≤ ε.

It follows that

‖z̃‖L5
t L10

x ∩L∞
t H 1

x
≤ C1(δε + 2ε2 + 2ε p) ≤ ε (73)

if C1δ ≤ 1/4, C1(ε + εp − 1) ≤ 1/4.
For the second component

‖z̃‖L∞
x (R;〈x〉−3/2dx)L2

t
� C‖ cos(t

√
H)Pa.c. f1‖L∞

x (R;〈x〉−3/2dx)L2
t

+
∥∥∥∥∥ sin(t

√
H)√

H
Pa.c. f2

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

+
∥∥∥∥∥
∫ t

0

sin((t − s)
√
H)√

H
Pa.c. F(m(s))ds

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t
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By Lemma (2.3), we have

‖ cos(t
√
H)Pa.c. f1‖L∞

x (R;〈x〉−3/2dx)L2
t
≤ C‖ f1‖L2 (74)

and ∥∥∥∥∥ sin(t
√
H)√

H
Pa.c. f2

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

≤ C‖ f2‖H 1 (75)

In order to estimate the last term, we will use∥∥∥∥∥
∫ t

0

sin((t − s)
√
H)√

H
Pa.c. F(m(s))ds

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

�
{‖F‖L1

t L2
x‖F‖L2

t L2
x (R;〈x〉3dx)

(76)

The first inequality follows from Lemma 2.3.∥∥∥∥∥
∫ t

0

sin((t − s)
√
H)√

H
Pa.c. F(m(s))ds

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

≤
∫ t

0
dt

∥∥∥∥∥〈x〉−3/2eit
√
H

(
e−is

√
H

√
H

Pa.c.F(m(s))

)∥∥∥∥∥
L∞

x L2
t

�
∫ ∞

0
ds

∥∥∥∥∥e−is
√
H

√
H

Pa.c. F(m(s))

∥∥∥∥∥
L2

x

� ‖F‖L1
t L2

x

The second inequality follows from Lemma 2.2 and Cauchy-Schwartz Inequality.∥∥∥∥∥
∫ t

0

sin((t − s)
√
H)√

H
Pa.c. F(m(s))ds

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

� ‖〈x〉3/2 F‖L1
x L2

t
� ‖F‖L2

t L2
x (R;〈x〉3dx)

Using (58) and (76), we get∥∥∥∥∥
∫ t

0

sin((t − s)
√
H)√

H
Pa.c. F(m(s))ds

∥∥∥∥∥
L∞

x (R;〈x〉−3/2dx)L2
t

� ‖φ p−2|a(t)|2ψ2‖L2
t L2

x (R;〈x〉3) + ‖φ p−2|z(t, x)|2‖L2
t L2

x (R;〈x〉3)

+‖|a(t)|pψ p‖L2
t L2

x (R;〈x〉3) + ‖|z(t, x)|p‖L1
t L2

x

� ‖a‖2
L4

t
+ ‖z‖2

L∞
x (〈x〉−3/2)L2

t
+ ‖a‖p

L2p
t

+ ‖z‖p

L p
t L2p

x

Since p ≥ 5, we can control ‖a‖L4
t
,‖z‖L∞

x (R;〈x〉−3/2dx)L2
t
, ‖a‖L2p

t
,‖z‖L p

t L2p
x

. It follows that

‖z‖L∞
x (R;〈x〉−3/2dx)L2

t
≤ C2(δε + 2ε2 + 2ε p) ≤ ε (77)

if C2δ ≤ 1/4, C2(ε + εp − 1) ≤ 1/4. Thus we can conclude

M2(m̃) = max(‖z‖L5
t L10

x ∩L∞
t H 1

x
, ‖z‖L∞

x (R;〈x〉−3/2dx)L2
t
) ≤ ε (78)

Thus we can say that for appropriately chosen ε and δ, so that ‖( f1, f2)‖H 1×L2 , we can establish �:
Bx(ε) → Bx(ε). Note that all the estimates leading to that conclusion were in the form

‖�(m)‖X ≤ C‖m‖X (1 + ‖m1‖X + ‖m2‖X )p−1. (79)

In order to finish the proof of the contraction mapping theorem, we have to prove that � is a
contraction, i.e., ‖�(m1) − �(m2)‖ ≤ C‖m2 − m1‖ for some C < 1. It is standard in this line of
reasoning that if one has (79) and the non-linearity F has some “multilinear” feature, then the proof
of (79) can be used to show the contraction of the same map. Indeed, all we have to observe that,
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similar to (58), we have

|F(a, z) − F(b, w)| ≤ C p,φ,ψ (φ p−2[(|a − b|)(|a| + |b|) + |z − w|(|z| + |w|)]
+ψ p|a − b|(|a| + |b|)p−1 + |z − w|(|z| + |w|)p−1). (80)

This last estimate will allow us to do the same estimates as before, except that the entries will be the
difference term m1 − m2. This way, we show the following analogue of (79)

‖�(m1) − �(m2)‖X ≤ C‖m1 − m2‖X (‖m1‖X + ‖m2‖X )(1 + ‖m1‖X + ‖m2‖X )p−2,

which implies the desired contractivity of the map � for small ‖m1‖X, ‖m2‖X.
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APPENDIX A: PROOF OF LEMMA 1.3

We use the theory developed in the Titchmarsh book,28. The non-resonant condition is equivalent
to WH(1) �= 0, where WH(λ) = f ′

1(x, λ) f2(x, λ) − f1(x, λ) f ′
2(x, λ) was defined in Sec. III C. In our

situation, we have H = 1 − ∂2
x − p(p+1)

2 cosh−2( (p−1)
2 x) = 1 + L. Therefore WH(λ) = WL(λ − 1)

and hence, we need to show WL(0) �= 0.
In order to prove that claim, we use the results in Secs. 2.18 and 4.19 in Ref. 28. Namely, take

θ , φ, which solve (L − λ)y = 0, subject to φ(0) = 0, φ′(0) = − 1, while θ (0) = 1, θ ′(0) = 0. Then,
if one represents

f1(x, λ) = θ (x, λ) + m1(λ)φ(x, λ)

f2(x, λ) = θ (x, λ) + m2(λ)φ(x, λ),

we have WL(λ) = m1(λ) − m2(λ).
In order to reduce to the situation in Sec. 4.19 in the book of Titchmarsh, we need a change of

variables. The equation that we need to consider is (L − λ) f = 0, which is

f ′′(x) + p(p + 1)

2
cosh−2(

(p − 1)

2
x) f (x) = −λ f (x)

Changing variables x → (p − 1)− 1y yields the following equation

g′′(y) + 2p(p + 1)

(p − 1)2

1

4 cosh2( y
2 )

g(y) = −λg(y).

Solving the quadratic equation

α(1 − α) = −2p(p + 1)

(p − 1)2

which has solutions α = 2p/(p − 1), α = − (p + 1)/(p − 1) puts the equation for g in the form

g′′(y) +
(

λ − α(1 − α)

4 cosh2( y
2 )

)
g(y) = 0

which is the form of (4.18.5) in Ref. 28. It is then argued in Ref. 28, that by the fact that since the
potential cosh−2( y

2 ) is even, we have m1(λ) = − m2(λ) and

m2(λ) = �(1 − α
2 − i

√
λ)�( 1

2 + α
2 − i

√
λ)

�( 1
2 − α

2 − i
√

λ)�( α
2 − i

√
λ)

,

where all � functions involved are considered as meromorphic functions on the corresponding
domain. Thus, λ = 0 is a point of resonance, if and only if the function m2(λ) has a zero at zero.
Observing that the numerator is a product of two � functions and is never zero, it remains to show
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that for αp = 2p/(p − 1), the point λ = 0 is not a pole for the denominator. That is, we have to check
that for each integer j ≥ 0

1 − α

2
�= − j ;

α

2
�= − j.

Indeed, the second one is obvious, since αp = 2p/(p − 1) > 0 ≥ − j. For the first one, the solution
to the inequality gives

p �= 1 + 2

j − 1

which is certainly satisfied for p > 3, whenever j is an integer, j ≥ 0. Note however that p = 3, j = 2
is a solution and therefore, there is a resonance at p = 3.
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