A SPACE OF SMALL SPREAD WITHOUT THE USUAL PROPERTIES

JUDITH ROITMAN

ABSTRACT. A space is found, for any α , which has spread α and which is not the set-theoretic union of a hereditarily α -Lindelof and a hereditarily α -separable space.

Introduction. At the 1972 Bolyai János Mathematical Society Colloquium, A. Hajnal and I. Juhasz noted that every known Hausdorff space of spread ω was the union of a hereditary separable space and a hereditarily Lindelof space. The main result of this paper is a family of counterexamples to a generalization of this situation; the method of proof will also yield, in Lemma 2(c), a family of spaces such that no "large" subspaces are regular.

Some notational conventions. If X is a space, by its topology \mathcal{T} we mean the family of open sets; if \mathscr{A} is a family of subsets of X, the topology on X induced by $\mathcal{T} \cup \mathscr{A}$ is the closure of $\mathcal{T} \cup \mathscr{A}$ under arbitrary union and finite intersection. We write $\langle X, \mathcal{T} \rangle$ for X with the topology \mathcal{T} ; if $Y \subseteq X$, $\langle Y, \mathcal{T} \rangle$ means $\langle Y, \{u \cap Y : u \in \mathcal{T}\} \rangle$. Given any set S, |S| denotes the cardinality of S.

Statement of results.

DEFINITION. Given a topological space X, we define its spread by

 $sp(X) = sup\{|Y|: Y \text{ is a discrete subspace of } X\}.$

DEFINITION. Let α be any cardinal, X a space. Then X is α -Lindelof iff every open cover of X has a subcover of cardinality $\leq \alpha$. Similarly, X is α -separable iff every subspace has a dense set of cardinality $\leq \alpha$.

DEFINITION. Let X be a space, P any property of topological spaces. Then X is hereditarily P iff every subspace of X has property P.

We note that if X is either hereditarily α -separable or hereditarily α -Lindelof, $\operatorname{sp}(X) \leq \alpha$.

Key words and phrases. Spread, Lindelof, separable.

© American Mathematical Society 1974

Received by the editors June 12, 1973.

AMS (MOS) subject classifications (1970). Primary 54C15, 54G20; Secondary 54D99, 54D20, 54D10.

THEOREM. Let α be a cardinal. Then there exists a Hausdorff space X of cardinality α^+ such that $\operatorname{sp}(X) = \alpha$ and X is not the set-theoretic union of a hereditarily α -Lindelof space and a hereditarily α -separable space.

COROLLARY OF PROOF. For every cardinal α there exists a Hausdorff space of cardinality α^+ with no regular subspaces of cardinality α^+ .

Construction. From now on we fix some cardinal α . The construction proceeds by taking a space X of cardinality α^+ which is hereditarily α -separable and hereditarily α -Lindelof (any $X \subseteq 2^{\alpha}$, $|X| = \alpha^+$ will do). The points are then thought of as being indexed by the "square" array $\alpha^+ \times \alpha^+$. Lemma 1 ensures that no "vertical" or "diagonal" section is Lindelof; Lemma 2 ensures that no "horizontal" section is separable.

LEMMA 1. Let X be a hereditarily α -separable space under the topology \mathcal{T} , and suppose X is the disjoint union of α^+ nonempty sets, $X = \bigcup_{\beta < \alpha^+} X_{\beta}$. Let \mathcal{T}' be the topology induced on X by $\mathcal{T} \cup \{\bigcup_{\beta \leq \gamma} X_{\beta}: \gamma < \alpha^+\}$. Then

(a) $\langle X, \mathcal{T}' \rangle$ is not α -Lindelof; in fact if $Y \subseteq X$, $|\{\beta : Y \cap X_{\beta} \neq \emptyset\}| = \alpha^+$ then Y is not α -Lindelof.

(b) $\langle X_{\beta}, \mathcal{T}' \rangle = \langle X_{\beta}, \mathcal{T} \rangle$ for all $\beta < \alpha^+$. Thus if X is hereditarily α -Lindelof under $\mathcal{T}, \langle X_{\beta}, \mathcal{T}' \rangle$ will be both hereditarily α -Lindelof and hereditarily α -separable.

(c) $\langle X, \mathcal{T}' \rangle$ is hereditarily α -separable.

PROOF. (a) Let Y be as in the hypothesis, and consider the open cover of Y, $\{Y \cap \bigcup_{\beta \leq \gamma} X_{\beta} : \gamma < \alpha^+\}$. Clearly no subfamily of cardinality α will cover Y.

(b) Clear.

(c) Let $Y \subseteq X$. Let A be a dense set of cardinality $\leq \alpha$ for $\langle Y, \mathcal{T} \rangle$, and let $\gamma = \sup\{\beta : A \cap X_{\beta} \neq \emptyset\}$. If $\gamma \in Y \cap \bigcup_{\beta \geq \gamma} X_{\beta}$ and $\gamma \in u \in \mathcal{T}'$ then $u \cap A \neq \emptyset$. For $\beta \leq \gamma$, let A_{β} be dense for $\langle Y \cap X_{\beta}, \mathcal{T}' \rangle$, $|A_{\beta}| \leq \alpha$. Then $A \cup \bigcup_{\beta \leq \gamma} A_{\beta}$ is dense for $\langle Y, \mathcal{T}' \rangle$ and has cardinality $\leq \alpha$.

LEMMA 2. Let $X = \{x_{\beta}: \beta < \alpha^+\}$ be a hereditarily α -Lindelof space of cardinality α^+ with topology \mathcal{T} . Let \mathcal{A} be any collection of subsets of X such that $|X-A| \leq \alpha$ for all $A \in \mathcal{A}$. Let \mathcal{T}' be the topology induced on X by $\mathcal{T} \cup \mathcal{A}$. Then

(a) $\langle X, \mathcal{T}' \rangle$ is hereditarily α -Lindelof.

(b) If, for all $\gamma < \alpha^+$, $\{x_\beta : \beta \ge \gamma\} \in \mathcal{A}$, then $\langle X, \mathcal{T}' \rangle$ is not α -separable.

(c) If, for all $\gamma < \alpha^+$, $\{x_\beta : \beta \ge \gamma\} \in \mathscr{A}$ and $\langle X, \mathscr{T} \rangle$ is hereditarily α -separable, then $\forall Y \subseteq X$ ($|Y| = \alpha^+ \rightarrow \langle Y, \mathscr{T}' \rangle$ is not regular).

PROOF. (a) Let $Y \subseteq X$, $B \subset \mathcal{T}'$ be a basic open cover of Y. We may assume \mathscr{A} is closed under finite intersection. Then $\forall b \in B$, $b=u \cap v$ for some $u \in \mathcal{T}$, $v \in \mathscr{A}$. Let $\mathscr{B}_{\mathscr{T}} = \{u \in \mathcal{T} : \exists b \in \mathscr{B}, \exists v \in \mathscr{A} \ (b=u \cap v)\}$,

and let $\mathscr{C} \subseteq \mathscr{B}_{\mathscr{F}}$ be a subcover of Y, $|\mathscr{C}| \leq \alpha$. Then $\forall u \in \mathscr{C}, \exists b \in \mathscr{B}$ such that $|u-b| \leq \alpha$. For each $u \in \mathscr{C}$, fix such a $b \in \mathscr{B}$, calling it b_u , and let $\mathscr{C}_u \subset \mathscr{F}'$ cover $(u-b_u) \cap Y$, $|\mathscr{C}_u| \leq \alpha$. Then $\{b_u : u \in \mathscr{B}_{\mathscr{F}}\} \cup \bigcup_{u \in \mathscr{B}_{\mathscr{F}}} \mathscr{C}_u$ is a subcover of Y in \mathscr{F}' of cardinality α .

(b) Let $A \subseteq X$, $|A| \leq \alpha$. Let $\gamma = \sup\{\beta : x_{\beta} \in A\}$. Then $\{x_{\delta} : \delta > \gamma\}$ is open and $A \cap \{x_{\delta} : \delta > \gamma\} = \emptyset$.

(c) Let $Y \subseteq X$, $|Y| = \alpha^+$. Since $\langle X, \mathscr{T}' \rangle$ is hereditarily α -Lindelof, we may without loss of generalization, assume that all open sets of $\langle Y, \mathscr{T}' \rangle$ have cardinality α^+ . Suppose A is dense in $\langle Y, \mathscr{T} \rangle$, $|A| \leq \alpha$. Again, let $\gamma = \sup\{\delta: x_{\delta} \in A\}$. Suppose $\beta > \alpha$. Then x_{β} is not an element of the closed set $\{x_{\delta}: \delta \leq \gamma\} = w_{\gamma}$. We show that x_{β} and w_{γ} cannot be separated by open sets in \mathscr{T}' .

Let $u, v \in \mathcal{T}', x_{\beta} \in u, w_{\gamma} \subset v$. Then $u = u' \cap a, v = v' \cap c$ for some $u', v' \in \mathcal{T}$, and $a, c \in \mathcal{A}$. Since A is dense relative to $\mathcal{T}, u' \cap v' \neq \emptyset$; hence $|u' \cap v'| = \alpha^+$. But then $|u \cap v| = |u' \cap v' \cap a \cap c| = \alpha^+$; clearly $u \cap v \neq \emptyset$.

PROPOSITION. There exists a Hausdorff space X of spread α such that if $X = Y_0 \cup Y_1$ then $\exists i \exists Z \exists Z' \ (Z \subseteq Y_i, Z' \subseteq Y_i, Z \text{ is not } \alpha\text{-separable and } Z' \text{ is not } \alpha\text{-separable of } D$.

PROOF. Let X be a hereditarily α -separable, hereditarily α -Lindelof Hausdorff space of spread α , $X = \bigcup_{\beta < \alpha^+} X_\beta$ as in Lemma 1, and suppose each X_β has cardinality α^+ . Let \mathscr{T}' be as in Lemma 1. We list the elements of X_β as $\{X_\delta^\beta: \delta < \alpha^+\}$ and note that $\langle X_\beta, \mathscr{T}' \rangle$ is hereditarily α -separable and hereditarily α -Lindelof. Let \mathscr{A}_β be as in Lemma 2(b) for X_β . We construct the topology \mathscr{T}^* as follows:

Given $x_{\delta}^{\beta} \in X$, $u \in \mathcal{T}'$, $v \in \mathcal{A}_{\beta}$ such that $x_{\delta}^{\beta} \in u \cap v$, the following is a neighborhood basic open set: $u \cap [v \cup \bigcup_{\rho < \beta} X_{\rho}]$.

These sets are closed under finite intersection, hence they form a basis. Let \mathscr{T}^* be the topology they generate. Clearly $\langle X, \mathscr{T}^* \rangle$ is Hausdorff and has spread $\geq \alpha$. We show the spread is α : Suppose $Y \subseteq X$, $|Y| = \alpha^+$. Then either

(a) $\exists Z \subseteq Y$ such that $|\{\beta : Z \cap X_{\beta} \neq \emptyset\}| = \alpha^+$, or

(b) $\exists Z \subseteq Y$ such that $|Z| = \alpha^+$ and for some $\beta < \alpha^+$, $Z \subseteq X_{\beta}$.

In case (a) we may assume $|Z \cap X_{\beta}| \leq 1$ for all $\beta < \alpha^+$. Then $\langle Z, \mathcal{T}^* \rangle = \langle Z, \mathcal{T}' \rangle$ and by Lemma 1, Z is hereditarily α -separable, hence not discrete. In case (b), by Lemma 2, Z is hereditarily α -Lindelof, hence not discrete. In either case, Y is not discrete. Now suppose $X = Y_0 \cup Y_1$. Suppose $|\{\beta: Y_0 \cap X_{\beta} \neq \emptyset\}| < \alpha^+$. Then letting $\gamma = \sup\{\beta: Y_0 \cap X_{\beta} \neq \emptyset\}$ we have $Y_1 \cap X_{\gamma+1}$ which is not α -separable, and $\{x_0^{\delta}: \delta > \gamma\}$ is a non- α -Lindelof subspace of Y_1 . So we can assume $|\{\beta: Y_i \cap X_{\beta} \neq \emptyset\}| = \alpha^+$ for each *i*.

JUDITH ROITMAN

Hence neither Y_0 not Y_1 is α -Lindelof. Consider some $\delta < \alpha^+$. Then $|X_{\delta} \cap Y_{i_0}| = \alpha^+$ for some i_0 . But then $X_{\delta} \cap Y_{i_0}$ is not α -separable, and this completes the proof.

In closing, we notice that by Lemma 2(c) this space is most definitely not regular; it would be interesting to know if a regular space can satisfy the main theorem.

References

1. A. Hajnal and I. Juhasz, On hereditarily α -Lindelöf and α -separable spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 11 (1968), 115–124. MR 39 #2124.

2. — , A consistency result concerning hereditarily α -separable spaces, Proceedings of the Bolyai János Mathematical Society Colloquium on Topology, Keszthely, Hungary, 1972 (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

248