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A SPACE  OF  SMALL  SPREAD  WITHOUT
THE USUAL PROPERTIES

JUDITH  ROITMAN

Abstract. A space is found, for any a, which has spread a and

which is not the set-theoretic union of a hereditarily a-Lindelof

and a hereditarily a-separable space.

Introduction. At the 1972 Bolyai János Mathematical Society Col-

loquium, A. Hajnal and I. Juhasz noted that every known Hausdorff

space of spread ca was the union of a hereditary separable space and a

hereditarily Lindelof space. The main result of this paper is a family

of counterexamples to a generalization of this situation; the method of

proof will also yield, in Lemma 2(c), a family of spaces such that no "large"

subspaces are regular.

Some notational conventions. If X is a space, by its topology 0" we

mean the family of open sets; if s4 is a family of subsets of A', the topology

on AT induced by 0~\Jsi is the closure of 0~yJsi under arbitrary union

and finite intersection. We write (X, 0~) for X with the topology 0~; if

Y^X, (Y,0~) means (Y, {ut~\Y:ue0^). Given any set S, \S\ denotes

the cardinality of S.

Statement of results.

Definition.   Given a topological space X, we define its spread by

sp(A") = sup{| Y\ : Y is a discrete subspace of X}.

Definition. Let a be any cardinal, X a space. Then X is a-Lindelof

iff every open cover of A" has a subcover of cardinality <a. Similarly, X

is a-separable iff every subspace has a dense set of cardinality 5[a.

Definition. Let A" be a space, P any property of topological spaces.

Then X is hereditarily P iff every subspace of X has property P.

We note that if X is either hereditarily a-separable or hereditarily

a-Lindelof, sp(A')^a.
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Theorem. Let a. be a cardinal. Then there exists a Hausdorff space X

of cardinality a+ such that sp(Af) = a and X is not the set-theoretic union

of a hereditarily a-Lindelof space and a hereditarily a-separable space.

Corollary of proof. For every cardinal a there exists a Hausdorff

space of cardinality a+ with no regular subspaces of cardinality a+.

Construction. From now on we fix some cardinal a. The construction

proceeds by taking a space X of cardinality a+ which is hereditarily

a-separable and hereditarily a-Lindelof (any X^2", \X\ = a+ will do).

The points are then thought of as being indexed by the "square" array

a+xa+. Lemma 1 ensures that no "vertical" or "diagonal" section is

Lindelof; Lemma 2 ensures that no "horizontal" section is separable.

Lemma 1. Let X be a hereditarily a-separable space under the topology

0~, and suppose X is the disjoint union of a+ nonempty sets, X= [Jß <x+ Xß.

Let 0~' be the topology induced on X by 0U{(JßSy Xß:y<.a+}. Then

(a) (X,0~') is not a-Lindelof; in fact if Y<=X, \{ß:YC\Xß^0}\ = a+
then Y is not a-Lindelof.

(b) (Xß,0'')=(Xß,0~) for all ß<a+. Thus if X is hereditarily a-

Lindelof under 0~, {Xß, 0~') will be both hereditarily a-Lindelof and
hereditarily a-separable.

(c) (X, 0~') is hereditarily a-separable.

Proof, (a) Let Y be as in the hypothesis, and consider the open

cover of Y, {YC\ \jßiyXß:y<a+}. Clearly no subfamily of cardinality

a will cover Y.

(b) Clear.

(c) Let 7gj. Let A be a dense set of cardinality £[a for (Y,0~),

and let y = sun{ß:A C\Xß^0}. If y e YrMJßs,yXß andyeueST' then

ur\A^0. For ß^y, let Aß be dense for (FnA'ß,^'), \Aß\^a. Then

AU\Jßiy Aß is dense for (Y, 0~') and has cardinality ^a.

Lemma 2. Let X={xß:ß<a+} be a hereditarily a-Lindelof space of

cardinality a+ with topology 0~. Let s/ be any collection of subsets of X

such that \X—A\-¿a for all A es/. Let 0~' be the topology induced on

Xby0~\Js/. Then

(a) (X, 0~') is hereditarily a-Lindelof.

(b) If, for ally<.a+, {xß:ß^.y} e s/, then (X, 0~') is not a-separable.

(c) If, for all y<a+, {xß:ß^.y} e s/ and (X, 0~) is hereditarily a-

separable, then V Fç X (\ Y\ = a+->( Y, 0~') is not regular).

Proof, (a) Let FsAf, B^0~' be a basic open cover of Y. We may

assume sf is closed under finite intersection. Then VA e B, b=uC\v

for some aeJ, ves/. Let 0>^- = {u e0':3b e 01,3v e s/ (b=uC\v)},
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and let <TS 38y be a subcover of Y, \^\^a. Then Vue<g,lbe 38 such

that \u—A|^a. For each ue<ë, fix such a b e 38, calling it bu, and let

flf.c^" cover (w-AJnF, [ífj<a. Then {4,:«6^}UlJ^r if,
is a subcover of Fin ^"' of cardinality a.

(b) Let A^X, Ml^a. Let y=swp{ß:xß eA}. Then {xá:<5>y} is open

and Ar\{xô:ô>y}=0.

(c) Let Y=X, |F| = a+. Since (X,0~') is hereditarily a-Lindelof, we

may without loss of generalization, assume that all open sets of (Y, 0~')

have cardinality a+. Suppose A is dense in (Y,0~), |/l|_a. Again, let

y = sup{ô:xs e A}. Suppose ß>a. Then xß is not an element of the closed

set {xd:ô^y} = wy. We show that xß and wy cannot be separated by open

sets in 0~'.

Let u,ve0~', xßeu, wy<^v. Then u=u C\a, v=v'dc for some u',

v' e0~, and a, c e s/. Since A is dense relative to 0~, u Cw'^0 ; hence

\u'r\v'\ = a+. But then \uC\v\ = \u Wr\ar>c\ = a+; clearly uC\vj±0.

Proposition. There exists a Hausdorff space X of spread a such that if

A = F0U Yx then H3Z3Z' (Zç Y(, Z'= Yt, Z is not a-separable andZ' is

not a-Lindelof).

Proof. Let A" be a hereditarily a-separable, hereditarily a-Lindelof

Hausdorff space of spread a, X={Jß<x+ Xß as in Lemma 1, and suppose

each Xß has cardinality a+. Let 0~' be as in Lemma 1. We list the elements

of Xß as {Xßö:o<a+} and note that (Xf,0~') is hereditarily a-separable

and hereditarily a-Lindelof. Let s/ß be as in Lemma 2(b) for Xß. We

construct the topology 0~* as follows:

Given xl e X, u e 0~', v e s/ß such that xßö e u n v, the following

is a neighborhood basic open set: u n [tu \Jp<ß Xp].

These sets are closed under finite intersection, hence they form a basis.

Let 0~* be the topology they generate. Clearly (X,0~*) is Hausdorff

and has spread ^a. We show the spread is a: Suppose Y^X, |F|=a+.

Then either

(a) 3Zç F such that \{ß:Zr\Xß9*0}\=a.+, or

(b) 3ZE y such that |Z| = a+ and for some ß<a+, ZcXß.

In case (a) we may assume IZnA^I—T for all ß<a+. Then (Z, 0~*) =

(Z, 0~') and by Lemma 1, Z is hereditarily a-separable, hence not discrete.

In case (b), by Lemma 2, Z is hereditarily a-Lindelof, hence not discrete.

In either case, Y is not discrete. Now suppose X=Y0UYX. Suppose

\{ß:Yor,Xß9i0}\<a+. Then letting y = sup{ß: Yor\Xß^0} we have

YxC\Xy+x which is not a-separable, and {xl:è>y} is a non-a-Lindelof

subspace of Yx. So we can assume \{ß: YinlXßj±0}\ = a+ for each i.
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Hence neither Y0 not Yx is a-Lindelof. Consider some <5<a+. Then

\Xir\Yio\ = a+ for some /„. But then XôC\Yio is not a-separable, and this

completes the proof.

In closing, we notice that by Lemma 2(c) this space is most definitely

not regular; it would be interesting to know if a regular space can satisfy

the main theorem.
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