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MORE PARACOMPACT BOX PRODUCTS

JUDY ROITMAN

Abstract. We show that if there is no family of cardinality less than c

which dominates uoi, then the box product of countably many compact

first-countable spaces is paracompact; hence the countable box product of

compact metrizable spaces is paracompact if 2" = o>2. We also give classes

of forcing extensions in which many box products are paracompact.

0. Introduction. In the last six years there have been many proofs showing

that various classes of countable box products were consistently paracompact.

The methods of these proofs are two: the tree argument used by van Douwen,

and the stratification argument used by everyone else. Here we generalize the

latter technique to show:

Theorem 0. (a) If no family of cardinality less than c dominates ww, then the

box product of countably many compact first-countable spaces is paracompact.

(b) If c = <o2» then the box product of countably many compact metrizable

spaces is paracompact.

We then generalize the method further to show that a simplified version of

the principle implicit in [Ro] also implies that the box product of countably

many compact first-countable spaces is paracompact. From this we find a

wide class of forcing extensions in which various box products are paracom-

pact, thus pointing out where not to look in trying to give a negative answer

to the following open questions:

A. Is rjw(w + 1) paracompact?

B. Does the existence of a A-scale for some X imply that the countable box

product of compact first-countable spaces is paracompact?

Thanks are due to William Mitchell and Saharon Shelah who pointed out

that the proofs in this paper did more than they were expected to do.

1. Preliminaries. All spaces are assumed to be Hausdorf f. A space X is

paracompact iff every open covering of X has a locally finite refinement. The

letters/, g, « are reserved for functions from w to w; A, B for infinite subsets

of w.

Let 7 be an index set, X¡ a topological space for each / E 7. Then the box

product Qe/ Xi consists of all points in II,e/ X¡ under the topology whose
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172 JUDY ROITMAN

basis consists of all boxes u = n,e/ u¡, where each w, is open in X¡. If x = <*,:

/' < co> and >> = <y,: i < w> are in \3¡eu A,, we say x = y iff (/: 7, i= x¡] is

finite. V,6u A, is the quotient topology on the equivalence classes of D,eu A,

generated by =.

The connection between □ and V, and the reasons V is nice to work with,

are made clear by the following theorem of Kunen:

Theorem 1 (Kunen). (a) If each A, is compact, then D,eu X¡ is paracompact

'ff^iew X¡ is paracompact.

(b) Gg's in any V/eu A, are open; hence if each X¡ is regular, the Gs's of

V/eu A, are clopen, and the space is 0-dimensional.

(c) V,Ew A, is paracompact iff every open cover has an open disjoint covering

refinement (such a space is called ultraparacompact).

Because of Kunen's theorem, for the rest of this paper we work with V, and

will prove that under various circumstances V/6<J A, is paracompact, where

each A, is regular. The reader can then conclude that if each A, satisfies the

desired hypotheses and is also compact, then Qeu A, is paracompact as Well.

The connection between V and the structure of uw is made clear by the

following notation and definitions.

Suppose, for each i G w, A, is first countable. For each x¡ G X¡, we fix ux a

function from w such that [ux(j):j G w] is a descending neighborhood basis

for x¡. Then given/: w —> w and x G V/6u A,, we define uxj = V(6(J ux(f(i)).

Given/, g, A, we say/ < g on A iff {/ G A : f(i) <£ g(i)} is finite. Then the

following fact is immediate:

Fact 2. If x, y G V,6w X¡ and/, g G "to, then letting C = {/: ux(f(i)) n

uv,(g(0) =0}» C is infinite iff uxJ n uyg = 0; and if uxJ n uyg =0 and

« ^ /on C, then uxh n uyg = 0.

The careful reader will observe in the preceding sentence a slight confusion

of events in HA, and VA,. Such confusions will continue to occur for the sake

of readability.

^ C uw is a dominating family iff for every f G^w there is some g GÎ,

g < / on w. A A-scale is a dominating family well ordered by < of order type

A. The space w + 1 is the order type w + 1 under the interval topology.

We write % / <$>, a < X, iff ¿D = Ua<A % and a < /? => % C ^ß.

2. Combinatorial proofs. In this section we state two combinatorial princi-

ples and prove that they establish paracompactness.

Definition 3. Let <$ c ww, & c $>(«). We say ?F is cofinal on & iff for

every / there exists an A G & and ag£Î such that g > / on A.

The principle (*) says:

If [S\, |éE| < c, then f is not cofinal on &.

Fact 4. (*) is equivalent to the assertion that there is no dominating family

of cardinality < c.
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Proof. One direction is trivial. We prove the not-quite-so-trivial direction.

Suppose (*) is false via (3r, & and we have some g E uu. We may assume that

each function in 5" is increasing. There exists an/ E £F, and an A E (£, with

/ > g on A. Suppose A = {a0, ax, . . . } in increasing order. Define « to be

constantly equal to/(a„ + 1) on the interval [an, an+x). Then « > g on w and

there can be at most |5"| • |éE| < c such «'s.

Notes on (*). 1. (*) => there is no A-scale, for À < c.

2. By Fact 4, (*) is true if there is a c-scale and c is regular, hence under

MA.

By Fact 4 and Theorem 1, Theorem 0 (a) will be proved by the following

Theorem 5. (*) implies that VI(Eu X¡ is paracompact if each X¡ is first

countable, Lindelóf, and regular.

Proof. By a well-known theorem of Arhangel'skiï, each Xt has cardinality

< c, hence X = V,ea) Xi has cardinality c. We construct a refinement of a

given cover % by an induction of length c. Suppose we have assigned X some

well ordering of type c and have already covered the first ß elements of X by

clopen sets, where this covering %^ refines %, \%ß\ < \ß\ < c, and each

v E %ß is of the form f) ,Su uyJ¡, where {/■: / £ to} is an increasing sequence.

Let x be the next point we have to cover. If jc is already covered, we simply

let s&ß+x = %£. Otherwise, for each v £ ^ we can find a gv so that

uxg n v =0. Hence, where v = n ,ew uyj., we can find an /„ so that

"*,&n %. =0

(this is because the/'s are increasing). Hence by Fact 2,

^-{*:M&(*))n«feU(*))-0}

is infinite. By hypothesis we can find a single « so that for every v E ^p,

gv <£. « on Av. Hence by Fact 2, uxh n « =0 for all v E %ß. Let «, be an

increasing sequence, «0 = «. We let %-/3+l = 6Hß U { D ,ew "x,a,}.

Theorem 0 (b) then follows from Theorem 5 by the following theorem of

van Douwen: if there is a X-scale for some ordinal X, then the countable box

product of compact metrizable spaces is paracompact.

Proof of 0 (b). Assume c = u2. If (*) is false, then there is a dominating

family of size w,, which is easily seen to contain an (0,-scale. So we are either

in the situation of Theorem 5, or the hypothesis of van Douwen's theorem.

(*) is a statement about wu and the power set of w; no topological spaces

are mentioned. (*) is also implicitly a statement about Vw(<o + 1): it says that:

(t) there is a basis ® so that the union of less than c sets from % is closed.

The proof of Theorem 5 is also a proof that (f) holds for any V/(Ew X¡, if each

X, is first countable, Lindelöf, and regular.

For our next principle we are not so lucky. We need to know about more

than the structure of ww and the power set of to. We want a method of proof

that stratifies a space X under consideration so that we may simultaneously
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cover each layer. Therefore we do not have a general combinatorial principle,

but one which depends on the particular space.

Definition 6. Let X = V/eu A,. (**)x is the statement that for some ordinal

X there exist Xa /> X, a < X; âa s <?(«), a < X; 6a 7* ww, a < X; and f =

(/o:a<À)c0u such that

(l)a<ß^fßG6a,

(2)fGea,AG&a=*f^faonA,

(3)f,gGea^f + gGea,
(4) Xa is Hausdorff under the topology generated by all uxJ, where x G Xa,

fee.,
(5) if x,y G Xa,f, g G ea, and uxJ n uy<g =0, then {/: ux¡(/(/)) n uy¡(g(i))

= 0} G éEa.
Notes on (**)x. 1. Clauses 3, 4, and 5 simultaneously stratify X, ww, and

^ (w) so that if we only know about the functions and sets on the ath layer,

we already know that Xa is Hausdorff. Clauses 1 and 2 connect this stratifi-

cation with a sequence of functions which may not be dominating, but which

no level can dominate.

2. (**)x is a simplified version of the combinatorics in [Ro].

3. (*) implies (**)x if A = V,6u A, and each A, is first countable, Lindelöf,

and regular. Also the existence of a X-scale for some X implies (**)x if

A = Vw(w + 1).

4. As the complication of Definition 6 and the anthropomorphism of Note

1 indicate, (**)x is designed to tell us when a forcing extension makes box

products paracompact.

Theorem 7. Let X = V,6ü) A„ where each A, is regular and first countable.

Then (**)x implies that X is paracompact.

Proof. Again we proceed by induction, this time on the X of Definition 6.

Let % be an open covering of A. Suppose at stage a < X we have covered a

subset of U ß<a Xß by a disjoint refinement <?La of sll, where each v G %a is

clopen and of the form n„Eo uxnf for some x G (Jß<a Xß, f G Uß<a C„

(and nf(j) = n • f(j) for ail/ G w). Let T be the collection of all uyg, for

y G Aa, g G Ga. By í**)^, T separates points in A. If y G Aa has not been

covered yet, let /l, > fa where u,_^ refines a neighborhood in %, A,, G <2a+i, if

such an hy exists. (The problem is that no candidate for hy may be in &a+x.) If

hy exists, let u, = D„eu uy¡nhy and let %0+, = % u {i^: y G Xa - U%

and /*,, is defined}. Clauses 2, 4, and 5 of the definition guarantee that 6lla+x

is a disjoint refinement. Clause 3 says that each nhy is in Qa+X. That every y is

eventually covered follows from 1, 3, and the fact that Qa /" "w.

3. Forcing extensions. In what models of set theory do (*) and (**)x hold?

We partially answer this question with two propositions, the first a simple

criterion for (*), and the second a criterion for (**)x. We give examples in

each category so the reader will know what we are talking about.
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First, some definitions. Let B be a complete Boolean algebra. B has /c-cc iff

every set of mutually incompatible elements has cardinality < /c. Note that

k < X and B has /c-cc => B has A-cc. The density of B, d(B), is the least

cardinality of a dense partial order in B.

B has cofinality 8 iff there is a sequence of algebras Ba / B, a < À, where

cf(X) = 8 and each BQ is a complete proper subalgebra of B. Note that the

cofinality of B is not unique.

Let F be a model of set theory, B E V, and (Ba: a < X} E F be a witness

that B has cofinality 8. We define V0 = V, and Va = VB° c VB for a > 0. A

function/in VB is free over Va iff for every A, g E V,f •£ g on A. Otherwise

/is dominated by Va. VB is dominated by Va iff every /in VB is dominated

by Va. Otherwise VB is free over Va.

A peculiar aspect of forcing is that V often knows the size of the

continuum in VB. That is, there is usually a /c E F so that V 1= /c = cv . Call

this cardinal cB.

Lemma 8. Suppose V 1= [B has cofinality cB and VB is free over all Va]. Then

(*) holds in VB.

Proof. If (*) fails, there is a dominating family which is contained in some

Va, contradicting the freedom of VB.

Examples. 1. Any direct iterated w,-cc B with cofinality d(B)u.

2. Mixing things up: e.g. CH is true in each Va, 8 = to2, and each Ba is a

product or iteration of two algebras, one adding at least one free function, the

other adding no new reals. Mathias and Laver forcing are examples.

Lemma 9. Suppose V (= [B has k + -cc and cofinality 8 > /c + ; Vb is free over

all Va\. Then (**)x holds in VB for every X = VlEüJ X¡ where each X¡ is regular,

first countable with weight < 8.

Proof. The point of the hypothesis on 8 is that we can then repeat the

construction of [Ro] to stratify X into À^'s. A sketch of the construction is:

To each X¡ we associate L¡, the lattice of basic open sets. By hypothesis,

each L, is small enough so any countable descending chain is an element of

some Va. We identify a point in X¡ with some countable descending chain

converging to it. Then (X¡)a is the collection of such chains which are

elements of Va; Xa = Va n V,6u(X,)a.

"con VB and 9(co)n VB are already stratified by the Ka's, and this

natural stratification, together with the Xa's as above, makes clauses 3, 4, and

5 of (**)x true. Because VB is free, we can find an £F satisfying clause 2; we

can then skip up the levels to satisfy 1.

Examples. 1. Any direct co,-cc extension with uncountable cofinality.

2. B = C X D, C stratifies so that it is free over each Kc°xD = Va, and

every real is in some Va. Candidates for such C's are corcc algebras, and for

the associated D good candidates are Solovay, Sacks, or Silver forcing which
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all have the property that new functions in uw are dominated by old

functions.

3. B is an iteration C * D, and defining Da = {p: Ve" f p G Da), each real

occurs in some Va = Vc-xX0" and Ve is free over each Va. The same

candidates for C and D in 2 are candidates here, although care must be taken

so that C„XDa/B.

Looking at these and other examples, the following questions occur:

C. Must reals be added to destroy paracompact box products? (Yes if, say,

(*) or "there is a X-scale" hold in the ground model. What about other cases?)

D. Can an to,-cc extension by itself destroy paracompact box products?
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